
Last modified: 01/30/2007

Stretch Assembler
Reference Manual

2006.07

Stretch, Inc.

© 2004 Stretch, Inc. All rights reserved. The Stretch logo, Stretch, and Extend-
ing the Possibilities are trademarks of Stretch, Inc. All other trademarks and
brand names are the properties of their respective owners.

This publication is provided “AS IS.” Stretch, Inc. (hereafter “Stretch”) DOES
NOT MAKE ANY WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN-
TIES OF TITLE, NONINFRINGEMENT, MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. Information in this document is
provided solely to enable system and software developers to use Stretch pro-
cessors. Unless specifically set forth herein, there are no express or implied
patent, copyright or any other intellectual property rights or licenses granted
hereunder. Stretch does not warrant that the contents of this publication,
whether individually or as one or more groups, meets your requirements or
that the publication is error-free. This publication could include technical in-
accuracies or typographical errors. Changes may be made to the information
herein, and these changes may be incorporated in new editions of this publi-
cation.

Part #: RU-0013-0409-000

Version 2.11.2
Dean Elsner and Jay Fenlason

© 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001 Free Software Foundation,
Inc.

With modifications from Stretch, Inc. and Tensilica, Inc.

© 1999, 2000, 2001, 2002 Tensilica, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sec-
tions, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 i

Stretch, Inc.

Before Using this Manual

Using st-as This is a user guide to the GNU assembler st-as version 2.11.2. This version
of the document describes st-as configured to generate code for Xtensa ar-
chitectures.

This document is distributed under the terms of the GNU Free Documenta-
tion License. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

Changes from Previous Ver-
sions

The following changes were made for Xtensa T1050 processors:

■ Replaced the .begin literal and.end literal directives with a new .literal
directive. See literal. The old literal directives are still recognized but will
eventually be phased out. All new assembly code should use the .literal
directive.

■ Reorganized the chapter on features for Xtensa processors. See Features for
Xtensa Processors.

■ Upgraded from GNU as version 2.9.1 to version 2.11.2.

Stretch Assembler Reference Manual 2006.07
ii Last modified: 10/17/2006

Before Using this Manual

Stretch, Inc.

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 iii

Contents

Before Using this Manual

Chapter 1 Overview
1.1 Structure of this Manual .1-4
1.2 The GNU Assembler .1-4
1.3 Object File Formats .1-5
1.4 Command Line .1-5
1.5 Input Files .1-5

1.5.1 File Names and Line Numbers .1-6
1.6 Output (Object) File .1-6
1.7 Error and Warning Messages .1-7

Chapter 2 Command-Line Options
2.1 Enable Listings: -a[cdhlns] .2-1
2.2 -D .2-2
2.3 Work Faster: -f .2-2
2.4 .include Search Path: -I path .2-2
2.5 Difference Tables: -K .2-3
2.6 Include Local Labels: -L .2-3
2.7 Dependency Tracking: --MD. .2-3
2.8 Name the Object File: -o .2-4
2.9 Join Data and Text Sections: -R. .2-4
2.10 Display Assembly Statistics: --statistics .2-4
2.11 Announce Version: -v .2-4
2.12 Control Warnings: -W, --warn, --no-warn, --fatal-warnings.2-5
2.13 Generate Object File in Spite of Errors: -Z. .2-5

Chapter 3 Syntax
3.1 Preprocessing .3-1
3.2 White space .3-2
3.3 Comments .3-2
3.4 Symbols .3-3
3.5 Statements .3-3
3.6 Constants .3-3

3.6.1 Character Constants .3-4
3.6.1.1 Strings .3-4
3.6.1.2 Characters .3-5

3.6.2 Number Constants .3-5
3.6.2.1 Integers .3-5
3.6.2.2 Bignums .3-6
3.6.2.3 Flonums .3-6

Chapter 4 Sections and Relocation
4.1 Background .4-1
4.2 Linker Sections. .4-2
4.3 Assembler Internal Sections .4-3

Stretch, Inc.

Contents

Stretch Assembler Reference Manual 2006.07
iv Last modified: 10/17/2006

4.4 Subsections .4-4
4.5 bss Section .4-5

Chapter 5 Symbols
5.1 Labels .5-1
5.2 Giving Symbols Other Values. .5-1
5.3 Symbol Names .5-1

5.3.1 Local Symbol Names .5-2
5.4 The Special Dot Symbol .5-3
5.5 Symbol Attributes. .5-3

5.5.1 Value .5-3
5.5.2 Type .5-3

Chapter 6 Expressions
6.1 Empty Expressions .6-1
6.2 Integer Expressions .6-1

6.2.1 Arguments .6-1
6.2.2 Operators .6-2
6.2.3 Prefix Operator .6-2
6.2.4 Infix Operators .6-2

Chapter 7 Assembler Directives
7.1 .abort .7-1
7.2 .align abs-expr, abs-expr, abs-expr. .7-1
7.3 .ascii “string”... .7-2
7.4 .asciz “string”... .7-2
7.5 .balign[wl] abs-expr, abs-expr, abs-expr. .7-2
7.6 .byte expressions. .7-3
7.7 .comm symbol, length .7-3
7.8 .double flonums. .7-4
7.9 .eject .7-4
7.10 .else .7-4
7.11 .elseif .7-4
7.12 .end .7-5
7.13 .endfunc .7-5
7.14 .endif .7-5
7.15 .equ symbol, expression .7-5
7.16 .equiv symbol, expression .7-5
7.17 .err .7-6
7.18 .exitm. .7-6
7.19 .extern .7-6
7.20 .fail expression .7-6
7.21 .file string. .7-6
7.22 .fill repeat, size, value .7-7
7.23 .float flonums .7-7
7.24 .func name[,label]. .7-7
7.25 .global symbol, .global symbol .7-8
7.26 .hidden names. .7-8
7.27 .hword expressions .7-8
7.28 .ident .7-8
7.29 .if absolute expression .7-9
7.30 .include “file”. .7-10
7.31 .int expressions .7-10
7.32 .internal names .7-10

Stretch, Inc.

Contents

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 v

7.33 .irp symbol,values... .7-11
7.34 .irpc symbol,values.... .7-11
7.35 .lcomm symbol, length .7-12
7.36 .lflags. .7-12
7.37 .line line-number. .7-12
7.38 .ln line-number .7-12
7.39 .list .7-12
7.40 .long expressions. .7-13
7.41 .macro .7-13
7.42 .nolist. .7-13
7.43 .octa bignums .7-14
7.44 .org new-lc, fill .7-15
7.45 .p2align[wl] abs-expr, abs-expr, abs-expr. .7-15
7.46 .previous. .7-16
7.47 .popsection .7-16
7.48 .print string .7-17
7.49 .protected names. .7-17
7.50 .psize lines, columns .7-17
7.51 .purgem name. .7-17
7.52 .pushsection name, subsection .7-18
7.53 .quad bignums .7-18
7.54 .rept count .7-18
7.55 .sbttl “subheading”. .7-19
7.56 .section name (ELF version) .7-19
7.57 .set symbol, expression .7-20
7.58 .short expressions .7-20
7.59 .single flonums .7-20
7.60 .size name, expression (ELF Version). .7-20
7.61 .sleb128 expressions .7-20
7.62 .skip size, fill .7-21
7.63 .space size, fill .7-21
7.64 .stabd, .stabn, .stabs .7-21
7.65 .string “str” .7-22
7.66 .struct expression .7-22
7.67 .subsection name. .7-23
7.68 .symver. .7-23
7.69 .text subsection. .7-24
7.70 .title “heading” .7-24
7.71 .type name, type description (ELF Version) .7-24
7.72 .uleb128 expressions. .7-25
7.73 .version “string”. .7-25
7.74 .vtable_entry table, offset .7-25
7.75 .vtable_inherit child, parent. .7-25
7.76 .weak names .7-26
7.77 .word expressions .7-26
7.78 Deprecated Directives .7-26

Chapter 8 Features for Xtensa Processors
8.1 Command Line Options .8-1
8.2 Assembler Syntax .8-3

8.2.1 Opcode Names .8-3
8.2.2 Register Names .8-4

8.3 Xtensa Optimizations .8-4
8.3.1 Using Density Instructions .8-4
8.3.2 Automatic Instruction Alignment .8-5

Stretch, Inc.

Contents

Stretch Assembler Reference Manual 2006.07
vi Last modified: 10/17/2006

8.4 Xtensa Relaxation. .8-6
8.4.1 Conditional Branch Relaxation .8-6
8.4.2 Function Call Relaxation. .8-6
8.4.3 Other Immediate Field Relaxation .8-7

8.5 Directives .8-8
8.5.1 density .8-9
8.5.2 relax .8-9
8.5.3 longcalls .8-10
8.5.4 generics .8-10
8.5.5 literal. .8-10
8.5.6 literal_position .8-11
8.5.7 literal_prefix .8-12
8.5.8 freeregs .8-12
8.5.9 frame. .8-12

Chapter 9 Acknowledgements

Appendix A GNU Free Documentation License
A.1 Preamble . A-1
A.2 Applicability and Definitions . A-1
A.3 Verbatim Copying . A-3
A.4 Copying in Quantity. A-3
A.5 Modifications . A-4
A.6 Combining Documents. A-6
A.7 Collections of Documents. A-6
A.8 Aggregation with Independent Works . A-6
A.9 Translation . A-7
A.10Termination . A-7
A.11Future Revisions of This License . A-8
A.12Addendum: How to use this License for your documents A-8

Appendix B History

Index

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 vii

Tables

Table 3-1 Escape sequences .3-4
Table 4-1 Linker sections .4-3
Table 4-2 Internal sections .4-4
Table 5-1 Local symbol names .5-2
Table 6-1 Highest precedence operators .6-2
Table 6-2 Intermediate precedence operators .6-2
Table 6-3 Low precedence operators .6-3
Table 6-4 Lowest precedence operators .6-3
Table 7-1 Supported variants of .if .7-9
Table 7-2 Macro .7-14
Table 7-3 Special macro variables .7-14
Table 7-4 Optional flag characters .7-19
Table 8-1 Xtensa extensions to the assembler .8-1

Stretch, Inc.

Tables

Stretch Assembler Reference Manual 2006.07
viii Last modified: 10/17/2006

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 1-1

Stretch, Inc.

Chapter 1 Overview

Here is a brief summary of how to invoke st-as. For details, see Chapter 2,
“Command-Line Options”.

st-as [-a[cdhlns][=file]]
[-D]
[--defsym sym=val]
[-f]
[--gstabs]
[--gdwarf2]
[--help]
[-I dir]
[-J]
[-K]
[-L] [--keep-locals]
[-o objfile]
[-R]
[--statistics]
[-v] [-version]
[--version]
[-W] [--warn]
[--fatal-warnings]
[-w]
[-x]
[-Z]
[--target-help]
[--[no-]density]
[--[no-]relax]
[--[no-]generics]
[--[no-]text-section-literals]
[--rename-section oldname=newname(

:oldname2=newname2)*]
[--[no-]target-align]
[--[no-]longcalls]
[--xtensa-core=name]
[--xtensa-system=registry]
[--xtensa-params=path]
[-- | files ...]

This option does this

-a[cdhlmns] Turn on listings, in any of a variety of ways:

-ac omit false conditionals

-ad omit debugging directives

-ah include high-level source

-al include assembly

-am include macro expansions

-an omit forms processing

Stretch Assembler Reference Manual 2006.07
1-2 Last modified: 10/17/2006

Chapter 1 ■ Overview

Stretch, Inc.

You may combine these options; for example, use -aln for assembly listing
without forms processing. The =file option, if used, must be the last one. By
itself, -a defaults to -ahls.

-as include symbols

=file set the name of the listing file

This option does this

-D Ignored. This option is accepted for script com-
patibility with calls to other assemblers.

--defsym sym=value Define the symbol sym to be value before
assembling the input file. value must be an
integer constant. As in C, a leading 0x indicates
a hexadecimal value, and a leading 0 indicates
an octal value.

-f Fast—skip white space and comment preprocess-
ing (assume source is compiler output).

--gstabs Generate stabs debugging information for each
assembler line. This may help debugging assem-
bler code, if the debugger can handle it.

--gdwarf2 Generate DWARF2 debugging information for
each assembler line. This may help debugging
assembler code, if the debugger can handle it.

NOTE: This option is only supported by some
targets, not all of them. It is not supported
for Xtensa targets.

--help Print a summary of the command line options
and exit.

--target-help Print a summary of all target-specific options
and exit.

-I dir Add directory dir to the search list for
.include directives.

-J Don't warn about signed overflow.

-K This option is accepted, but has no effect on the
Xtensa family.

-L
--keep-locals

Keep (in the symbol table) local symbols. On tra-
ditional a.out systems these start with L, but
different systems have different local label pre-
fixes.

-o objfile Name the object file output from st-as obj-
file.

-R Fold the data section into the text section.

--statistics Print the maximum space (in bytes) and total
time (in seconds) used by assembly.

This option does this

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 1-3

Stretch, Inc.

Chapter 1 ■ Overview

The following options are available when st-as is configured for an Xtensa pro-
cessor. See Chapter 2, “Command-Line Options”, for details.

--strip-local-absolute Remove local absolute symbols from the outgoing
symbol table.

-v
-version

Print the as version.

--version Print the as version and exit.

-W
--no-warn

Suppress warning messages.

--fatal-warnings Treat warnings as errors.

--warn Don't suppress warning messages or treat them
as errors.

-w Ignored

-x Ignored

-Z Generate an object file even after errors.

-- | files ... Standard input, or source files to assemble.

This option does this

This option does this

--density | --no-density Enable or disable use of instructions from the Xtensa
code density option. This is enabled by default when
the Xtensa processor supports the code density option.

--relax | --no-relax Enable or disable instruction relaxation. This is
enabled by default.

NOTE: In the current implementation, these
options also control whether assembler optimiza-
tions are performed, making these options equiv-
alent to --generics and --no-generics.

--generics | --no-generics Enable or disable all assembler transformations of
Xtensa instructions.
The default is --generics; --no-generics should
be used only in the rare cases when the instructions
must be exactly as specified in the assembly source.

--text-section-literals | --no-text-section-literals With --text-section-literals, literal pools are
interspersed in the text section.
The default is --no-text-section-literals,
which places literals in a separate section in the out-
put file.

--rename-section oldname=newname(:oldname2=newname2)* When generating output sections, rename the old-
name section to newname.

--target-align | --no-target-align Enable or disable automatic alignment to reduce
branch penalties at the expense of some code density.
The default is --target-align.

Stretch Assembler Reference Manual 2006.07
1-4 Last modified: 10/17/2006

Chapter 1 ■ Overview
Structure of this Manual

Stretch, Inc.

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use GNU
st-as. We cover the syntax expected in source files, including notation for
symbols, constants, and expressions; the directives that st-as understands;
and of course how to invoke st-as.

We also cover special features in the Xtensa configuration of st-as, including
assembler directives.

On the other hand, this manual is not intended as an introduction to program-
ming in assembly language—let alone programming in general! In a similar
vein, we make no attempt to introduce the machine architecture; we do not de-
scribe the instruction set, standard mnemonics, registers or addressing modes
that are standard to a particular architecture.

1.2 The GNU Assembler

GNU as is really a family of assemblers. This manual describes st-as, a
member of that family which is configured for the Xtensa architectures. If you
use (or have used) the GNU assembler on one architecture, you should find a
fairly similar environment when you use it on another architecture. Each ver-
sion has much in common with the others, including object file formats, most
assembler directives (often called pseudo-ops) and assembler syntax.

Unlike older assemblers, st-as is designed to assemble a source program in
one pass of the source file. This has a subtle impact on the .org directive (see
“.org new-lc, fill” on page 7-15).

--longcalls | --no-longcalls Enable or disable transformation of call instructions
to allow calls across a greater range of addresses.
The default is --no-longcalls.

--xtensa-core=name Specify the name of an Xtensa processor core configu-
ration to use.

--xtensa-system=registry Specify a directory to be used as the Xtensa core reg-
istry.

--xtensa-params=path Specify the location of the parameter file in a TIE
Development Kit (TDK) that was produced by running
the TIE Compiler (tc).

This option does this

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 1-5

Stretch, Inc.

Chapter 1 ■ Overview
Object File Formats

1.3 Object File Formats

The GNU assembler can be configured to produce several alternative object
file formats. For the most part, this does not affect how you write assembly lan-
guage programs; but directives for debugging symbols are typically different
in different file formats. See “Symbol Attributes” on page 5-3 For the Xtensa
target, st-as is configured to produce ELF format object files.

1.4 Command Line

After the program name st-as, the command line may contain options and
file names. Options may appear in any order, and may be before, after, or be-
tween file names. The order of file names, however, is significant.

-- (two hyphens) by itself names the standard input file explicitly, as one of the
files for st-as to assemble.

Except for -- any command line argument that begins with a hyphen (-) is an
option. Each option changes the behavior of st-as. No option changes the
way another option works. An option is a - followed by one or more letters; the
case of the letter is important. All options are optional.

Some options expect exactly one file name to follow them. The file name may
either immediately follow the option's letter (compatible with older assem-
blers) or it may be the next command argument (GNU standard). These two
command lines are equivalent:

st-as -o my-object-file.o mumble.s
st-as -omy-object-file.o mumble.s

1.5 Input Files

We use the phrase source program, abbreviated source, to describe the program
input to one run of st-as. The program may be in one or more files; how the
source is partitioned into files doesn't change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order
specified.

Each time you run st-as it assembles exactly one source program. The source
program is made up of one or more files. (The standard input is also a file.)

Stretch Assembler Reference Manual 2006.07
1-6 Last modified: 10/17/2006

Chapter 1 ■ Overview
Output (Object) File

Stretch, Inc.

You give st-as a command line that has zero or more input file names. The
input files are read (from the left file name to the right file name). A command
line argument (in any position) that has no special meaning is taken to be an
input file name.

If you give st-as no file names, it attempts to read one input file from the
st-as standard input, which is normally your terminal. You may have to type
<ctl-D> to tell st-as there is no more program to assemble.

Use -- if you need to explicitly name the standard input file in your command
line.

If the source is empty, st-as produces a small, empty object file.

1.5.1 File Names and Line Numbers

There are two ways of locating a line in the input file (or files), and either may
be used in reporting error messages. One way refers to a line number in a
physical file; the other refers to a line number in a “logical” file. See “Error and
Warning Messages” on page 1-7.

Physical files are those files named in the command line given to st-as.

Logical files are simply names declared explicitly by assembler directives; they
bear no relation to physical files. Logical file names help error messages reflect
the original source file, when st-as source is itself synthesized from other
files. st-as understands the # directives emitted by the st-gcc preprocessor.
See also “.file string” on page 7-6.

1.6 Output (Object) File

Every time you run st-as it produces an output file, which is your assembly
language program translated into numbers. This file is the object file. Its de-
fault name is a.out. You can give it another name by using the -o option.
Conventionally, object file names end with .o. The default name is used for
historical reasons: Older assemblers were capable of assembling self-con-
tained programs directly into a runnable program. (For some formats, this
isn't currently possible, but it can be done for the a.out format.)

The object file is meant for input to the linker st-ld. It contains assembled
program code, information to help st-ld integrate the assembled program
into a runnable file, and (optionally) symbolic information for the debugger.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 1-7

Stretch, Inc.

Chapter 1 ■ Overview
Error and Warning Messages

1.7 Error and Warning Messages

st-as may write warnings and error messages to the standard error file (usu-
ally your terminal). This should not happen when a compiler runs st-as au-
tomatically. Warnings report an assumption made so that st-as could keep
assembling a flawed program; errors report a grave problem that stops the as-
sembly.

Warning messages have the format

file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given (see “.file
string” on page 7-6) it is used for the file name, otherwise the name of the cur-
rent input file is used. If a logical line number was given (see “.line line-num-
ber” on page 7-12) then it is used to calculate the number printed, otherwise
the actual line in the current source file is printed. The message text is intend-
ed to be self explanatory (in the grand Unix tradition).

Error messages have the format

file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The ac-
tual message text may be rather less explanatory because many of them aren't
supposed to happen.

Stretch Assembler Reference Manual 2006.07
1-8 Last modified: 10/17/2006

Chapter 1 ■ Overview
Error and Warning Messages

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 2-1

Stretch, Inc.

Chapter 2 Command-Line Options

This chapter describes command-line options available in all versions of the
GNU assembler; see Chapter 8, “Features for Xtensa Processors”, for options
specific to the Xtensa version.

If you are invoking st-as via the GNU C compiler, or if you are using Tensil-
ica's XCC compiler, you can use the -Wa option to pass arguments through to
the assembler. The assembler arguments must be separated from each other
(and the -Wa) by commas. For example:

st-gcc -c -g -O -Wa,-alh,-L file.c

This passes two options to the assembler: -alh (emit a listing to standard out-
put with high-level and assembly source) and -L (retain local symbols in the
symbol table).

Usually you do not need to use this -Wa mechanism, since many compiler
command-line options are automatically passed to the assembler by the com-
piler. (You can call the GNU compiler driver with the -v option to see precisely
what options it passes to each compilation pass, including the assembler.)

2.1 Enable Listings: -a[cdhlns]

These options enable listing output from the assembler. By itself, -a requests
high-level, assembly, and symbols listing. You can use other letters to select
specific options for the list: -ah requests a high-level language listing, -al re-
quests an output-program assembly listing, and -as requests a symbol table
listing. High-level listings require that a compiler debugging option like -g be
used, and that assembly listings (-al) be requested also.

Use the -ac option to omit false conditionals from a listing. Any lines which
are not assembled because of a false .if (or .ifdef, or any other condition-
al), or a true .if followed by an .else, will be omitted from the listing.

Use the -ad option to omit debugging directives from the listing.

Stretch Assembler Reference Manual 2006.07
2-2 Last modified: 10/17/2006

Chapter 2 ■ Command-Line Options
-D

Stretch, Inc.

Once you have specified one of these options, you can further control listing
output and its appearance using the directives .list, .nolist, .psize,
.eject, .title, and .sbttl. The -an option turns off all forms processing.
If you do not request listing output with one of the -a options, the listing-con-
trol directives have no effect.

The letters after -a may be combined into one option, e.g., -aln.

2.2 -D

This option has no effect whatsoever, but it is accepted to make it more likely
that scripts written for other assemblers also work with st-as.

2.3 Work Faster: -f

-f should only be used when assembling programs written by a (trusted) com-
piler. -f stops the assembler from doing whitespace and comment prepro-
cessing on the input file(s) before assembling them. See “Preprocessing” on
page 3-1.

WARNING! If you use -f when the files actually need to be preprocessed (if they con-
tain comments, for example), st-as does not work correctly.

2.4 .include Search Path: -I path

Use this option to add a path to the list of directories st-as searches for files
specified in .include directives (see “.include “file”” on page 7-10). You may
use -I as many times as necessary to include a variety of paths. The current
working directory is always searched first; after that, st-as searches any -I
directories in the same order as they were specified (left to right) on the com-
mand line.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 2-3

Stretch, Inc.

Chapter 2 ■ Command-Line Options
Difference Tables: -K

2.5 Difference Tables: -K

On the Xtensa family, this option is allowed, but has no effect. It is permitted
for compatibility with the GNU assembler on other platforms, where it can be
used to warn when the assembler alters the machine code generated for
.word directives in difference tables. The Xtensa family does not have the ad-
dressing limitations that sometimes lead to this alteration on other platforms.

2.6 Include Local Labels: -L

Labels beginning with L (upper case only) are called local labels. See “Symbol
Names” on page 5-1. Normally you do not see such labels when debugging, be-
cause they are intended for the use of programs (like compilers) that compose
assembler programs, not for your notice. Normally both st-as and st-ld
discard such labels, so you do not normally debug with them.

This option tells st-as to retain those L… symbols in the object file. Usually if
you do this you also tell the linker st-ld to preserve symbols whose names
begin with L.

By default, a local label is any label beginning with L, but each target is allowed
to redefine the local label prefix.

For Xtensa processors, local labels begin with .L. In addition, Xtensa has a
class of local debug labels that begin with .Ln and .LM. These local debug la-
bels do not participate in target alignment when the --target-align option
is used.

2.7 Dependency Tracking: --MD

st-as can generate a dependency file for the file it creates. This file consists
of a single rule suitable for make describing the dependencies of the main
source file.

The rule is written to the file named in its argument.

This feature is used in the automatic updating of makefiles.

Stretch Assembler Reference Manual 2006.07
2-4 Last modified: 10/17/2006

Chapter 2 ■ Command-Line Options
Name the Object File: -o

Stretch, Inc.

2.8 Name the Object File: -o

There is always one object file output when you run st-as. By default it has
the name a.out. You use this option (which takes exactly one filename) to
give the object file a different name.

Whatever the object file is called, st-as overwrites any existing file of the
same name.

2.9 Join Data and Text Sections: -R

-R tells st-as to write the object file as if all data-section data lives in the text
section. This is only done at the very last moment: your binary data are the
same, but data section parts are relocated differently. The data section part of
your object file is zero bytes long because all its bytes are appended to the text
section. (See Chapter 4, “Sections and Relocation”.)

When you specify -R it would be possible to generate shorter address displace-
ments (because we do not have to cross between text and data section). We re-
frain from doing this simply for compatibility with older versions of st-as. In
future, -R may work this way.

This option is only useful if you use sections named .text and .data.

2.10 Display Assembly Statistics: --
statistics

Use --statistics to display two statistics about the resources used by
st-as: the maximum amount of space allocated during the assembly (in
bytes), and the total execution time taken for the assembly (in CPU seconds).

2.11 Announce Version: -v

You can find out what version of as is running by including the option -v
(which you can also spell as -version) on the command line.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 2-5

Stretch, Inc.

Chapter 2 ■ Command-Line Options
Control Warnings: -W, --warn, --no-warn, --fatal-warnings

2.12 Control Warnings: -W, --warn, --no-
warn, --fatal-warnings

st-as should never give a warning or error message when assembling com-
piler output. But programs written by people often cause st-as to give a warn-
ing that a particular assumption was made. All such warnings are directed to
the standard error file.

If you use the -W and --no-warn options, no warnings are issued. This only
affects the warning messages: it does not change any particular of how st-as
assembles your file. Errors, which stop the assembly, are still reported.

If you use the --fatal-warnings option, st-as considers files that gener-
ate warnings to be in error.

You can switch these options off again by specifying --warn, which causes
warnings to be output as usual.

2.13 Generate Object File in Spite of
Errors: -Z

After an error message, st-as normally produces no output. If for some rea-
son you are interested in object file output even after st-as gives an error
message on your program, use the -Z option. If there are any errors, st-as
continues anyway, and writes an object file after a final warning message of the
form:

n errors, m warnings, generating bad object file.

NOTE: This option currently does not work reliably for Xtensa targets.

Stretch Assembler Reference Manual 2006.07
2-6 Last modified: 10/17/2006

Chapter 2 ■ Command-Line Options
Generate Object File in Spite of Errors: -Z

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 3-1

Stretch, Inc.

Chapter 3 Syntax

This chapter describes the machine-independent syntax allowed in a source
file. st-as syntax is similar to what many other assemblers use; it is inspired
by the BSD 4.2 assembler.

3.1 Preprocessing

The st-as internal preprocessor:

■ adjusts and removes extra whitespace. It leaves one space or tab before the
keywords on a line, and turns any other whitespace on the line into a single
space.

■ removes all comments, replacing them with a single space, or an appropri-
ate number of newlines.

■ converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything else you
may get from your C compiler's preprocessor. You can do include file process-
ing with the .include directive (see “.include “file”” on page 7-10). You can
use the GNU C compiler driver or Tensilica's XCC compiler driver to get other
“CPP” style preprocessing by giving the input file a .S suffix. See “Options
Controlling the Kind of Output” in the GNU C and C++ Compiler User’s Guide.

Excess whitespace, comments, and character constants cannot be used in the
portions of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the -f option,
whitespace and comments are not removed from the input file. Within an in-
put file, you can ask for whitespace and comment removal in specific portions
of the by putting a line that says #APP before the text that may contain
whitespace or comments, and putting a line that says #NO_APP after this text.
This feature is mainly intend to support asm statements in compilers whose
output is otherwise free of comments and whitespace.

Stretch Assembler Reference Manual 2006.07
3-2 Last modified: 10/17/2006

Chapter 3 ■ Syntax
White space

Stretch, Inc.

3.2 White space

White space is one or more blanks or tabs, in any order. White space is used to
separate symbols, and to make programs neater for people to read. Unless
within character constants (see “Character Constants” on page 3-4), any white
space means the same as exactly one space.

3.3 Comments

There are two ways of rendering comments to st-as. In both cases the com-
ment is equivalent to one space.

Anything from /* through the next */ is a comment. This means you may not
nest these comments.

/*
The only way to include a newline ('\n') in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is considered a
comment and is ignored. The line comment character is # for Xtensa systems;
see Chapter 8, “Features for Xtensa Processors”.

To be compatible with past assemblers, lines that begin with # have a special
interpretation. Following the # should be an absolute expression (see “Expres-
sions” on page 6-1): the logical line number of the next line. Then a string (see
“Strings” on page 3-4) is allowed: if present it is a new logical file name. The
rest of the line, if any, should be white space.

If the first non-whitespace characters on the line are not numeric, the line is
ignored. (Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name

This is logical line # 36.

This feature is deprecated, and may disappear from future versions of st-as.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 3-3

Stretch, Inc.

Chapter 3 ■ Syntax
Symbols

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both up-
per and lower case), digits and the three characters _.$. No symbol may begin
with a digit. Case is significant. There is no length limit: all characters are sig-
nificant. Symbols are delimited by characters not in that set, or by the begin-
ning of a file (since the source program must end with a newline, the end of a
file is not a possible symbol delimiter). See “Symbols” on page 3-3.

3.5 Statements

A statement ends at a newline character (\n) or at a semicolon (;). The newline
or semicolon is considered part of the preceding statement. Newlines and
semicolons within character constants are an exception: they do not end state-
ments.

It is an error to end any statement with end-of-file: the last character of any in-
put file should be a newline.

An empty statement is allowed, and may include whitespace. It is ignored.

A statement begins with zero or more labels, optionally followed by a key sym-
bol which determines what kind of statement it is. The key symbol determines
the syntax of the rest of the statement. If the symbol begins with a dot . then
the statement is an assembler directive: typically valid for any computer. If the
symbol begins with a letter the statement is an assembly language instruction:
it assembles into a machine language instruction.

A label is a symbol immediately followed by a colon (:). White space before a
label or after a colon is permitted, but you may not have white space between
a label's symbol and its colon. See Chapter 5, “Labels”.

label: .directive followed by something
another_label: # This is an empty statement.

instruction operand_1, operand_2, …

3.6 Constants

A constant is a number, written so that its value is known by inspection, with-
out knowing any context. Like this:

Stretch Assembler Reference Manual 2006.07
3-4 Last modified: 10/17/2006

Chapter 3 ■ Syntax
Constants

Stretch, Inc.

.byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same
value.
.ascii "Ring the bell\7" # A string constant.
.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one character
in one byte and its value may be used in numeric expressions. String constants
(properly called string literals) are potentially many bytes and their values may
not be used in arithmetic expressions.

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null
characters. The way to get special characters into a string is to escape these
characters: precede them with a backslash \ character. For example \\ repre-
sents one backslash: the first \ is an escape which tells st-as to interpret the
second character literally as a backslash (which prevents st-as from recog-
nizing the second \ as an escape character). The complete list of escapes fol-
lows.

Table 3-1 Escape sequences

This escape sequence does this

\b Mnemonic for backspace; for ASCII this is octal code
010.

\f Mnemonic for FormFeed; for ASCII this is octal code
014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-return; for ASCII this is octal
code 015.

\t Mnemonic for horizontal tab; for ASCII this is octal code
011.

\ digit digit digit An octal character code. The numeric code is 3 octal dig-
its. For compatibility with other Unix systems, 8 and 9
are accepted as digits: for example, \008 has the value
010, and \009 the value 011.

\x hex-digits... A hex character code. All trailing hex digits are com-
bined. Either upper or lower case x works.

\\ Represents one \ character.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 3-5

Stretch, Inc.

Chapter 3 ■ Syntax
Constants

Which characters are escapable, and what those escapes represent, varies
widely among assemblers. The current set is what we think the BSD 4.2 as-
sembler recognizes, and is a subset of what most C compilers recognize. If you
are in doubt, do not use an escape sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately followed by
that character. The same escapes apply to characters as to strings. So if you
want to write the character backslash, you must write '\\ where the first \ es-
capes the second \. As you can see, the quote is an acute accent, not a grave
accent. A newline (or semicolon ;) immediately following an acute accent is
taken as a literal character and does not count as the end of a statement. The
value of a character constant in a numeric expression is the machine's byte-
wide code for that character. st-as assumes your character code is ASCII: 'A
means 65, 'B means 66, and so on.

3.6.2 Number Constants

st-as distinguishes three kinds of numbers according to how they are stored
in the target machine. Integers are numbers that would fit into an int in the C
language. Bignums are integers, but they are stored in more than 32 bits. Flon-
ums are floating point numbers, described below.

3.6.2.1 Integers

A binary integer is 0b or 0B followed by zero or more of the binary digits 01.

An octal integer is 0 followed by zero or more of the octal digits (01234567).

A decimal integer starts with a non-zero digit followed by zero or more digits
(0123456789).

\" Represents one " character. Needed in strings to repre-
sent this character, because an unescaped " would end
the string.

\ anything-else Any other character when escaped by \ gives a warning,
but assembles as if the \ was not present. The idea is that
if you used an escape sequence you clearly didn't want the
literal interpretation of the following character. However
st-as has no other interpretation, so st-as knows it is
giving you the wrong code and warns you of the fact.

Table 3-1 Escape sequences

This escape sequence does this

Stretch Assembler Reference Manual 2006.07
3-6 Last modified: 10/17/2006

Chapter 3 ■ Syntax
Constants

Stretch, Inc.

A hexadecimal integer is 0x or 0X followed by one or more hexadecimal digits
chosen from 0123456789abcdefABCDEF.

Integers have the usual values. To denote a negative integer, use the prefix op-
erator - discussed under expressions (see Section 6.2.3, “Prefix Operator”, on
pager 6-2).

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the
number (or its negative) takes more than 32 bits to represent in binary. The
distinction is made because in some places integers are permitted while big-
nums are not.

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indirect: a dec-
imal floating point number from the text is converted by st-as to a generic
binary floating point number of more than sufficient precision. This generic
floating point number is converted to a particular computer's floating point
format (or formats) by a portion of st-as specialized to that computer.

A flonum is written by writing (in order)

■ The digit 0.

■ A letter, to tell st-as the rest of the number is a flonum.

■ An optional sign: either + or -.

■ An optional integer part: zero or more decimal digits.

■ An optional fractional part: . followed by zero or more decimal digits.

■ An optional exponent, consisting of:

– An E or e.

– Optional sign: either + or -.

– One or more decimal digits.

At least one of the integer part or the fractional part must be present. The float-
ing point number has the usual base 10 value.

st-as does all processing using integers. Flonums are computed indepen-
dently of any floating point hardware in the computer running st-as.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 4-1

Stretch, Inc.

Chapter 4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in” those ad-
dresses is treated the same for some particular purpose. For example there
may be a “read only” section.

The linker st-ld reads many object files (partial programs) and combines
their contents to form a program that can be run. When st-as emits an object
file, the partial program is assumed to start at address 0. st-ld assigns the fi-
nal addresses for the partial program, so that different partial programs do not
overlap. This is actually an oversimplification, but it suffices to explain how
st-as uses sections.

st-ld moves blocks of bytes of your program to their run-time addresses.
These blocks slide to their run-time addresses as rigid units; their length does
not change and neither does the order of bytes within them. Such a rigid unit
is called a section. Assigning run-time addresses to sections is called relocation.
It includes the task of adjusting mentions of object-file addresses so they refer
to the proper run-time addresses.

An object file written by st-as has at least three sections, any of which may
be empty. These are named text, data and bss sections.

st-as can also generate whatever other named sections you specify using the
.section directive. See “.section name (ELF version)” on page 7-19, for the
ELF version. If you do not use any directives that place output in the .text or
.data sections, these sections still exist, but are empty.

Within the object file, the text section starts at address 0, the data section fol-
lows, and the bss section follows the data section.

To let st-ld know which data changes when the sections are relocated, and
how to change that data, st-as also writes to the object file details of the relo-
cation needed. To perform relocation st-ld must know, each time an address
in the object file is mentioned:

■ Where in the object file is the beginning of this reference to an address?

■ How long (in bytes) is this reference?

Stretch Assembler Reference Manual 2006.07
4-2 Last modified: 10/17/2006

Chapter 4 ■ Sections and Relocation
Linker Sections

Stretch, Inc.

■ To which section does the address refer? What is the numeric value of

(address) - (start-address of section)?

■ Is the reference to an address “Program-Counter relative”?

In fact, every address st-as ever uses is expressed as:

(section) + (offset into section)

Further, most expressions st-as computes have this section-relative nature.

In this manual we use the notation {secname N} to mean “offset N into section
secname.”

Apart from text, data and bss sections you need to know about the absolute sec-
tion. When st-ld mixes partial programs, addresses in the absolute section
remain unchanged. For example, address {absolute 0} is “relocated” to
run-time address 0 by st-ld. Although the linker never arranges two partial
programs' data sections with overlapping addresses after linking, by definition
their absolute sections must overlap. Address {absolute 239} in one part
of a program is always the same address when the program is running as ad-
dress {absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose
section is unknown at assembly time is by definition rendered {undefined
U}—where U is filled in later. Since numbers are always defined, the only way
to generate an undefined address is to mention an undefined symbol. A refer-
ence to a named common block would be such a symbol: its value is unknown
at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked
program. st-ld puts all partial programs’ text sections in contiguous address-
es in the linked program. It is customary to refer to the text section of a pro-
gram, meaning all the addresses of all partial programs’ text sections. Likewise
for data and bss sections.

Some sections are manipulated by st-ld; others are invented for use of
st-as and have no meaning except during assembly.

4.2 Linker Sections

st-ld deals with just four kinds of sections, summarized in Table 4-1.

An idealized example of three relocatable sections follows. The example uses
the traditional section names .text and .data. Memory addresses are on the
horizontal axis.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 4-3

Stretch, Inc.

Chapter 4 ■ Sections and Relocation
Assembler Internal Sections

+-----+----+--+
partial program # 1: |ttttt|dddd|00|

+-----+----+--+

text data bss
seg. seg. seg.

+---+---+---+
partial program # 2: |TTT|DDD|000|

+---+---+---+

+--+---+-----+--+----+---+-----+~~
linked program: | |TTT|ttttt| |dddd|DDD|00000|

+--+---+-----+--+----+---+-----+~~

addresses: 0 …

4.3 Assembler Internal Sections

These sections are meant only for the internal use of st-as. They have no
meaning at run-time. You do not really need to know about these sections for
most purposes; but they can be mentioned in st-as warning messages, so it
might be helpful to have an idea of their meanings to st-as. These sections
are used to permit the value of every expression in your assembly language
program to be a section-relative address.

Table 4-1 Linker sections

This section holds/does this

named sections These sections hold your program. st-as and st-ld treat
them as separate but equal sections. Anything you can say of
one section is true of another. When the program is running,
however, it is customary for the text section to be unalterable.
The text section is often shared among processes: it contains
instructions, constants and the like. The data section of a run-
ning program is usually alterable: for example, C variables
would be stored in the data section.

bss section This section contains zeroed bytes when your program begins
running. It is used to hold uninitialized variables or common
storage. The length of each partial program's bss section is
important, but because it starts out containing zeroed bytes
there is no need to store explicit zero bytes in the object file.
The bss section was invented to eliminate those explicit zeros
from object files.

absolute section Address 0 of this section is always “relocated” to runtime
address 0. This is useful if you want to refer to an address that
st-ld must not change when relocating. In this sense we
speak of absolute addresses being “unrelocatable”: they do not
change during relocation.

undefined section This “section” is a catch-all for address references to objects
not in the preceding sections.

Stretch Assembler Reference Manual 2006.07
4-4 Last modified: 10/17/2006

Chapter 4 ■ Sections and Relocation
Subsections

Stretch, Inc.

4.4 Subsections

You may have separate groups of data in named sections that you want to end
up near to each other in the object file, even though they are not contiguous in
the assembler source. st-as allows you to use subsections for this purpose.
Within each section, there can be numbered subsections with values from 0 to
8192. Objects assembled into the same subsection go into the object file to-
gether with other objects in the same subsection. For example, a compiler
might want to store constants in the text section, but might not want to have
them interspersed with the program being assembled. In this case, the com-
piler could issue a .text 0 before each section of code being output, and a
.text 1 before each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in
subsection number zero.

Subsections appear in your object file in numeric order, lowest numbered to
highest. (All this to be compatible with other people's assemblers.) The object
file contains no representation of subsections; st-ld and other programs that
manipulate object files see no trace of them. They just see all your text subsec-
tions as a text section, and all your data subsections as a data section.

To specify which subsection you want subsequent statements assembled into,
use a numeric argument to specify it, in a .text expression or a .data ex-
pression statement. You can also use an extra subsection argument with arbi-
trary named sections: .section name, expression. Expression should be an
absolute expression. (See 6, “Expressions”.) If you just say .text then .text
0 is assumed. Likewise, .data means .data 0. Assembly begins in text 0.
For instance:

.text 0 # The default subsection is text 0 anyway.

.ascii "This lives in the first text subsection. *"

.text 1

Table 4-2 Internal sections

This section holds/does this

ASSEMBLER-INTERNAL-LOGIC-ERROR! An internal assembler logic error has
been found. This means there is a bug in
the assembler.

expr section The assembler stores complex expres-
sion internally as combinations of sym-
bols. When it needs to represent an
expression as a symbol, it puts it in the
expr section.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 4-5

Stretch, Inc.

Chapter 4 ■ Sections and Relocation
bss Section

.ascii "But this lives in the second text subsection."

.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text 0

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assem-
bled into that section. Because subsections are merely a convenience restricted
to st-as there is no concept of a subsection location counter. There is no way
to directly manipulate a location counter--but the .align directive changes it,
and any label definition captures its current value. The location counter of the
section where statements are being assembled is said to be the active location
counter.

4.5 bss Section

The bss section is used for local common variable storage. You may allocate ad-
dress space in the bss section, but you may not dictate data to load into it before
your program executes. When your program starts running, all the contents of
the bss section are zeroed bytes.

The .lcomm pseudo-op defines a symbol in the bss section; see “.lcomm sym-
bol, length” on page 7-12.

The .comm pseudo-op may be used to declare a common symbol, which is an-
other form of uninitialized symbol; see “.comm symbol, length” on page 7-3.

Stretch Assembler Reference Manual 2006.07
4-6 Last modified: 10/17/2006

Chapter 4 ■ Sections and Relocation
bss Section

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 5-1

Stretch, Inc.

Chapter 5 Symbols

Symbols are a central concept: the programmer uses symbols to name things,
the linker uses symbols to link, and the debugger uses symbols to debug.

WARNING! st-as does not place symbols in the object file in the same order they were
declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon :. The symbol
then represents the current value of the active location counter, and is, for ex-
ample, a suitable instruction operand. You are warned if you use the same
symbol to represent two different locations: the first definition overrides any
other definitions.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an
equals sign =, followed by an expression (see Chapter 6, “Expressions”). This
is equivalent to using the .set directive. See Section 7.57, “.set symbol, ex-
pression”, on pager 7-20.

5.3 Symbol Names

Symbol names begin with a letter or with one of ._. On most machines, you
can also use $ in symbol names; exceptions are noted in Chapter 8, “Features
for Xtensa Processors”. That character may be followed by any string of digits,
letters, dollar signs (unless otherwise noted in Chapter 8), and underscores.

Case of letters is significant: foo is a different symbol name than Foo.

Stretch Assembler Reference Manual 2006.07
5-2 Last modified: 10/17/2006

Chapter 5 ■ Symbols
Symbol Names

Stretch, Inc.

Each symbol has exactly one name. Each name in an assembly language pro-
gram refers to exactly one symbol. You may use that symbol name any number
of times in a program.

5.3.1 Local Symbol Names

Local symbols help compilers and programmers use names temporarily.
There are ten local symbol names, which are re-used throughout the program.
You may refer to them using the names 0 1 … 9. To define a local symbol,
write a label of the form N: (where N represents any digit). To refer to the most
recent previous definition of that symbol write Nb, using the same digit as
when you defined the label. To refer to the next definition of a local label, write
Nf—where N gives you a choice of 10 forward references. The b stands for
backwards and the f stands for forwards.

Local symbols are not emitted by the current GNU C compiler.

There is no restriction on how you can use these labels, but remember that at
any point in the assembly you can refer to at most 10 prior local labels and to
at most 10 forward local labels.

Local symbol names are only a notation device. They are immediately trans-
formed into more conventional symbol names before the assembler uses
them. The symbol names stored in the symbol table, appearing in error mes-
sages and optionally emitted to the object file have these parts:

For instance, the first 1: is named L1C-A1, the 44th 3: is named L3C-A44.

Table 5-1 Local symbol names

This symbol means this

L All local labels begin with L. Normally both st-as and st-ld
forget symbols that start with L. These labels are used for
symbols you are never intended to see. If you use the -L
option then st-as retains these symbols in the object file.
If you also instruct st-ld to retain these symbols, you may
use them in debugging.

digit If the label is written 0: then the digit is 0. If the label is
written 1: then the digit is 1. And so on up through 9:.

C-A This unusual character is included so you do not accidental-
ly invent a symbol of the same name. The character has
ASCII value \001.

ordinal number This is a serial number to keep the labels distinct. The first
0: gets the number 1; The 15th 0: gets the number 15; etc.
Likewise for the other labels 1: through 9:.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 5-3

Stretch, Inc.

Chapter 5 ■ Symbols
The Special Dot Symbol

5.4 The Special Dot Symbol

The special symbol . refers to the current address that st-as is assembling
into. Thus, the expression melvin: .long . defines melvin to contain its
own address. Assigning a value to . is treated the same as a .org directive.
Thus, the expression .=.+4 is the same as saying .space 4.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and “Type”. De-
pending on output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, st-as assumes zero for all these at-
tributes, and probably won't warn you. This makes the symbol an externally
defined symbol, which is generally what you would want.

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location
in the text, data, bss or absolute sections the value is the number of addresses
from the start of that section to the label. Naturally for text, data and bss sec-
tions the value of a symbol changes as st-ld changes section base addresses
during linking. Absolute symbols’ values do not change during linking: that is
why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the
symbol is not defined in this assembler source file, and st-ld tries to deter-
mine its value from other files linked into the same program. You make this
kind of symbol simply by mentioning a symbol name without defining it. A
non-zero value represents a .comm common declaration. The value is how
much common storage to reserve, in bytes (addresses). The symbol refers to
the first address of the allocated storage.

5.5.2 Type

The type attribute of a symbol contains relocation (section) information, any
flag settings indicating that a symbol is external, and (optionally), other infor-
mation for linkers and debuggers. The exact format depends on the object-
code output format in use.

Stretch Assembler Reference Manual 2006.07
5-4 Last modified: 10/17/2006

Chapter 5 ■ Symbols
Symbol Attributes

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 6-1

Stretch, Inc.

Chapter 6 Expressions

An expression specifies an address or numeric value. Whitespace may precede
and/or follow an expression.

The result of an expression must be an absolute number, or else an offset into
a particular section. If an expression is not absolute, and there is not enough
information when st-as sees the expression to know its section, a second
pass over the source program might be necessary to interpret the expression—
but the second pass is currently not implemented. st-as aborts with an error
message in this situation.

6.1 Empty Expressions

An empty expression has no value: it is just white space or null. Wherever an
absolute expression is required, you may omit the expression, and st-as as-
sumes a value of (absolute) 0. This is compatible with other assemblers.

6.2 Integer Expressions

An integer expression is one or more arguments delimited by operators.

6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other contexts argu-
ments are sometimes called “arithmetic operands”. In this manual, to avoid
confusing them with the “instruction operands” of the machine language, we
use the term “argument” to refer to parts of expressions only, reserving the
word “operand” to refer only to machine instruction operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data,
bss, absolute, or undefined. NNN is a signed, 2's complement 32-bit integer.

Numbers are usually integers.

Stretch Assembler Reference Manual 2006.07
6-2 Last modified: 10/17/2006

Chapter 6 ■ Expressions
Integer Expressions

Stretch, Inc.

A number can be a flonum or bignum. In this case, you are warned that only
the low order 32 bits are used, and st-as pretends these 32 bits are an integer.
You may write integer-manipulating instructions that act on exotic constants,
compatible with other assemblers.

Subexpressions are a left parenthesis (followed by an integer expression, fol-
lowed by a right parenthesis); or a prefix operator followed by an argument.

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by
an argument. Infix operators appear between their arguments. Operators may
be preceded and/or followed by white space.

6.2.3 Prefix Operator

st-as has the following prefix operators. They each take one argument, which
must be absolute.

6.2.4 Infix Operators

Infix operators take two arguments, one on either side. Operators have prece-
dence, but operations with equal precedence are performed left to right. Apart
from + or -, both arguments must be absolute, and the result is absolute.

- Negation. Two's complement negation.

~ Complementation. Bitwise not.

Table 6-1 Highest precedence operators

This operator is

* Multiplication

/ Division. Truncation is the same as the C operator /

% Remainder

<
<<

Shift Left. Same as the C operator <<

>
>>

Shift Right. Same as the C operator >>

Table 6-2 Intermediate precedence operators

This operator is

| Bitwise Inclusive Or.

& Bitwise And.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 6-3

Stretch, Inc.

Chapter 6 ■ Expressions
Integer Expressions

Low Precedence

The comparison operators can be used as infix operators. A true result has a
value of -1 whereas a false result has a value of 0.

NOTE: These operators perform signed comparisons.

These two logical operations can be used to combine the results of sub expres-
sions.

NOTE: Unlike the comparison operators, a true result returns a value of
1 but a false result does still return 0. Also note that the logical OR opera-
tor has a slightly lower precedence than logical AND.

In short, it's only meaningful to add or subtract the offsets in an address; you
can only have a defined section in one of the two arguments.

^ Bitwise Exclusive Or.

! Bitwise Or Not.

Table 6-3 Low precedence operators

This operator is

+ Addition. If either argument is absolute, the result has the section
of the other argument. You may not add together arguments from
different sections.

- Subtraction. If the right argument is absolute, the result has the
section of the left argument. If both arguments are in the same sec-
tion, the result is absolute. You may not subtract arguments from
different sections.

== Is Equal To

<> Is Not Equal To

< Is Less Than

> Is Greater Than

>= Is Greater Than Or Equal To

<= Is Less Than Or Equal To

Table 6-4 Lowest precedence operators

This operator is

&& Logical And.

|| Logical Or.

Table 6-2 Intermediate precedence operators

This operator is

Stretch Assembler Reference Manual 2006.07
6-4 Last modified: 10/17/2006

Chapter 6 ■ Expressions
Integer Expressions

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-1

Stretch, Inc.

Chapter 7 Assembler Directives

All assembler directives have names that begin with a period (.). The rest of
the name is letters, usually in lower case.

This chapter discusses directives that are available regardless of the target ma-
chine configuration for the GNU assembler.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility with oth-
er assemblers. The original idea was that the assembly language source would
be piped into the assembler. If the sender of the source quit, it could use this
directive to tell st-as to quit also. One day .abort will not be supported.

7.2 .align abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage
boundary. The first expression (which must be absolute) is the alignment re-
quired, as described below.

The second expression (also absolute) gives the fill value to be stored in the
padding bytes. It (and the comma) may be omitted. If it is omitted, the padding
bytes are normally zero. However, on some systems, if the section is marked
as containing code and the fill value is omitted, the space is filled with no-op
instructions.

The third expression is also absolute, and is also optional. If it is present, it is
the maximum number of bytes that should be skipped by this alignment di-
rective. If doing the alignment would require skipping more bytes than the
specified maximum, then the alignment is not done at all. You can omit the fill
value (the second argument) entirely by simply using two commas after the re-
quired alignment; this can be useful if you want the alignment to be filled with
no-op instructions when appropriate.

Stretch Assembler Reference Manual 2006.07
7-2 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.ascii “string”...

Stretch, Inc.

The way the required alignment is specified varies from system to system. For
the a29k, hppa, m68k, m88k, w65, sparc, Xtensa, and Hitachi SH, and i386 us-
ing ELF format, the first expression is the alignment request in bytes. For ex-
ample .align 8 advances the location counter until it is a multiple of 8. If
the location counter is already a multiple of 8, no change is needed.

For other systems, including the i386 using a.out format, and the arm and
strongarm, it is the number of low-order zero bits the location counter must
have after advancement. For example, .align 3 advances the location
counter until it is a multiple of 8. If the location counter is already a multiple
of 8, no change is needed.

This inconsistency is due to the different behaviors of the various native as-
semblers for these systems which GAS must emulate. GAS also provides
.balign and .p2align directives, described later, which have a consistent
behavior across all architectures (but are specific to GAS).

7.3 .ascii “string”...

.ascii expects zero or more string literals (see “Strings” on page 3-4) sepa-
rated by commas. It assembles each string (with no automatic trailing zero
byte) into consecutive addresses.

7.4 .asciz “string”...

.asciz is just like .ascii, but each string is followed by a zero byte. The z
in .asciz stands for zero.

7.5 .balign[wl] abs-expr, abs-expr, abs-
expr

Pad the location counter (in the current subsection) to a particular storage
boundary. The first expression (which must be absolute) is the alignment re-
quest in bytes. For example, .balign 8 advances the location counter until it
is a multiple of 8. If the location counter is already a multiple of 8, no change
is needed.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-3

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.byte expressions

The second expression (also absolute) gives the fill value to be stored in the
padding bytes. It (and the comma) may be omitted. If it is omitted, the padding
bytes are normally zero. However, on some systems, if the section is marked
as containing code and the fill value is omitted, the space is filled with no-op
instructions.

The third expression is also absolute, and is also optional. If it is present, it is
the maximum number of bytes that should be skipped by this alignment di-
rective. If doing the alignment would require skipping more bytes than the
specified maximum, then the alignment is not done at all. You can omit the fill
value (the second argument) entirely by simply using two commas after the re-
quired alignment; this can be useful if you want the alignment to be filled with
no-op instructions when appropriate.

The .balignw and .balignl directives are variants of the .balign direc-
tive. The .balignw directive treats the fill pattern as a two byte word value.
The .balignl directives treats the fill pattern as a four byte longword value.
For example, .balignw 4,0x368d will align to a multiple of 4. If it skips two
bytes, they will be filled in with the value 0x368d (the exact placement of the
bytes depends upon the endianness of the processor). If it skips 1 or 3 bytes,
the fill value is undefined.

7.6 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expres-
sion is assembled into the next byte.

7.7 .comm symbol, length

.comm declares a common symbol named symbol. When linking, a common
symbol in one object file may be merged with a defined or common symbol of
the same name in another object file. If st-ld does not see a definition for the
symbol—just one or more common symbols—then it will allocate length bytes
of uninitialized memory. length must be an absolute expression. If st-ld sees
multiple common symbols with the same name, and they do not all have the
same size, it will allocate space using the largest size.

When using ELF, the .comm directive takes an optional third argument. This
is the desired alignment of the symbol, specified as a byte boundary (for exam-
ple, an alignment of 16 means that the least significant 4 bits of the address

Stretch Assembler Reference Manual 2006.07
7-4 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.double flonums

Stretch, Inc.

should be zero). The alignment must be an absolute expression, and it must
be a power of two. If st-ld allocates uninitialized memory for the common
symbol, it will use the alignment when placing the symbol. If no alignment is
specified, st-as will set the alignment to the largest power of two less than or
equal to the size of the symbol, up to a maximum of 16.

.data tells st-as to assemble the following statements onto the end of the
data subsection numbered subsection (which is an absolute expression). If
subsection is omitted, it defaults to zero.

7.8 .double flonums

.double expects zero or more flonums, separated by commas. It assembles
floating point numbers. On the Xtensa family .double emits 64-bit floating-
point numbers in IEEE format.

7.9 .eject

Force a page break at this point, when generating assembly listings.

7.10 .else

.else is part of the st-as support for conditional assembly; see “.if absolute
expression” on page 7-9. It marks the beginning of a section of code to be as-
sembled if the condition for the preceding .if was false.

7.11 .elseif

.elseif is part of the st-as support for conditional assembly; see “.if abso-
lute expression” on page 7-9. It is shorthand for beginning a new .if block
that would otherwise fill the entire .else section.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-5

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.end

7.12 .end

.end marks the end of the assembly file. st-as does not process anything in
the file past the .end directive.

7.13 .endfunc

.endfunc marks the end of a function specified with .func.

7.14 .endif

.endif is part of the st-as support for conditional assembly; it marks the
end of a block of code that is only assembled conditionally. See “.if absolute ex-
pression” on page 7-9.

7.15 .equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with
.set; see “.set symbol, expression” on page 7-20.

7.16 .equiv symbol, expression

The .equiv directive is like .equ and .set, except that the assembler will
signal an error if symbol is already defined.

Except for the contents of the error message, this is roughly equivalent to

.ifdef SYM

.err

.endif

.equ SYM,VAL

Stretch Assembler Reference Manual 2006.07
7-6 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.err

Stretch, Inc.

7.17 .err

If st-as assembles a .err directive, it will print an error message and, unless
the -Z option was used, it will not generate an object file. This can be used to
signal error an conditionally compiled code.

7.18 .exitm

Exit early from the current macro definition. See “.macro” on page 7-13.

7.19 .extern

.extern is accepted in the source program—for compatibility with other as-
semblers—but it is ignored. st-as treats all undefined symbols as external.

7.20 .fail expression

Generates an error or a warning. If the value of the expression is 500 or more,
st-as will print a warning message. If the value is less than 500, st-as will
print an error message. The message will include the value of expression. This
can occasionally be useful inside complex nested macros or conditional assem-
bly.

7.21 .file string

.file tells st-as that we are about to start a new logical file. string is the new
file name. In general, the filename is recognized whether or not it is surround-
ed by quotes "; but if you wish to specify an empty file name, you must give
the quotes "". This statement may go away in future: it is only recognized to
be compatible with old st-as programs.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-7

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.fill repeat, size, value

7.22 .fill repeat, size, value

result, size and value are absolute expressions. This emits repeat copies of size
bytes. Repeat may be zero or more. Size may be zero or more, but if it is more
than 8, then it is deemed to have the value 8, compatible with other people's
assemblers. The contents of each repeat bytes is taken from an 8-byte number.
The highest order 4 bytes are zero. The lowest order 4 bytes are value rendered
in the byte-order of an integer on the computer st-as is assembling for. Each
size bytes in a repetition is taken from the lowest order size bytes of this num-
ber. Again, this bizarre behavior is compatible with other people's assemblers.

size and value are optional. If the second comma and value are absent, value is
assumed zero. If the first comma and following tokens are absent, size is as-
sumed to be 1.

7.23 .float flonums

This directive assembles zero or more flonums, separated by commas. It has
the same effect as .single. On the Xtensa family, .float emits 32-bit float-
ing point numbers in IEEE format.

7.24 .func name[,label]

.func emits debugging information to denote function name, and is ignored
unless the file is assembled with debugging enabled. Only --gstabs is cur-
rently supported. label is the entry point of the function and if omitted, name
prepended with the leading char is used. leading char is usually _ or nothing,
depending on the target. All functions are currently defined to have void re-
turn type. The function must be terminated with .endfunc.

Stretch Assembler Reference Manual 2006.07
7-8 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.global symbol, .global symbol

Stretch, Inc.

7.25 .global symbol, .global symbol

.global makes the symbol visible to st-ld. If you define symbol in your par-
tial program, its value is made available to other partial programs that are
linked with it. Otherwise, symbol takes its attributes from a symbol of the same
name from another file linked into the same program.

Both spellings (.globl and .global) are accepted, for compatibility with
other assemblers.

7.26 .hidden names

This one of the ELF visibility directives. The other two are .internal (see
“.internal names” on page 7-10) and .protected (see “.protected names” on
page 7-17).

This directive overrides the named symbols default visibility (which is set by
their binding: local, global or weak). The directive sets the visibility to hidden
which means that the symbols are not visible to other components. Such sym-
bols are always considered to be protected as well.

7.27 .hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.

This directive is a synonym for .short.

7.28 .ident

This directive is used by some assemblers to place tags in object files. st-as
simply accepts the directive for source-file compatibility with such assemblers,
but does not actually emit anything for it.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-9

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.if absolute expression

7.29 .if absolute expression

.if marks the beginning of a section of code which is only considered part of
the source program being assembled if the argument (which must be an abso-
lute expression) is non-zero. The end of the conditional section of code must be
marked by .endif (see “.endif” on page 7-5); optionally, you may include code
for the alternative condition, flagged by .else (see “.elseif” on page 7-4). If
you have several conditions to check, .elseif may be used to avoid nesting
blocks if–else within each subsequent .else block.

The following variants of .if are also supported:

Table 7-1 Supported variants of .if

This variant does this

.ifdef symbol Assembles the following section of code if the
specified symbol has been defined.

.ifc string1,string2 Assembles the following section of code if the two
strings are the same. The strings may be optional-
ly quoted with single quotes. If they are not quot-
ed, the first string stops at the first comma, and
the second string stops at the end of the line.
Strings that contain white space should be quot-
ed. The string comparison is case sensitive.

.ifeq absolute expression Assembles the following section of code if the
argument is zero.

.ifeqs string1,string2 Another form of .ifc. The strings must be quot-
ed using double quotes.

.ifge absolute expression Assembles the following section of code if the
argument is greater than or equal to zero.

.ifgt absolute expression Assembles the following section of code if the
argument is greater than zero.

.ifle absolute expression Assembles the following section of code if the
argument is less than or equal to zero.

.iflt absolute expression Assembles the following section of code if the
argument is less than zero.

.ifnc string1,string2. Like .ifc, but the sense of the test is reversed:
this assembles the following section of code if the
two strings are not the same.

.ifndef symbol

.ifnotdef symbol
Assembles the following section of code if the
specified symbol has not been defined. Both spell-
ing variants are equivalent.

Stretch Assembler Reference Manual 2006.07
7-10 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.include “file”

Stretch, Inc.

7.30 .include “file”

This directive provides a way to include supporting files at specified points in
your source program. The code from file is assembled as if it followed the point
of the .include; when the end of the included file is reached, assembly of the
original file continues. You can control the search paths used with the -I com-
mand-line option (see 2, “Command-Line Options”). Quotation marks are re-
quired around file.

7.31 .int expressions

Expect zero or more expressions, of any section, separated by commas. For each
expression, emit a number that, at run time, is the value of that expression.
The byte order and bit size of the number depends on what kind of target the
assembly is for.

7.32 .internal names

This one of the ELF visibility directives. The other two are .hidden (see “.hid-
den names” on page 7-8) and .protected (see “.protected names” on page
7-17).

This directive overrides the named symbols default visibility (which is set by
their binding: local, global or weak). The directive sets the visibility to
internal which means that the symbols are considered to be hidden (that
is, not visible to other components), and that some extra, processor specific
processing must also be performed upon the symbols as well.

.ifne absolute expression Assembles the following section of code if the
argument is not equal to zero (in other words, this
is equivalent to .if).

.ifnes string1,string2 Like .ifeqs, but the sense of the test is reversed:
this assembles the following section of code if the
two strings are not the same.

Table 7-1 Supported variants of .if

This variant does this

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-11

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.irp symbol,values...

7.33 .irp symbol,values...

Evaluate a sequence of statements assigning different values to symbol. The se-
quence of statements starts at the .irp directive, and is terminated by an
.endr directive. For each value, symbol is set to value, and the sequence of
statements is assembled. If no value is listed, the sequence of statements is as-
sembled once, with symbol set to the null string. To refer to symbol within the
sequence of statements, use \symbol.

For example, assembling

.irp param,1,2,3
move d\param,sp@-
.endr

is equivalent to assembling

move d1,sp@-
move d2,sp@-
move d3,sp@-

7.34 .irpc symbol,values...

Evaluate a sequence of statements assigning different values to symbol. The se-
quence of statements starts at the .irpc directive, and is terminated by an
.endr directive. For each character in value, symbol is set to the character, and
the sequence of statements is assembled. If no value is listed, the sequence of
statements is assembled once, with symbol set to the null string. To refer to
symbol within the sequence of statements, use \symbol.

For example, assembling

.irpc param,123
move d\param,sp@-
.endr

is equivalent to assembling

move d1,sp@-
move d2,sp@-
move d3,sp@-

Stretch Assembler Reference Manual 2006.07
7-12 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.lcomm symbol, length

Stretch, Inc.

7.35 .lcomm symbol, length

Reserve length (an absolute expression) bytes for a local common denoted by
symbol. The section and value of symbol are those of the new local common.
The addresses are allocated in the bss section, so that at run-time the bytes
start off zeroed. Symbol is not declared global (see “.global symbol, .global sym-
bol” on page 7-8), so is normally not visible to st-ld.

7.36 .lflags

st-as accepts this directive, for compatibility with other assemblers, but ig-
nores it.

7.37 .line line-number

Even though this is a directive associated with the a.out or b.out object code
formats, st-as still recognizes it when producing COFF output, and treats
.line as though it were the COFF .ln if it is found outside a .def/.endef
pair.

Inside a .def, .line is, instead, one of the directives used by compilers to
generate auxiliary symbol information for debugging.

7.38 .ln line-number

.ln is a synonym for .line.

7.39 .list

Control (in conjunction with the .nolist directive) whether assembly list-
ings are generated. These two directives maintain an internal counter (which
is zero initially). .list increments the counter, and .nolist decrements it.
Assembly listings are generated whenever the counter is greater than zero.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-13

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.long expressions

By default, listings are disabled. When you enable them (with the -a com-
mand line option; see 2, “Command-Line Options”), the initial value of the list-
ing counter is one.

7.40 .long expressions

.long is the same as .int, see “.int expressions” on page 7-10.

7.41 .macro

The commands .macro and .endm allow you to define macros that generate
assembly output. For example, this definition specifies a macro sum that puts
a sequence of numbers into memory:

.macro sum from=0, to=5

.long \from

.if \to-\from
sum "(\from+1)",\to
.endif
.endm

With that definition, SUM 0,5 is equivalent to this assembly input:

.long .long 1

.long 2

.long 3

.long 4

.long 5

When you call a macro, you can specify the argument values either by position,
or by keyword. For example, sum 9,17 is equivalent to sum to=17, from=9.

7.42 .nolist

Control (in conjunction with the .list directive) whether or not assembly
listings are generated. These two directives maintain an internal counter
(which is zero initially). .list increments the counter, and .nolist decre-
ments it. Assembly listings are generated whenever the counter is greater than
zero.

Stretch Assembler Reference Manual 2006.07
7-14 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.octa bignums

Stretch, Inc.

7.43 .octa bignums

This directive expects zero or more bignums, separated by commas. For each
bignum, it emits a 16-byte integer.

The term octa comes from contexts in which a word is two bytes; hence octa-
word for 16 bytes.

Table 7-2 Macro

This macro does this

.macro macname

.macro macname macargs …
Begin the definition of a macro called macname.
If your macro definition requires arguments,
specify their names after the macro name, sepa-
rated by commas or spaces. You can supply a
default value for any macro argument by follow-
ing the name with =deflt. For example, these
are all valid .macro statements:
.macro comm
Begin the definition of a macro called comm,
which takes no arguments.
.macro plus1 p, p1
.macro plus1 p p1
Either statement begins the definition of a mac-
ro called plus1, which takes two arguments;
within the macro definition, write \p or \p1 to
evaluate the arguments.
.macro reserve_str p1=0 p2
Begin the definition of a macro called
reserve_str, with two arguments. The first
argument has a default value, but not the sec-
ond. After the definition is complete, you can
call the macro either as reserve_str a,b
(with \p1 evaluating to a and \p2 evaluating
to b), or as reserve_str ,b (with \p1 eval-
uating as the default, in this case 0, and \p2
evaluating to b).

Table 7-3 Special macro variables

this variable does this

.endm Mark the end of a macro definition.

.exitm Exit early from the current macro definition.

\@ st-as maintains a counter of how many macros it has executed in this
pseudo-variable; you can copy that number to your output with \@, but
only within a macro definition.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-15

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.org new-lc, fill

7.44 .org new-lc, fill

Advance the location counter of the current section to new-lc. new-lc is either
an absolute expression or an expression with the same section as the current
subsection. That is, you can't use .org to cross sections: if new-lc has the
wrong section, the .org directive is ignored. To be compatible with former as-
semblers, if the section of new-lc is absolute, st-as issues a warning, then pre-
tends the section of new-lc is the same as the current subsection.

.org may only increase the location counter, or leave it unchanged; you can-
not use .org to move the location counter backwards.

Because st-as tries to assemble programs in one pass, new-lc may not be un-
defined. If you really detest this restriction we eagerly await a chance to share
your improved assembler.

Beware that the origin is relative to the start of the section, not to the start of
the subsection. This is compatible with other people's assemblers.

When the location counter (of the current subsection) is advanced, the inter-
vening bytes are filled with fill which should be an absolute expression. If the
comma and fill are omitted, fill defaults to zero.

7.45 .p2align[wl] abs-expr, abs-expr,
abs-expr

Pad the location counter (in the current subsection) to a particular storage
boundary. The first expression (which must be absolute) is the number of low-
order zero bits the location counter must have after advancement. For exam-
ple, .p2align 3 advances the location counter until it is a multiple of 8. If
the location counter is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the fill value to be stored in the
padding bytes. It (and the comma) may be omitted. If it is omitted, the padding
bytes are normally zero. However, on some systems, if the section is marked
as containing code and the fill value is omitted, the space is filled with no-op
instructions.

The third expression is also absolute, and is also optional. If it is present, it is
the maximum number of bytes that should be skipped by this alignment di-
rective. If doing the alignment would require skipping more bytes than the
specified maximum, then the alignment is not done at all. You can omit the fill

Stretch Assembler Reference Manual 2006.07
7-16 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.previous

Stretch, Inc.

value (the second argument) entirely by simply using two commas after the re-
quired alignment; this can be useful if you want the alignment to be filled with
no-op instructions when appropriate.

The .p2alignw and .p2alignl directives are variants of the .p2align di-
rective. The .p2alignw directive treats the fill pattern as a two byte word val-
ue. The .p2alignl directives treats the fill pattern as a four byte longword
value. For example, .p2alignw 2,0x368d will align to a multiple of 4. If it
skips two bytes, they will be filled in with the value 0x368d (the exact place-
ment of the bytes depends upon the endianness of the processor). If it skips 1
or 3 bytes, the fill value is undefined.

7.46 .previous

This is one of the ELF section stack manipulation directives. The others are
.section (see “.section name (ELF version)” on page 7-19), .subsection
(see “.subsection name” on page 7-23), .pushsection (see “.pushsection
name, subsection” on page 7-18), and .popsection (see “.popsection” on
page 7-16).

This directive swaps the current section (and subsection) with most recently
referenced section (and subsection) prior to this one. Multiple .previous di-
rectives in a row will flip between two sections (and their subsections).

In terms of the section stack, this directive swaps the current section with the
top section on the section stack.

7.47 .popsection

This is one of the ELF section stack manipulation directives. The others are
.section (see “.section name (ELF version)” on page 7-19), .subsection
(see “.subsection name” on page 7-23), .pushsection (see “.pushsection
name, subsection” on page 7-18), and .previous (see “.previous” on page
7-16).

This directive replaces the current section (and subsection) with the top sec-
tion (and subsection) on the section stack. This section is popped off the stack.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-17

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.print string

7.48 .print string

st-as will print string on the standard output during assembly. You must put
string in double quotes.

7.49 .protected names

This one of the ELF visibility directives. The other two are .hidden (see “.hid-
den names” on page 7-8) and .internal (see “.internal names” on page
7-10).

This directive overrides the named symbols default visibility (which is set by
their binding: local, global or weak). The directive sets the visibility to
protected which means that any references to the symbols from within the
components that defines them must be resolved to the definition in that com-
ponent, even if a definition in another component would normally preempt
this.

7.50 .psize lines, columns

Use this directive to declare the number of lines--and, optionally, the number
of columns—to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You may omit
the comma and columns specification; the default width is 200 columns.

st-as generates formfeeds whenever the specified number of lines is exceed-
ed (or whenever you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly spec-
ified with .eject.

7.51 .purgem name

Undefine the macro name, so that later uses of the string will not be expanded.
See “.macro” on page 7-13.

Stretch Assembler Reference Manual 2006.07
7-18 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.pushsection name, subsection

Stretch, Inc.

7.52 .pushsection name, subsection

This is one of the ELF section stack manipulation directives. The others are
.section (see “.section name (ELF version)” on page 7-19), .subsection
(see “.subsection name” on page 7-23), .popsection (see “.popsection” on
page 7-16), and .previous (see “.previous” on page 7-16).

This directive is a synonym for .section. It pushes the current section (and
subsection) onto the top of the section stack, and then replaces the current sec-
tion and subsection with name and subsection.

7.53 .quad bignums

.quad expects zero or more bignums, separated by commas. For each big-
num, it emits an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
warning message; and just takes the lowest order 8 bytes of the bignum.

The term quad comes from contexts in which a word is two bytes; hence quad-
word for 8 bytes.

7.54 .rept count

Repeat the sequence of lines between the .rept directive and the next .endr
directive count times.

For example, assembling

.rept 3

.long 0

.endr

is equivalent to assembling

.long 0

.long 0

.long 0

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-19

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.sbttl “subheading”

7.55 .sbttl “subheading”

Use subheading as the title (third line, immediately after the title line) when
generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears
within ten lines of the top of a page.

7.56 .section name (ELF version)

This is one of the ELF section stack manipulation directives. The others are
.subsection (see “.subsection name” on page 7-23), .pushsection (see
“.pushsection name, subsection” on page 7-18), .popsection (see “.popsec-
tion” on page 7-16), and .previous (see “.previous” on page 7-16).

For ELF targets, the .section directive is used like this:

.section name [, "flags"[, @type]]

The optional flags argument is a quoted string which may contain any com-
bination of the following characters:

The optional type argument may contain one of the following constants:

If no flags are specified, the default flags depend upon the section name. If the
section name is not recognized, the default will be for the section to have none
of the above flags: it will not be allocated in memory, nor writable, nor execut-
able. The section will contain data.

Table 7-4 Optional flag characters

This character means this

a section is allocatable

w section is writable

x section is executable

@progbits section contains data

@nobits section does not contain data (i.e., section only occupies space)

Stretch Assembler Reference Manual 2006.07
7-20 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.set symbol, expression

Stretch, Inc.

7.57 .set symbol, expression

Set the value of symbol to expression. This changes symbol's value and
type to conform to expression. If symbol was flagged as external, it remains
flagged (see “Symbol Attributes” on page 5-3).

You may .set a symbol many times in the same assembly.

If you .set a global symbol, the value stored in the object file is the last value
stored into it.

7.58 .short expressions

This expects zero or more expressions, and emits a 16 bit number for each.

7.59 .single flonums

This directive assembles zero or more flonums, separated by commas. It has
the same effect as .float. On the Xtensa family, .single emits 32-bit float-
ing point numbers in IEEE format.

7.60 .size name, expression (ELF
Version)

This directive is used to set the size associated with a symbol name. The size
in bytes is computed from expression which can make use of label arith-
metic. This directive is typically used to set the size of function symbols.

7.61 .sleb128 expressions

sleb128 stands for “signed little endian base 128.” This is a compact, variable
length representation of numbers used by the DWARF symbolic debugging
format. See “.uleb128 expressions” on page 7-25.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-21

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.skip size, fill

7.62 .skip size, fill

This directive emits size bytes, each of value fill. Both size and fill are
absolute expressions. If the comma and fill are omitted, fill is assumed
to be zero. This is the same as .space.

7.63 .space size, fill

This directive emits size bytes, each of value fill. Both size and fill are ab-
solute expressions. If the comma and fill are omitted, fill is assumed to
be zero. This is the same as .skip.

7.64 .stabd, .stabn, .stabs

There are three directives that begin .stab. All emit symbols (see 5, “Sym-
bols”), for use by symbolic debuggers. The symbols are not entered in the
st-as hash table: they cannot be referenced elsewhere in the source file. Up
to five fields are required:

string This is the symbol's name. It may contain any character except \000, so is
more general than ordinary symbol names. Some debuggers used to code
arbitrarily complex structures into symbol names using this field.

type An absolute expression. The symbol's type is set to the low 8 bits of this
expression. Any bit pattern is permitted, but st-ld and debuggers choke
on silly bit patterns.

other An absolute expression. The symbol's “other” attribute is set to the low 8
bits of this expression.

desc An absolute expression. The symbol's descriptor is set to the low 16 bits of
this expression.

value An absolute expression which becomes the symbol's value.

Stretch Assembler Reference Manual 2006.07
7-22 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.string “str”

Stretch, Inc.

If a warning is detected while reading a .stabd, .stabn, or .stabs state-
ment, the symbol has probably already been created; you get a half-formed
symbol in your object file. This is compatible with earlier assemblers!

7.65 .string “str”

Copy the characters in str to the object file. You may specify more than one
string to copy, separated by commas. Unless otherwise specified for a particu-
lar machine, the assembler marks the end of each string with a 0 byte. You can
use any of the escape sequences described in “Strings” on page 3-4.

7.66 .struct expression

Switch to the absolute section, and set the section offset to expression,
which must be an absolute expression. You might use this as follows:

.struct 0
field1:

.struct field1 + 4
field2:

.struct field2 + 4
field3:

This would define the symbol field1 to have the value 0, the symbol field2
to have the value 4, and the symbol field3 to have the value 8. Assembly
would be left in the absolute section, and you would need to use a .section
directive of some sort to change to some other section before further assembly.

.stabd type, other, desc The “name” of the symbol generated is not even
an empty string. It is a null pointer, for compati-
bility. Older assemblers used a null pointer so
they didn't waste space in object files with empty
strings.
The symbol's value is set to the location counter,
relocatably. When your program is linked, the
value of this symbol is the address of the location
counter when the .stabd was assembled.

.stabn type, other, desc,
value

The name of the symbol is set to the empty string
“”.

.stabs string, type,
other, desc, value

All five fields are specified.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-23

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.subsection name

7.67 .subsection name

This is one of the ELF section stack manipulation directives. The others are
.section (see “.section name (ELF version)” on page 7-19), .pushsection
(see “.pushsection name, subsection” on page 7-18), .popsection (see
“.popsection” on page 7-16), and .previous (see “.previous” on page 7-16).

This directive replaces the current subsection with name. The current section
is not changed. The replaced subsection is put onto the section stack in place
of the then current top of stack subsection.

7.68 .symver

Use the .symver directive to bind symbols to specific version nodes within a
source file. This is only supported on ELF platforms, and is typically used
when assembling files to be linked into a shared library. There are cases where
it may make sense to use this in objects to be bound into an application itself
so as to override a versioned symbol from a shared library.

For ELF targets, the .symver directive can be used like this:

.symver name, name2@nodename

If the symbol name is defined within the file being assembled, the .symver
directive effectively creates a symbol alias with the name name2@nodename,
and in fact the main reason that we just don't try and create a regular alias is
that the @ character isn't permitted in symbol names. The name2 part of the
name is the actual name of the symbol by which it will be externally refer-
enced. The name name itself is merely a name of convenience that is used so
that it is possible to have definitions for multiple versions of a function within
a single source file, and so that the compiler can unambiguously know which
version of a function is being mentioned. The nodename portion of the alias
should be the name of a node specified in the version script supplied to the
linker when building a shared library. If you are attempting to override a ver-
sioned symbol from a shared library, then nodename should correspond to the
nodename of the symbol you are trying to override.

If the symbol name is not defined within the file being assembled, all referenc-
es to name will be changed to name2@nodename. If no reference to name is
made, name2@nodename will be removed from the symbol table.

Another usage of the .symver directive is:

Stretch Assembler Reference Manual 2006.07
7-24 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.text subsection

Stretch, Inc.

.symver name, name2@@nodename

In this case, the symbol name must exist and be defined within the file being
assembled. It is similar to name2@nodename. The difference is
name2@@nodename will also be used to resolve references to name2 by the
linker.

The third usage of the .symver directive is:

.symver name, name2@@@nodename

When name is not defined within the file being assembled, it is treated as
name2@nodename. When name is defined within the file being assembled,
the symbol name, name, will be changed to name2@@nodename.

7.69 .text subsection

Tells st-as to assemble the following statements onto the end of the text sub-
section numbered subsection, which is an absolute expression. If
subsection is omitted, subsection number zero is used.

7.70 .title “heading”

Use heading as the title (second line, immediately after the source file name
and page number) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears
within ten lines of the top of a page.

7.71 .type name, type description (ELF
Version)

This directive is used to set the type of symbol name to be either a function
symbol or an object symbol. There are five different syntaxes supported for the
type description field, in order to provide compatibility with various oth-
er assemblers. The syntaxes supported are:

.type <name>,#function

.type <name>,#object

.type <name>,@function

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 7-25

Stretch, Inc.

Chapter 7 ■ Assembler Directives
.uleb128 expressions

.type <name>,@object

.type <name>,%function

.type <name>,%object

.type <name>,"function"

.type <name>,"object"

.type <name> STT_FUNCTION

.type <name> STT_OBJECT

7.72 .uleb128 expressions

uleb128 stands for “unsigned little endian base 128.” This is a compact, vari-
able length representation of numbers used by the DWARF symbolic debug-
ging format. See “.sleb128 expressions” on page 7-20.

7.73 .version “string”

This directive creates a .note section and places into it an ELF formatted note
of type NT_VERSION. The note's name is set to string.

7.74 .vtable_entry table, offset

This directive finds or creates a symbol table and creates a VTABLE_ENTRY
relocation for it with an addend of offset.

7.75 .vtable_inherit child, parent

This directive finds the symbol child and finds or creates the symbol parent
and then creates a VTABLE_INHERIT relocation for the parent whose addend
is the value of the child symbol. As a special case the parent name of 0 is treat-
ed as referring the *ABS* section.

Stretch Assembler Reference Manual 2006.07
7-26 Last modified: 10/17/2006

Chapter 7 ■ Assembler Directives
.weak names

Stretch, Inc.

7.76 .weak names

This directive sets the weak attribute on the comma separated list of symbol
names. If the symbols do not already exist, they will be created.

7.77 .word expressions

This directive expects zero or more expressions, of any section, separated by
commas. For each expression, st-as emits a 32-bit number.

7.78 Deprecated Directives

One day these directives won't work. They are included for compatibility with
older assemblers.

.abort

.line

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 8-1

Stretch, Inc.

Chapter 8 Features for Xtensa Processors

This chapter covers features of the GNU assembler that are specific to the
Xtensa architecture. For details about the Xtensa instruction set, please con-
sult the Xtensa Instruction Set Architecture (ISA) Reference Manual.

8.1 Command Line Options

The Xtensa version of the GNU assembler supports these special options:

Table 8-1 Xtensa extensions to the assembler

This option does this

--density | --no-density Enable or disable use of the Xtensa code density
option (16-bit instructions). See “Using Density
Instructions” on page 8-4. If the processor is con-
figured with the density option, this is enabled by
default; otherwise, it is always disabled.

--relax | --no-relax Enable or disable relaxation of instructions with
immediate operands that are outside the legal
range for the instructions. See “Xtensa Relax-
ation” on page 8-6. The default is --relax and
this default should almost always be used. If relax-
ation is disabled with --no-relax, instruction
operands that are out of range will cause errors.
Note: In the current implementation, these options
also control whether assembler optimizations are
performed, making these options equivalent to
--generics and --no-generics.

--generics | --no-generics Enable or disable all assembler transformations of
Xtensa instructions, including both relaxation and
optimization. The default is --generics;
--no-generics should only be used in the rare
cases when the instructions must be exactly as
specified in the assembly source. As with
--no-relax, using --no-generics causes out
of range instruction operands to be errors.

Stretch Assembler Reference Manual 2006.07
8-2 Last modified: 10/17/2006

Chapter 8 ■ Features for Xtensa Processors
Command Line Options

Stretch, Inc.

--text-section-literals | --no-text-section-literals Control the treatment of literal pools. The default
is --no-text-section-literals, which plac-
es literals in a separate section in the output file.
This allows the literal pool to be placed in a data
RAM/ROM, and it also allows the linker to com-
bine literal pools from separate object files to
remove redundant literals and improve code size.
With --text-section-literals, the literals
are interspersed in the text section in order to keep
them as close as possible to their references. This
may be necessary for large assembly files.

--rename-section oldname=newname(:oldname2=newname2)* When generating output sections, rename the old-
name section to newname. This can be used for
.text, .data, .bss, .literal, or any other
section name. The output file will use the new
names. This option can be used multiple times to
rename multiple sections. This should not be used
to rename multiple input sections to the same out-
put section or to rename input sections to the pre-
defined section names.

--target-align | --no-target-align Enable or disable automatic alignment to reduce
branch penalties at some expense in code size. See
“Automatic Instruction Alignment” on page 8-5.
This optimization is enabled by default. Note that
the assembler will always align instructions like
LOOP that have fixed alignment requirements.

--longcalls | --no-longcalls Enable or disable transformation of call instruc-
tions to allow calls across a greater range of
addresses. See “Function Call Relaxation” on page
8-6. This option should be used when call targets
can potentially be out of range, but it degrades
both code size and performance. The default is
--no-longcalls.

--xtensa-core=name Specify the name of an Xtensa processor core con-
figuration to use. The configuration information is
taken from the entry for name in the Xtensa core
registry (see the --xtensa-system option). If
this option is not specified, the Xtensa core name is
either the value of the XTENSA_CORE environment
variable or “default” if that variable is not set.

Table 8-1 Xtensa extensions to the assembler

This option does this

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 8-3

Stretch, Inc.

Chapter 8 ■ Features for Xtensa Processors
Assembler Syntax

8.2 Assembler Syntax

Block comments are delimited by /* and */. End of line comments may be
introduced with either # or //.

Instructions consist of a leading opcode or macro name followed by
whitespace and an optional comma-separated list of operands:

opcode [operand,...]

Instructions must be separated by a newline or semicolon.

8.2.1 Opcode Names

See the Xtensa Instruction Set Architecture (ISA) Reference Manual for a com-
plete list of opcodes and descriptions of their semantics.

The Xtensa assembler distinguishes between generic and specific opcodes. Spe-
cific opcodes correspond directly to Xtensa machine instructions. Prefixing an
opcode with an underscore character (_) identifies it as a specific opcode. Op-
codes without a leading underscore are generic, which means the assembler is
required to preserve their semantics but may not translate them directly to the
specific opcodes with the same names. Instead, the assembler may optimize a
generic opcode and select a better instruction to use in its place (see “Xtensa

--xtensa-system=registry Specify a directory to be used as the Xtensa core
registry. If this option is not set, the
XTENSA_SYSTEM environment variable specifies
the Xtensa registry, and if that is not set, the
default registry, <xttools_root>/config, is
used. Please see the Xtensa Software Development
Toolkit User's Guide for more information about
Xtensa core registries.

--xtensa-params=path Specify the location of the parameter file in a TIE
Development Kit (TDK) that was produced by run-
ning the TIE Compiler (tc). If path identifies a
directory rather than a file, the parameters are
read from a file named default-params if it exists
in that directory. The parameter file may also be
specified by setting the XTENSA_PARAMS environ-
ment variable. The --xtensa-params option
takes precedence over the environment variable.
See the Tensilica Instruction Extension (TIE) Lan-
guage User's Guide for more information.

Table 8-1 Xtensa extensions to the assembler

This option does this

Stretch Assembler Reference Manual 2006.07
8-4 Last modified: 10/17/2006

Chapter 8 ■ Features for Xtensa Processors
Xtensa Optimizations

Stretch, Inc.

Optimizations” on page 8-4), or the assembler may relax the instruction to
handle operands that are out of range for the corresponding specific opcode
(see “Xtensa Relaxation” on page 8-6).

Only use specific opcodes when it is essential to select the exact machine in-
structions produced by the assembler. Using specific opcodes unnecessarily
only makes the code less efficient, by disabling assembler optimization, and
less flexible, by disabling relaxation.

Note that this special handling of underscore prefixes only applies to Xtensa
opcodes, not to either built-in macros or user-defined macros. When an under-
score prefix is used with a macro (e.g., _NOP), it refers to a different macro. The
assembler generally provides built-in macros both with and without the under-
score prefix, where the underscore versions behave as if the underscore carries
through to the instructions in the macros. For example, _NOP expands to _OR
a1,a1,a1.

The underscore prefix only applies to individual instructions, not to series of
instructions. For example, if a series of instructions have underscore prefixes,
the assembler will not transform the individual instructions, but it may insert
other instructions between them (e.g., to align a LOOP instruction). To prevent
the assembler from modifying a series of instructions as a whole, use the no-
generics directive. See “generics” on page 8-10.

8.2.2 Register Names

An initial $ character is optional in all register names. General purpose regis-
ters are named a0…a15. Additional registers may be added by processor con-
figuration options. In particular, the MAC16 option adds a MR register bank.
Its registers are named m0…m3.

As a special feature, sp is also supported as a synonym for a1.

8.3 Xtensa Optimizations

The optimizations currently supported by st-as are generation of density in-
structions where appropriate and automatic branch target alignment.

8.3.1 Using Density Instructions

The Xtensa instruction set has a code density option that provides 16-bit ver-
sions of some of the most commonly used opcodes. Use of these opcodes can
significantly reduce code size. When possible, the assembler automatically

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 8-5

Stretch, Inc.

Chapter 8 ■ Features for Xtensa Processors
Xtensa Optimizations

translates generic instructions from the core Xtensa instruction set into equiv-
alent instructions from the Xtensa code density option. This translation can be
disabled by using specific opcodes (see “Opcode Names” on page 8-3), by using
the --no-density command-line option (see 2, “Command-Line Options”),
or by using the no-density directive (see “density” on page 8-9).

It is a good idea not to use the density instructions directly. The assembler will
automatically select dense instructions where possible. If you later need to
avoid using the code density option, you can disable it in the assembler with-
out having to modify the code.

8.3.2 Automatic Instruction Alignment

The Xtensa assembler will automatically align certain instructions, both to op-
timize performance and to satisfy architectural requirements.

When the --target-align command-line option is enabled (see 2, “Com-
mand-Line Options”), the assembler attempts to widen density instructions
preceding a branch target so that the target instruction does not cross a 4-byte
boundary. Similarly, the assembler also attempts to align each instruction fol-
lowing a call instruction. If there are not enough preceding safe density in-
structions to align a target, no widening will be performed. This alignment has
the potential to reduce branch penalties at some expense in code size. The as-
sembler will not attempt to align labels with the prefixes .Ln and .LM, since
these labels are used for debugging information and are not typically branch
targets.

The LOOP family of instructions must be aligned on either a 1 or 2 mod 4 byte
boundary. The assembler knows about this restriction and inserts the minimal
number of 2 or 3 byte no-op instructions to satisfy it. When no-op instructions
are added, any label immediately preceding the original loop will be moved in
order to refer to the loop instruction, not the newly generated no-op instruc-
tion.

Similarly, the ENTRY instruction must be aligned on a 0 mod 4 byte boundary.
The assembler satisfies this requirement by inserting zero bytes when re-
quired. In addition, labels immediately preceding the ENTRY instruction will
be moved to the newly aligned instruction location.

Stretch Assembler Reference Manual 2006.07
8-6 Last modified: 10/17/2006

Chapter 8 ■ Features for Xtensa Processors
Xtensa Relaxation

Stretch, Inc.

8.4 Xtensa Relaxation

When an instruction operand is outside the range allowed for that particular
instruction field, st-as can transform the code to use a functionally-equiva-
lent instruction or sequence of instructions. This process is known as relax-
ation. This is typically done for branch instructions because the distance of the
branch targets is not known until assembly-time. The Xtensa assembler offers
branch relaxation and also extends this concept to function calls, MOVI instruc-
tions and other instructions with immediate fields.

8.4.1 Conditional Branch Relaxation

When the target of a branch is too far away from the branch itself, i.e., when
the offset from the branch to the target is too large to fit in the immediate field
of the branch instruction, it may be necessary to replace the branch with a
branch around a jump. For example,

beqz a2, L

may result in:

bnez.n a2, M
j L

M:

(The BNEZ.N instruction would be used in this example only if the density op-
tion is available. Otherwise, BNEZ would be used.)

8.4.2 Function Call Relaxation

Function calls may require relaxation because the Xtensa immediate call in-
structions (CALL0, CALL4, CALL8 and CALL12) provide a PC-relative offset of
only 512 KBytes in either direction. For larger programs, it may be necessary
to use indirect calls (CALLX0, CALLX4, CALLX8 and CALLX12) where the tar-
get address is specified in a register. The Xtensa assembler can automatically
relax immediate call instructions into indirect call instructions. This relaxation
is done by loading the address of the called function into the callee's return ad-
dress register and then using a CALLX instruction. So, for example:

call8 func

might be relaxed to:

.literal .L1, func
l32r a8, .L1
callx8 a8

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 8-7

Stretch, Inc.

Chapter 8 ■ Features for Xtensa Processors
Xtensa Relaxation

Because the addresses of targets of function calls are not generally known until
link-time, the assembler must assume the worst and relax all the calls to func-
tions in other source files, not just those that really will be out of range. The
linker can recognize calls that were unnecessarily relaxed, but it can only par-
tially remove the overhead introduced by the assembler.

Call relaxation has a negative effect on both code size and performance, so this
relaxation is disabled by default. If a program is too large and some of the calls
are out of range, function call relaxation can be enabled using the --
longcalls command-line option or the longcalls directive (see “long-
calls” on page 8-10).

8.4.3 Other Immediate Field Relaxation

The MOVI machine instruction can only materialize values in the range from
-2048 to 2047. Values outside this range are best materialized with L32R in-
structions. Thus:

movi a0, 100000
is assembled into the following machine code:

.literal .L1, 100000
l32r a0, .L1

The L8UI machine instruction can only be used with immediate offsets in the
range from 0 to 255. The L16SI and L16UI machine instructions can only be
used with offsets from 0 to 510. The L32I machine instruction can only be
used with offsets from 0 to 1020. A load offset outside these ranges can be ma-
terialized with an L32R instruction if the destination register of the load is dif-
ferent than the source address register. For example:

l32i a1, a0, 2040

is translated to:

.literal .L1, 2040
l32r a1, .L1
addi a1, a0, a1
l32i a1, a1, 0

If the load destination and source address register are the same, an out-of-
range offset causes an error.

The Xtensa ADDI instruction only allows immediate operands in the range
from -128 to 127. There are a number of alternate instruction sequences for
the generic ADDI operation. First, if the immediate is 0, the ADDI will be
turned into a MOV.N instruction (or the equivalent OR instruction if the code
density option is not available). If the ADDI immediate is outside of the range
-128 to 127, but inside the range -32896 to 32639, an ADDMI instruction or

Stretch Assembler Reference Manual 2006.07
8-8 Last modified: 10/17/2006

Chapter 8 ■ Features for Xtensa Processors
Directives

Stretch, Inc.

ADDMI/ADDI sequence will be used. Finally, if the immediate is outside of this
range and a free register is available, an L32R/ADD sequence will be used with
a literal allocated from the literal pool.

For example:

addi a5, a6, 0
addi a5, a6, 512
addi a5, a6, 513
addi a5, a6, 50000

is assembled into the following:

.literal .L1, 50000
mov.n a5, a6
addmi a5, a6, 0x200
addmi a5, a6, 0x200
addi a5, a5, 1
l32r a5, .L1
add a5, a6, a5

8.5 Directives

The Xtensa assembler supports a region-based directive syntax:

.begin directive [options]

...

.end directive

All the Xtensa-specific directives that apply to a region of code use this syntax.

The directive applies to code between the .begin and the .end. The state of
the option after the .end reverts to what it was before the .begin. A nested
.begin/.end region can further change the state of the directive without hav-
ing to be aware of its outer state. For example, consider:

.begin no-density
L: add a0, a1, a2

.begin density
M: add a0, a1, a2

.end density
N: add a0, a1, a2

.end no-density

The generic ADD opcodes at L and N in the outer no-density region both re-
sult in ADD machine instructions, but the assembler selects an ADD.N instruc-
tion for the generic ADD at M in the inner density region.

The advantage of this style is that it works well inside macros which can pre-
serve the context of their callers.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 8-9

Stretch, Inc.

Chapter 8 ■ Features for Xtensa Processors
Directives

When command-line options and assembler directives are used at the same
time and conflict, the one that overrides a default behavior takes precedence
over one that is the same as the default. For example, if the code density option
is available, the default is to select density instructions whenever possible. So,
if the above is assembled with the --no-density flag, which overrides the
default, all the generic ADD instructions result in ADD machine instructions. If
assembled with the --density flag, which is already the default, the no-
density directive takes precedence and only one of the generic ADD instruc-
tions is optimized to be a ADD.N machine instruction. An underscore prefix
identifying a specific opcode always takes precedence over directives and com-
mand-line flags.

The following directives are available:

■ Density Directive: Disable Use of Density Instructions.

■ Relax Directive: Disable Assembler Relaxation.

■ Longcalls Directive: Use Indirect Calls for Greater Range.

■ Generics Directive: Disable All Assembler Transformations.

■ Literal Directive: Intermix Literals with Instructions.

■ Literal Position Directive: Specify Inline Literal Pool Locations.

■ Literal Prefix Directive: Specify Literal Section Name Prefix.

■ Freeregs Directive: List Registers Available for Assembler Use.

■ Frame Directive: Describe a stack frame.

8.5.1 density

The density and no-density directives enable or disable optimization of
generic instructions into density instructions within the region. See “Using
Density Instructions” on page 8-4.

.begin [no-]density

.end [no-]density

This optimization is enabled by default unless the Xtensa configuration does
not support the code density option or the --no-density command-line op-
tion was specified.

8.5.2 relax

The relax directive enables or disables relaxation within the region. See
“Xtensa Relaxation” on page 8-6.

NOTE: In the current implementation, these directives also control
whether assembler optimizations are performed, making them equivalent
to the generics and no-generics directives.

Stretch Assembler Reference Manual 2006.07
8-10 Last modified: 10/17/2006

Chapter 8 ■ Features for Xtensa Processors
Directives

Stretch, Inc.

.begin [no-]relax

.end [no-]relax

Relaxation is enabled by default unless the --no-relax command-line op-
tion was specified.

8.5.3 longcalls

The longcalls directive enables or disables function call relaxation. See
“Function Call Relaxation” on page 8-6.

.begin [no-]longcalls

.end [no-]longcalls

Call relaxation is disabled by default unless the --longcalls command-line
option is specified.

8.5.4 generics

This directive enables or disables all assembler transformation, including re-
laxation (see “Xtensa Relaxation” on page 8-6) and optimization (see “Xtensa
Optimizations” on page 8-4).

.begin [no-]generics

.end [no-]generics

Disabling generics is roughly equivalent to adding an underscore prefix to ev-
ery opcode within the region, so that every opcode is treated as a specific op-
code. See “Opcode Names” on page 8-3. In the current implementation of
st-as, built-in macros are also disabled within a no-generics region.

8.5.5 literal

The .literal directive is used to define literal pool data, i.e., read-only 32-bit
data accessed via L32R instructions.

.literal label, value[, value...]

This directive is similar to the standard .word directive, except that the actual
location of the literal data is determined by the assembler and linker, not by the
position of the .literal directive. Using this directive gives the assembler
freedom to locate the literal data in the most appropriate place and possibly to
combine identical literals. For example, the code:

entry sp, 40
.literal .L1, sym
l32r a4, .L1

can be used to load a pointer to the symbol sym into register a4. The value of
sym will not be placed between the ENTRY and L32R instructions; instead, the
assembler puts the data in a literal pool.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 8-11

Stretch, Inc.

Chapter 8 ■ Features for Xtensa Processors
Directives

By default literal pools are placed in a separate section; however, when using
the --text-section-literals option (see 2, “Command-Line Options”),
the literal pools are placed in the current section. These text section literal
pools are created automatically before ENTRY instructions and manually after
.literal_position directives (see “literal_position” on page 8-11). If there
are no preceding ENTRY instructions or .literal_position directives, the
assembler will print a warning and place the literal pool at the beginning of the
current section. In such cases, explicit .literal_position directives
should be used to place the literal pools.

8.5.6 literal_position

When using --text-section-literals to place literals inline in the sec-
tion being assembled, the .literal_position directive can be used to
mark a potential location for a literal pool.

.literal_position

The .literal_position directive is ignored when the --text-section-
literals option is not used.

The assembler will automatically place text section literal pools before ENTRY
instructions, so the .literal_position directive is only needed to specify
some other location for a literal pool. You may need to add an explicit jump in-
struction to skip over an inline literal pool.

For example, an interrupt vector does not begin with an ENTRY instruction so
the assembler will be unable to automatically find a good place to put a literal
pool. Moreover, the code for the interrupt vector must be at a specific starting
address, so the literal pool cannot come before the start of the code. The literal
pool for the vector must be explicitly positioned in the middle of the vector (be-
fore any uses of the literals, of course). The .literal_position directive
can be used to do this. In the following code, the literal for M will automatically
be aligned correctly and is placed after the unconditional jump.

.global M
code_start:

j continue
.literal_position
.align 4

continue:
movi a4, M

Stretch Assembler Reference Manual 2006.07
8-12 Last modified: 10/17/2006

Chapter 8 ■ Features for Xtensa Processors
Directives

Stretch, Inc.

8.5.7 literal_prefix

The literal_prefix directive allows you to specify different sections to
hold literals from different portions of an assembly file. With this directive, a
single assembly file can be used to generate code into multiple sections, in-
cluding literals generated by the assembler.

.begin literal_prefix [name]

.end literal_prefix

For the code inside the delimited region, the assembler puts literals in the sec-
tion name.literal. If this section does not yet exist, the assembler creates
it. The name parameter is optional. If name is not specified, the literal prefix
is set to the “default” for the file. This default is usually .literal but can be
changed with the --rename-section command-line argument.

8.5.8 freeregs

This directive tells the assembler that the given registers are unused in the re-
gion.

.begin freeregs ri[,ri...]

.end freeregs

This allows the assembler to use these registers for relaxations or optimiza-
tions. (They are actually only for relaxations at present, but the possibility of
optimizations exists in the future.)

Nested freeregs directives can be used to add additional registers to the list
of those available to the assembler. For example:

.begin freeregs a3, a4

.begin freeregs a5

has the effect of declaring a3, a4, and a5 all free.

8.5.9 frame

This directive tells the assembler to emit information to allow the debugger to
locate a function's stack frame. The syntax is:

.frame reg, size

where reg is the register used to hold the frame pointer (usually the same as
the stack pointer) and size is the size in bytes of the stack frame. The .frame
directive is typically placed immediately after the ENTRY instruction for a func-
tion.

In almost all circumstances, this information just duplicates the information
given in the function's ENTRY instruction; however, there are two cases where
this is not true:

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 8-13

Stretch, Inc.

Chapter 8 ■ Features for Xtensa Processors
Directives

1. The size of the stack frame is too big to fit in the immediate field of the
ENTRY instruction.

2. The frame pointer is different than the stack pointer, as with functions that
call alloca.

Stretch Assembler Reference Manual 2006.07
8-14 Last modified: 10/17/2006

Chapter 8 ■ Features for Xtensa Processors
Directives

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 1

Stretch, Inc.

Chapter 9 Acknowledgements

If you have contributed to st-as and your name isn't listed here, it is not
meant as a slight. We just don't know about it. Send mail to the maintainer,
and we'll correct the situation. Currently the maintainer is Ken Raeburn
(email address raeburn@cygnus.com).

Dean Elsner wrote the original GNU assembler for the VAX.1

Jay Fenlason maintained GAS for a while, adding support for GDB-specific de-
bug information and the 68k series machines, most of the preprocessing pass,
and extensive changes in messages.c, input-file.c, write.c.

K. Richard Pixley maintained GAS for a while, adding various enhancements
and many bug fixes, including merging support for several processors, break-
ing GAS up to handle multiple object file format back ends (including heavy
rewrite, testing, an integration of the coff and b.out back ends), adding con-
figuration including heavy testing and verification of cross assemblers and file
splits and renaming, converted GAS to strictly ANSI C including full proto-
types, added support for m680[34]0 and cpu32, did considerable work on i960
including a COFF port (including considerable amounts of reverse engineer-
ing), a SPARC opcode file rewrite, DECstation, rs6000, and hp300hpux host
ports, updated “know” assertions and made them work, much other reorgani-
zation, cleanup, and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most of the
code in format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric Young-
dale has done much work with it since.

The Intel 80386 machine description was written by Eliot Dresselhaus.

Minh Tran-Le at IntelliCorp contributed some AIX 386 support.

The Motorola 88k machine description was contributed by Devon Bowen of
Buffalo University and Torbjorn Granlund of the Swedish Institute of Com-
puter Science.

Keith Knowles at the Open Software Foundation wrote the original MIPS back
end (tc-mips.c, tc-mips.h), and contributed Rose format support (which
hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
support a.out format.

Stretch Assembler Reference Manual 2006.07
2 Last modified: 10/17/2006

Chapter 9 ■ Acknowledgements

Stretch, Inc.

Support for the Zilog Z8k and Hitachi H8/300 and H8/500 processors (tc-z8k,
tc-h8300, tc-h8500), and IEEE 695 object file format (obj-ieee), was written
by Steve Chamberlain of Cygnus Support. Steve also modified the COFF back
end to use BFD for some low-level operations, for use with the H8/300 and
AMD 29k targets.

John Gilmore built the AMD 29000 support, added .include support, and
simplified the configuration of which versions accept which directives. He up-
dated the 68k machine description so that Motorola's opcodes always pro-
duced fixed-size instructions (e.g., jsr), while synthetic instructions
remained shrinkable (jbsr). John fixed many bugs, including true tested
cross-compilation support, and one bug in relaxation that took a week and re-
quired the proverbial one-bit fix.

Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for
the 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO
Unix), added support for MIPS ECOFF and ELF targets, wrote the initial RS/
6000 and PowerPC assembler, and made a few other minor patches.

Steve Chamberlain made st-as able to generate listings.

Hewlett-Packard contributed support for the HP9000/300.

Jeff Law wrote GAS and BFD support for the native HPPA object format
(SOM) along with a fairly extensive HPPA test suite (for both SOM and ELF
object formats). This work was supported by both the Center for Software Sci-
ence at the University of Utah and Cygnus Support.

Support for ELF format files has been worked on by Mark Eichin of Cygnus
Support (original, incomplete implementation for SPARC), Pete Hoogen-
boom and Jeff Law at the University of Utah (HPPA mainly), Michael Meiss-
ner of the Open Software Foundation (i386 mainly), and Ken Raeburn of
Cygnus Support (sparc, and some initial 64-bit support).

Linas Vepstas added GAS support for the ESA/390 “IBM 370”architecture.

Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS
and BFD support for openVMS/Alpha.

Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
flavors.

David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Ten-
silica, Inc. added support for Xtensa processors.

Several engineers at Cygnus Support have also provided many small bug fixes
and configuration enhancements.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 3

Stretch, Inc.

Chapter 9 ■ Acknowledgements

Many others have contributed large or small bug fixes and enhancements. If
you have contributed significant work and are not mentioned on this list, and
want to be, let us know. Some of the history has been lost; we are not intention-
ally leaving anyone out.

Stretch Assembler Reference Manual 2006.07
4 Last modified: 10/17/2006

Chapter 9 ■ Acknowledgements

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 A-1

Stretch, Inc.

Appendix A GNU Free Documentation
License

Version 1.1, March 2000.

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

A.1 Preamble
The purpose of this License is to make a manual, textbook, or other written
document “free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered re-
sponsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the
GNU General Public License, which is a copyleft license designed for free soft-
ware.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this Li-
cense is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

A.2 Applicability and Definitions
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this Li-
cense. The “Document”, below, refers to any such manual or work. Any mem-
ber of the public is a licensee, and is addressed as “you”.

Stretch Assembler Reference Manual 2006.07
A-2 Last modified: 10/17/2006

 ■

Stretch, Inc.

A “Modified Version” of the Document means any work containing the Docu-
ment or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document's overall subject (or to related mat-
ters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Second-
ary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Doc-
ument is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file for-
mat whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word proces-
sors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work's title, preceding the beginning of the body of the text.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 A-3

Stretch, Inc.

 ■

A.3 Verbatim Copying
You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

A.4 Copying in Quantity
If you publish printed copies of the Document numbering more than 100, and
the Document's license notice requires Cover Texts, you must enclose the cop-
ies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally promi-
nent and visible. You may add other material on the covers in addition. Copy-
ing with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a publicly-acces-
sible computer-network location containing a complete Transparent copy of
the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at
least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

Stretch Assembler Reference Manual 2006.07
A-4 Last modified: 10/17/2006

 ■

Stretch, Inc.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

A.5 Modifications
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsi-
ble for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its princi-
pal authors, if it has less than five).

3. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document's license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 A-5

Stretch, Inc.

 ■

10.Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network loca-
tion for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

11.In any section entitled “Acknowledgements” or “Dedications”, preserve the
section's title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

12.Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

13.Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

14.Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invari-
ant. To do this, add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any other section
titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties-for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover Text and one of Back-
Cover Text may be added by (or through arrangements made by) any one enti-
ty. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on be-
half of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorse-
ment of any Modified Version.

Stretch Assembler Reference Manual 2006.07
A-6 Last modified: 10/17/2006

 ■

Stretch, Inc.

A.6 Combining Documents
You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements”.

A.7 Collections of Documents
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it in-
dividually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

A.8 Aggregation with Independent
Works

A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 A-7

Stretch, Inc.

 ■

provided no compilation copyright is claimed for the compilation. Such a com-
pilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Docu-
ment.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggre-
gate, the Document's Cover Texts may be placed on covers that surround only
the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

A.9 Translation
Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include
a translation of this License provided that you also include the original English
version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will
prevail.

A.10 Termination
You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically termi-
nate your rights under this License. However, parties who have received cop-
ies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Stretch Assembler Reference Manual 2006.07
A-8 Last modified: 10/17/2006

 ■

Stretch, Inc.

A.11 Future Revisions of This License
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. Go to http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and con-
ditions either of that specified version or of any later version that has been pub-
lished (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

A.12 Addendum: How to use this License
for your documents

To use this License in a document you have written, include a copy of the Li-
cense in the document and put the following copyright and license notices just
after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with the
Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST. A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

If you have no Invariant Sections, write “with no Invariant Sections” instead of
saying which ones are invariant. If you have no Front-Cover Texts, write “no
Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 B-1

Stretch, Inc.

Appendix B History

The original version of this document, entitled “Using AS, the GNU Assem-
bler”, was written by Dean Elsner, Jay Fenlason and friends. The version for as
2.11.2 was released in 2001 and published by the Free Software Foundation.

Tensilica, Inc. changed the title to “GNU Assembler User's Guide” and modi-
fied the document to include features specific to Xtensa processors. The re-
vised document was published by Tensilica, Inc. on the date shown in the
inside cover page. The TeXinfo source files for this modified document are
available from http://www.tensilica.com/gnudocs.

Stretch Assembler Reference Manual 2006.07
B-2 Last modified: 10/17/2006

 ■

Stretch, Inc.

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 Index-i

Stretch, Inc.

Index

Symbols
! 6-3
- 6-3
-- 1-5, 1-6
1-6, 3-2
#APP 3-1
#NO_APP 3-1
& 6-2
&& 6-3
. (dot symbol) 3-3
.abort directive 7-1
.align directive 7-1
.ascii directive 7-2
.asciz directive 7-2
.balign directive 7-2
.byte directive 7-3
.comm directive 7-3
.double directive 7-4
.eject directive 7-4
.else directive 7-4
.elseif directive 7-4
.end directive 7-5
.endfunc directive 7-5
.endif directive 7-5
.endm directive 7-14
.equ directive 7-5
.equiv directive 7-5
.err directive 7-6
.exitm directive 7-6, 7-14
.extern directive 7-6
.fail directive 7-6
.file directive 7-6
.fill directive 7-7
.float directive 7-7
.func directive 7-7
.global directive 7-8
.hidden directive 7-8
.hword directive 7-8
.ident directive 7-8

.if directive 7-9

.ifc directive 7-9

.ifdef directive 7-9

.ifeq directive 7-9

.ifeqs directive 7-9

.ifge directive 7-9

.ifgt directive 7-9

.ifle directive 7-9

.iflt directive 7-9

.ifnc directive 7-9

.ifndef directive 7-9

.ifne directive 7-10

.ifnes directive 7-10

.ifnotdef directive 7-9

.include directive 7-10

.inlcude directive search path 2-2

.int directive 7-10

.internal directive 7-10

.irp directive 7-11

.irpc directive 7-11

.lcomm directive 7-12

.lflags directive (ignored) 7-12

.line directive 7-12

.list directive 7-12

.ln directive 7-12

.long directive 7-13

.macro directive 7-13

.nolist directive 7-13

.o 1-6

.octa directive 7-14

.org directive 7-15

.p2align directive 7-15

.popsection directive 7-16

.previous directive 7-16

.print directive 7-17

.protected directive 7-17

.psize directive 7-17

.purgem directive 7-17

.section name (ELF) directive 7-19

.set directive 7-20

.short directive 7-20

.single directive 7-20

.size (ELF) directive 7-20

.skip directive 7-21

.sleb128 directive 7-20

.space directive 7-21

.stabd directive 7-21

.stabn directive 7-21

.stabs directive 7-21

.string directive 7-22

.struct directive 7-22

.subsection directive 7-23

.symver directive 7-23

.text directive 7-24

.title directive 7-24

.type directive (ELF version) 7-24

.uleb128 directive 7-25

.version directive 7-25

.vtable_entry directive 7-25

.vtable_inherit directive 7-25

.weak directive 7-26

.word directive 7-26
: (label) 3-3, 5-1
< 6-3
<= 6-3
<> 6-3
== 6-3
> 6-3
>= 6-3
\ 3-4, 3-5
\" 3-5
\@ directive 7-14
\ddd (octal character code) 3-4
\f (formfeed character) 3-4
\n 3-4
\n (newline character) 3-4
\r 3-4
\t 3-4

Stretch Assembler Reference Manual 2006.07
Index-ii Last modified: 10/17/2006

Stretch, Inc.

\xd ... (hex character code) 3-4
^ 6-3
_ opcode prefix 8-3
| 6-2
|| 6-3

A
-a 1-1, 2-1
a.out 1-6
absolute section 4-3
-ac 1-1, 2-1
-ad 1-1, 2-1
ADDI instructions, relaxation 8-7
addition, permitted arguments 6-

3
addresses, format of 4-2
advancing location counter 7-15
-ah 1-1, 2-1
-al 1-1, 2-1
alignment of branch target 8-5
alignment of ENTRY

instructions 8-5
alignment of LOOP

instructions 8-5
-am 1-1
-an 1-1, 2-2
AND 6-2
arguments for addition 6-3
arguments to integer

expressions 6-1
arithmetic functions 6-2
arithmetic operands 6-2
-as 1-2, 2-1
assembler and linker 4-1
assembler internal logic error 4-4
assembler internal sections 4-3
assembler version 2-4
assembly listings, enabling 2-1
assigning values to symbols 5-1,

7-5
attributes, symbol 5-3

B
b 3-4
backslash (\\) 3-4
backspace (\b) 3-4
bignums 3-6

binary integer 3-5
binary integers 3-6
branch instructions, relaxation 8-

6
branch target alignment 8-5
bss section 4-3, 4-5

C
C-A 5-2
call instructions, relaxation 8-6
carriage return (\r) 3-4
character constant, single 3-4
character constants 3-4
character escape codes 3-4
character, single 3-5
Characters 3-5
characters used in symbols 3-3
command line conventions 2-1
comments 3-2
comments, removed by

preprocessor 3-1
common symbols 7-3
common variable storage 4-5
comparison expressions 6-3
conditional assembly 7-9
constant, single character 3-5
Constants 3-3
constants 3-4
constants, bignum 3-6
constants, character 3-4
constants, converted by

preprocessor 3-1
constants, floating point 3-6
constants, integer 3-5
constants, number 3-5
constants, string 3-4
current address 5-3
current address, advancing 7-15

D
-D 1-2, 2-2
data and text sections, joining 2-4
debuggers and symbol order 5-1
decimal integers 3-5
--density 1-3, 8-1, 8-9
density directive 8-9
density instructions 8-4

density option, Xtensa 8-1
dependency tracking 2-3
deprecated directive 7-26
directive and instructions 3-3
directives, machine

independent 7-1
directives, precedence 8-9
directives, Xtensa 8-8
dot symbol 5-3
doublequote(\") 3-5

E
eight-byte integer 7-18
ELF symbol type 7-24
empty expressions 6-1
ENTRY instruction alignment 8-5
EOF, newline must precede 3-3
error messages 1-7
errors, caused by warnings 2-5
errors, continuing after 2-5
escape codes, character 3-4
exclusive OR 6-3
expr section 4-4
expression arguments 6-1
expressions 6-1

arguments to integer 6-1
empty 6-1
operatiors on integers 6-2

expressions, comparison 6-3
expressions,integer 6-1

F
-f 1-2, 2-2, 3-1
f 3-4
faster processing (-f) 2-2
--fatal-warnings 2-5
file name, logical 7-6
files, including 7-10
files, input 1-5
filling memory 7-21
floating 7-20
floating point numbers 3-6
floating point numbers

(double) 7-4
floating point numbers (single) 7-

20
Flonums 3-6
format of error messages 1-7

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 Index-iii

Stretch, Inc.

format of warning message 1-7
formfeed (\f) 3-4
frame directive 8-12
freeregs directive 8-12
functions, in expressions 6-2

G
generic opcodes 8-3
--generics 8-1
generics directive 8-10
greater than 6-3
greater than or equal to 6-3
grouping data 4-4

H
hex character code (\xd...) 3-4
hexadecimal integers 3-6

I
-I 1-2, 2-2, 7-10
-I path 2-2
inclusive OR 6-2
infix operators 6-2
input file line numbers 1-6
input files 1-5
instructions and directives 3-3
integer expressions 6-1
integer, 16-byte 7-14, 7-18
integers 3-5
integers, 16-bit 7-8
integers, 32-bit 7-10
integers, binary 3-5
integers, decimal 3-5
integers, hexadecimal 3-6
integers, octal 3-5
internal assembler sections 4-3
internal sections in warning

messages 4-3
invocation summary 1-1
is equal to 6-3
is not equal to 6-3

J
joining data and text sections 2-4

K
-K 1-2, 2-3

L
-L 1-2, 2-1, 2-3, 5-2

L16SI instructions, relaxation 8-7

L26UI instructions, relaxation 8-7

L32I instructions, relaxation 8-7

L32R instructions, relaxation 8-7

label (
) 3-3

labels 5-1

ld 1-6

length of symbols 3-3

less than 6-3

less than or equal to 6-3

line comment character 3-2

line number, logical 7-12

line numbers in warnings and
errors 1-7

line numbers, in input file 1-6

lines, starting with # 3-2

linker 1-6

linker and assembler 4-1

Linker Sections 4-2

listing control, new page 7-4

listing control, paper size 7-17

listing control, title line 7-24

listing control, turning off 7-13

listing control, turning on 7-12

listings, enabling 2-1

literal directive 8-10

literal_position directive 8-11

literal_prefix directive 8-12

local comman symbols 7-12

local labels, retaining in output 2-
3

local symbol names 5-2

location counter 5-3

location counter, advancing 7-15

logical AND 6-3

logical file name 7-6

logical line number 3-2, 7-12

logical OR 6-3

--longcalls 1-4, 8-2, 8-7, 8-10

longcalls directive 8-10

LOOP instructions alignment 8-5

M
machine independent

directives 7-1

machine instructions (not
covered) 1-4

machine-independent syntax 3-1

macros 7-13

macros, count executed 7-14

make rules 2-3

manual, structure and purpose 1-
4

--MD 2-3

merging text and data sections 2-
4

messages from assembler 1-7

minus, permitted arguments 6-3

MOVI instructions, relaxation 8-7

N
name object file 2-4

named section 7-19

named sections 4-3

names, symbol 5-1

naming symbols 5-1

new page in listings 7-4

newline (\n) 3-4

newline, required at end of file 3-
3

--no-density 1-3, 8-1, 8-5, 8-9

no-density directive 8-9

--no-generics 1-3, 8-1

--no-longcalls 1-4, 8-2

no-longcalls directive 8-10

--no-relax 1-3, 8-1, 8-10

no-relax directive 8-10

NOT 6-3

--no-target-align 1-3, 8-2

--no-text-section-literals 1-3, 8-2

--no-warn 1-3, 2-5

null-terminated strings 7-2

number constants 3-5

number of macros executed 7-14

numbered subsections 4-4

numbers, 16-bit 7-8

numeric values 6-1

Stretch Assembler Reference Manual 2006.07
Index-iv Last modified: 10/17/2006

Stretch, Inc.

O
-o 1-2, 1-6, 2-4
object file 1-6
object file after errors 2-5
object file format 1-5
object file name 2-4
octal character code (\ddd) 3-4
octal integers 3-5
opcode names, Xtensa 8-4
opcodes, specific 8-3
opdcodes, generic 8-3
operands in expressions 6-1
operator

infix 6-2
prefix 6-2

operator precedence 6-2
operators in expressions 6-2
operators on integers 6-2
operators, permitted

arguments 6-2
optimizations 8-4
option summary 1-1
options, all versions of

assembler 2-1
options, command line 2-1
options, summary of 1-1
OR 6-2, 6-3
OR NOT 6-3
output file 1-6

P
p2align1 directive 7-15
p2alignw directive 7-15
padding the location counter 7-1
padding the location counter a

given number of bytes 7-1
padding the location with a given

power of two 7-15
page, in listings 7-4
paper size for listings 7-17
paths for .include 2-2
patterns, writing in memory 7-7
plus, permitted arguments 6-3
precedence of directives 8-9
precedence of operators 6-2
precision, floating point 3-6
prefix operator 6-2

prefix operators 6-2
Preprocessing 3-1
preprocessing, turning on and

off 3-1
pseudo-ops, machine

independent 7-1

R
-R 1-2, 2-4
register names, Xtensa 8-4
--relax 1-3, 8-1
relax directive 8-9
relaxatio of L8UI instructions 8-7
relaxation 8-6
relaxation fo ADDI

instructions 8-7
relaxation of branch

instructions 8-6
relaxation of call instructions 8-6
relaxation of immediate fields 8-7
relaxation of L16SI instructions 8-

7
relaxation of L16UI

instructions 8-7
relaxation of L32I instructions 8-7
relaxation of L32R instructions 8-

7
relaxation of MOVI

instructions 8-7
relocation 4-1
relocation example 4-4
--rename-section 1-3, 8-2, 8-12

S
search path for .include 2-2
section

absolute 4-3
bss 4-3, 4-5
expr 4-4
undefined 4-3

section stack 7-16, 7-18, 7-19
section-relative addressing 4-1
sections 4-1
sections in warning messages,

internal 4-3
sections, named 4-1, 4-3
single character constant 3-4
sixteen-bit numbers 7-8

sixteen-byte integer 7-14
source program 1-5
sp register 8-4
space used, maximum for

assembly 3-1
specific opcodes 8-3
standard assembler sections 4-1
standard input as input file 1-5
statement separator character 3-3
statements, structure of 3-3
--statistics 1-2, 2-4
statistics, about assembly 2-4
stopping the assembly 7-1
string constants 3-4
string literals 7-2
string, copying to object file 7-22
strings 3-4
subections 4-4
subexpressions 6-2
subtitles for listings 7-19
subtraction 6-3
summary of options 1-1
supporting files, including 7-10
suppressing warnings 2-5
symbol

giving other values 5-1
names

local 5-2
type 5-3

symbol attributes 5-3
symbol names 5-1
symbol names, temporary 5-1
symbol type, ELF 7-23
symbol value 5-3
symbol value, setting 7-20
symbol versioning 7-23
symbol, common 7-3
symbol, making visible to

linker 7-8
symbolic debuggers, information

for 7-21
Symbols 3-3
symbols, assigning values to 7-5
symbols, local common 7-3, 7-12
symbols,length of 3-3
syntax, machine-independent 3-1
syntax, Xtensa assembler 8-3

2006.07 Stretch Assembler Reference Manual
Last modified: 10/17/2006 Index-v

Stretch, Inc.

T
tab (\t) 3-4

--target-align 1-3, 2-3, 8-2, 8-5

text and data sections, joining 2-4

--text-section-literals 1-3, 8-2, 8-11

time, total for assembly 2-4

trusted compiler 2-2

turning preprocessing on and
off 3-1

type of a symbol 5-3

U
undefined section 4-3

V
-v 1-3, 2-1, 2-4

value of a symbol 5-1, 5-3

-version 1-3, 2-4

version of the assembler 2-4

versions of symbols 7-23

visibility 7-8, 7-10, 7-17

W
-W 1-3, 2-5

--warn 1-3, 2-5

warning messages 1-7

warnings, causing error 2-5

warnings, suppressing 2-5

warnings, switching on 2-5

White space 3-2

whitespace, removed by
preprocessor 3-1

work faster 2-2

writing patterns in memory 7-7

X
Xtensa architecture 8-1

Xtensa assembler syntax 8-3

Xtensa command-line options 8-1

Xtensa density option 8-1

Xtensa directives 8-8

Xtensa opcode names 8-3

Xtensa register names 8-4

--xtensa-core 1-4, 8-2

--xtensa-params 1-4, 8-3

--xtensa-system 1-4, 8-3

Z
-Z 2-5
zero-terminated strings 7-22

	Stretch Assembler
	Before Using this Manual
	Contents
	Tables
	Overview
	1.1 Structure of this Manual
	1.2 The GNU Assembler
	1.3 Object File Formats
	1.4 Command Line
	1.5 Input Files
	1.5.1 File Names and Line Numbers

	1.6 Output (Object) File
	1.7 Error and Warning Messages

	Command-Line Options
	2.1 Enable Listings: -a[cdhlns]
	2.2 -D
	2.3 Work Faster: -f
	2.4 .include Search Path: -I path
	2.5 Difference Tables: -K
	2.6 Include Local Labels: -L
	2.7 Dependency Tracking: --MD
	2.8 Name the Object File: -o
	2.9 Join Data and Text Sections: -R
	2.10 Display Assembly Statistics: -- statistics
	2.11 Announce Version: -v
	2.12 Control Warnings: -W, --warn, --no- warn, --fatal-warnings
	2.13 Generate Object File in Spite of Errors: -Z

	Syntax
	3.1 Preprocessing
	3.2 White space
	3.3 Comments
	3.4 Symbols
	3.5 Statements
	3.6 Constants
	3.6.1 Character Constants
	3.6.1.1 Strings
	3.6.1.2 Characters

	3.6.2 Number Constants
	3.6.2.1 Integers
	3.6.2.2 Bignums
	3.6.2.3 Flonums

	Sections and Relocation
	4.1 Background
	4.2 Linker Sections
	4.3 Assembler Internal Sections
	4.4 Subsections
	4.5 bss Section

	Symbols
	5.1 Labels
	5.2 Giving Symbols Other Values
	5.3 Symbol Names
	5.3.1 Local Symbol Names

	5.4 The Special Dot Symbol
	5.5 Symbol Attributes
	5.5.1 Value
	5.5.2 Type

	Expressions
	6.1 Empty Expressions
	6.2 Integer Expressions
	6.2.1 Arguments
	6.2.2 Operators
	6.2.3 Prefix Operator
	6.2.4 Infix Operators

	Assembler Directives
	7.1 .abort
	7.2 .align abs-expr, abs-expr, abs-expr
	7.3 .ascii “string”...
	7.4 .asciz “string”...
	7.5 .balign[wl] abs-expr, abs-expr, abs- expr
	7.6 .byte expressions
	7.7 .comm symbol, length
	7.8 .double flonums
	7.9 .eject
	7.10 .else
	7.11 .elseif
	7.12 .end
	7.13 .endfunc
	7.14 .endif
	7.15 .equ symbol, expression
	7.16 .equiv symbol, expression
	7.17 .err
	7.18 .exitm
	7.19 .extern
	7.20 .fail expression
	7.21 .file string
	7.22 .fill repeat, size, value
	7.23 .float flonums
	7.24 .func name[,label]
	7.25 .global symbol, .global symbol
	7.26 .hidden names
	7.27 .hword expressions
	7.28 .ident
	7.29 .if absolute expression
	7.30 .include “file”
	7.31 .int expressions
	7.32 .internal names
	7.33 .irp symbol,values...
	7.34 .irpc symbol,values...
	7.35 .lcomm symbol, length
	7.36 .lflags
	7.37 .line line-number
	7.38 .ln line-number
	7.39 .list
	7.40 .long expressions
	7.41 .macro
	7.42 .nolist
	7.43 .octa bignums
	7.44 .org new-lc, fill
	7.45 .p2align[wl] abs-expr, abs-expr, abs-expr
	7.46 .previous
	7.47 .popsection
	7.48 .print string
	7.49 .protected names
	7.50 .psize lines, columns
	7.51 .purgem name
	7.52 .pushsection name, subsection
	7.53 .quad bignums
	7.54 .rept count
	7.55 .sbttl “subheading”
	7.56 .section name (ELF version)
	7.57 .set symbol, expression
	7.58 .short expressions
	7.59 .single flonums
	7.60 .size name, expression (ELF Version)
	7.61 .sleb128 expressions
	7.62 .skip size, fill
	7.63 .space size, fill
	7.64 .stabd, .stabn, .stabs
	7.65 .string “str”
	7.66 .struct expression
	7.67 .subsection name
	7.68 .symver
	7.69 .text subsection
	7.70 .title “heading”
	7.71 .type name, type description (ELF Version)
	7.72 .uleb128 expressions
	7.73 .version “string”
	7.74 .vtable_entry table, offset
	7.75 .vtable_inherit child, parent
	7.76 .weak names
	7.77 .word expressions
	7.78 Deprecated Directives

	Features for Xtensa Processors
	8.1 Command Line Options
	8.2 Assembler Syntax
	8.2.1 Opcode Names
	8.2.2 Register Names

	8.3 Xtensa Optimizations
	8.3.1 Using Density Instructions
	8.3.2 Automatic Instruction Alignment

	8.4 Xtensa Relaxation
	8.4.1 Conditional Branch Relaxation
	8.4.2 Function Call Relaxation
	8.4.3 Other Immediate Field Relaxation

	8.5 Directives
	8.5.1 density
	8.5.2 relax
	8.5.3 longcalls
	8.5.4 generics
	8.5.5 literal
	8.5.6 literal_position
	8.5.7 literal_prefix
	8.5.8 freeregs
	8.5.9 frame

	Acknowledgements
	GNU Free Documentation License
	A.1 Preamble
	A.2 Applicability and Definitions
	A.3 Verbatim Copying
	A.4 Copying in Quantity
	A.5 Modifications
	A.6 Combining Documents
	A.7 Collections of Documents
	A.8 Aggregation with Independent Works
	A.9 Translation
	A.10 Termination
	A.11 Future Revisions of This License
	A.12 Addendum: How to use this License for your documents
	History

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /BellGothicBT-Black
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /Scala-Bold
 /Scala-BoldExpert
 /Scala-Caps
 /Scala-CapsExpert
 /Scala-Italic
 /Scala-ItalicExpert
 /ScalaLF-Bold
 /ScalaLF-Caps
 /ScalaLF-Italic
 /ScalaLF-Regular
 /Scala-Regular
 /Scala-RegularExpert
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

