
Last modified: 08/28/2007

The C Support Library
Reference Manual

2007.11

Stretch, Inc.

© 2004 Stretch, Inc. All rights reserved. The Stretch logo, Stretch, and Extend-
ing the Possibilities are trademarks of Stretch, Inc. All other trademarks and
brand names are the properties of their respective owners.

This publication is provided “AS IS.” Stretch, Inc. (hereafter “Stretch”) DOES
NOT MAKE ANY WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN-
TIES OF TITLE, NONINFRINGEMENT, MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. Information in this document is
provided solely to enable system and software developers to use Stretch pro-
cessors. Unless specifically set forth herein, there are no express or implied
patent, copyright or any other intellectual property rights or licenses granted
hereunder. Stretch does not warrant that the contents of this publication,
whether individually or as one or more groups, meets your requirements or
that the publication is error-free. This publication could include technical in-
accuracies or typographical errors. Changes may be made to the information
herein, and these changes may be incorporated in new editions of this publi-
cation.

Part #: RU-0000-0409-000

Version 1.8.0
Steve Chamberlain, Roland Pesch, and Cygnus Support
With modifications from Tensilica, Inc.
© 1992, 1993 Cygnus Support
© 1999, 2000, 2001, 2002 Tensilica, Inc.

“libm” includes software developed at SunPro, a Sun Microsystems, Inc. busi-
ness. Permission to use, copy, modify, and distribute this software is freely
granted, provided that this notice is preserved.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, subject to the terms of the GNU
General Public License, which includes the provision that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

Stretch, Inc.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 iii

Contents

Chapter 1 Introduction

Chapter 2 Standard Utility Functions (stdlib.h)
2.1 abort—abnormal termination of a program .2-2
2.2 abs—Integer absolute value (magnitude) .2-3
2.3 assert—Macro for Debugging Diagnostics .2-4
2.4 atexit—request execution of functions at program exit2-5
2.5 atof, atoff—string to double or float .2-6
2.6 atoi, atol—string to integer .2-7
2.7 bsearch—binary search .2-8
2.8 calloc—allocate space for arrays .2-9
2.9 div—divide two integers .2-10
2.10 ecvt, ecvtf, fcvt, fcvtf—double or float to string .2-11
2.11 gcvt, gcvtf—format double or float as string .2-12
2.12 ecvtbuf, fcvtbuf—double or float to string .2-13
2.13 exit—end program execution. .2-14
2.14 getenv—look up environment variable .2-15
2.15 labs—long integer absolute value .2-16
2.16 Idiv—divide two long integers .2-17
2.17 malloc, realloc, free—manage memory .2-18
2.18 mbtowc—minimal multi-byte to wide char converter 2-20
2.19 qsort—sort an array .2-21
2.20 rand, srand—pseudo-random numbers .2-22
2.21 strtod, strtof—string to double or float .2-23
2.22 strtol—string to long. .2-24
2.23 strtoul—string to unsigned long. .2-26
2.24 system—execute command string .2-28
2.25 wctomb—minimal wide char to multi-byte converter 2-29

Chapter 3 Character Type Macros and Functions (ctype.h)
3.1 isalnum—alphanumeric character predicate. .3-2
3.2 isalpha—alphabetic character predicate .3-3
3.3 isascii—ASCII character predicate .3-4
3.4 iscntrl—control character predicate .3-5
3.5 isdigit—decimal digit predicate .3-6
3.6 islower—lower-case character predicate .3-7
3.7 isprint, isgraph—printable character predicates .3-8
3.8 ispunct—punctuation character predicate .3-9
3.9 isspace—whitespace character predicate .3-10
3.10 isupper—uppercase character predicate. .3-11
3.11 isxdigit—hexadecimal digit predicate .3-12
3.12 toascii—force integers to ASCII range .3-13
3.13 tolower—translate characters to lower case .3-14
3.14 toupper—translate characters to upper case. .3-15

Chapter 4 Input and Output (stdio.h)
4.1 clearerr—clear file or stream error indicator .4-2

Stretch, Inc.

Contents

The C Support Library Reference Manual 2007.11
iv Last modified: 08/28/2007

4.2 fclose—close a file .4-3
4.3 feof—test for end of file .4-4
4.4 ferror—test whether read/write error has occurred. .4-5
4.5 fflush—flush buffered file output .4-6
4.6 fgetc—get a character from a file or stream .4-7
4.7 fgetpos—record position in a stream or file .4-8
4.8 fgets—get character string from a file or stream .4-9
4.9 fiprintf—format output to file (integer only). .4-10
4.10 fopen—open a file. .4-11
4.11 fdopen—turn open file into a stream .4-13
4.12 fputc—write a character on a stream or file. .4-14
4.13 fputs—write a character string in a file or stream .4-15
4.14 fread—read array elements from a file .4-16
4.15 freopen—open a file using an existing file descriptor 4-17
4.16 fseek—set file position .4-18
4.17 fsetpos—restore position of a stream or file .4-19
4.18 ftell—return position in a stream or file .4-20
4.19 fwrite—write array elements .4-21
4.20 getc—read a character (macro). .4-22
4.21 getchar—read a character (macro) .4-23
4.22 gets—get character string .4-24
4.23 iprintf—write formatted output (integer only) .4-25
4.24 mktemp, mkstemp—generate unused file name .4-26
4.25 perror—print an error message on standard error .4-27
4.26 putc—write a character (macro) .4-28
4.27 putchar—write a character (macro). .4-29
4.28 puts—write a character string .4-30
4.29 remove—delete a files name .4-31
4.30 rename—rename a file .4-32
4.31 rewind—reinitialize a file or stream .4-33
4.32 setbuf—specify full buffering for a file or stream .4-34
4.33 setvbuf—specify file or stream buffering .4-35
4.34 siprintf—write formatted output (integer only) .4-36
4.35 printf, fprintf, sprintf—format output .4-37
4.36 scanf, fscanf, sscanf—scan and format input .4-41
4.37 tmpfile—create a temporary file .4-46
4.38 tmpnam, tempnam—name for a temporary file .4-47
4.39 vprintf, vfprintf, vsprintf—format argument list .4-48

Chapter 5 Strings and Memory (string.h)
5.1 bcmp—compare two memory areas .5-2
5.2 bcopy—copy memory regions .5-3
5.3 bzero—initialize memory to zero .5-4
5.4 index—search for character in string .5-5
5.5 memchr—find character in memory. .5-6
5.6 memcmp—compare two memory areas .5-7
5.7 memcpy—copy memory regions. .5-8
5.8 memmove—move possibly overlapping memory .5-9
5.9 memset—set an area of memory .5-10
5.10 rindex—reverse search for character in string .5-11
5.11 strcat—concatenate strings .5-12
5.12 strchr—search for character in string .5-13
5.13 strcmp—character string compare. .5-14
5.14 strcoll—locale specific character string compare .5-15
5.15 strcpy—copy string .5-16

Stretch, Inc.

Contents

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 v

5.16 strcspn—count chars not in string .5-17
5.17 strerror—convert error number to string .5-18
5.18 strlen—character string length .5-21
5.19 strlwr—force string to lower case .5-22
5.20 strncat—concatenate strings .5-23
5.21 strncmp—character string compare. .5-24
5.22 strncpy—counted copy string. .5-25
5.23 strpbrk—find chars in string .5-26
5.24 strrchr—reverse search for character in string .5-27
5.25 strspn—find initial match .5-28
5.26 strstr—find string segment .5-29
5.27 strtok—get next token from a string .5-30
5.28 strupr—force string to uppercase. .5-31
5.29 strxfrm—transform string .5-32

Chapter 6 Signal Handling (signal.h)
6.1 raise—send a signal .6-3
6.2 signal—specify handler subroutine for a signal. .6-4

Chapter 7 Time Functions (time.h)
7.1 asctime—format time as string .7-2
7.2 clock—cumulative processor time .7-3
7.3 ctime—convert time to local and format as string .7-4
7.4 difftime—subtract two times .7-5
7.5 gmtime—convert time to UTC traditional form .7-6
7.6 localtime—convert time to local representation .7-7
7.7 mktime—convert time to arithmetic representation .7-8
7.8 strftime—flexible calendar time formatter .7-9
7.9 time—get current calendar time (as single number)7-11

Chapter 8 Locale (locale.h)
8.1 setlocale, localeconv—select or query locale .8-4

Chapter 9 Reentrancy

Chapter 10 Miscellaneous Macros and Functions
10.1 unctrl—translate characters to upper case .10-2

Chapter 11 Functions for Xtensa Processors
11.1 setjmp—save stack environment .11-2
11.2 longjmp—non-local goto .11-3

Chapter 12 System Calls
12.1 Definitions for OS interface .12-1
12.2 Xtensa System Calls .12-5

12.2.1Base Xtensa System Calls .12-6
12.2.2System Calls with the Xtensa ISS .12-7

12.3 Reentrant covers for OS subroutines .12-8

Chapter 13 Variable Argument Lists
13.1 ANSI-standard macros, stdarg.h .13-1

13.1.1Initialize variable argument list .13-2
13.1.2Extract a value from argument list .13-3
13.1.3Abandon a variable argument list .13-4

Stretch, Inc.

Contents

The C Support Library Reference Manual 2007.11
vi Last modified: 08/28/2007

13.2 Traditional macros, varargs.h .13-4
13.2.1Declare variable arguments .13-5
13.2.2Initialize variable argument list .13-6
13.2.3Extract a value from argument list .13-7
13.2.4Abandon a variable argument list .13-8

Index

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 1-1

Stretch, Inc.

Chapter 1 Introduction

This reference manual describes the functions provided by the Cygnus
newlib version of the standard ANSI C library. This document is not intended
as an overview or a tutorial for the C library. Each library function is listed with
a synopsis of its use, a brief description, return values (including error han-
dling), and portability issues.

Some of the library functions depend on support from the underlying operat-
ing system and may not be available on every platform. For embedded systems
in particular, many of these underlying operating system services may not be
available or may not be fully functional. The specific operating system subrou-
tines required for a particular library function are listed in the “Portability” sec-
tion of the function description. See Chapter 12, “System Calls”, for a
description of the relevant operating system calls.

The C Support Library Reference Manual 2007.11
1-2 Last modified: 08/28/2007

Chapter 1 ■ Introduction

Stretch, Inc.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-1

Stretch, Inc.

Chapter 2 Standard Utility Functions
(stdlib.h)

This chapter groups utility functions useful in a variety of programs. The cor-
responding declarations are in the header file stdlib.h.

The C Support Library Reference Manual 2007.11
2-2 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
abort—abnormal termination of a program

Stretch, Inc.

2.1 abort—abnormal termination of a program
Synopsis #include <stdlib.h>

void abort(void);

Description Use abort to signal that your program has detected a condition it cannot deal
with. Normally, abort ends your programs execution.

Before terminating your program, abort raises the exception SIGABRT (us-
ing raise (SIGABRT)). If you have used signal to register an exception han-
dler for this condition, that handler has the opportunity to retain control,
thereby avoiding program termination.

In this implementation, abort does not perform any stream- or file-related
cleanup (the host environment may do so; if not, you can arrange for your pro-
gram to do its own cleanup with a SIGABRT exception handler).

Returns abort does not return to its caller.

Portability ANSI C requires abort.

Required OS subroutines getpid, kill

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-3

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
abs—Integer absolute value (magnitude)

2.2 abs—Integer absolute value (magnitude)
Synopsis #include <stdlib.h>

int abs(int i);

Description abs returns |i| , the absolute value of i (also called the magnitude of i). That

is, if i is negative, the result is the opposite of i, but if i is nonnegative the
result is i.

The similar function labs uses and returns long rather than int values.

Returns The result is a non-negative integer.

Portability abs is ANSI.

No supporting OS subroutines are required.

i

The C Support Library Reference Manual 2007.11
2-4 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
assert—Macro for Debugging Diagnostics

Stretch, Inc.

2.3 assert—Macro for Debugging Diagnostics
Synopsis #include <assert.h>

void assert(int expression);

Description Use this macro to embed debugging diagnostic statements in your programs.
The argument expression should be an expression which evaluates to true
(non-zero) when your program is working as you intended.

When expression evaluates to false (zero), assert calls abort, after first
printing a message showing what failed and where:

Assertion failed: expression, file filename, line lineno

The macro is defined to permit you to turn off all uses of assert at compile
time by defining ndebug as a preprocessor variable. If you do this, the assert
macro expands to

(void(0))

Returns assert does not return a value.

Portability The assert macro is required by ANSI, as is the behavior when ndebug is
defined.

Required OS subroutines (only if enabled): close, fstat, getpid, isatty, kill, lseek, read,
sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-5

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
atexit—request execution of functions at program exit

2.4 atexit—request execution of functions at
program exit

Synopsis #include <stdlib.h>
int atexit(void (*function) (void));

Description You can use atexit to enroll functions in a list of functions that will be called
when your program terminates normally. The argument is a pointer to a user-
defined function (which must not require arguments and must not return a
result).

The functions are kept in a LIFO stack; that is, the last function enrolled by
atexit will be the first to execute when your program exits.

There is no built-in limit to the number of functions you can enroll in this list;
however, after every group of 32 functions is enrolled, atexit will call
malloc to get space for the next part of the list. The initial list of 32 functions
is statically allocated, so you can always count on at least that many slots avail-
able.

Returns atexit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible
only if no space was available for malloc to extend the list of functions).

Portability atexit is required by the ANSI standard, which also specifies that implemen-
tations must support enrolling at least 32 functions.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
2-6 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
atof, atoff—string to double or float

Stretch, Inc.

2.5 atof, atoff—string to double or float
Synopsis #include <stdlib.h>

double atof(const char *s);
float atoff(const char *s);

Description atof converts the initial portion of a string to a double, atoff converts the
initial portion of a string to a float.

The functions parse the character string s, locating a substring which can be
converted to a floating point value. The substring must match the format:

[+|-] digits[.] [digits] [(e|E) [+|-] digits]

The substring converted is the longest initial fragment of s that has the expect-
ed format, beginning with the first non-whitespace character. The substring is
empty if str is empty, consists entirely of whitespace, or if the first non-
whitespace character is something other than +, -, ., or a digit.

atof(s) is implemented as

strtod(s, null).

atoff (s) is implemented as

strtof (s, NULL).

Returns atof returns the converted substring value, if any, as a double; or 0.0 if no
conversion could be performed. If the correct value is out of the range of rep-
resentable values, plus or minus HUGE_VAL is returned, and ERANGE is stored
in errno. If the correct value would cause underflow, 0.0 is returned and
ERANGE is stored in errno.

atoff obeys the same rules as atof, except that it returns a float.

Portability atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol,
but are used extensively in existing code. These functions are less reliable, but
may be faster if the argument is verified to be in a valid range.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-7

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
atoi, atol—string to integer

2.6 atoi, atol—string to integer
Synopsis #include <stdlib.h>

int atoi(const char *s);
long atol(const char *s);

Description atoi converts the initial portion of a string to an int. atol converts the initial
portion of a string to a long.

atoi(s) is implemented as

(int) strtol (s, null, 10)

atol(s) is implemented as

strtol (s, NULL, 10)

Returns The functions return the converted value, if any. If no conversion was made, 0
is returned.

Portability atoi is ANSI.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
2-8 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
bsearch—binary search

Stretch, Inc.

2.7 bsearch—binary search
Synopsis #include <stdlib.h>

void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description bsearch searches an array beginning at base for any element that matches
key, using binary search, nmemb is the element count of the array; size is the
size of each element.

The array must be sorted in ascending order with respect to the comparison
function compar (which you supply as the last argument of bsearch).

You must define the comparison function (*compar) to have two arguments;
its result must be negative if the first argument is less than the second, zero if
the two arguments match, and positive if the first argument is greater than the
second (where “less than” and “greater than” refer to whatever arbitrary order-
ing is appropriate).

Returns Returns a pointer to an element of array that matches key. If more than one
matching element is available, the result may point to any of them.

Portability bsearch is ANSI.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-9

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
calloc—allocate space for arrays

2.8 calloc—allocate space for arrays
Synopsis #include <stdlib.h>

void *calloc(size_t n, size_t s);
void *calloc_r(void *reent, size_t <n>, <size_t> s);

Description Use calloc to request a block of memory sufficient to hold an array of n ele-
ments, each of which has size s.

The memory allocated by calloc comes out of the same memory pool used
by malloc, but the memory block is initialized to all zero bytes. (To avoid the
overhead of initializing the space, use malloc instead.)

The alternate function callocr is reentrant. The extra argument reent is a
pointer to a reentrancy structure.

Returns If successful, a pointer to the newly allocated space.

If unsuccessful, NULL.

Portability calloc is ANSI.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
2-10 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
div—divide two integers

Stretch, Inc.

2.9 div—divide two integers
Synopsis #include <stdlib.h>

div_t div(int n, int d);

Description Divide n/d, returning quotient and remainder as two integers in a structure
div_t.

Returns The result is represented with the structure

typedef struct
{

int quot;
int rem;

} div_t;

where the quot field represents the quotient, and rem the remainder. For non-
zero d, if r = div (n, d); then n equals r.rem + d*r.quot.

To divide long rather than int values, use the similar function ldiv.

Portability div is ANSI.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-11

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
ecvt, ecvtf, fcvt, fcvtf—double or float to string

2.10 ecvt, ecvtf, fcvt, fcvtf—double or float to
string

Synopsis #include <stdlib.h>
char *ecvt(double val, int chars, int *decpt, int *sgn);
char *ecvtf(float val, int chars, int *decpt, int *sgn);
char *fcvt(double val, int decimals, int *decpt,

int *sgn);
char *fcvtf(float val, int decimals, int *decpt,

int *sgn);

Description ecvt and fcvt produce (null-terminated) strings of digits representating the
double number val. ecvtf and fcvtf produce the corresponding character
representations of float numbers.

(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of
ecvt and fcvt.)

The only difference between ecvt and fcvt is the interpretation of the sec-
ond argument (chars or decimals). For ecvt, the second argument chars
specifies the total number of characters to write (which is also the number of
significant digits in the formatted string, since these two functions write only
digits). For fcvt, the second argument decimals specifies the number of
characters to write after the decimal point; all digits for the integer part of val
are always included.

Since ecvt and fcvt write only digits in the output string, they record the lo-
cation of the decimal point in *decpt, and the sign of the number in *sgn.
After formatting a number, *decpt contains the number of digits to the left
of the decimal point. *sgn contains 0 if the number is positive, and 1 if it is
negative.

Returns All four functions return a pointer to the new string containing a character rep-
resentation of val.

Portability None of these functions are ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
2-12 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
gcvt, gcvtf—format double or float as string

Stretch, Inc.

2.11 gcvt, gcvtf—format double or float as string
Synopsis #include <stdlib.h>

char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

Description gcvt writes a fully formatted number as a null-terminated string in the buffer
*buf. gdvtf produces corresponding character representations of float
numbers.

gcvt uses the same rules as the printf format %.precision—only nega-
tive values are signed (with -), and either exponential or ordinary decimal–frac-
tion format is chosen depending on the number of significant digits (specified
by precision).

Returns The result is a pointer to the formatted representation of val (the same as the
argument buf).

Portability Neither function is ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-13

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
ecvtbuf, fcvtbuf—double or float to string

2.12 ecvtbuf, fcvtbuf—double or float to string
Synopsis #include <stdio.h>

char *ecvtbuf(double val, int chars, int *decpt, int *sgn,
char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,
int *sgn, char *buf);

Description ecvtbuf and fcvtbuf produce (null-terminated) strings of digits representing
the double number val.

The only difference between ecvtbuf and fcvtbuf is the interpretation of
the second argument (chars or decimals). For ecvtbuf, the second argu-
ment chars specifies the total number of characters to write (which is also the
number of significant digits in the formatted string, since these two functions
write only digits). For fcvtbuf, the second argument decimals specifies the
number of characters to write after the decimal point; all digits for the integer
part of val are always included.

Since ecvtbuf and fcvtbuf write only digits in the output string, they
record the location of the decimal point in *decpt, and the sign of the number
in *sgn. After formatting a number, *decpt contains the number of digits to
the left of the decimal point. *sgn contains 0 if the number is positive, and l if
it is negative. For both functions, you supply a pointer buf to an area of mem-
ory to hold the converted string.

Returns Both functions return a pointer to buf, the string containing a character rep-
resentation of val.

Portability Neither function is ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
2-14 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
exit—end program execution

Stretch, Inc.

2.13 exit—end program execution
Synopsis #include <stdlib.h>

void exit(int code);

Description Use exit to return control from a program to the host operating environ-
ment. Use the argument code to pass an exit status to the operating environ-
ment: two particular values, EXIT_SUCCESS and EXIT_FAILURE, are defined
in stdlib.h to indicate success or failure in a portable fashion.

exit does two kinds of cleanup before ending execution of your program.
First, it calls all application-defined cleanup functions you have enrolled with
atexit. Second, files and streams are cleaned up: any pending output is de-
livered to the host system, each open file or stream is closed, and files created
by tmpfile are deleted.

Returns exit does not return to its caller.

Portability ANSI C requires exit, and specifies that EXIT_SUCCESS and
EXIT_FAILURE must be defined.

Required OS subroutines exit

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-15

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
getenv—look up environment variable

2.14 getenv—look up environment variable
Synopsis #include <stdlib.h>

char *getenv(const char *name);

Description getenv searches the list of environment variable names and values (using the
global pointer char **environ) for a variable whose name matches the
string at name. If a variable name matches, getenv returns a pointer to the
associated value.

Returns A pointer to the (string) value of the environment variable, or null if there is
no such environment variable.

Portability getenv is ANSI, but the rules for properly forming names of environment
variables vary from one system to another.

getenv requires a global pointer environ.

The C Support Library Reference Manual 2007.11
2-16 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
labs—long integer absolute value

Stretch, Inc.

2.15 labs—long integer absolute value
Synopsis #include <stdlib.h>

long labs(long i);

Description labs returns , the absolute value of i; (also called the magnitude of i). That

is, if i is negative, the result is the opposite of i, but if i is nonnegative the
result is i.

The similar function abs uses and returns int rather than long values.

Returns The result is a nonnegative long integer.

Portability labs is ANSI.

No supporting OS subroutine calls are required.

x

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-17

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
Idiv—divide two long integers

2.16 Idiv—divide two long integers
Synopsis #include <stdlib.h>

ldiv_t ldiv(long n, long d);

Description Divide n/d, returning quotient and remainder as two long integers in a struc-
ture ldiv_t.

Returns The result is represented with the structure

typedef struct
{
long quot;
long rem;

} ldiv_t;

where the quot field represents the quotient, and rem the remainder. For non-
zero d, if r = ldiv (n, d); then n equals r.rem + d*r.quot.

To divide int rather than long values, use the similar function div.

Portability ldiv is ANSI.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
2-18 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
malloc, realloc, free—manage memory

Stretch, Inc.

2.17 malloc, realloc, free—manage memory
Synopsis #include <stdlib.h>

void *malloc(size_t nbytes);
void *realloc(void *aptr, size_t nbytes);
void free(void *aptr);
void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent, void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);

Description These functions manage a pool of system memory.

Use malloc to request allocation of an object with at least nbytes bytes of
storage available. If the space is available, malloc returns a pointer to a newly
allocated block as its result.

If you already have a block of storage allocated by malloc, but you no longer
need all the space allocated to it, you can make it smaller by calling realloc
with both the object pointer and the new desired size as arguments, realloc
guarantees that the contents of the smaller object match the beginning of the
original object.

Similarly, if you need more space for an object, use realloc to request the
larger size; again, realloc guarantees that the beginning of the new, larger
object matches the contents of the original object.

When you no longer need an object originally allocated by malloc or
realloc (or the related function calloc), return it to the memory storage
pool by calling free with the address of the object as the argument. You can
also use realloc for this purpose by calling it with 0 as the nbytes argu-
ment.

The alternate functions _malloc_r, _realloc_r, and _free_r are reen-
trant versions. The extra argument reent is a pointer to a reentrancy struc-
ture.

Returns malloc returns a pointer to the newly allocated space, if successful; otherwise
it returns NULL. If your application needs to generate empty objects, you may
use malloc (0) for this purpose.

realloc returns a pointer to the new block of memory, or NULL if a new block
could not be allocated, NULL is also the result when you use realloc (aptr,
0) (which has the same effect as free (aptr)). You should always check the
result of realloc; successful reallocation is not guaranteed even when you re-
quest a smaller object.

free does not return a result.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-19

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
malloc, realloc, free—manage memory

Portability malloc, realloc, and free are specified by ANSI C, but other conforming
implementations of malloc may behave differently when nbytes is zero.

Required OS subroutines sbrk, write (if WARNLVLIMIT)

The C Support Library Reference Manual 2007.11
2-20 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
mbtowc—minimal multi-byte to wide char converter

Stretch, Inc.

2.18 mbtowc—minimal multi-byte to wide char
converter

Synopsis #include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

Description This is a minimal ANSI-conforming implementation of mbtowc. The only
“multi-byte character sequences” recognized are single bytes, and they are
“converted” to themselves.

Each call to mbtowc copies one character from *s to *pwc, unless s is a null
pointer. In this implementation, the argument n is ignored.

Returns This implementation of mbtowc returns 0 if s is null; it returns l otherwise (re-
porting the length of the character “sequence” used).

Portability mbtowc is required in the ANSI C standard. However, the precise effects vary
with the locale.

mbtowc requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-21

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
qsort—sort an array

2.19 qsort—sort an array
Synopsis #include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description qsort sorts an array (beginning at base) of nmemb objects, size describes
the size of each element of the array.

You must supply a pointer to a comparison function, using the argument
shown as compar. (This permits sorting objects of unknown properties.) De-
fine the comparison function to accept two arguments, each a pointer to an el-
ement of the array starting at base. The result of (*compar) must be negative
if the first argument is less than the second, zero if the two arguments match,
and positive if the first argument is greater than the second (where “less than”
and “greater than” refer to whatever arbitrary ordering is appropriate).

The array is sorted in place; that is, when qsort returns, the array elements
beginning at base have been reordered.

Returns qsort does not return a result.

Portability qsort is required by ANSI (without specifying the sorting algorithm).

The C Support Library Reference Manual 2007.11
2-22 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
rand, srand—pseudo-random numbers

Stretch, Inc.

2.20 rand, srand—pseudo-random numbers
Synopsis #include <stdlib.h>

int rand(void);
void srand(unsigned int seed);
int rand_r(unsigned int *seed) ;

Description rand returns a different integer each time it is called; each integer is chosen
by an algorithm designed to be unpredictable, so that you can use rand when
you require a random number. The algorithm depends on a static variable
called the "random seed"; starting with a given value of the random seed al-
ways produces the same sequence of numbers in successive calls to rand.

You can set the random seed using srand; it does nothing beyond storing its
argument in the static variable used by rand. You can exploit this to make the
pseudo-random sequence less predictable, if you wish, by using some other
unpredictable value (often the least significant parts of a time-varying value) as
the random seed before beginning a sequence of calls to rand; or, if you wish
to ensure (for example, while debugging) that successive runs of your program
use the same “random” numbers, you can use srand to set the same random
seed at the outset.

Returns rand returns the next pseudo-random integer in sequence; it is a number be-
tween 0 and RAND_MAX (inclusive).

srand does not return a result.

Portability rand is required by ANSI, but the algorithm for pseudo-random number gen-
eration is not specified; therefore, even if you use the same random seed, you
cannot expect the same sequence of results on two different systems.

rand requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-23

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
strtod, strtof—string to double or float

2.21 strtod, strtof—string to double or float
Synopsis #include <stdlib.h>

double strtod(const char *str, char **tail)
float strtof(const char *str, char **tail)
double _strtod_r(void *reent,
const char *str, char **tail);

Description The function strtod parses the character string str, producing a substring
which can be converted to a double value. The substring converted is the long-
est initial subsequence of str, beginning with the first non-whitespace char-
acter, that has the format:

[+|-] digits[.] [digits] [(e|E) [+|-] digits]

The substring contains no characters if str is empty, consists entirely of
whitespace, or if the first non-whitespace character is something other than +,
-, ., or a digit. If the substring is empty, no conversion is done, and the value of
str is stored in *tail. Otherwise, the substring is converted, and a pointer to
the final string (which will contain at least the terminating null character of
str) is stored in *tail. If you want no assignment to *tail, pass a null
pointer as tail, strtof is identical to strtod except for its return type.

This implementation returns the nearest machine number to the input deci-
mal string. Ties are broken by using the IEEE round-even rule.

The alternate function _stntod_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns strtod returns the converted substring value, if any. If no conversion could
be performed, 0 is returned. If the correct value is out of the range of repre-
sentable values, plus or minus HUGE_VAL is returned, and ERANGE is stored
in errno. If the correct value would cause underflow, 0 is returned and
ERANGE is stored in errno.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
2-24 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
strtol—string to long

Stretch, Inc.

2.22 strtol—string to long
Synopsis #include <stdlib.h>

long strtol(const char *s, char **ptr,int base);
long _strtol_r(void *reent,
const char *s, char **ptr, int base);

Description The function strtol converts the string *s to a long. First, it breaks down the
string into three parts: leading whitespace, which is ignored; a subject string
consisting of characters resembling an integer in the radix specified by base;
and a trailing portion consisting of zero or more unparseable characters, and
always including the terminating null character. Then, it attempts to convert
the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C
integer constant: an optional sign, a possible 0x indicating a hexadecimal
base, and a number. If base is between 2 and 36, the expected form of the sub-
ject is a sequence of letters and digits representing an integer in the radix spec-
ified by base, with an optional plus or minus sign. The letters a-z (or,
equivalents, A-Z) are used to signify values from 10 to 35; only letters whose
ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first non-whitespace
character is not a permissible letter or digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtol at-
tempts to determine the radix from the input string. A string with a leading 0x
is treated as a hexadecimal value; a string with a leading 0 and no x is treated
as octal; all other strings are treated as decimal. If base is between 2 and 36,
it is used as the conversion radix, as described above. If the subject string be-
gins with a minus sign, the value is negated. Finally, a pointer to the first char-
acter past the converted subject string is stored in ptr, if ptr is not null.

If the subject string is empty (or not in acceptable form), no conversion is per-
formed and the value of s is stored in ptr (if ptr is not null).

The alternate function _stntol_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns strtol returns the converted value, if any. If no conversion was made, 0 is
returned.

strtol returns LONG_MAX or LONG_MIN if the magnitude of the converted
value is too large, and sets errno to ERANGE.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-25

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
strtol—string to long

Portability strtol is ANSI.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
2-26 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
strtoul—string to unsigned long

Stretch, Inc.

2.23 strtoul—string to unsigned long
Synopsis #include <stdlib.h>

unsigned long strtoul(const char *s, char **ptr,
int base);

unsigned long _strtoul_r(void *reent, const char *s,
char **ptr, int base);

Description The function strtoul converts the string *s to an unsigned long. First, it
breaks down the string into three parts: leading whitespace, which is ignored;
a subject string consisting of the digits meaningful in the radix specified by
base (for example, 0 through 7 if the value of base is 8); and a trailing portion
consisting of one or more unparseable characters, which always includes the
terminating null character. Then, it attempts to convert the subject string into
an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal
C integer constant (but no optional sign is permitted): a possible 0x indicating
hexadecimal radix, and a number. If base is between 2 and 36, the expected
form of the subject is a sequence of digits (which may include letters, depend-
ing on the base) representing an integer in the radix specified by base. The
letters a-z (or A-Z) are used as digits valued from 10 to 35. If base is 16, a
leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first non-whitespace
character is not a permissible digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoul at-
tempts to determine the radix from the input string. A string with a leading 0x
is treated as a hexadecimal value; a string with a leading 0 and no x is treated
as octal; all other strings are treated as decimal. If base is between 2 and 36,
it is used as the conversion radix, as described above. Finally, a pointer to the
first character past the converted subject string is stored in ptr, if ptr is not
null.

If the subject string is empty (that is, if *s does not start with a substring in
acceptable form), no conversion is performed and the value of s is stored in
ptr (if ptr is not null).

The alternate function _strtoul_r is a reentrant version. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns strtoul returns the converted value, if any; 0 if no conversion was made.

strtoul returns ULONG_MAX if the magnitude of the converted value is too
large, and sets errno to ERANGE.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-27

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
strtoul—string to unsigned long

Portability strtoul is ANSI.

strtoul requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
2-28 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
system—execute command string

Stretch, Inc.

2.24 system—execute command string
Synopsis #include <stdlib.h>

int system(char *s);
int _system_r(void *reent, char *s);

Description Use system to pass a command string *s to /bin/sh on your system, and
wait for it to finish executing.

Use system (null) to test whether your system has /bin/sh available.

The alternate function _system_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns system (null) returns a non-zero value if /bin/sh is available, and 0 if it
is not.

With a command argument, the result of system is the exit status returned by
/bin/sh.

Portability ANSI C requires system, but leaves the nature and effects of a command pro-
cessor undefined. ANSI C does, however, specify that system (null) return
zero or non-zero to report on the existence of a command processor.

POSIX.2 requires system, and requires that it invoke a sh. Where sh is found
is left unspecified.

Required OS subroutines _exit, _execve, _fork_r, _wait_r

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 2-29

Stretch, Inc.

Chapter 2 ■ Standard Utility Functions (stdlib.h)
wctomb—minimal wide char to multi-byte converter

2.25 wctomb—minimal wide char to multi-byte
converter

Synopsis #include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description This is a minimal ANSI-conforming implementation of wctomb. The only
“wide characters” recognized are single bytes, and they are “converted” to
themselves.

Each call to wctomb copies the character wchar to *s, unless s is a null point-
er.

Returns This implementation of wctomb returns 0 if s is null; it returns l otherwise (re-
porting the length of the character “sequence” generated).

Portability wctomb is required in the ANSI C standard. However, the precise effects vary
with the locale.

wctomb requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
2-30 Last modified: 08/28/2007

Chapter 2 ■ Standard Utility Functions (stdlib.h)
wctomb—minimal wide char to multi-byte converter

Stretch, Inc.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-1

Stretch, Inc.

Chapter 3 Character Type Macros and
Functions (ctype.h)

This chapter groups macros (which are also available as subroutines) to classi-
fy characters into several categories (alphabetic, numeric, control characters,
whitespace, and so on), or to perform simple character mappings.

The header file ctype.h defines the macros.

The C Support Library Reference Manual 2007.11
3-2 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isalnum—alphanumeric character predicate

Stretch, Inc.

3.1 isalnum—alphanumeric character predicate
Synopsis #include <ctype.h>

int isalnum(int c);

Description isalnum is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for alphabetic or numeric ASCII characters,
and 0 for other arguments. It is defined for all integer values.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef isalnum.

Returns isalnum returns non-zero if c is a letter (a-z or A-Z) or a digit (0-9).

Portability isalnum is ANSI C.

No OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-3

Stretch, Inc.

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isalpha—alphabetic character predicate

3.2 isalpha—alphabetic character predicate
Synopsis #include <ctype.h>

int isalpha(int c);

Description isalpha is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero when c represents an alphabetic ASCII char-
acter, and 0 otherwise. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef isalpha.

Returns isalpha returns non-zero if c is a letter (a-z or A-Z).

Portability isalpha is ANSI C.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
3-4 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isascii—ASCII character predicate

Stretch, Inc.

3.3 isascii—ASCII character predicate
Synopsis #include <ctype.h>

int isascii(int c);

Description isascii is a macro which returns non-zero when c is an ASCII character, and
0 otherwise. It is defined for all integer values.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef isascii.

Returns isascii returns non-zero if the low order byte of c is in the range 0 to 127
(0x00–0x7F).

Portability isascii is ANSI C.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-5

Stretch, Inc.

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
iscntrl—control character predicate

3.4 iscntrl—control character predicate
Synopsis #include <ctype.h>

int iscntrl(int c);

Description iscntrl is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for control characters, and 0 for other char-
acters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef iscntrl.

Returns iscntrl returns non-zero if c is a delete character or ordinary control char-
acter (0x7F or 0x00–0xlF).

Portability iscntrl is ANSI C.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
3-6 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isdigit—decimal digit predicate

Stretch, Inc.

3.5 isdigit—decimal digit predicate
Synopsis #include <ctype.h>

int isdigit(int c);

Description isdigit is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for decimal digits, and 0 for other characters.
It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef isdigit.

Returns isdigit returns non-zero if c is a decimal digit (0-9).

Portability isdigit is ANSI C.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-7

Stretch, Inc.

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
islower—lower-case character predicate

3.6 islower—lower-case character predicate
Synopsis #include <ctype.h>

int islower(int c);

Description islower is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for minuscules (lower-case alphabetic char-
acters), and 0 for other characters. It is defined only when isascii(c) is true
or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef islower.

Returns islower returns non-zero if c is a lowercase letter (a-z).

Portability islower is ANSI C.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
3-8 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isprint, isgraph—printable character predicates

Stretch, Inc.

3.7 isprint, isgraph—printable character
predicates

Synopsis #include <ctype.h>
int isprint(int c);
int isgraph(int c);

Description isprint is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable characters, and 0 for other char-
acter arguments. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing either macro using #undef isprint or #undef isgraph.

Returns isprint returns non-zero if c is a printing character, (0x20–0x7E). isgraph
behaves identically to isprint, except that the space character (0x20) is exclud-
ed.

Portability isprint and isgraph are ANSI C.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-9

Stretch, Inc.

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
ispunct—punctuation character predicate

3.8 ispunct—punctuation character predicate
Synopsis #include <ctype.h>

int ispunct(int c);

Description ispunct is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable punctuation characters, and 0
for other characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef ispunct.

Returns ispunct returns non-zero if c is a printable punctuation character
(isgraph(c) && !isalnum(c)).

Portability ispunct is ANSI C.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
3-10 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isspace—whitespace character predicate

Stretch, Inc.

3.9 isspace—whitespace character predicate
Synopsis #include <ctype.h>

int isspace(int c);

Description isspace is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for whitespace characters, and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef isspace.

Returns isspace returns non-zero if c is a space, tab, carriage return, new line, verti-
cal tab, or formfeed (0x09–0x0D, 0x20).

Portability isspace is ANSI C.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-11

Stretch, Inc.

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isupper—uppercase character predicate

3.10 isupper—uppercase character predicate
Synopsis #include <ctype.h>

int isupper(int c);

Description isupper is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for upper-case letters (A-Z), and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef isupper.

Returns isupper returns non-zero if c is a upper case letter (A-Z).

Portability isupper is ANSI C.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
3-12 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
isxdigit—hexadecimal digit predicate

Stretch, Inc.

3.11 isxdigit—hexadecimal digit predicate
Synopsis #include <ctype.h>

int isxdigit(int c);

Description isxdigit is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for hexadecimal digits, and o for other char-
acters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefin-
ing the macro using #undef isxdigit.

Returns isxdigit returns non-zero if c is a hexadecimal digit (0-9, a-f, or A-F).

Portability isxdigit is ANSI C.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-13

Stretch, Inc.

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
toascii—force integers to ASCII range

3.12 toascii—force integers to ASCII range
Synopsis #include <ctype.h>

int toascii(int c);

Description toascii is a macro which coerces integers to the ASCII range (0-127) by ze-
roing any higher-order bits.

You can use a compiled subroutine instead of the macro definition by undefin-
ing this macro using #undef toascii.

Returns toascii returns integers between 0 and 127.

Portability toascii is not ANSI C.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
3-14 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
tolower—translate characters to lower case

Stretch, Inc.

3.13 tolower—translate characters to lower case
Synopsis #include <ctype.h>

int tolower(int c);
int _tolower(int c);

Description tolower is a macro which converts upper-case characters to lower case, leav-
ing all other characters unchanged. It is only defined when c is an integer in
the range EOF to 255.

You can use a compiled subroutine instead of the macro definition by undefin-
ing this macro using #undef tolower.

_tolower performs the same conversion as tolower, but should only be used
when c is known to be an uppercase character (A-Z).

Returns tolower returns the lower-case equivalent of c when it is a character between
A and Z, and c otherwise.

_tolower returns the lower-case equivalent of c when it is a character be-
tween A and Z. If c is not one of these characters, the behaviour of _tolower
is undefined.

Portability tolower is ANSI C. _tolower is not recommended for portable programs.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 3-15

Stretch, Inc.

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
toupper—translate characters to upper case

3.14 toupper—translate characters to upper case
Synopsis #include <ctype.h>

int toupper(int c);
int _toupper(int c);

Description toupper is a macro which converts lower-case characters to upper case, leav-
ing all other characters unchanged. It is only defined when c is an integer in
the range EOF to 255.

You can use a compiled subroutine instead of the macro definition by undefin-
ing this macro using #undef toupper.

_toupper performs the same conversion as toupper, but should only be
used when c is known to be a lowercase character (a-z).

Returns toupper returns the upper-case equivalent of c when it is a character between
a and z, and c otherwise.

_toupper returns the upper-case equivalent of c when it is a character be-
tween a and z. If c is not one of these characters, the behaviour of _toupper
is undefined.

Portability toupper is ANSI C. _toupper is not recommended for portable programs.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
3-16 Last modified: 08/28/2007

Chapter 3 ■ Character Type Macros and Functions (ctype.h)
toupper—translate characters to upper case

Stretch, Inc.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-1

Stretch, Inc.

Chapter 4 Input and Output (stdio.h)

This chapter comprises functions to manage files or other input/output
streams. Among these functions are subroutines to generate or scan strings
according to specifications from a format string.

The underlying facilities for input and output depend on the host system, but
these functions provide a uniform interface.

The corresponding declarations are in stdio.h. The reentrant versions of
these functions use macros

_stdin_r(reent)
_stdout_r(reent)
_stderr_r(reent)

instead of the globals stdin, stdout, and stderr. The argument
<[reent]> is a pointer to a reentrancy structure.

The C Support Library Reference Manual 2007.11
4-2 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
clearerr—clear file or stream error indicator

Stretch, Inc.

4.1 clearerr—clear file or stream error indicator
Synopsis #include <stdio.h>

void clearerr(FILE *fp);

Description The stdio functions maintain an error indicator with each file pointer fp, to
record whether any read or write errors have occurred on the associated file or
stream. Similarly, it maintains an end-of-file indicator to record whether there
is no more data in the file.

Use clearerr to reset both of these indicators. See ferror and feof to que-
ry the two indicators.

Returns clearerr does not return a result.

Portability ANSI C requires clearerr.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-3

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fclose—close a file

4.2 fclose—close a file
Synopsis #include <stdio.h>

int fclose(FILE *fp);

Description If the file or stream identified by fp is open, fclose closes it, after first ensur-
ing that any pending data is written (by calling fflush(fp)).

Returns fclose returns 0 if successful (including when fp is null or not an open file);
otherwise, it returns EOF.

Portability fclose is required by ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-4 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
feof—test for end of file

Stretch, Inc.

4.3 feof—test for end of file
Synopsis #include <stdio.h>

int feof(FILE *fp);

Description feof tests whether or not the end of the file identified by fp has been reached.

Returns feof returns 0 if the end of file has not yet been reached; if at end of file, the
result is nonzero.

Portability feof is required by ANSI C.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-5

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
ferror—test whether read/write error has occurred

4.4 ferror—test whether read/write error has
occurred

Synopsis #include <stdio.h>
int ferror(FILE *fp);

Description The stdio functions maintain an error indicator with each file pointer fp, to
record whether any read or write errors have occurred on the associated file or
stream. Use ferror to query this indicator.

See clearerr to reset the error indicator.

Returns ferror returns 0 if no errors have occurred; it returns a non-zero value oth-
erwise.

Portability ANSI C requires ferror.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
4-6 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
fflush—flush buffered file output

Stretch, Inc.

4.5 fflush—flush buffered file output
Synopsis #include <stdio.h>

int fflush(FILE *fp);

Description The stdio output functions can buffer output before delivering it to the host
system, in order to minimize the overhead of system calls.

Use fflush to deliver any such pending output (for the file or stream identi-
fied by fp) to the host system.

If fp is null, fflush delivers pending output from all open files.

Returns fflush returns 0 unless it encounters a write error; in that situation, it returns
EOF.

Portability ANSI C requires fflush.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-7

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fgetc—get a character from a file or stream

4.6 fgetc—get a character from a file or stream
Synopsis #include <stdio.h>

int fgetc(FILE *fp);

Description Use fgetc to get the next single character from the file or stream identified
by fp. As a side effect, fgetc advances the file’s current position indicator.

For a macro version of this function, see getc.

Returns The next character (read as an unsigned char, and cast to int), unless there
is no more data, or the host system reports a read error; in either of these situ-
ations, fgetc returns EOF.

You can distinguish the two situations that cause an EOF result by using the
ferror and feof functions.

Portability ANSI C requires fgetc.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-8 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
fgetpos—record position in a stream or file

Stretch, Inc.

4.7 fgetpos—record position in a stream or file
Synopsis #include <stdio.h>

int fgetpos(FILE *fp, fpos_t *pos);

Description Objects of type file can have a “position” that records how much of the file
your program has already read. Many of the stdio functions depend on this
position, and many change it as a side effect.

You can use fgetpos to report on the current position for a file identified by
fp; fgetpos will write a value representing that position at *pos. Later, you
can use this value with fsetpos to return the file to this position.

In the current implementation, fgetpos simply uses a character count to rep-
resent the file position; this is the same number that would be returned by
ftell.

Returns fgetpos returns 0 when successful. If fgetpos fails, the result is l. Failure
occurs on streams that do not support positioning; the global errno indicates
this condition with the value espipe.

Portability fgetpos is required by the ANSI C standard, but the meaning of the value it
records is not specified beyond requiring that it be acceptable as an argument
to fsetpos. In particular, other conforming C implementations may return a
different result from ftell than what fgetpos writes at *pos.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-9

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fgets—get character string from a file or stream

4.8 fgets—get character string from a file or
stream

Synopsis #include <stdio.h>
char *fgets(char *buf, int n, FILE *fp);

Description Reads at most n-1 characters from fp until a newline is found. The characters
including to the newline are stored in buf. The buffer is terminated with a 0.

Returns fgets returns the buffer passed to it, with the data filled in. If end of file oc-
curs with some data already accumulated, the data is returned with no other
indication. If no data are read, NULL is returned instead.

Portability fgets should replace all uses of gets. Note, however, that fgets returns all
of the data, while gets removes the trailing newline (with no indication that
it has done so.)

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-10 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
fiprintf—format output to file (integer only)

Stretch, Inc.

4.9 fiprintf—format output to file (integer only)
Synopsis #include <stdio.h>

int fiprintf(FILE *fd, const char *format, ...) ;

Description fiprintf is a restricted version of fprintf: it has the same arguments and
behavior, save that it cannot perform any floating-point formatting—the f, g,
G, e, and f type specifiers are not recognized.

Returns fiprintf returns the number of bytes in the output string, save that the con-
cluding null is not counted, fiprintf returns when the end of the format
string is encountered. If an error occurs, fiprintf returns EOF.

Portability fiprintf is not required by ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-11

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fopen—open a file

4.10 fopen—open a file
Synopsis #include <stdio.h>

FILE *fopen(const char *file, const char *mode);
FILE *_fopen_r(void *reent, const char *file,

const char *mode);

Description fopen initializes the data structures needed to read or write a file. Specify the
files name as the string at file, and the kind of access you need to the file with
the string at mode.

The alternate function _fopen_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Three fundamental kinds of access are available: read, write, and append.
*mode must begin with one of the three characters r, w, or a, to select one of
these:

Some host systems distinguish between “binary” and “text” files. Such systems
may perform data transformations on data written to, or read from, files
opened as “text”. If your system is one of these, then you can append a “b” to
any of the three modes above, to specify that you are opening the file as a bi-
nary file (the default is to open the file as a text file).

rb, then, means “read binary”; wb, “write binary”; and ab, “append binary”.

To make C programs more portable, the “b” is accepted on all systems, whether
or not it makes a difference.

Finally, you might need to both read and write from the same file. You can also
append a “+” to any of the three modes, to permit this. (If you want to append
both “b” and “+”, you can do it in either order: for example, “rb+” means the
same thing as “r+b” when used as a mode string.)

Use “r+” (or “rb+”) to permit reading and writing anywhere in an existing file,
without discarding any data; “w+” (or “wb+”) to create a new file (or begin by
discarding all data from an old one) that permits reading and writing anywhere
in it; and “a+” (or “ab+”) to permit reading anywhere in an existing file, but
writing only at the end.

r Open the file for reading; the operation will fail if the file does not exist,
or if the host system does not permit you to read it.

w Open the file for writing from the beginning of the file: effectively, this
always creates a new file. If the file whose name you specified already ex-
isted, its old contents are discarded.

a Open the file for appending data, that is writing from the end of file.
When you open a file this way, all data always goes to the current end of
file; you cannot change this using fseek.

The C Support Library Reference Manual 2007.11
4-12 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
fopen—open a file

Stretch, Inc.

Returns fopen returns a file pointer which you can use for other file operations, unless
the file you requested could not be opened; in that situation, the result is NULL.
If the reason for failure was an invalid string at mode, errno is set to EINVAL.

Portability fopen is required by ANSI C.

Required OS subroutines close, fstat, isatty, lseek, open, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-13

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fdopen—turn open file into a stream

4.11 fdopen—turn open file into a stream
Synopsis #include <stdio.h>

FILE *fdopen(int fd, const char *mode);
FILE *_fdopen_r(void *reent, int fd, const char *mode);

Description fdopen produces a file descriptor of type FILE *, from a descriptor for an al-
ready-open file (returned, for example, by the system subroutine open rather
than by fopen). The mode argument has the same meanings as in fopen.

Returns File pointer or NULL, as for fopen.

Portability fdopen is ANSI.

The C Support Library Reference Manual 2007.11
4-14 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
fputc—write a character on a stream or file

Stretch, Inc.

4.12 fputc—write a character on a stream or file
Synopsis #include <stdio.h>

int fputc(int ch, FILE *fp);

Description fputc converts the argument ch from an int to an unsigned char, then
writes it to the file or stream identified by fp.

If the file was opened with append mode (or if the stream cannot support po-
sitioning), then the new character goes at the end of the file or stream. Other-
wise, the new character is written at the current value of the position indicator,
and the position indicator advances by one.

For a macro version of this function, see putc.

Returns If successful, fputc returns its argument ch. If an error intervenes, the result
is EOF. You can use ferror (fp) to query for errors.

Portability fputc is required by ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-15

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fputs—write a character string in a file or stream

4.13 fputs—write a character string in a file or
stream

Synopsis #include <stdio.h>
int fputs(const char *s, FILE *fp);

Description fputs writes the string at s (but without the trailing null) to the file or stream
identified by fp.

Returns If successful, the result is 0; otherwise, the result is EOF.

Portability ANSI C requires fputs, but does not specify that the result on success must
be 0; any non-negative value is permitted.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-16 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
fread—read array elements from a file

Stretch, Inc.

4.14 fread—read array elements from a file
Synopsis #include <stdio.h>

size_t fread(void *buf, size_t size, size_t count,
FILE *fp);

Description fread attempts to copy, from the file or stream identified by fp, count ele-
ments (each of size size) into memory, starting at buf. fread may copy few-
er elements than count if an error, or end of file, intervenes.

fread also advances the file position indicator (if any) for fp by the number
of characters actually read.

Returns The result of fread is the number of elements it succeeded in reading.

Portability ANSI C requires fread.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-17

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
freopen—open a file using an existing file descriptor

4.15 freopen—open a file using an existing file
descriptor

Synopsis #include <stdio.h>
FILE *freopen(const char *file, const char *mode,

FILE *fp);

Description Use this variant of fopen if you wish to specify a particular file descriptor fp
(notably stdin, stdout, or stderr) for the file.

If fp was associated with another file or stream, freopen closes that other file
or stream (but ignores any errors while closing it).

file and mode are used just as in fopen.

Returns If successful, the result is the same as the argument fp. If the file cannot be
opened as specified, the result is null.

Portability ANSI C requires freopen.

Required OS subroutines close, fstat, isatty, lseek, open, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-18 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
fseek—set file position

Stretch, Inc.

4.16 fseek—set file position
Synopsis #include <stdio.h>

int fseek(FILE *fp, long offset, int whence)

Description Objects of type FILE can have a “position” that records how much of the file
your program has already read. Many of the stdio functions depend on this
position, and many change it as a side effect.

You can use fseek to set the position for the file identified by fp. The value
of offset determines the new position, in one of three ways selected by the
value of whence (defined as macros in stdio.h):

SEEK_SET—offset is the absolute file position (an offset from the begin-
ning of the file) desired, offset must be positive.

SEEK_CUR—offset is relative to the current file position, offset can mean-
ingfully be either positive or negative.

SEEK_END—offset is relative to the current end of file, offset can mean-
ingfully be either positive (to increase the size of the file) or negative.

See ftell to determine the current file position.

Returns fseek returns 0 when successful. If fseek fails, the result is EOF. The reason
for failure is indicated in errno: either ESPIPE (the stream identified by fp
doesn’t support repositioning) or EINVAL (invalid file position).

Portability ANSI C requires fseek.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-19

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fsetpos—restore position of a stream or file

4.17 fsetpos—restore position of a stream or file
Synopsis #include <stdio.h>

int fsetpos(FILE *fp, const fpos_t *pos);

Description Objects of type FILE can have a “position” that records how much of the file
your program has already read. Many of the stdio functions depend on this
position, and many change it as a side effect.

You can use fsetpos to return the file identified by fp to a previous position
*pos (after first recording it with fgetpos).

See fseek for a similar facility.

Returns fgetpos returns 0 when successful. If fgetpos fails, the result is l. The rea-
son for failure is indicated in errno: either ESPIPE (the stream identified by
fp doesn’t support repositioning) or EINVAL (invalid file position).

Portability ANSI C requires fsetpos, but does not specify the nature of *pos beyond
identifying it as written by fgetpos.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-20 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
ftell—return position in a stream or file

Stretch, Inc.

4.18 ftell—return position in a stream or file
Synopsis #include <stdio.h>

long ftell(FILE *fp);

Description Objects of type FILE can have a “position” that records how much of the file
your program has already read. Many of the stdio functions depend on this po-
sition, and many change it as a side effect.

The result of ftell is the current position for a file identified by fp. If you
record this result, you can later use it with fseek to return the file to this po-
sition.

In the current implementation, ftell simply uses a character count to repre-
sent the file position; this is the same number that would be recorded by
fgetpos.

Returns ftell returns the file position, if possible. If it cannot do this, it returns -IL.
Failure occurs on streams that do not support positioning; the global errno
indicates this condition with the value ESPIPE.

Portability ftell is required by the ANSI C standard, but the meaning of its result (when
successful) is not specified beyond requiring that it be acceptable as an argu-
ment to fseek. In particular, other conforming C implementations may re-
turn a different result from ftell than what fgetpos records.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-21

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
fwrite—write array elements

4.19 fwrite—write array elements
Synopsis #include <stdio.h>

size_t fwrite(const void *buf, size_t size,
size_t count, FILE *fp);

Description fwrite attempts to copy, starting from the memory location buf, count ele-
ments (each of size size) into the file or stream identified by fp. fwrite may
copy fewer elements than count if an error intervenes.

fwrite also advances the file position indicator (if any) for fp by the number
of characters actually written.

Returns If fwrite succeeds in writing all the elements you specify, the result is the
same as the argument count. In any event, the result is the number of com-
plete elements that fwrite copied to the file.

Portability ANSI C requires fwrite.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-22 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
getc—read a character (macro)

Stretch, Inc.

4.20 getc—read a character (macro)
Synopsis #include <stdio.h>

int getc(FILE *fp);

Description getc is a macro, defined in stdio.h. You can use getc to get the next single
character from the file or stream identified by fp. As a side effect, getc ad-
vances the files current position indicator.

For a subroutine version of this macro, see fgetc.

Returns The next character (read as an unsigned char, and cast to int), unless there
is no more data, or the host system reports a read error; in either of these situ-
ations, getc returns EOF.

You can distinguish the two situations that cause an EOF result by using the
ferror and feof functions.

Portability ANSI C requires getc; it suggests, but does not require, that getc be imple-
mented as a macro. The standard explicitly permits macro implementations of
getc to use the argument more than once; therefore, in a portable program,
you should not use an expression with side effects as the getc argument.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-23

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
getchar—read a character (macro)

4.21 getchar—read a character (macro)
Synopsis #include <stdio.h>

int getchar(void);
int _getchar_r(void *reent);

Description getchar is a macro, defined in stdio.h. You can use getchar to get the
next single character from the standard input stream. As a side effect,
getchar advances the standard inputs current position indicator.

The alternate function _getchar_r is a reentrant version. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns The next character (read as an unsigned char, and cast to int), unless there
is no more data, or the host system reports a read error; in either of these situ-
ations, getchar returns EOF.

You can distinguish the two situations that cause an eof result by using
ferror (stdin) and feof (stdin).

Portability ANSI C requires getchar; it suggests, but does not require, that getchar be
implemented as a macro.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-24 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
gets—get character string

Stretch, Inc.

4.22 gets—get character string
IMPORTANT! Obsolete, use fgets instead.

Synopsis #include <stdio.h>
char *gets(char *buf);
char *_gets_r(void *reent, char *buf);

Description Reads characters from standard input until a newline is found. The characters
up to the newline are stored in buf. The newline is discarded, and the buffer
is terminated with a 0.

This is a dangerous function, as it has no way of checking the amount of space
available in buf. One of the attacks used by the Internet Worm of 1988 used
this to overrun a buffer allocated on the stack of the finger daemon and over-
write the return address, causing the daemon to execute code downloaded into
it over the connection.

The alternate function _gets_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns gets returns the buffer passed to it, with the data filled in. If end of file occurs
with some data already accumulated, the data is returned with no other indi-
cation. If end of file occurs with no data in the buffer, NULL is returned.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-25

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
iprintf—write formatted output (integer only)

4.23 iprintf—write formatted output (integer only)
Synopsis #include <stdio.h>

int iprintf(const char *format, ...) ;

Description iprintf is a restricted version of printf: it has the same arguments and be-
havior, save that it cannot perform any floating-point formatting: the f, g, G, e,
and f type specifiers are not recognized.

Returns iprintf returns the number of bytes in the output string, save that the con-
cluding null is not counted, iprintf returns when the end of the format
string is encountered. If an error occurs, iprintf returns EOF.

Portability iprintf is not required by ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-26 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
mktemp, mkstemp—generate unused file name

Stretch, Inc.

4.24 mktemp, mkstemp—generate unused file
name

Synopsis #include <stdio.h>
char *mktemp(char *path);
int mkstemp(char *path);
char *_mktemp_r(void *reent, char *path);
int *_mkstemp_r(void *reent, char *path);

Description mktemp and mkstemp attempt to generate a file name that is not yet in use for
any existing file, mkstemp creates the file and opens it for reading and writing;
mktemp simply generates the file name.

You supply a simple pattern for the generated file name, as the string at path.
The pattern should be a valid filename (including path information if you
wish) ending with some number of “x” characters. The generated filename will
match the leading part of the name you supply, with the trailing “x” characters
replaced by some combination of digits and letters.

The alternate functions _mktemp_r and _mkstemp_r are reentrant versions.
The extra argument reent is a pointer to a reentrancy structure.

Returns mktemp returns the pointer path to the modified string representing an un-
used filename, unless it could not generate one, or the pattern you provided is
not suitable for a filename; in that case, it returns NULL.

mkstemp returns a file descriptor to the newly created file, unless it could not
generate an unused filename, or the pattern you provided is not suitable for a
filename; in that case, it returns -l.

Portability ANSI C does not require either mktemp or mkstemp; the System V Interface
Definition requires mktemp as of Issue 2.

Required OS subroutines getpid, open, stat

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-27

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
perror—print an error message on standard error

4.25 perror—print an error message on standard
error

Synopsis #include <stdio.h>
void perror(char *prefix);
void _perror_r(void *reent, char *prefix);

Description Use perror to print (on standard error) an error message corresponding to
the current value of the global variable errno. Unless you use NULL as the val-
ue of the argument prefix, the error message will begin with the string at
prefix, followed by a colon and a space (:). The remainder of the error mes-
sage is one of the strings described for strerror.

The alternate function _perror_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns perror returns no result.

Portability ANSI C requires perror, but the strings issued vary from one implementa-
tion to another.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-28 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
putc—write a character (macro)

Stretch, Inc.

4.26 putc—write a character (macro)
Synopsis #include <stdio.h>

int putc(int ch, FILE *fp);

Description putc is a macro, defined in stdio.h. putc writes the argument ch to the file
or stream identified by fp, after converting it from an int to an unsigned
char.

If the file was opened with append mode (or if the stream cannot support po-
sitioning), then the new character goes at the end of the file or stream. Other-
wise, the new character is written at the current value of the position indicator,
and the position indicator advances by one.

For a subroutine version of this macro, see fputc.

Returns If successful, putc returns its argument ch. If an error intervenes, the result
is eof. You can use ferror {fp) to query for errors.

Portability ANSI C requires putc; it suggests, but does not require, that putc be imple-
mented as a macro. The standard explicitly permits macro implementations of
putc to use the fp argument more than once; therefore, in a portable pro-
gram, you should not use an expression with side effects as this argument.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-29

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
putchar—write a character (macro)

4.27 putchar—write a character (macro)
Synopsis #include <stdio.h>

int putchar(int ch);
int _putchar_r(void *reent, int ch);

Description putchar is a macro, defined in stdio.h. putchar writes its argument to the
standard output stream, after converting it from an int to an unsigned char.

The alternate function putcharr is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns If successful, putchar returns its argument ch. If an error intervenes, the re-
sult is EOF. You can use ferror (stdin) to query for errors.

Portability ANSI C requires putchar; it suggests, but does not require, that putchar be
implemented as a macro.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-30 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
puts—write a character string

Stretch, Inc.

4.28 puts—write a character string
Synopsis #include <stdio.h>

int puts(const char *s);
int _puts_r(void *reent, const char *s);

Description puts writes the string at s (followed by a newline, instead of the trailing null)
to the standard output stream.

The alternate function _puts_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns If successful, the result is a nonnegative integer; otherwise, the result is EOF.

Portability ANSI C requires puts, but does not specify that the result on success must be
0; any non-negative value is permitted.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-31

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
remove—delete a files name

4.29 remove—delete a files name
Synopsis #include <stdio.h>

int remove(char *filename);
int _remove_r(void *reent, char *filename);

Description Use remove to dissolve the association between a particular filename (the
string at filename) and the file it represents. After calling remove with a par-
ticular filename, you will no longer be able to open the file by that name.

In this implementation, you may use remove on an open file without error; ex-
isting file descriptors for the file will continue to access the files data until the
program using them closes the file.

The alternate function _remove_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns remove returns 0 if it succeeds, -l if it fails.

Portability ANSI C requires remove, but only specifies that the result on failure be non-
zero. The behavior of remove when you call it on an open file may vary among
implementations.

Required OS subroutines unlink

The C Support Library Reference Manual 2007.11
4-32 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
rename—rename a file

Stretch, Inc.

4.30 rename—rename a file
Synopsis #include <stdio.h>

int rename(const char *old, const char *new);
int _rename_r(void *reent, const char *old,

const char *new);

Description Use rename to establish a new name (the string at new) for a file now known
by the string at old. After a successful rename, the file is no longer accessible
by the string at old.

If rename fails, the file named *old is unaffected. The conditions for failure
depend on the host operating system.

The alternate function _rename_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns The result is either 0 (when successful) or -l (when the file could not be re-
named).

Portability ANSI C requires rename, but only specifies that the result on failure be non-
zero. The effects of using the name of an existing file as *new may vary from
one implementation to another.

Required OS subroutines link, unlink, or rename

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-33

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
rewind—reinitialize a file or stream

4.31 rewind—reinitialize a file or stream
Synopsis #include <stdio.h>

void rewind(FILE *fp);

Description rewind returns the file position indicator (if any) for the file or stream identi-
fied by fp to the beginning of the file. It also clears any error indicator and
flushes any pending output.

Returns rewind does not return a result.

Portability ANSI C requires rewind.

No supporting OS subroutines are required.

The C Support Library Reference Manual 2007.11
4-34 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
setbuf—specify full buffering for a file or stream

Stretch, Inc.

4.32 setbuf—specify full buffering for a file or
stream

Synopsis #include <stdio.h>
void setbuf(FILE *fp, char *buf);

Description setbuf specifies that output to the file or stream identified by fp should be
fully buffered. All output for this file will go to a buffer (of size bufsiz, spec-
ified in stdio.h). Output will be passed on to the host system only when the
buffer is full, or when an input operation intervenes.

You may, if you wish, supply your own buffer by passing a pointer to it as the
argument buf. It must have size bufsiz. You can also use NULL as the value
of buf to signal that the setbuf function is to allocate the buffer.

Warnings You may only use setbuf before performing any file operation other than
opening the file.

If you supply a non-null buf you must ensure that the associated storage con-
tinues to be available until you close the stream identified by fp.

Returns setbuf does not return a result.

Portability Both ANSI C and the System V Interface Definition (Issue 2) require setbuf.
However, they differ on the meaning of a null buffer pointer: the SVID issue
2 specification says that a null buffer pointer requests unbuffered output. For
maximum portability, avoid null buffer pointers.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-35

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
setvbuf—specify file or stream buffering

4.33 setvbuf—specify file or stream buffering
Synopsis #include <stdio.h>

int setvbuf(FILE *fp, char *buf, int mode, size_t size);

Description Use setvbuf to specify what kind of buffering you want for the file or stream
identified by fp, by using one of the following values (from stdio.h) as the
mode argument:

Use the size argument to specify how large a buffer you wish. You can supply
the buffer itself, if you wish, by passing a pointer to a suitable area of memory
as buf. Otherwise, you may pass NULL as the buf argument, and setvbuf
will allocate the buffer.

Warnings You may only use setvbuf before performing any file operation other than
opening the file.

If you supply a non-NULL buf, you must ensure that the associated storage con-
tinues to be available until you close the stream identified by fp.

Returns A 0 result indicates success, EOF failure (invalid mode or size can cause fail-
ure).

Portability Both ANSI C and the System V Interface Definition (Issue 2) require
setvbuf. However, they differ on the meaning of a null buffer pointer: the
SVID issue 2 specification says that a null buffer pointer requests unbuffered
output. For maximum portability, avoid null buffer pointers.

Both specifications describe the result on failure only as a non-zero value.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

ionbf Do not use a buffer: send output directly to the host system for the
file or stream identified by fp.

iofbf Use full output buffering: output will be passed on to the host sys-
tem only when the buffer is full, or when an input operation inter-
venes.

iolbf Use line buffering: pass on output to the host system at every new-
line, as well as when the buffer is full, or when an input operation
intervenes.

The C Support Library Reference Manual 2007.11
4-36 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
siprintf—write formatted output (integer only)

Stretch, Inc.

4.34 siprintf—write formatted output (integer
only)

Synopsis #include <stdio.h>
int siprintf(char *str, const char *format [, arg, ...]);

Description siprintf is a restricted version of sprintf: it has the same arguments and
behavior, save that it cannot perform any floating-point formatting: the f, g, G,
e, and f type specifiers are not recognized.

Returns siprintf returns the number of bytes in the output string, save that the con-
cluding null is not counted, siprintf returns when the end of the format
string is encountered.

Portability siprintf is not required by ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-37

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
printf, fprintf, sprintf—format output

4.35 printf, fprintf, sprintf—format output
Synopsis #include <stdio.h>

int printf(const char *format [, arg, …]);
int fprintf(FILE *fd, const char *format [, arg, …]);
int sprintf(char *str, const char *format [, arg, …]);

Description printf accepts a series of arguments, applies to each a format specifier from
*format, and writes the formatted data to stdout, terminated with a null char-
acter. The behavior of printf is undefined if there are not enough arguments
for the format, printf returns when it reaches the end of the format string.
If there are more arguments than the format requires, excess arguments are
ignored.

fprintf and sprintf are identical to printf, other than the destination of
the formatted output: fprintf sends the output to a specified file fd, while
sprintf stores the output in the specified char array str. For sprintf, the
behavior is also undefined if the output *str overlaps with one of the argu-
ments, format is a pointer to a charater string containing two types of objects:
ordinary characters (otherthan %), which are copied unchanged to the output,
and conversion specifications, each of which is introduced by %. (To include
% in the output, use %% in the format string.) A conversion specification has
the following form:

% [flags] [width] [.prec] [size] [type]

The fields of the conversion specification have the following meanings:

flags an optional sequence of characters which control output justifica-
tion, numeric signs, decimal points, trailing zeroes, and octal and
hex prefixes. The flag characters are minus (-), plus (+), space (),
zero (0), and sharp (#). They can appear in any combination.

- The result of the conversion is left justified, and the
right is padded with blanks. If you do not use this flag,
the result is right justified, and padded on the left.

+ The result of a signed conversion (as determined by
type) will always begin with a plus or minus sign. (If
you do not use this flag, positive values do not begin
with a plus sign.)

" "
(space)

If the first character of a signed conversion specification
is not a sign, or if a signed conversion results in no
characters, the result will begin with a space. If the
space () flag and the plus (+) flag both appear, the space
flag is ignored.

The C Support Library Reference Manual 2007.11
4-38 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
printf, fprintf, sprintf—format output

Stretch, Inc.

0 If the type character is d, i, o, u, x, X, e, E, f, g, or G:
leading zeroes, are used to pad the field width (follow-
ing any indication of sign or base); no spaces are used
for padding. If the zero (0) and minus (-) flags both ap-
pear, the zero (0) flag will be ignored. For d, i, o, u, x,
and X conversions, if a precision prec is specified, the
zero (0) flag is ignored. Note that 0 is interpreted as a
flag, not as the beginning of a field width.

The result is to be converted to an alternative form, ac-
cording to the next character:

0 increases precision to force the first digit of
the result to be a zero.

x a non-zero result will have a 0x prefix.

X a non-zero result will have a 0x prefix.

e, E or
f

The result will always contain a decimal point
even if no digits follow the point. (Normally, a
decimal point appears only if a digit follows it.)
Trailing zeroes are removed.

g or G same as e or e, but trailing zeroes are not re-
moved.

all
others

undefined.

width width is an optional minimum field width. You can either specify
it directly as a decimal integer, or indirectly by using instead an as-
terisk (*), in which case an int argument is used as the field
width. Negative field widths are not supported; if you attempt to
specify a negative field width, it is interpreted as a minus (-) flag
followed by a positive field width.

prec an optional field; if present, it is introduced with . (a period). This
field gives the maximum number of characters to print in a con-
version; the minimum number of digits of an integer to print, for
conversions with type d, i, o, u, x, and X; the maximum number
of significant digits, for the g and G conversions; or the number of
digits to print after the decimal point, for e, E, and f conversions.
You can specify the precision either directly as a decimal integer or
indirectly by using an asterisk (*), in which case an int argument
is used as the precision. Supplying a negative precision is equiva-
lent to omitting the precision. If only a period is specified the pre-
cision is zero. If a precision appears with any other conversion type
than those listed here, the behavior is undefined.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-39

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
printf, fprintf, sprintf—format output

size h, l, and L are optional size characters which override the default
way that printf interprets the data type of the corresponding ar-
gument, h forces the following d, i, o, u, x or X conversion type to
apply to a short or unsigned short, h also forces a following n
type to apply to a pointer to a short. Similarily, an l forces the fol-
lowing d, i, o, u, x or X conversion type to apply to a long or un-
signed long. l also forces a following n type to apply to a pointer
to a long. If an h or an l appears with another conversion specifi-
er, the behavior is undefined, l forces a following e, E, f, g or G
conversion type to apply to a long double argument. If l appears
with any other conversion type, the behavior is undefined.

type type specifies what kind of conversion printf performs. Here is
a table of these:

% prints the percent character (%)

c prints arg as single character

s prints characters until precision is reached or a null ter-
minator is encountered; takes a string pointer

d prints a signed decimal integer; takes an int (same as
i)

i prints a signed decimal integer; takes an int (same as
d)

0 prints a signed octal integer; takes an int

u prints an unsigned decimal integer; takes an int

x prints an unsigned hexadecimal integer (using abcdef
as digits beyond 9); takes an int

X prints an unsigned hexadecimal integer (using ABCDEF
as digits beyond 9); takes an int

f prints a signed value of the form [-] 9999.9999;
takes a floating point number

e prints a signed value of the form

[-]9.9999e[+|-]999

takes a floating point number

E prints the same way as e, but using E to introduce the
exponent; takes a floating point number

g prints a signed value in either f or e form, based on giv-
en value and precision—trailing zeros and the decimal
point are printed only if necessary; takes a floating point
number

The C Support Library Reference Manual 2007.11
4-40 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
printf, fprintf, sprintf—format output

Stretch, Inc.

Returns sprintf returns the number of bytes in the output string, save that the con-
cluding null is not counted, printf and fprintf return the number of char-
acters transmitted. If an error occurs, printf and fprintf return EOF. No
error returns occur for sprintf.

Portability The ANSI C standard specifies that implementations must support at least for-
matted output of up to 509 characters.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

G prints the same way as g, but using E for the exponent
if an exponent is needed; takes a floating point number

n stores (in the same object) a count of the characters
written; takes a pointer to int

p prints a pointer in an implementation-defined format.
This implementation treats the pointer as an
unsigned long (same as Lu).

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-41

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
scanf, fscanf, sscanf—scan and format input

4.36 scanf, fscanf, sscanf—scan and format input
Synopsis #include <stdio.h>

int scanf(const char *format [, arg, …]);
int fscanf(FILE *fd, const char *format [, arg, …]);
int sscanf(const char *str, const char *format [, arg, …]);

Description scanf scans a series of input fields from standard input, one character at a
time. Each field is interpreted according to a format specifier passed to scanf
in the format string at *format, scanf stores the interpreted input from each
field at the address passed to it as the corresponding argument following
format. You must supply the same number of format specifiers and address
arguments as there are input fields.

There must be sufficient address arguments for the given format specifiers; if
not the results are unpredictable and likely disastrous. Excess address argu-
ments are merely ignored.

scanf often produces unexpected results if the input diverges from an expect-
ed pattern. Since the combination of gets or fgets followed by sscanf is
safe and easy, that is the preferred way to be certain that a program is synchro-
nized with input at the end of a line.

fscanf and sscanf are identical to scanf, other than the source of input:
fscanf reads from a file, and sscanf from a string.

The string at *format is a character sequence composed of zero or more di-
rectives. Directives are composed of one or more whitespace characters, non-
whitespace characters, and format specifications.

Whitespace characters are blank (), tab (\t), or newline (\n). When scanf en-
counters a whitespace character in the format string it will read (but not store)
all consecutive whitespace characters up to the next non-whitespace character
in the input.

Non-whitespace characters are all other ASCII characters except the percent
sign (%). When scanf encounters a non-whitespace character in the format
string it will read, but not store a matching non-whitespace character.

Format specifications tell scanf to read and convert characters from the input
field into specific types of values, and store then in the locations specified by
the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format
string. The format specifiers must begin with a percent sign (%) and have the
following form:

%[*] [width] [size] type

The C Support Library Reference Manual 2007.11
4-42 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
scanf, fscanf, sscanf—scan and format input

Stretch, Inc.

Each format specification begins with the percent character (%). The other
fields are:

* an optional marker; if present, it suppresses interpretation and
assignment of this input field.

width an optional maximum field width: a decimal integer, which con-
trols the maximum number of characters that will be read before
converting the current input field. If the input field has fewer
than width characters, scanf reads all the characters in the
field, and then proceeds with the next field and its format speci-
fication.

If a whitespace or a non-convertible character occurs before
width character are read, the characters up to that character are
read, converted, and stored. Then scanf proceeds to the next
format specification.

size h, l, and L are optional size characters which override the de-
fault way that scanf interprets the data type of the correspond-
ing argument.

Modifiers Type(s)

h d, i. o, u, X convert input to short, store in
short object

h D, I, 0, U,
X, e, f, c,
s, n, P

no effect

1 d, i, o, u, x convert input to long, store in
long object

1 e, f, g convert input to double store in a
double object

1 D, I, O, U,
X, c, s, n, p

 no effect

L d, i, o, u, x convert to long double, store in
long double

L all others no effect

type A character to specify what kind of conversion scanf performs.
Here is a table of the conversion characters:

% No conversion is done; the percent character (%) is
stored.

c Scans one character. Corresponding arg: (char
*arg).

s Reads a character string into the array supplied.
Corresponding arg: (char arg []).

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-43

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
scanf, fscanf, sscanf—scan and format input

A pattern of characters surrounded by square brackets can be used instead of
the s type character, pattern is a set of characters which define a search set
of possible characters making up the scanf input field. If the first character
in the brackets is a caret (^), the search set is inverted to include all ASCII char-
acters except those between the brackets. There is also a range facility which
you can use as a shortcut. %[0-9] matches all decimal digits. The hyphen
must not be the first or last character in the set. The character prior to the hy-
phen must be lexically less than the character after it.

[pattern] Reads a non-empty character string into memory
starting at arg. This area must be large enough to
accept the sequence and a terminating null charac-
ter which will be added automatically, (pattern is
discussed in the paragraph following this table).
Corresponding arg: (char *arg).

d Reads a decimal integer into the corresponding arg: (int
*arg).

d Reads a decimal integer into the corresponding arg: (long
*arg).

0 Reads an octal integer into the corresponding arg: (int *arg).

0 Reads an octal integer into the corresponding arg: (long
*arg).

u Reads an unsigned decimal integer into the corresponding arg:
(unsigned int *arg).

u Reads an unsigned decimal integer into the corresponding arg:
(unsigned long *arg).

x,x Read a hexadecimal integer into the corresponding arg: (int
*arg).

e, f, g Read a floating point number into the corresponding arg:
(float *arg).

e, f, G Read a floating point number into the corresponding arg:
(double *arg).

1 Reads a decimal, octal or hexadecimal integer into the corre-
sponding arg: (int *arg).

i Reads a decimal, octal or hexadecimal integer into the corre-
sponding arg: (long *arg).

n Stores the number of characters read in the corresponding arg:
(int *arg).

p Stores a scanned pointer. ANSI C leaves the details to each im-
plementation; this implementation treats %p exactly the same as
%u. Corresponding arg: (void **arg).

The C Support Library Reference Manual 2007.11
4-44 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
scanf, fscanf, sscanf—scan and format input

Stretch, Inc.

Here are some pattern examples:

Floating point numbers (for field types e, f, g, e, f, g) must correspond to the
following general form:

[+/-] ddddd[.]ddd [E|e[+|-]ddd]

where objects inclosed in square brackets are optional, and ddd represents
decimal, octal, or hexadecimal digits.

Returns scanf returns the number of input fields successfully scanned, converted and
stored; the return value does not include scanned fields which were not stored.

If scanf attempts to read at end-of-file, the return value is EOF. If no fields
were stored, the return value is 0.

scanf might stop scanning a particular field before reaching the normal field
end character, or may terminate entirely.

scanf stops scanning and storing the current field and moves to the next in-
put field (if any) in any of the following situations:

■ The assignment suppressing character (*) appears after the % in the format
specification; the current input field is scanned but not stored.

■ width characters have been read (width is a width specification, a positive
decimal integer).

■ The next character read cannot be converted under the current format (for
example, if a z is read when the format is decimal).

■ The next character in the input field does not appear in the search set (or
does appear in the inverted search set).

When scanf stops scanning the current input field for one of these reasons,
the next character is considered unread and used as the first character of the
following input field, or the first character in a subsequent read operation on
the input.

scanf will terminate under the following circumstances:

■ The next character in the input field conflicts with a corresponding non-
whitespace character in the format string.

■ The next character in the input field is EOF.

■ The format string has been exhausted.

%[abed] matches strings containing only a, b, c, and d

%Tabcd] matches strings containing any characters except a, b, c, or d

%[A-DW-Z] matches strings containing a, b, c, d, w, x, y, z

%[z-a] matches the characters z, -, and a

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-45

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
scanf, fscanf, sscanf—scan and format input

When the format string contains a character sequence that is not part of a for-
mat specification, the same character sequence must appear in the input;
scanf will scan but not store the matched characters. If a conflict occurs, the
first conflicting character remains in the input as if it had never been read.

Portability scanf is ANSI C.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

The C Support Library Reference Manual 2007.11
4-46 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
tmpfile—create a temporary file

Stretch, Inc.

4.37 tmpfile—create a temporary file
Synopsis #include <stdio.h>

FILE *tmpfile(void);
FILE *_tmpfile_r(void *reent);

Description Create a temporary file (a file which will be deleted automatically), using a
name generated by tmpnam. The temporary file is opened with the mode wb+,
permitting you to read and write anywhere in it as a binary file (without any
data transformations the host system may perform for text files).

The alternate function _tmpfile_r is a reentrant version. The argument
reent is a pointer to a reentrancy structure.

Returns tmpfile normally returns a pointer to the temporary file. If no temporary file
could be created, the result is NULL, and errno records the reason for failure.

Portability Both ANSI C and the System V Interface Definition (Issue 2) require
tmpfile.

Required OS subroutines close, fstat, getpid, isatty, lseek, open, read, sbrk,
write
tmpfile also requires the global pointer environ.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 4-47

Stretch, Inc.

Chapter 4 ■ Input and Output (stdio.h)
tmpnam, tempnam—name for a temporary file

4.38 tmpnam, tempnam—name for a temporary
file

Synopsis #include <stdio.h>
char *tmpnam(char *s) ;
char *tempnam(char *dir, char *pfx);
char *_tmpnam_r(void *reent, char *s);
char *_tempnam_r(void *reent, char *dir, char *pfx);

Description Use either of these functions to generate a name for a temporary file. The gen-
erated name is guaranteed to avoid collision with other files (for up to tmpmax
calls of either function).

tmpnam generates file names with the value of p_tmpdir (defined in
stdio.h) as the leading directory component of the path.

You can use the tmpnam arguments to specify a suitable area of memory for
the generated file name; otherwise, you can call tmpnam (null) to use an
internal static buffer.

tempnam allows you more control over the generated file name: you can use
the argument dir to specify the path to a directory for temporary files, and you
can use the argument pfx to specify a prefix for the base file name.

If dir is null, tempnam will attempt to use the value of environment variable
tmpdir instead; if there is no such value, tempnam uses the value of
p_tmpdir (defined in stdio.h).

If you don’t need any particular prefix to the basename of temporary files, you
can pass NULL as the pfx argument to tempnam.

_tmpnam_r and _tempnam_r are reentrant versions of tmpnam and
tempnam respectively. The extra argument reent is a pointer to a reentrancy
structure.

Warnings The generated filenames are suitable for temporary files, but do not in them-
selves make files temporary. Files with these names must still be explicitly re-
moved when you no longer want them.

If you supply your own data areas for tmpnam, you must ensure that it has
room for at least L_tmpnam elements of type char.

Returns Both tmpnam and tempnam return a pointer to the newly generated file name.

Portability ANSI C requires tmpnam, but does not specify the use of p_tmpdir. The Sys-
tem V Interface Definition (Issue 2) requires both tmpnam and tempnam.

Required OS subroutines close, fstat, getpid, isatty, lseek, open, read, sbrk,
write
The global pointer environ is also required.

The C Support Library Reference Manual 2007.11
4-48 Last modified: 08/28/2007

Chapter 4 ■ Input and Output (stdio.h)
vprintf, vfprintf, vsprintf—format argument list

Stretch, Inc.

4.39 vprintf, vfprintf, vsprintf—format argument
list

Synopsis #include <stdio.h>
#include <stdarg.h>
int vprintf(const char *fmt, va_list list);
int vfprintf(FILE *fp, const char *fmt, va_list list);
int vsprintf(char *str, const char *fmt, va_list list);
int _vprintf_r(void *reent, const char *fmt,

va_list list);
int _vfprintf_r(void *reent, FILE *fp, const char *fmt,

va_list list);
int _vsprintf_r(void *reent, char *str, const char *fmt,

va list list);

Description vprintf, vfprintf, and vsprintf are (respectively) variants of printf,
fprintf, and sprintf. They differ only in allowing their caller to pass the
variable argument list as a valist object (initialized by vastart) rather than
directly accepting a variable number of arguments.

Returns The return values are consistent with the corresponding functions: vsprintf
returns the number of bytes in the output string, save that the concluding null
is not counted, vprintf and vfprintf return the number of characters
transmitted. If an error occurs, vprintf and vfprintf return EOF. No error
returns occur for vsprintf.

Portability ANSI C requires all three functions.

Required OS subroutines close, fstat, isatty, lseek, read, sbrk, write

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-1

Stretch, Inc.

Chapter 5 Strings and Memory (string.h)

This chapter describes string-handling functions and functions for managing ar-
eas of memory. The corresponding declarations are in string.h.

The C Support Library Reference Manual 2007.11
5-2 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
bcmp—compare two memory areas

Stretch, Inc.

5.1 bcmp—compare two memory areas
Synopsis #include <string.h>

int bcmp(const char *sl, const char *s2, size_t n);

Description This function compares not more than n characters of the object pointed to by
s1 with the object pointed to by s2.

This function is identical to memcmp.

Returns The function returns an integer greater than, equal to, or less than zero accord-
ing to whether the object pointed to by s1 is greater than, equal to, or less than
the object pointed to by s2.

Portability bcmp requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-3

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
bcopy—copy memory regions

5.2 bcopy—copy memory regions
Synopsis #include <string.h>

void bcopy(const char *in, char *out, size_t n);

Description This function copies n bytes from the memory region pointed to by in to the
memory region pointed to by out.

This function is implemented in term of memmove.

Portability bcopy requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-4 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
bzero—initialize memory to zero

Stretch, Inc.

5.3 bzero—initialize memory to zero
Synopsis #include <string.h>

void bzero (char *b, size_t length);

Description bzero initializes length bytes of memory, starting at address b, to zero.

Returns bzero does not return a result.

Portability bzero is in the Berkeley Software Distribution. Neither ANSI C nor the Sys-
tem V Interface Definition (Issue 2) require bzero.

bzero requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-5

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
index—search for character in string

5.4 index—search for character in string
Synopsis #include <string.h>

char *index(const char *string, int c)

Description This function finds the first occurrence of c (converted to a char) in the string
pointed to by string (including the terminating null character).

This function is identical to strchr.

Returns Returns a pointer to the located character, or a null pointer if c does not occur
in string.

Portability index requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-6 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
memchr—find character in memory

Stretch, Inc.

5.5 memchr—find character in memory
Synopsis #include <string.h>

void *memchr(const void *src, int c, size_t length);

Description This function searches memory starting at *src for the character c. The
search only ends with the first occurrence of c, or after length characters; in
particular, null does not terminate the search.

Returns If the character c is found within length characters of *src, a pointer to the
character is returned. If c is not found, then null is returned.

Portability memchr is ANSI C.

memchr requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-7

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
memcmp—compare two memory areas

5.6 memcmp—compare two memory areas
Synopsis #include <string.h>

int memcmp(const void *sl, const void *s2, size_t n);

Description This function compares not more than n characters of the object pointed to by
s1 with the object pointed to by s2.

Returns The function returns an integer greater than, equal to, or less than zero accord-
ing to whether the object pointed to by s1 is greater than, equal to or less than
the object pointed to by s2.

Portability memcmp is ANSI C.

memcmp requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-8 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
memcpy—copy memory regions

Stretch, Inc.

5.7 memcpy—copy memory regions
Synopsis #include <string.h>

void *memcpy(void *out, const void *in, size_t n);

Description This function copies n bytes from the memory region pointed to by in to the
memory region pointed to by out.

If the regions overlap, the behavior is undefined.

Returns memcpy returns a pointer to the first byte of the out region.

Portability memcpy is ANSI C.

memcpy requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-9

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
memmove—move possibly overlapping memory

5.8 memmove—move possibly overlapping
memory

Synopsis #include <string.h>
void *memmove(void *dst, const void *src, size_t length);

Description This function moves length characters from the block of memory starting at
*src to the memory starting at *dst. memmove reproduces the characters
correctly at *dst even if the two areas overlap.

Returns The function returns dst as passed.

Portability memmove is ANSI C.

memmove requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-10 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
memset—set an area of memory

Stretch, Inc.

5.9 memset—set an area of memory
Synopsis #include <string.h>

void *memset(const void *dst, int c, size_t length);

Description This function converts the argument c into an unsigned char and fills the
first length characters of the array pointed to by dst to the value.

Returns memset returns the value of m.

Portability memset is ANSI C.

memset requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-11

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
rindex—reverse search for character in string

5.10 rindex—reverse search for character in
string

Synopsis #include <string.h>
char *rindex(const char *string, int c);

Description This function finds the last occurrence of c (converted to a char) in the string
pointed to by string (including the terminating null character).

This function is identical to strrchr.

Returns Returns a pointer to the located character, or a null pointer if c does not occur
in string.

Portability rindex requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-12 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strcat—concatenate strings

Stretch, Inc.

5.11 strcat—concatenate strings
Synopsis #include <string.h>

char *strcat(char *dst, const char *src) ;

Description strcat appends a copy of the string pointed to by src (including the termi-
nating null character) to the end of the string pointed to by dst. The initial
character of src overwrites the null character at the end of dst.

Returns This function returns the initial value of dst

Portability strcat is ANSI C.

strcat requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-13

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strchr—search for character in string

5.12 strchr—search for character in string
Synopsis #include <string.h>

char *strchr(const char *string, int c) ;

Description This function finds the first occurrence of c (converted to a char) in the string
pointed to by string (including the terminating null character).

Returns Returns a pointer to the located character, or a null pointer if c does not occur
in string.

Portability strchr is ANSI C.

strchr requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-14 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strcmp—character string compare

Stretch, Inc.

5.13 strcmp—character string compare
Synopsis #include <string.h>

int strcmp(const char *a, const char *b);

Description strcmp compares the string at a to the string at b.

Returns If *a sorts lexicographically after *b, strcmp returns a number greater than ze-
ro. If the two strings match, strcmp returns zero. If *a sorts lexicographically
before *b, strcmp returns a number less than zero.

Portability strcmp is ANSI C.

strcmp requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-15

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strcoll—locale specific character string compare

5.14 strcoll—locale specific character string
compare

Synopsis #include <string.h>
int strcoll(const char *stra, const char *strb);

Description strcoll compares the string pointed to by stra to the string pointed to by
strb, using an interpretation appropriate to the current lc_collate state.

Returns If the first string is greater than the second string, strcoll returns a number
greater than zero. If the two strings are equivalent, strcoll returns zero. If
the first string is less than the second string, strcoll returns a number less
than zero.

Portability strcoll is ANSI C.

strcoll requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-16 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strcpy—copy string

Stretch, Inc.

5.15 strcpy—copy string
Synopsis #include <string.h>

char *strcpy(char *dst, const char *src);

Description strcpy copies the string pointed to by src (including the terminating null
character) to the array pointed to by dst.

Returns This function returns the initial value of dst.

Portability strcpy is ANSI C.

strcpy requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-17

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strcspn—count chars not in string

5.16 strcspn—count chars not in string
Synopsis size_t strcspn(const char *s1, const char *s2);

Description This function computes the length of the initial part of the string pointed to by
s1 which consists entirely of characters not from the string pointed to by s2
(excluding the terminating null character).

Returns strcspn returns the length of the substring found.

Portability strcspn is ANSI C.

strcspn requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-18 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strerror—convert error number to string

Stretch, Inc.

5.17 strerror—convert error number to string
Synopsis #include <string.h>

char *strerror(int errnum);

Description strerror converts the error number errnum into a string. The value of
errnum is usually a copy of errno. If errnum is not a known error number,
the result points to an empty string.

This implementation of strerror prints out the following strings for each of
the values defined in errno.h:

E2BIG Arg list too long

EACCES Permission denied

EADV Advertise error

EAGAIN No more processes

EBADF Bad file number

EBADMSG Bad message

EBUSY Device or resource busy

ECHILD No children

ECOMM Communication error

EDEADLK Deadlock

EEXIST File exists

EDOM Math argument

EFAULT Bad address

EFBIG File too large

EIDRM Identifier removed

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISDIR Is a directory

ELIBACC Cannot access a needed shared library

ELIBBAD Accessing a corrupted shared library

ELIBEXEC Cannot exec a shared library directly

ELIBMAX Attempting to link in more shared libraries than system
limit

ELIBSCN .lib section in a.out corrupted

EMFILE Too many open files

EMLINK Too many links

EMULTIHOP Multihop attempted

ENAMETOOLONG File or path name too long

ENFILE Too many open files in system

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-19

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strerror—convert error number to string

Returns This function returns a pointer to a string. Your application must not modify
that string.

Portability ANSI C requires strerror, but does not specify the strings used for each er-
ror number.

Although this implementation of strerror is reentrant, ANSI C declares
that subsequent calls to strerror may overwrite the result string; therefore por-
table code cannot depend on the reentrancy of this subroutine.

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOLCK No lock

ENOLINK Virtual circuit is gone

ENOMEM Not enough space

ENOMSG No message of desired type

ENONET Machine is not on the network

ENOPKG No package

ENOSPC No space left on device

ENOSR No stream resources

ENOSTR Not a stream

ENOSYS Function not implemented

ENOTBLK Block device required

ENOTDIR Not a directory

ENOTEMPTY Directory not empty

ENOTTY Not a character device

ENXIO No such device or address

EPERM Not owner

EPIPE Broken pipe

EPROTO Protocol error

ERANGE Result too large

EREMOTE Resource is remote

EROFS Read-only file system

ESPIPE Illegal seek

ESRCH No such process

ESRMNT Srmount error

ETIME Stream ioctl timeout

ETXTBSY Text file busy

EXDEV Cross-device link

The C Support Library Reference Manual 2007.11
5-20 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strerror—convert error number to string

Stretch, Inc.

This implementation of strerror provides for user-defined extensibility,
errno.h defines _ELASTERROR, which can be used as a base for user-defined
error values. If the user supplies a routine named _user_strerror, and
errnum passed to strerror does not match any of the supported values,
_user_strerror is called with errnum as its argument.

userstrerror takes one argument of type int, and returns a character
pointer. If errnum is unknown to _user_strerror, _user_strerror re-
turns NULL. The default _user_strerror returns NULL for all input values.

strerror requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-21

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strlen—character string length

5.18 strlen—character string length
Synopsis #include <string.h>

size_t strlen(const char *str);

Description The strlen function works out the length of the string starting at *str by
counting characters until it reaches a null character.

Returns strlen returns the character count.

Portability strlen is ANSI C.

strlen requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-22 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strlwr—force string to lower case

Stretch, Inc.

5.19 strlwr—force string to lower case
Synopsis #include <string.h>

char *strlwr(char *a) ;

Description strlwr converts each characters in the string at a to lower case.

Returns strlwr returns its argument, a.

Portability strlwr is not widely portable.

strlwr requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-23

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strncat—concatenate strings

5.20 strncat—concatenate strings
Synopsis #include <string.h>

char *strncat(char *dst, const char *src, size_t length);

Description strncat appends not more than length characters from the string pointed
to by src (including the terminating null character) to the end of the string
pointed to by dst. The initial character of src overwrites the null character at
the end of dst. A terminating null character is always appended to the result

Warnings Note that a null is always appended, so that if the copy is limited by the length
argument, the number of characters appended to dst is n + 1.

Returns This function returns the initial value of dst

Portability strncat is ANSI C.

strncat requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-24 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strncmp—character string compare

Stretch, Inc.

5.21 strncmp—character string compare
Synopsis #include <string.h>

int strncmp(const char *a, const char *b, size_t length);

Description strncmp compares up to length characters from the string at a to the string
at b.

Returns If *a sorts lexicographically after *b, strncmp returns a number greater than
zero. If the two strings are equivalent, strncmp returns zero. If *a sorts lexi-
cographically before *b, strncmp returns a number less than zero.

Portability strncmp is ANSI C.

strncmp requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-25

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strncpy—counted copy string

5.22 strncpy—counted copy string
Synopsis #include <string.h>

char *strncpy(char *dst, const char *src, size_t length);

Description strncpy copies not more than length characters from the the string pointed
to by src (including the terminating null character) to the array pointed to by
dst. If the string pointed to by src is shorter than length characters, null char-
acters are appended to the destination array until a total of length characters
have been written.

Returns This function returns the initial value of dst.

Portability strncpy is ANSI C.

strncpy requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-26 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strpbrk—find chars in string

Stretch, Inc.

5.23 strpbrk—find chars in string
Synopsis #include <string.h>

char *strpbrk(const char *s1, const char *s2) ;

Description This function locates the first occurrence in the string pointed to by s1 of any
character in string pointed to by s2 (excluding the terminating null character).

Returns strpbrk returns a pointer to the character found in s1, or a null pointer if no
character from s2 occurs in s1.

Portability strpbrk requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-27

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strrchr—reverse search for character in string

5.24 strrchr—reverse search for character in
string

Synopsis #include <string.h>
char *strrchr(const char *string, int c);

Description This function finds the last occurrence of c (converted to a char) in the string
pointed to by string (including the terminating null character).

Returns Returns a pointer to the located character, or a null pointer if c does not occur
in string.

Portability strrchr is ANSI C.

strrchr requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-28 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strspn—find initial match

Stretch, Inc.

5.25 strspn—find initial match
Synopsis #include <string.h>

size_t strspn(const char *s1, const char *s2);

Description This function computes the length of the initial segment of the string pointed
to by s1 which consists entirely of characters from the string pointed to by s2
(excluding the terminating null character).

Returns strspn returns the length of the segment found.

Portability strspn is ANSI C.

strspn requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-29

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strstr—find string segment

5.26 strstr—find string segment
Synopsis #include <string.h>

char *strstr(const char *sl, const char *s2);

Description Locates the first occurrence in the string pointed to by s1 of the sequence of
characters in the string pointed to by s2 (excluding the terminating null char-
acter).

Returns Returns a pointer to the located string segment, or a null pointer if the string
s2 is not found. If s2 points to a string with zero length, the s1 is returned.

Portability strstr is ANSI C.

strstr requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-30 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strtok—get next token from a string

Stretch, Inc.

5.27 strtok—get next token from a string
Synopsis #include <string.h>

char *strtok(char *source, const char *delimiters)
char *strtok_r(char *source, const char *delimiters,

char **lasts)

Description The strtok function is used to isolate sequential tokens in a null-terminated
string, source. These tokens are delimited in the string by at least one of the
characters in delimiters. The first time that strtok is called, *source
should be specified; subsequent calls, wishing to obtain further tokens from
the same string, should pass a null pointer instead. The separator string,
*delimiters, must be supplied each time, and may change between calls.

The strtok function returns a pointer to the beginning of each subsequent
token in the string, after replacing the separator character itself with a NULL
character. When no more tokens remain, a null pointer is returned.

The strtok_r function has the same behavior as strtok, except a pointer to
placeholder **lasts must be supplied by the caller.

Returns strtok returns a pointer to the next token, or NULL if no more tokens can be
found.

Portability strtok is ANSI C.

strtok requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 5-31

Stretch, Inc.

Chapter 5 ■ Strings and Memory (string.h)
strupr—force string to uppercase

5.28 strupr—force string to uppercase
Synopsis #include <string.h>

char *strupr(char *a);

Description strupr converts each characters in the string at a to upper case.

Returns strupr returns its argument, a.

Portability strupr is not widely portable.

strupr requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
5-32 Last modified: 08/28/2007

Chapter 5 ■ Strings and Memory (string.h)
strxfrm—transform string

Stretch, Inc.

5.29 strxfrm—transform string
Synopsis #include <string.h>

size_t strxfrm(char *sl, const char *s2, size_t n);

Description This function transforms the string pointed to by s2 and places the resulting
string into the array pointed to by s1. The transformation is such that if the
strcmp function is applied to the two transformed strings, it returns a value
greater than, equal to, or less than zero, corresponding to the result of a
strcoll function applied to the same two original strings.

No more than n characters are placed into the resulting array pointed to by s1,
including the terminating null character. If n is zero, s1 may be a null pointer.
If copying takes place between objects that overlap, the behavior is undefined.

With a C locale, this function just copies.

Returns The strxfrm function returns the length of the transformed string (not in-
cluding the terminating null character). If the value returned is n or more, the
contents of the array pointed to by s1 are indeterminate.

Portability strxfrm is ANSI C.

strxfrm requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 6-1

Stretch, Inc.

Chapter 6 Signal Handling (signal.h)

A signal is an event that interrupts the normal flow of control in your program.
Your operating environment normally defines the full set of signals available
(see sys/signal.h), as well as the default means of dealing with them—typ-
ically, either printing an error message and aborting your program, or ignoring
the signal.

All systems support at least the following signals:

Two functions are available for dealing with asynchronous signals—one to al-
low your program to send signals to itself (this is called raising a signal), and
one to specify subroutines (called handlers to handle particular signals that
you anticipate may occur—whether raised by your own program or the oper-
ating environment.

To support these functions, signal.h defines three macros:

SIGABRT Abnormal termination of a program; raised by the <<abort>>
function.

SIGFPE A domain error in arithmetic, such as overflow, or division by ze-
ro.

SIGILL Attempt to execute as a function data that is not executable.

SIGINT Interrupt; an interactive attention signal.

SIGSEGV An attempt to access a memory location that is not available.

SIGTERM A request that your program end execution.

SIG_DFL Used with the signal function in place of a pointer to a han-
dler subroutine, to select the operating environments default
handling of a signal.

SIG_IGN Used with the signal function in place of a pointer to a han-
dler, to ignore a particular signal.

SIG_ERR Returned by the signal function in place of a pointer to a
handler, to indicate that your request to set up a handler could
not be honored for some reason.

The C Support Library Reference Manual 2007.11
6-2 Last modified: 08/28/2007

Chapter 6 ■ Signal Handling (signal.h)

Stretch, Inc.

signal.h also defines an integral type, sig_atomic_t. This type is not used
in any function declarations; it exists only to allow your signal handlers to de-
clare a static storage location where they may store a signal value. (Static stor-
age is not otherwise reliable from signal handlers.)

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 6-3

Stretch, Inc.

Chapter 6 ■ Signal Handling (signal.h)
raise—send a signal

6.1 raise—send a signal
Synopsis #include <signal.h>

int raise(int sig);
int _raise_r(void *reent, int sig);

Description Send the signal sig (one of the macros from sys/signal.h). This interrupts
your programs normal flow of execution, and allows a signal handler (if you’ve
defined one, using signal) to take control.

The alternate function _raise_r is a reentrant version. The extra argument
reent is a pointer to a reentrancy structure.

Returns The result is 0 if sig was successfully raised, l otherwise. However, the return
value (since it depends on the normal flow of execution) may not be visible, un-
less the signal handler for sig terminates with a return or unless SIG_IGN
is in effect for this signal.

Portability ANSI C requires raise, but allows the full set of signal numbers to vary from
one implementation to another.

Required OS subroutines getpid, kill

The C Support Library Reference Manual 2007.11
6-4 Last modified: 08/28/2007

Chapter 6 ■ Signal Handling (signal.h)
signal—specify handler subroutine for a signal

Stretch, Inc.

6.2 signal—specify handler subroutine for a
signal

Synopsis #include <signal.h>
void (*signal (int sig, void (*func) (int))) (int);
void (*_signal_r(void *reent, int sig, void (*func)

(int))) (int);

Description signal providesa simple signal implementation for embedded targets.

signal allows you to request changed treatment for a particular signal sig.
You can use one of the predefined macros SIG_DFL (select system default
handling) or SIG_IGN (ignore this signal) as the value of func; otherwise,
func is a function pointer that identifies a subroutine in your program as the
handler for this signal.

Some of the execution environment for signal handlers is unpredictable; nota-
bly, the only library function required to work correctly from within a signal
handler is signal itself, and only when used to redefine the handler for the
current signal value.

Static storage is likewise unreliable for signal handlers, with one exception: if
you declare a static storage location as volatile sig_atomic_t, then you
may use that location in a signal handler to store signal values.

If your signal handler terminates using return (or implicit return), your pro-
grams execution continues at the point where it was when the signal was
raised (whether by your program itself, or by an external event). Signal han-
dlers can also use functions such as exit and abort to avoid returning.

The alternate function _signal_r is the reentrant version. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns If your request for a signal handler cannot be honored, the result is SIG_ERR;
a specific error number is also recorded in errno.

Otherwise, the result is the previous handler (a function pointer or one of the
predefined macros).

Portability ANSI C requires raise, signal.

No supporting OS subroutines are required to link with signal, but it will not
have any useful effects, except for software generated signals, without an op-
erating system that can actually raise exceptions.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 7-1

Stretch, Inc.

Chapter 7 Time Functions (time.h)

This chapter groups functions used either for reporting on time (elapsed, cur-
rent, or compute time) or to perform calculations based on time.

The header file time.h defines three types. clock_t and time_t are both
used for representations of time particularly suitable for arithmetic. (In this
implementation, quantities of type clock_t have the highest resolution pos-
sible on your machine, and quantities of type time_t resolve to seconds.)
size_t is also defined if necessary for quantities representing sizes.

time.h also defines the structure tm for the traditional representation of Gre-
gorian calendar time as a series of numbers, with the following fields:

tm_sec Seconds.

tm_min Minutes.

tm_hour Hours.

tm_mday Day.

tm_mon Month.

tm_year Year (since 1900).

tmwday Day of week: the number of days since Sunday.

tmyday Number of days elapsed since last January 1.

tm_isdst Daylight Savings Time flag: positive means DST in effect, zero
means DST not in effect, negative means no information
about DST is available.

The C Support Library Reference Manual 2007.11
7-2 Last modified: 08/28/2007

Chapter 7 ■ Time Functions (time.h)
asctime—format time as string

Stretch, Inc.

7.1 asctime—format time as string
Synopsis #include <time.h>

char *asctime(const struct tm *clock);
char *asctime_r(const struct tm *clock, char *buf);

Description Format the time value at clock into a string of the form

Wed Jun 15 11:38:07 1988\n\0

The string is generated in a static buffer; each call to asctime overwrites the
string generated by previous calls.

Returns A pointer to the string containing a formatted timestamp.

Portability ANSI C requires asctime.

asctime requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 7-3

Stretch, Inc.

Chapter 7 ■ Time Functions (time.h)
clock—cumulative processor time

7.2 clock—cumulative processor time
Synopsis #include <time.h>

clock_t clock(void);

Description Calculates the best available approximation of the cumulative amount of time
used by your program since it started. To convert the result into seconds, divide
by the macro CLOCKS_PER_SEC.

Returns The amount of processor time used so far by your program, in units defined
by the machine-dependent macro CLOCKS_PER_SEC. If no measurement is
available, the result is -1.

Portability ANSI C requires clock and CLOCKS_PER_SEC.

Required OS subroutines times

The C Support Library Reference Manual 2007.11
7-4 Last modified: 08/28/2007

Chapter 7 ■ Time Functions (time.h)
ctime—convert time to local and format as string

Stretch, Inc.

7.3 ctime—convert time to local and format as
string

Synopsis #include <time.h>
char *ctime(time_t *clock);
char *ctime_r(time_t *clock, char *buf);

Description Convert the time value at clock to local time (like localtime) and format it
into a string of the form

Wed Jun 15 11:38:07 1988\n\0

(like asctime).

Returns A pointer to the string containing a formatted timestamp.

Portability ANSI C requires ctime.

ctime requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 7-5

Stretch, Inc.

Chapter 7 ■ Time Functions (time.h)
difftime—subtract two times

7.4 difftime—subtract two times
Synopsis #include <time.h>

double difftime(time_t timl, time t tim2);

Description Subtracts the two times in the arguments: timl - tim2.

Returns The difference (in seconds) between tim2 and timl, as a double.

Portability ANSI C requires difftime, and defines its result to be in seconds in all im-
plementations.

difftime requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
7-6 Last modified: 08/28/2007

Chapter 7 ■ Time Functions (time.h)
gmtime—convert time to UTC traditional form

Stretch, Inc.

7.5 gmtime—convert time to UTC traditional
form

Synopsis #include <time.h>
struct tm *gmtime(const time_t *clock);
struct tm *gmtime_r(const time_t *clock, struct tm *res)

Description gmtime assumes the time at clock represents a local time, gmtime converts
it to UTC (Universal Coordinated Time, also known in some countries as
GMT, Greenwich Mean Time), then converts the representation from the
arithmetic representation to the traditional representation defined by struct
tm.

gmtime constructs the traditional time representation in static storage; each
call to gmtime or localtime will overwrite the information generated by pre-
vious calls to either function.

Returns A pointer to the traditional time representation (struct tm).

Portability ANSI C requires gmtime.

gmtime requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 7-7

Stretch, Inc.

Chapter 7 ■ Time Functions (time.h)
localtime—convert time to local representation

7.6 localtime—convert time to local
representation

Synopsis #include <time.h>
struct tm *localtime(time_t *clock);
struct tm *localtime_r(time t *clock, struct tm *res);

Description localtime converts the time at clock into local time, then converts its rep-
resentation from the arithmetic representation to the traditional representa-
tion defined by struct tm.

localtime constructs the traditional time representation in static storage;
each call to gmtime or localtime will overwrite the information generated by
previous calls to either function.

mktime is the inverse of localtime.

Returns A pointer to the traditional time representation (struct tm).

Portability ANSI C requires localtime.

localtime requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
7-8 Last modified: 08/28/2007

Chapter 7 ■ Time Functions (time.h)
mktime—convert time to arithmetic representation

Stretch, Inc.

7.7 mktime—convert time to arithmetic
representation

Synopsis #include <time.h>
time_t mktime(struct tm *timp);

Description mktime assumes the time at timp is a local time, and converts its representa-
tion from the traditional representation defined by struct tm into a repre-
sentation suitable for arithmetic.

localtime is the inverse of mktime.

Returns If the contents of the structure at timp do not form a valid calendar time rep-
resentation, the result is -l. Otherwise, the result is the time, converted to a
time_t value.

Portability ANSI C requires mktime.

mktime requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 7-9

Stretch, Inc.

Chapter 7 ■ Time Functions (time.h)
strftime—flexible calendar time formatter

7.8 strftime—flexible calendar time formatter
Synopsis #include <time.h>

size_t strftime(char *s, size_t maxsize,
const char *format,
const struct tm *timp);

Description strftime converts a struct tm representation of the time (at timp) into a
string, starting at s and occupying no more than maxsize characters.

You control the format of the output using the string at format. *format can
contain two kinds of specifications: text to be copied literally into the formatted
string, and time conversion specifications. Time conversion specifications are
two-character sequences beginning with % (use %% to include a percent sign in
the output). Each defined conversion specification selects a field of calendar
time data from *timp, and converts it to a string in one of the following ways:

%a An abbreviation for the day of the week.

%A The full name for the day of the week.

%b An abbreviation for the month name.

%B The full name of the month.

%c A string representing the complete date and time, in the form

Mon Apr 01 13:13:13 1992

%d The day of the month, formatted with two digits.

%H The hour (on a 24-hour clock), formatted with two digits.

%I The hour (on a 12-hour clock), formatted with two digits.

%j The count of days in the year, formatted with three digits (from 001
to 366).

%m The month number, formatted with two digits.

%M The minute, formatted with two digits.

%p Either am or pm as appropriate.

%S The second, formatted with two digits.

%U The week number, formatted with two digits (from 00 to 53; week
number 1 is taken as beginning with the first Sunday in a year). See
also %w.

%w A single digit representing the day of the week: Sunday is day 0.

%W Another version of the week number: like %u, but counting week 1
as beginning with the first Monday in a year.

o %x A string representing the complete date, in a format like

Mon Apr 01 1992

The C Support Library Reference Manual 2007.11
7-10 Last modified: 08/28/2007

Chapter 7 ■ Time Functions (time.h)
strftime—flexible calendar time formatter

Stretch, Inc.

Returns When the formatted time takes up no more than maxsize characters, the re-
sult is the length of the formatted string. Otherwise, if the formatting opera-
tion was abandoned due to lack of room, the result is 0, and the string starting
at s corresponds to just those parts of *format that could be completely filled
in within the maxsize limit.

Portability ANSI C requires strftime, but does not specify the contents of *s when the
formatted string would require more than maxsize characters.

strftime requires no supporting OS subroutines.

%X A string representing the full time of day (hours, minutes, and sec-
onds), in a format like

13:13:13

%y The last two digits of the year.

%Y The full year, formatted with four digits to include the century.

%Z Defined by ANSI C as eliciting the time zone if available; it is not
available in this implementation (which accepts %z but generates no
output for it).

%% A single character, %.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 7-11

Stretch, Inc.

Chapter 7 ■ Time Functions (time.h)
time—get current calendar time (as single number)

7.9 time—get current calendar time (as single
number)

Synopsis #include <time.h>
time_t time(time_t *t);

Description time looks up the best available representation of the current time and re-
turns it, encoded as a time_t. It stores the same value at t unless the argu-
ment is null.

Returns A -l result means the current time is not available; otherwise the result repre-
sents the current time.

Portability ANSI C requires time.

Required OS subroutines Some implementations require gettimeofday.

The C Support Library Reference Manual 2007.11
7-12 Last modified: 08/28/2007

Chapter 7 ■ Time Functions (time.h)
time—get current calendar time (as single number)

Stretch, Inc.

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 8-1

Stretch, Inc.

Chapter 8 Locale (locale.h)

A locale is the name for a collection of parameters (affecting collating sequenc-
es and formatting conventions) that may be different depending on location or
culture. The C locale is the only one defined in the ANSI C standard.

This is a minimal implementation, supporting only the required C value for
locale; strings representing other locales are not honored. (“” is also accepted;
it represents the default locale for an implementation, here equivalent to C.

locale.h defines the structure lconv to collect the information on a locale,
with the following fields:

char *decimal_point

The decimal point character used to format “ordinary” numbers (all num-
bers except those referring to amounts of money). “.” in the C locale.

char *thousands_sep

The character (if any) used to separate groups of digits, when formatting
ordinary numbers. “” in the C locale.

char *grouping

Specifications for how many digits to group (if any grouping is done at all)
when formatting ordinary numbers. The numeric value of each character in
the string represents the number of digits for the next group, and a value of
0 (that is, the strings trailing null) means to continue grouping digits using
the last value specified. Use char_max to indicate that no further grouping
is desired. “” in the C locale.

char *int_curr_symbol

The international currency symbol (first three characters), if any, and the
character used to separate it from numbers. “” in the C locale.

char *currency_symbol

The local currency symbol, if any. “” in the C locale.

char *mon_decimal_point

The symbol used to delimit fractions in amounts of money. “” in the C
locale.

char *mon_thousands_sep

Similar to thousands_sep, but used for amounts of money. “” in the C
locale.

The C Support Library Reference Manual 2007.11
8-2 Last modified: 09/19/2007

Chapter 8 ■ Locale (locale.h)

Stretch, Inc.

char *mon_grouping

Similar to grouping, but used for amounts of money. “” in the C locale.

char *positive_sign

A string to flag positive amounts of money when formatting. “” in the C
locale.

char *negative_sign

A string to flag negative amounts of money when formatting. “” in the C
locale.

char int_frac_digits

The number of digits to display when formatting amounts of money to inter-
national conventions. CHAR_MAX (the largest number representable as a
char) in the C locale.

char frac_digits

The number of digits to display when formatting amounts of money to local
conventions. CHAR_MAX in the C locale.

char p_cs_precedes

1 indicates the local currency symbol is used before a positive or zero format-
ted amount of money; 0 indicates the currency symbol is placed after the for-
matted number. CHAR_MAX in the C locale.

char p_sep_by_space

1 indicates the local currency symbol must be separated from positive or
zero numbers by a space; 0 indicates that it is immediately adjacent to num-
bers. CHAR_MAX in the C locale.

char n_cs_precedes

1 indicates the local currency symbol is used before a negative formatted
amount of money; 0 indicates the currency symbol is placed after the format-
ted number. CHAR_MAX in the C locale.

char n_sep_by_space

1 indicates the local currency symbol must be separated from negative num-
bers by a space; 0 indicates that it is immediately adjacent to numbers.
CHAR_MAX in the C locale.

char p_sign_posn

Controls the position of the positive sign for numbers representing money,
0 means parentheses surround the number; l means the sign is placed
before both the number and the currency symbol; 2 means the sign is placed
after both the number and the currency symbol; 3 means the sign is placed
just before the currency symbol; and 4 means the sign is placed just after the
currency symbol. CHAR_MAX in the C locale.

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 8-3

Stretch, Inc.

Chapter 8 ■ Locale (locale.h)

char n_sign_posn

Controls the position of the negative sign for numbers representing money,
using the same rules as p_sign_posn. CHAR_MAX in the C locale.

The C Support Library Reference Manual 2007.11
8-4 Last modified: 09/19/2007

Chapter 8 ■ Locale (locale.h)
setlocale, localeconv—select or query locale

Stretch, Inc.

8.1 setlocale, localeconv—select or query
locale

Synopsis #include <locale.h>
char *setlocale (int category, const char *locale);
struct lconv *localeconv(void);
char *_setlocale_r(void *reent, int category,

const char *locale);
struct lconv *_localeconv_r(void *reent);

Description setlocale is the facility defined by ANSI C to condition the execution envi-
ronment for international collating and formatting information; localeconv
reports on the settings of the current locale.

This is a minimal implementation, supporting only the required C value tor
locale; strings representing other locales are not honored. (“” is also accepted;
it represents the default locale for an implementation, here equivalent to “C”.)

If you use null as the locale argument, setlocale returns a pointer to the
string representing the current locale (always “C” in this implementation).
The acceptable values for category are defined in locale.h as macros begin-
ning with mlc_, but this implementation does not check the values you pass
in the category argument.

localeconv returns a pointer to a structure (also defined in locale.h) de-
scribing the locale-specific conventions currently in effect.

_localeconv_r and _setlocale_r are reentrant versions of localeconv
and setlocale respectively The extra argument reent is a pointer to a reen-
trancy structure.

Returns setlocale returns either a pointer to a string naming the locale currently in
effect (always “C” for this implementation), or, if the locale request cannot be
honored, NULL.

localeconv returns a pointer to a structure of type lconv, which describes
the formatting and collating conventions in effect (in this implementation, al-
ways those of the C locale).

Portability ANSI C requires setlocale, but the only locale required across all imple-
mentations is the C locale.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 9-1

Stretch, Inc.

Chapter 9 Reentrancy

Reentrancy is a characteristic of library functions which allows multiple pro-
cesses to use the same address space with assurance that the values stored in
those spaces will remain constant between calls. Cygnus’s implementation of
the library functions ensures that whenever possible, these library functions
are reentrant. However, there are some functions that can not be trivially made
reentrant. Hooks have been provided to allow you to use these functions in a
fully reentrant fashion.

These hooks use the structure _reent defined in reent.h. A variable de-
fined as struct reent is called a reentrancy structure. All functions which
must manipulate global information are available in two versions. The first
version has the usual name, and uses a single global instance of the reentrancy
structure. The second has a different name, normally formed by prepending _
and appending _r, and takes a pointer to the particular reentrancy structure to
use.

For example, the function fopen takes two arguments, file and mode, and
uses the global reentrancy structure. The function _fopen_r takes the argu-
ments, struct_reent, which is a pointer to an instance of the reentrancy
structure, file and mode.

Each function which uses the global reentrancy structure uses the global vari-
able _impure_ptr, which points to a reentrancy structure.

This means that you have two ways to achieve reentrancy. Both require that
each thread of execution control initialize a unique global variable of type
struct_reent:

1. Use the reentrant versions of the library functions, after initializing a global
reentrancy structure for each process. Use the pointer to this structure as the
extra argument for all library functions.

2. Ensure that each thread of execution control has a pointer to its own unique
reentrancy structure in the global variable _impure_ptr, and call the stan-
dard library subroutines.

The following functions are provided in both reentrant and non-reentrant ver-
sions.

Equivalent for errno variable:

_errno_r

The C Support Library Reference Manual 2007.11
9-2 Last modified: 09/19/2007

Chapter 9 ■ Reentrancy

Stretch, Inc.

locale functions:

_localeconv_r _setlocale_r

Equivalents for stdio variables:

_stdin_r _stdout_r _stderr_r

stdio functions:

_fdopen_r _iprintf_r _putchar_r _tempnam_r

_fopen_r _mkstemp_r _puts_r _tmpfile_r

_getchar_r _mktemp_r _remove_r _tmpnam_r

_gets_r _perror_r _rename_r

signal functions:

_raise_r _signal_r

stdlib functions:

_dtoa_r _rand_r _strtod_r _system_r

_free_r _realloc_r _strtol_r

_malloc_r _srand_r _strtoul_r

string functions:

strtok r

System functions:

_close_r _fork_r _fstat_r _link_r

_lseek_r _open_r _read_r _sbrk_r

_stat_r _unlink_r _wait_r _write_r

time function:

_asctime_r

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 10-1

Stretch, Inc.

Chapter 10 Miscellaneous Macros and
Functions

This chapter describes miscellaneous routines not covered elsewhere.

The C Support Library Reference Manual 2007.11
10-2 Last modified: 08/28/2007

Chapter 10 ■ Miscellaneous Macros and Functions
unctrl—translate characters to upper case

Stretch, Inc.

10.1 unctrl—translate characters to upper case
Synopsis #include <unctrl.h>

char *unctrl(int c);
int unctrllen(int c);

Description unctrl is a macro which returns the printable representation of c as a string,
unctrllen is a macro which returns the length of the printable representa-
tion of c.

Returns unctrl returns a string of the printable representation of c.

unctrllen returns the length of the string which is the printable representa-
tion of c.

Portability unctrl and unctrllen are not ANSI C.

No supporting OS subroutines are required.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 11-1

Stretch, Inc.

Chapter 11 Functions for Xtensa Processors

This chapter describes machine-dependent functions that are included in the C
library when it is built for Xtensa processors.

The C Support Library Reference Manual 2007.11
11-2 Last modified: 08/28/2007

Chapter 11 ■ Functions for Xtensa Processors
setjmp—save stack environment

Stretch, Inc.

11.1 setjmp—save stack environment
Synopsis #include <setjmp.h>

int setjmp(jmp_buf env);

Description setjmp and longjmp are useful for dealing with errors and interrupts en-
countered in a low-level subroutine of a program, setjmp saves the stack con-
text/environment in env for later use by longjmp. The stack context will be
invalidated if the function which called setjmp returns.

Returns setjmp returns 0 if returning directly, and non-zero when returning from
longjmp using the saved context.

Portability setjmp is ANSI C and POSIX.1.

setjmp requires no supporting OS subroutines.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 11-3

Stretch, Inc.

Chapter 11 ■ Functions for Xtensa Processors
longjmp—non-local goto

11.2 longjmp—non-local goto
Synopsis #include <setjmp.h>

void longjmp(jmp_buf env, int val);

Description longjmp and setjmp are useful for dealing with errors and interrupts en-
countered in a low-level subroutine of a program, longjmp restores the envi-
ronment saved by the last call of setjmp with the corresponding env
argument. After longjmp is completed, program execution continues as if the
corresponding call of setjmp had just returned the value val. longjmp can-
not cause 0 to be returned. If longjmp is invoked with a second argument of
0, 1 will be returned instead.

Returns This function never returns.

Portability longjmp is ANSI C and POSIX.1.

longjmp requires no supporting OS subroutines.

The C Support Library Reference Manual 2007.11
11-4 Last modified: 08/28/2007

Chapter 11 ■ Functions for Xtensa Processors
longjmp—non-local goto

Stretch, Inc.

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 12-1

Stretch, Inc.

Chapter 12 System Calls

The C subroutine library depends on a handful of subroutine calls for operat-
ing system services. If you use the C library on a system that complies with the
POSIX.1 standard (also known as IEEE 1003.1), most of these subroutines are
supplied with your operating system.

If some of these subroutines are not provided with your system—in the ex-
treme case, if you are developing software for a “bare board” system, without
an OS—you will at least need to provide do-nothing stubs (or subroutines with
minimal functionality) to allow your programs to link with the subroutines in
libc.a.

12.1 Definitions for OS interface

This is the complete set of system definitions (primarily subroutines) re-
quired; the examples shown implement the minimal functionality required to
allow libc to link, and fail gracefully where OS services are not available.

Graceful failure is permitted by returning an error code. A minor complication
arises here: the C library must be compatible with development environments
that supply fully functional versions of these subroutines. Such environments
usually return error codes in a global errno. However, the Cygnus C library
provides a macro definition for errno in the header file errno.h, as part of its
support for reentrant routines (see Chapter 9, “Reentrancy”).

The bridge between these two interpretations of errno is straightforward: the
C library routines with OS interface calls capture the errno values returned glo-
bally, and record them in the appropriate field of the reentrancy structure (so
that you can query them using the errno macro from errno.h).

This mechanism becomes visible when you write stub routines for OS inter-
faces. You must include errno.h, then disable the macro, like this:

#include <errno.h>
#undef errno
extern int errno;

The C Support Library Reference Manual 2007.11
12-2 Last modified: 09/19/2007

Chapter 12 ■ System Calls
Definitions for OS interface

Stretch, Inc.

The examples in this chapter include this treatment of errno.

exit Exit a program without cleaning up files. If your system doesn’t
provide this, it is best to avoid linking with subroutines that re-
quire it (exit, system).

close Close a file.

Minimal implementation:

int close(int file){
return -1;

}

environ A pointer to a list of environment variables and their values.

For a minimal environment, this empty list is adequate:

char * env[l] = { 0 };
char **environ = env;

execve Transfer control to a new process.

Minimal implementation (for a system without processes):

#include <errno.h>
#undef errno
extern int errno;
int execve(char *name, char **argv,

char **env){
errno=ENOMEM;
return -1;

}

fork Create a new process.

Minimal implementation (for a system without processes):

#include <errno.h>
#undef errno extern int errno;
int fork() {

errno=EAGAIN;
return -1;

}

fstat Status of an open file. For consistency with other minimal imple-
mentations in these examples, all files are regarded as character
special devices. The sys/stat.h header file required is distribut-
ed in the include subdirectory for this C library.

#include <sys/stat.h>
int fstat(int file, struct stat *st) {

st->st_mode = S_IFCHR;
return 0;

}

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 12-3

Stretch, Inc.

Chapter 12 ■ System Calls
Definitions for OS interface

getpid Process-ID; this is sometimes used to generate strings unlikely to
conflict with other processes.

Minimal implementation, for a system without processes:

int getpid() {
return 1;

}

isatty Query whether output stream is a terminal.

For consistency with the other minimal implementations, which
only support output to stdout, this minimal implementation is
suggested:

int isatty(int file){
return 1;

}

kill Send a signal.

Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int kill(int pid, int sig){

errno=EINVAL;
return(-1);

}

link Establish a new name for an existing file.

Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int link(char *old, char *new){

errno=EMLINK;
return -1;

}

lseek Set position in a file. Minimal implementation:

int lseek(int file, int ptr, int dir){
return 0;

}

open Open a file.

Minimal implementation:

int open(const char *name, int flags,
int mode){

errno = EIO;
return -1;

}

The C Support Library Reference Manual 2007.11
12-4 Last modified: 09/19/2007

Chapter 12 ■ System Calls
Definitions for OS interface

Stretch, Inc.

read Read from a file.

Minimal implementation:

int read(int file, char *ptr, int len){
return 0;

}

sbrk Increase program data space. As malloc and related functions de-
pend on this, it is useful to have a working implementation.

The following suffices for a standalone system; it exploits the sym-
bol end automatically defined by the GNU linker.

caddr_t sbrk(int incr){
extern char end; /*Defined by the linker*/
static char *heap_end;
char *prev_heap_end;
if (heap_end ==0) {

heap_end = &end;
}
prev_heap_end = heap_end;
if (heap_end + incr > stack_ptr)

{
_write (1, "Heap and stack

collision\n", 25);
abort ();

}
heap_end += incr;
return (caddr_t) prev_heap_end;

}

stat Status of a file (by name).

Minimal implementation:

int stat(char *file, struct stat *st) {
st->st_mode = S_IFCHR;
return 0;

}

times Timing information for current process.

Minimal implementation:

int times(struct tms *buf){
return -1;

}

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 12-5

Stretch, Inc.

Chapter 12 ■ System Calls
Xtensa System Calls

12.2 Xtensa System Calls

The default Xtensa runtime environment does not include an operating sys-
tem. Instead, the GNU low-level operating system support library (libgloss)
implements the operating system routines. There are two versions of
libgloss for Xtensa. The first provides minimal stub routines, similar to
those described above (see Section 12.1, “Definitions for OS interface”, on
page 12-1). The second version of libgloss uses the “semihosting” feature

unlink Remove a files directory entry.

Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int unlink(char *name){

errno=ENOENT;
return -1;

}

wait Wait for a child process.

Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int wait(int *status) {

errno=ECHILD;
return -1;

}

write Write a character to a file, libc subroutines will use this system
routine for output to all files, including stdout—so if you need to
generate any output, for example to a serial port for debugging,
you should make your minimal write capable of doing this.

The following minimal implementation is an incomplete exam-
ple; it relies on a writechar subroutine (not shown; typically, you
must write this in assembler from examples provided by your
hardware manufacturer) to actually perform the output.

int write(int file, char *ptr, int len){
int todo;
for (todo = 0; todo < len; todo++) {

writechar(*ptr++);
}

return len;

}

The C Support Library Reference Manual 2007.11
12-6 Last modified: 09/19/2007

Chapter 12 ■ System Calls
Xtensa System Calls

Stretch, Inc.

of the Xtensa instruction set simulator (ISS) to implement the operating sys-
tem routines on top of the host system. For example, using this library, an
open system call can open a file on the host running the ISS. This semihosting
version of libgloss is the default when running on the Xtensa ISS.

12.2.1 Base Xtensa System Calls

The minimal Xtensa libgloss implementation provides the following sys-
tem routines:

stat Sets errno to EIO and returns -1.

fstat Assumes terminal I/O and sets st_mode to S_IFCHR. Returns
0.

getpid Returns 1.

kill Calls _exit if the specified process ID is 1 (as returned by
getpid); otherwise, does nothing. Returns 0.

isatty Returns 1.

sbrk Grows the heap. If the end of the heap extends beyond the
_heap_sentry symbol (set by the linker), sets errno to
ENOMEM and returns -1. Note that unlike the semihosting ver-
sion of libgloss, this version does not currently check if the
heap collides with the stack.

open Sets errno to EIO. Returns -1.

close Does nothing. Returns 0.

lseek Sets errno to ESPIPE. Returns-1.

unlink Sets errno to EIO. Returns -1.

inbyte Reads a byte from the serial port.

read Reads the specified number of bytes from the serial port using
inbyte. Ignores the file descriptor argument.

outbyte Writes a byte to the serial port.

write Writes the specified number of bytes to the serial port using
outbyte. Ignores the file descriptor argument.

print Prints a string to the serial port.

putnum Prints a 32-bit number in hexadecimal to the serial port.

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 12-7

Stretch, Inc.

Chapter 12 ■ System Calls
Xtensa System Calls

12.2.2 System Calls with the Xtensa ISS

The semihosting version of libgloss for Xtensa provides the following sys-
tem routines (all the routines using ISS semihosting set errno and the return
value based on the status of the host system call):

stat Sets errno to EIO and returns -1.

fstat Assumes terminal I/O and sets st_mode to S_IFCHR.
Returns 0.

getpid Returns 1.

kill Calls _exit if the specified process ID is 1 (as returned
by getpid); otherwise, does nothing. Returns 0.

isatty Returns 1.

sbrk Grows the heap. If the end of the heap extends beyond the
_heap_sentry symbol (set by the linker) or if it collides
with the stack, sets errno to ENOMEM and returns -1.

open Opens the specified file on the host using the ISS semi-
hosting interface.

close Closes the specified host file using the ISS semihosting
interface.

lseek Seeks to the specified location in a host file using the ISS
semihosting interface.

unlink Unlinks (i.e., removes) a host file using the ISS semihost-
ing interface.

read Reads from a host file using the ISS semihosting inter-
face.

write Writes to a host file using the ISS semihosting interface.

rename Renames a host file using the ISS semihosting interface.

gettimeofday Get the host systems current time expressed in elapsed
seconds and microseconds since January 1, 1970 using
the ISS semihosting interface. (Only supported on Unix
platforms.)

time Get the host systems current time in seconds since Janu-
ary 1,1970 using the ISS semihosting interface.

times Returns Xtensa simulation cycle count if the ISS was in-
voked with the --pipe option; otherwise, returns the
count of Xtensa instructions executed.

The C Support Library Reference Manual 2007.11
12-8 Last modified: 09/19/2007

Chapter 12 ■ System Calls
Reentrant covers for OS subroutines

Stretch, Inc.

12.3 Reentrant covers for OS
subroutines

Since the system subroutines are used by other library routines that require re-
entrancy, libc.a provides cover routines (for example, the reentrant version
of fork is _fork_r). These cover routines are consistent with the other reen-
trant subroutines in this library, and achieve reentrancy by using a reserved
global data block (see Chapter 9, “Reentrancy”).

_exit Terminates the Xtensa ISS simulation.

creat Creates a new host file using the ISS semihosting inter-
face.

link Adds a hard link to a host file using the ISS semihosting
interface. (Only supported on Unix platforms.)

_open_r A reentrant version of open. It takes a pointer to the global
data block, which holds errno.

int _open_r(void *reent, const char *file,
int flags, int mode) ;

_close_r A reentrant version of close. It takes a pointer to the global
data block, which holds errno.

int _close_r(void *reent, int fd);

_lseek_r A reentrant version of lseek. It takes a pointer to the global
data block, which holds errno.

off_t _lseek_r(void *reent, int fd,
off_t pos, int whence);

_read_r A reentrant version of read. It takes a pointer to the global
data block, which holds errno.

long _read_r(void *reent, int fd,
void *buf, size_t cnt);

_write_r A reentrant version of write. It takes a pointer to the global
data block, which holds errno.

long _write_r(void *reent, int fd,
const void *buf, size_t cnt);

2007.11 The C Support Library Reference Manual
Last modified: 09/19/2007 12-9

Stretch, Inc.

Chapter 12 ■ System Calls
Reentrant covers for OS subroutines

_fork_r A reentrant version of fork. It takes a pointer to the global
data block, which holds errno.

int _fork_r(void *reent);

_wait_r A reentrant version of wait. It takes a pointer to the global
data block, which holds errno.

int _wait_r(void *reent, int *status) ;

_stat_r A reentrant version of stat. It takes a pointer to the global
data block, which holds errno.

int _stat_r(void *reent, const char *file,
struct stat *pstat);

_fstat_r A reentrant version of fstat. It takes a pointer to the global
data block, which holds errno.

int _fstat_r(void *reent, int fd,
struct stat *pstat);

_link_r A reentrant version of link. It takes a pointer to the global
data block, which holds errno.

int _link_r(void *reent, const char *old,
const char *new);

_unlink_r A reentrant version of unlink. It takes a pointer to the global
data block, which holds errno.

int _unlink_r(void *reent,
const char *file);

_sbrk_r A reentrant version of sbrk. It takes a pointer to the global
data block, which holds errno.

char *sbrk r(void *reent, size t incr);

The C Support Library Reference Manual 2007.11
12-10 Last modified: 09/19/2007

Chapter 12 ■ System Calls
Reentrant covers for OS subroutines

Stretch, Inc.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 13-1

Stretch, Inc.

Chapter 13 Variable Argument Lists

The printf family of functions is defined to accept a variable number of ar-
guments, rather than a fixed argument list. You can define your own functions
with a variable argument list, by using macro definitions from either
stdarg.h (for compatibility with ANSI C) or from varargs.h (for compat-
ibility with a popular convention prior to ANSI C).

13.1 ANSI-standard macros, stdarg.h

In ANSI C, a function has a variable number of arguments when its parameter
list ends in an ellipsis (…). The parameter list must also include at least one
explicitly named argument; that argument is used to initialize the variable list
data structure.

ANSI C defines three macros (va_start, va_arg, and va_end) to operate
on variable argument lists, stdarg.h also defines a special type to represent
variable argument lists: this type is called va_list.

The C Support Library Reference Manual 2007.11
13-2 Last modified: 08/28/2007

Chapter 13 ■ Variable Argument Lists

Stretch, Inc.

13.1.1 Initialize variable argument list

Synopsis #include <stdarg.h>
void va_start(va_list ap, rightmost);

Description Use va_start to initialize the variable argument list ap, so that va_arg can
extract values from it. rightmost is the name of the last explicit argument in
the parameter list (the argument immediately preceding the ellipsis (…) that
flags variable arguments in an ANSI C function header). You can only use
va_start in a function declared using this ellipsis notation (not, for example,
in one of its subfunctions).

Returns va_start does not return a result.

Portability ANSI C requires va_start.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 13-3

Stretch, Inc.

Chapter 13 ■ Variable Argument Lists

13.1.2 Extract a value from argument list

Synopsis #include <stdarg.h>
type va_arg(va_list ap, type);

Description va_arg returns the next unprocessed value from a variable argument list ap
(which you must previously create with va_start). Specify the type for the
value as the second parameter to the macro, type.

You may pass a va_list object ap to a subfunction, and use va_arg from
the subfunction rather than from the function actually declared with an ellip-
sis in the header; however, in that case, you may only use va_arg from the
subfunction. ANSI C does not permit extracting successive values from a sin-
gle variable-argument list from different levels of the calling stack.

There is no mechanism for testing whether there is actually a next argument
available; you might instead pass an argument count (or some other data that
implies an argument count) as one of the fixed arguments in your function
call.

Returns va_arg returns the next argument, an object of type type.

Portability ANSI C requires va_arg.

The C Support Library Reference Manual 2007.11
13-4 Last modified: 08/28/2007

Chapter 13 ■ Variable Argument Lists

Stretch, Inc.

13.1.3 Abandon a variable argument list

Synopsis #include <stdarg.h>
void va_end(va_list ap);

Description Use va_end to declare that your program will not use the variable argument
list ap any further.

Returns va_end does not return a result.

Portability ANSI C requires va_end.

13.2 Traditional macros, varargs.h

If your C compiler predates ANSI C, you may still be able to use variable argu-
ment lists using the macros from the varargs.h header file. These macros
resemble their ANSI counterparts, but have important differences in usage. In
particular, since traditional C has no declaration mechanism for variable argu-
ment lists, two additional macros are provided simply for the purpose of defin-
ing functions with variable argument lists.

As with stdarg.h, the type va_list is used to hold a data structure repre-
senting a variable argument list.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 13-5

Stretch, Inc.

Chapter 13 ■ Variable Argument Lists

13.2.1 Declare variable arguments

Synopsis #include <varargs.h>
function(va_alist) va_dcl

Description To use the varargs.h version of variable argument lists, you must declare
your function with a call to the macro va_alist as its argument list, and use
va_dcl as the declaration. Do not use a semicolon after va_dcl.

Returns These macros cannot be used in a context where a return is syntactically pos-
sible.

Portability va.alist and va.dcl were the most widespread method of declaring vari-
able argument lists prior to ANSI C.

The C Support Library Reference Manual 2007.11
13-6 Last modified: 08/28/2007

Chapter 13 ■ Variable Argument Lists

Stretch, Inc.

13.2.2 Initialize variable argument list

Synopsis #include <varargs.h>
va_list ap;
va_start(ap);

Description With the varargs.h macros, use va_start to initialize a data structure ap
to permit manipulating a variable argument list, ap must have the type
va.alist.

Returns va_start does not return a result.

Portability va_start is also defined as a macro in ANSI C, but the definitions are incom-
patible; the ANSI version has another parameter besides ap.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 13-7

Stretch, Inc.

Chapter 13 ■ Variable Argument Lists

13.2.3 Extract a value from argument list

Synopsis #include <varargs.h>
type va_arg(va_list ap, type);

Description va_arg returns the next unprocessed value from a variable argument list ap
(which you must previously create with va_start). Specify the type for the
value as the second parameter to the macro, type.

Returns va_arg returns the next argument, an object of type type.

Portability The va_arg defined in varargs.h has the same syntax and usage as the
ANSI C version from stdarg.h.

The C Support Library Reference Manual 2007.11
13-8 Last modified: 08/28/2007

Chapter 13 ■ Variable Argument Lists

Stretch, Inc.

13.2.4 Abandon a variable argument list

Synopsis #include <varargs.h>
va_end(va_list ap);

Description Use va_end to declare that your program will not use the variable argument
list ap any further.

Returns va_end does not return a result.

Portability The va_end defined in varargs.h has the same syntax and usage as the
ANSI C version from stdarg.h.

2007.11 The C Support Library Reference Manual
Last modified: 08/28/2007 Index-i

Stretch, Inc.

Index

A
abort 2-2
abs 2-3
asctime 7-2
assert 2-4
atexit 2-5
atof 2-6
atoff 2-6
atoi 2-7
atol 2-7

B
bcmp 5-2
bcopy 5-3
bsearch 2-8
bzero 5-4

C
calloc 2-9
clearerr 4-2
clock 7-3
ctime 7-4

D
difftime 7-5
div 2-10

E
ecvt 2-11
ecvtbuf 2-13
ecvtf, fcvt, fcvtf 2-11
exit 2-14

F
fclose 4-3
fcvt 2-11
fcvtbuf 2-13
fcvtf 2-11
fdopen 4-13
feof 4-4
ferror 4-5
fflush 4-6

fgetc 4-7
fgetpos 4-8
fgets 4-9
fiprintf 4-10
fopen 4-11
fprintf 4-37
fputc 4-14
fputs 4-15
fread 4-16
free 2-18
freopen 4-17
fscanf 4-41
fseek 4-18
fsetpos 4-19
ftell 4-20
fwrite 4-21

G
gcvtf 2-12
getc 4-22
getchar 4-23
getenv 2-15
gets 4-24
gmtime 7-6
gvcvt 2-12

I
Idiv 2-17
index 5-5
iprintf 4-25
isalnum 3-2
isalpha 3-3
isascii 3-4
iscntrl 3-5
isdigit 3-6
isgraph 3-8
islower 3-7
isprint 3-8
ispunct 3-9
isspace 3-10
isupper 3-11
isxdigit 3-12

L
labs 2-16
localeconv 8-4
localtime 7-7
longjmp 11-3

M
malloc 2-18
mbtowc 2-20
memchr 5-6
memcmp 5-7
memcpy 5-8
memmove 5-9
memset 5-10
mkstemp 4-26
mktemp 4-26
mktime 7-8

P
perror 4-27
printf 4-37
putc 4-28
putchar 4-29
puts 4-30

Q
qsort 2-21

R
raise 6-3
rand 2-22
realloc 2-18
remove 4-31
rename 4-32
rewind 4-33
rindex 5-11

S
scanf 4-41
setbuf 4-34
setjmp 11-2
setlocale 8-4

The C Support Library Reference Manual 2007.11
Index-ii Last modified: 08/28/2007

Index
setvbuf 4-35

Stretch, Inc.

setvbuf 4-35
signal 6-4
siprintf 4-36
sprintf 4-37
srand 2-22
sscanf 4-41
strcat 5-12
strchr 5-13
strcmp 5-14
strcoll 5-15
strcpy 5-16
strcspn 5-17
strerror 5-18
strftime 7-9
strlen 5-21
strlwr 5-22
strncat 5-23
strncmp 5-24
strncpy 5-25
strpbrk 5-26
strrchr 5-27
strspn 5-28
strstr 5-29
strtod 2-23
strtodf 2-23
strtok 5-30
strtol 2-24
strtoul 2-26
strupr 5-31
strxfrm 5-32
system 2-28

T
tempnam 4-47
time 7-11
tmpfile 4-46
tmpnam 4-47
toascii 3-13
tolower 3-14
toupper 3-15

U
unctrl 10-2

V
va_alist 13-5
va_arg 13-3, 13-7
va_dcl 13-5
va_end 13-4, 13-8
va_list 13-6
va_start 13-2, 13-6

vfprintf 4-48
vprintf 4-48
vsprintf 4-48

W
wctomb 2-29

	The C Support Library
	Contents
	Introduction
	Standard Utility Functions (stdlib.h)
	2.1 abort-abnormal termination of a program
	2.2 abs-Integer absolute value (magnitude)
	2.3 assert-Macro for Debugging Diagnostics
	2.4 atexit-request execution of functions at program exit
	2.5 atof, atoff-string to double or float
	2.6 atoi, atol-string to integer
	2.7 bsearch-binary search
	2.8 calloc-allocate space for arrays
	2.9 div-divide two integers
	2.10 ecvt, ecvtf, fcvt, fcvtf-double or float to string
	2.11 gcvt, gcvtf-format double or float as string
	2.12 ecvtbuf, fcvtbuf-double or float to string
	2.13 exit-end program execution
	2.14 getenv-look up environment variable
	2.15 labs-long integer absolute value
	2.16 Idiv-divide two long integers
	2.17 malloc, realloc, free-manage memory
	2.18 mbtowc-minimal multi-byte to wide char converter
	2.19 qsort-sort an array
	2.20 rand, srand-pseudo-random numbers
	2.21 strtod, strtof-string to double or float
	2.22 strtol-string to long
	2.23 strtoul-string to unsigned long
	2.24 system-execute command string
	2.25 wctomb-minimal wide char to multi-byte converter

	Character Type Macros and Functions (ctype.h)
	3.1 isalnum-alphanumeric character predicate
	3.2 isalpha-alphabetic character predicate
	3.3 isascii-ASCII character predicate
	3.4 iscntrl-control character predicate
	3.5 isdigit-decimal digit predicate
	3.6 islower-lower-case character predicate
	3.7 isprint, isgraph-printable character predicates
	3.8 ispunct-punctuation character predicate
	3.9 isspace-whitespace character predicate
	3.10 isupper-uppercase character predicate
	3.11 isxdigit-hexadecimal digit predicate
	3.12 toascii-force integers to ASCII range
	3.13 tolower-translate characters to lower case
	3.14 toupper-translate characters to upper case

	Input and Output (stdio.h)
	4.1 clearerr-clear file or stream error indicator
	4.2 fclose-close a file
	4.3 feof-test for end of file
	4.4 ferror-test whether read/write error has occurred
	4.5 fflush-flush buffered file output
	4.6 fgetc-get a character from a file or stream
	4.7 fgetpos-record position in a stream or file
	4.8 fgets-get character string from a file or stream
	4.9 fiprintf-format output to file (integer only)
	4.10 fopen-open a file
	4.11 fdopen-turn open file into a stream
	4.12 fputc-write a character on a stream or file
	4.13 fputs-write a character string in a file or stream
	4.14 fread-read array elements from a file
	4.15 freopen-open a file using an existing file descriptor
	4.16 fseek-set file position
	4.17 fsetpos-restore position of a stream or file
	4.18 ftell-return position in a stream or file
	4.19 fwrite-write array elements
	4.20 getc-read a character (macro)
	4.21 getchar-read a character (macro)
	4.22 gets-get character string
	4.23 iprintf-write formatted output (integer only)
	4.24 mktemp, mkstemp-generate unused file name
	4.25 perror-print an error message on standard error
	4.26 putc-write a character (macro)
	4.27 putchar-write a character (macro)
	4.28 puts-write a character string
	4.29 remove-delete a files name
	4.30 rename-rename a file
	4.31 rewind-reinitialize a file or stream
	4.32 setbuf-specify full buffering for a file or stream
	4.33 setvbuf-specify file or stream buffering
	4.34 siprintf-write formatted output (integer only)
	4.35 printf, fprintf, sprintf-format output
	4.36 scanf, fscanf, sscanf-scan and format input
	4.37 tmpfile-create a temporary file
	4.38 tmpnam, tempnam-name for a temporary file
	4.39 vprintf, vfprintf, vsprintf-format argument list

	Strings and Memory (string.h)
	5.1 bcmp-compare two memory areas
	5.2 bcopy-copy memory regions
	5.3 bzero-initialize memory to zero
	5.4 index-search for character in string
	5.5 memchr-find character in memory
	5.6 memcmp-compare two memory areas
	5.7 memcpy-copy memory regions
	5.8 memmove-move possibly overlapping memory
	5.9 memset-set an area of memory
	5.10 rindex-reverse search for character in string
	5.11 strcat-concatenate strings
	5.12 strchr-search for character in string
	5.13 strcmp-character string compare
	5.14 strcoll-locale specific character string compare
	5.15 strcpy-copy string
	5.16 strcspn-count chars not in string
	5.17 strerror-convert error number to string
	5.18 strlen-character string length
	5.19 strlwr-force string to lower case
	5.20 strncat-concatenate strings
	5.21 strncmp-character string compare
	5.22 strncpy-counted copy string
	5.23 strpbrk-find chars in string
	5.24 strrchr-reverse search for character in string
	5.25 strspn-find initial match
	5.26 strstr-find string segment
	5.27 strtok-get next token from a string
	5.28 strupr-force string to uppercase
	5.29 strxfrm-transform string

	Signal Handling (signal.h)
	6.1 raise-send a signal
	6.2 signal-specify handler subroutine for a signal

	Time Functions (time.h)
	7.1 asctime-format time as string
	7.2 clock-cumulative processor time
	7.3 ctime-convert time to local and format as string
	7.4 difftime-subtract two times
	7.5 gmtime-convert time to UTC traditional form
	7.6 localtime-convert time to local representation
	7.7 mktime-convert time to arithmetic representation
	7.8 strftime-flexible calendar time formatter
	7.9 time-get current calendar time (as single number)

	Locale (locale.h)
	8.1 setlocale, localeconv-select or query locale

	Reentrancy
	Miscellaneous Macros and Functions
	10.1 unctrl-translate characters to upper case

	Functions for Xtensa Processors
	11.1 setjmp-save stack environment
	11.2 longjmp-non-local goto

	System Calls
	12.1 Definitions for OS interface
	12.2 Xtensa System Calls
	12.2.1 Base Xtensa System Calls
	12.2.2 System Calls with the Xtensa ISS
	12.3 Reentrant covers for OS subroutines

	Variable Argument Lists
	13.1 ANSI-standard macros, stdarg.h
	13.1.1 Initialize variable argument list
	13.1.2 Extract a value from argument list
	13.1.3 Abandon a variable argument list
	13.2 Traditional macros, varargs.h
	13.2.1 Declare variable arguments
	13.2.2 Initialize variable argument list
	13.2.3 Extract a value from argument list
	13.2.4 Abandon a variable argument list

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /BellGothicBT-Black
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /ScalaLF-Bold
 /ScalaLF-Italic
 /ScalaLF-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

