

TCD2210/2220(-E)

## Digital Interface Communications Engine

# **User Guide**

Revision 1.02 July 29, 2010

Copyright © 2006-2010, TC Applied Technologies Ltd. All rights reserved.  $\label{eq:copyright} \textbf{TC} \begin{bmatrix} \texttt{APPLIED} \\ \texttt{TECHNOLOGIES} \end{bmatrix}$ 

#### IMPORTANT NOTICE

TC Applied Technologies Ltd. ("TCAT") believes that the information contained herein was accurate and reliable at time of writing. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied), and TCAT reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice. Customers are advised to obtain the latest version of any and all relevant information to verify, before placing orders or beginning development of products based on TCAT technologies, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including pertaining to warranty, indemnification, and limitation of those liability.

No responsibility is assumed by TCAT for the use of this information, including use of this information as the basis for development, manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of TCAT; by furnishing this information, TCAT grants no license, express or implied, under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. TCAT owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to TCAT integrated circuits, software, design files and any other products of TCAT. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. Resale of TCAT products or services with statements different from or beyond the parameters stated by TCAT for that product or service and is an unfair and deceptive business practice. TCAT is not responsible or liable for any such statements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TCAT PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TCAT PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND TCAT DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY TCAT PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF TCAT PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY TCAT, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

TC Applied Technologies, TCAT and the TC Applied Technologies, DICE<sup>™</sup> and JetPLL<sup>™</sup> logo designs are trademarks of TC Applied Technologies Ltd. All other brand and product names in this document may be trademarks or service marks of their respective owners.

| Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Chapter 1 About DICE TCD22xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                           |
| 1.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17                                                                                           |
| 1.2 Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                           |
| 1.3 Chip Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                                           |
| 1.4 Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                           |
| <ul> <li>1.5 Signal Description</li> <li>1.5.1 Signal Description</li> <li>1.5.2 Multi-function Pins</li> <li>1.5.3 TCD2220 Pins (not available on TCD2210)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | 24<br>24<br>32<br>32                                                                         |
| Chapter 2 The ARM7TDMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34                                                                                           |
| <ul><li>2.1 Architecture</li><li>2.1.1 The THUMB Concept</li><li>2.1.2 THUMB's Advantages</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35<br>35<br>35                                                                               |
| Chapter 3 Memory Map and Interrupts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37                                                                                           |
| Chapter 4 ARM Peripherals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                           |
| <ul> <li>4.1 General Purpose Control and Status Registers</li> <li>4.1.1 Audio Input ports</li> <li>4.1.2 Audio Output ports</li> <li>4.1.3 Module Configuration</li> <li>4.1.4 GRCSR_SYSTEM</li> <li>4.1.5 GPCSR_AUDIO_SELECT</li> <li>4.1.6 GPCSR_GPIO_SELECT</li> <li>4.1.7 GPCSR_CHIP_ID</li> <li>4.1.8 Considerations for Chip Selects</li> <li>4.1.9 GPCSR_IRQ/FIQ_SEL - 0xc700 0024 - 0xc700 0038</li> <li>4.1.10 IRQ_SEL0_5</li> <li>4.1.11 IRQ_SEL6_11</li> <li>4.1.2 IRQ_SEL12_17</li> <li>4.1.3 IRQ_SEL18</li> <li>4.1.4 FIQ_SEL0_5</li> <li>4.1.15 FIQ_SEL6_7</li> </ul> | 41<br>41<br>42<br>42<br>43<br>47<br>48<br>48<br>48<br>48<br>49<br>49<br>50<br>50<br>50<br>50 |
| <ul> <li>4.2 External Bus Interface</li> <li>4.2.1 Signal Description</li> <li>4.2.2 Functional Description</li> <li>4.2.3 Host Interface Unit</li> <li>4.2.4 Memory Interface Unit</li> <li>4.2.5 Internal Functional Diagram</li> <li>4.2.6 Considerations for Chip Selects</li> <li>4.2.7 Module Configuration</li> <li>4.2.8 SCONR - SDRAM Configuration Register</li> <li>4.2.9 STMGOR - SDRAM Timing Register 0</li> <li>4.2.10 STMG1R - SDRAM Control Register 1</li> <li>4.2.11 SCTLR - SDRAM Control Register</li> </ul>                                                    | 53<br>54<br>57<br>57<br>57<br>58<br>59<br>59<br>61<br>62<br>64<br>65                         |

| 4.2.12               | SREFR – SDRAM Refresh Interval Register                  | 66  |
|----------------------|----------------------------------------------------------|-----|
| 4.2.13               | SCSLR (0-7) – Chip Select Registers                      | 67  |
| 4.2.14               | SMSKR (0 – 7) – Address Mask Registers                   | 68  |
| 4.2.15               | CSALIAS (0 – 1) – Alias Register                         | 69  |
| 4.2.16               | CSREMAP (0 – 1) – Remap Register                         | 71  |
| 4.2.17               | SMTMGR (0 – 2) – Static Memory Timing Register           | 72  |
| 4.2.18               | FLASH_TRPDR – Flash Timing Register                      | 73  |
| 4.2.19               | SMCTLR – Static Memory Control Register                  | 74  |
| 4.2.20               | SDRAM Power ON Initialization                            | 75  |
| 4.2.21               | SDRAM Read and Write                                     | 77  |
| 4.2.22               | SDRAM Set Mode Register                                  | 78  |
| 4.2.23               | SDRAM Refresh                                            | 78  |
| 4.2.24               | SDRAM Power DOWN                                         | 81  |
| 4.2.25               | SDRAM Chin Select Decoding                               | 82  |
| 4 2 26               | SDRAM Read/Write Timing                                  | 84  |
| 4 2 27               | Static Memory Configuration                              | 94  |
| 4 2 28               | Static Memory Chin Selection                             | 94  |
| 4 2 29               | FLASH Memory                                             | 95  |
| 4.2.20               | Static Memory Read/Write Timing                          | 96  |
| 1 2 31               | Interfacing to Non-Memory Devices with Ready Pin (DSP)   | 00  |
| 4.2.51               | Interfacing to Non-Memory Devices with Ready Fin (DSF)   | 55  |
| 4.3 I <sup>2</sup> C |                                                          | 101 |
| 4.3.1                | Signal Description                                       | 101 |
| 4.3.2                | Features                                                 | 101 |
| 4.4 120              | Overview                                                 | 102 |
| 4.4.1                | I2C START and STOP Condition Protocol                    | 103 |
| 442                  | I2C Addressing Slave Protocol                            | 103 |
| 443                  | I2C Transmitting and Receiving Protocol                  | 103 |
| 444                  | I2C START BYTE Transfer Protocol                         | 103 |
| 445                  | Operation Modes                                          | 103 |
| 4.4.5                | I2C IC CLK Frequency Configuration                       | 104 |
| 4.4.7                | I2C Conoral Notos                                        | 100 |
| 4.4.7                | Modulo Configuration                                     | 107 |
| 4.4.0                | Programming the ICC Interface                            | 100 |
| 4.4.9                | IC CON register IC Central                               | 109 |
| 4.4.10               | IC_CON register = I2C Control                            | 109 |
| 4.4.11               | IC_TAR register – IZC Target Address                     | 110 |
| 4.4.12               | IC_SAR register – I2C Slave Address                      | 112 |
| 4.4.13               | IC_HS_MAR register – I2C Master Mode Code Address        | 112 |
| 4.4.14               | IC_DATA_CMD register – I2C RX/TX Data Buffer and Command | 113 |
| 4.4.15               | IC_SS_HCNT register – Standard Speed IC_CLK High Count   | 113 |
| 4.4.16               | IC_SS_LCN1 register – Standard Speed IC_CLK Low Count    | 114 |
| 4.4.1/               | IC_FS_HCN1 register – Fast Speed IC_CLK High Count       | 115 |
| 4.4.18               | IC_FS_LCNT register – Fast Speed IC_CLK Low Count        | 116 |
| 4.4.19               | IC_HS_HCNT register – High Speed IC_CLK High Count       | 117 |
| 4.4.20               | IC_HS_LCNT register – High Speed IC_CLK Low Count        | 118 |
| 4.4.21               | IC_INTR_STAT register – I2C Interrupt Status             | 119 |
| 4.4.22               | IC_INTR_MASK register – I2C Interrupt Mask               | 121 |
| 4.4.23               | IC_RAW_INTR_STAT register – I2C Raw Status               | 122 |
| 4.4.24               | IC_RX_TL register – I2C RX Threshold Level               | 124 |
| 4.4.25               | IC_TX_TL register – I2C TX Threshold Level               | 125 |
| 4.4.26               | IC_CLR_INTR register – Clear All Interrupts              | 125 |
| 4.4.27               | IC_CLR_ RX_UNDER register – Clear RX_UNDER Interrupt     | 126 |
| 4.4.28               | IC_CLR_RX_OVER register – Clear RX_OVER Interrupt        | 126 |

| 4.4.29<br>4.4.30<br>4.4.31<br>4.4.32<br>4.4.33<br>4.4.34<br>4.4.35<br>4.4.36<br>4.4.37<br>4.4.38<br>4.4.39<br>4.4.40<br>4.4.41<br>4.4.42 | IC_CLR_TX_OVER register - Clear TX_OVER Interrupt<br>IC_CLR_RD_REQ register - Clear RD_REQ Interrupt<br>IC_CLR_TX_ABRT register - Clear TX_ABRT Interrupt<br>IC_CLR_RX_DONE register - Clear RX_DONE Interrupt<br>IC_CLR_ACTIVITY register - Clear ACTIVITY Interrupts<br>IC_CLR_STOP_DET register - Clear STOP_DET Interrupts<br>IC_CLR_START_DET register - Clear START_DET Interrupt<br>IC_CLR_GEN_CALL register - Clear General Call Interrupt<br>IC_ENABLE register - I2C Enable<br>IC_STATUS register - I2C Status<br>IC_TXFLR register - I2C Transmit FIFO Level Register<br>IC_SRESET register - I2C Soft Reset Register<br>IC_SRESET register - I2C Soft Reset Register<br>IC_ABRT_SOURCE register - I2C Transmit Abort Source Register | 127<br>128<br>128<br>129<br>129<br>130<br>130<br>131<br>131<br>131<br>132<br>133<br>133<br>134 |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 4.5 UAF<br>4.5.1<br>4.5.2<br>4.5.3<br>4.5.4<br>4.5.5<br>4.5.6<br>4.5.7                                                                   | ↓ T Signal Description Features Internal Functional Description Registers, Control and Status RX and TX FIFO Controllers Character Timeout Detection Baud Clock Generator TY (Incommittee)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136<br>136<br>136<br>137<br>137<br>137<br>137<br>138                                           |
| $\begin{array}{r} 4.5.8 \\ 4.5.9 \\ 4.5.10 \\ 4.5.11 \\ 4.5.12 \\ 4.5.13 \\ 4.5.14 \\ 4.5.15 \\ 4.5.16 \end{array}$                      | RX (receiver)<br>Serial Frame Format<br>Module Configuration<br>Receive Buffer Register (RBR)<br>Transmit Holding Register (THR)<br>Divisor Latch Register (DLL)<br>Interrupt Enable Register (IER)<br>Interrupt Identity Register (IIR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138<br>138<br>138<br>139<br>140<br>140<br>141<br>141<br>141                                    |
| 4.5.17<br>4.5.18<br>4.5.19<br>4.5.20<br>4.5.21<br>4.5.22<br>4.5.23                                                                       | FIFO Control Register (FCR)<br>Line Control Register (LCR)<br>Modem Control Register (MCR)<br>Line Status Register (LSR)<br>Modem Status Register (MSR)<br>Scratchpad Register (SCR)<br>Serial Baud Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 143<br>143<br>144<br>144<br>145<br>146<br>146                                                  |
| 4.6 GPI<br>4.6.1<br>4.6.2<br>4.6.3<br>4.6.4<br>4.6.5<br>4.6.6<br>4.6.7<br>4.6.8<br>4.6.9<br>4.6.10<br>4.6.11<br>4.6.12<br>4.6.13         | O<br>Signal Description<br>Module Configuration<br>GPIO_DR Data Register<br>GPIO_DDR Data Direction Register<br>GPIO_INTEN Interrupt Enable Register<br>GPIO_INTMASK Interrupt Mask Register<br>GPIO_INTSENSE Interrupt Level Register<br>GPIO_INTPOL Interrupt Polarity Register<br>GPIO_INTSTAT Interrupt Status Register<br>GPIO_RAWINTSTAT Raw Interrupt Status (Premasking) Register<br>GPIO_DEBOUNCE Debounce Enable Register<br>GPIO_EOI Clear Interrupt Register<br>GPIO_EXT External Port Register                                                                                                                                                                                                                                      | 148<br>148<br>150<br>150<br>151<br>151<br>152<br>152<br>153<br>153<br>153<br>154               |

| 4.6.14 GPIO_SYNC Level Sensitive Synchronization Enable Register     | 154 |
|----------------------------------------------------------------------|-----|
| 4.7 1394 Link                                                        | 155 |
| 4.7.1 Signal Description                                             | 155 |
| 4.7.2 Module Configuration                                           | 155 |
| 4.8 GRAY, Rotary Encoder Interface                                   | 157 |
| 4.8.1 Signal Description                                             | 157 |
| 4.8.2 Module Configuration                                           | 15/ |
| $4.8.3 \text{ GRAY}_{\text{SIAI}}$                                   | 157 |
| 4.8.5 GRAY_CNT                                                       | 157 |
| 4.9 Interrupt Controller                                             | 159 |
| 4.9.1 Features                                                       | 159 |
| 4.9.2 Functional Description                                         | 159 |
| 4.9.3 IRQ Processing                                                 | 160 |
| 4.9.4 IRQ Software Programmable Interrupts                           | 160 |
| 4.9.5 IRQ Enable and Masking                                         | 160 |
| 4.9.6 IRQ Priority Filter                                            | 160 |
| 4.9.7 IRQ Interrupt Status Registers                                 | 160 |
| 4.9.9 FIO Interrupt Processing                                       | 162 |
| 4.9.10 FIO Software-Programmable Interrupts                          | 162 |
| 4.9.11 FIQ Enable and Masking                                        | 162 |
| 4.9.12 FIQ Interrupt Status Registers                                | 162 |
| 4.9.13 Module Configuration                                          | 164 |
| 4.9.14 INTCTRL_ENABLE                                                | 165 |
| 4.9.15 INTCTRL_MASK                                                  | 165 |
| 4.9.16 INTCIRL_FORCE                                                 | 165 |
| 4.9.17 INTCIRL_RAW                                                   | 105 |
| 4.9.10 INTCTRI MASKSTAT                                              | 165 |
| 4.9.20 INTCTRL FINALSTAT                                             | 165 |
| 4.9.21 INTCTRL_INTVECTOR                                             | 165 |
| 4.9.22 INTCTRL_VECTOR0 to INTCTRL_VECTOR15                           | 165 |
| 4.9.23 INTCTRL_FIQ_ENABLE                                            | 166 |
| 4.9.24 INTCTRL_FIQ_MASK                                              | 166 |
| 4.9.25 INTCTRL_FIQ_FORCE                                             | 166 |
| 4.9.26 INTCTRL_FIQ_RAW                                               | 166 |
| 4.9.27 INTCIRL_FIQ_STAT                                              | 166 |
| 4.9.26 INTETRE FIQ_FINALSTAT<br>4.9.29 INTETRI SYSTEM PRIORITY LEVEL | 166 |
|                                                                      | 167 |
| 4.10 Watch Dog<br>4.10.1 Eurotional Description                      | 167 |
| 4.10.1 Inductional Description                                       | 169 |
| 4.10.3 WD RESET EN                                                   | 169 |
| 4.10.4 WD INT                                                        | 170 |
| 4.10.5 WD_PRESCALE_LOAD                                              | 170 |
| 4.10.6 WD_PRESCALE_CNT                                               | 171 |
| 4.10.7 WD_COUNT                                                      | 171 |
| 4.11 Dual Timer                                                      | 172 |
| 4.11.1 Introduction                                                  | 172 |
| 4.11.2 Features                                                      | 172 |

|           |                                       | 100 |
|-----------|---------------------------------------|-----|
| Chapter 5 | DICE                                  | 189 |
| 4.13.3    | Address Remap Register description    | 187 |
| 4.13.2    | Remap block Memory map                | 187 |
| 4.13.1    | Remap features                        | 187 |
| 4.13 Re   | emap Block                            | 187 |
| 4.12.7    | SF1 programming model                 | 105 |
| 4 12 7    | SPI programming model                 | 183 |
| 4 12 6    | SPI Module Configuration              | 183 |
| 4.12.5    | SPI Interrupts                        | 183 |
| 4.12.4    | SPI Data Formats                      | 182 |
| 4.12.3    | SPI Transfer formats                  | 181 |
| 4.12.2    | Signal Description                    | 181 |
| 4.12.1    | SPI features                          | 181 |
| 4.12 SF   | PI Interface                          | 181 |
| 4.11.8    | Interrupt Handling                    | 180 |
| 4.11.7    | Timer System Registers                | 1/8 |
| 4.11.6    | Timer Registers                       | 175 |
| 4.11.5    |                                       | 174 |
| 4.11.4    | APD Intendice<br>Medule Configuration | 174 |
| 4.11.5    |                                       | 172 |
| 4 11 3    | Internal Functional Description       | 172 |

| 5.1 Ro  | uter                                          | 189 |
|---------|-----------------------------------------------|-----|
| 5.1.1   | Module Configuration                          | 190 |
| 5.1.2   | ROUTERn_CTRL                                  | 191 |
| 5.1.3   | ROUTERn_ENTRYm                                | 191 |
| 5.1.4   | Source Block ID's                             | 191 |
| 5.1.5   | Destination Block ID's                        | 192 |
| 5.2 Clo | ock Controller                                | 193 |
| 5.2.1   | Signal Description                            | 196 |
| 5.2.2   | Module Configuration                          | 197 |
| 5.2.3   | SYNC_CTRL                                     | 198 |
| 5.2.4   | DOMAIN_CTRL                                   | 198 |
| 5.2.5   | EXTCLK_CTRL                                   | 199 |
| 5.2.6   | BLK_CTRL                                      | 199 |
| 5.2.7   | REFEVENT_CTRL                                 | 200 |
| 5.2.8   | SRCNT_CTRL                                    | 201 |
| 5.2.9   | SRCNI_MODE                                    | 201 |
| 5.2.10  | AES_VCO_SETUP                                 | 202 |
| 5.2.11  | PRESCALER                                     | 203 |
| 5.2.12  |                                               | 203 |
| 5.2.13  | SRUNTA<br>SR MAX CNT-                         | 204 |
| 5.2.14  |                                               | 205 |
| 5.3 Jet | PLL                                           | 206 |
| 5.3.1   | Jet''' PLL Background                         | 206 |
| 5.3.2   | Block Diagram                                 | 207 |
| 5.3.3   | Basic registers                               | 208 |
| 5.3.4   | Control registers                             | 208 |
| 5.3.5   | Status Registers                              | 208 |
| 5.3.6   | Frequency Reconstruction Generation.          | 208 |
| 5.3./   | Jitter Transfer Function JTF, BW and peaking. | 209 |
| 5.3.8   |                                               | 210 |
| 5.3.9   | Jet''' PLL Registers                          | 210 |

| 5.4 AES Receivers<br>5.4.1 Signal Description<br>5.4.2 Module Configuration<br>5.4.3 CTRL<br>5.4.4 STAT_ALL<br>5.4.5 STAT_RXn<br>5.4.6 V_BIT<br>5.4.7 PLL_PULSE_WIDTH<br>5.4.8 FORCE_VCO<br>5.4.9 VCO_MIN_LSB<br>5.4.10 VCO_MIN_MSB<br>5.4.11 CHSTAT_n_BYTE0-3<br>5.4.12 CHSTAT_FULL_BYTE0-23                                                                                                    | 218<br>218<br>219<br>219<br>219<br>220<br>220<br>221<br>221<br>221<br>222<br>222<br>222                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 5.5 AES Transmitters<br>5.5.1 Signal Description<br>5.5.2 Module Configuration<br>5.5.3 MODE_SEL<br>5.5.4 CBL_SEL<br>5.5.5 CS_SEL0<br>5.5.6 CS_SEL1<br>5.5.7 CS_SEL2<br>5.5.8 MUTE<br>5.5.9 V_BIT<br>5.5.10 USR_SEL0<br>5.5.11 USR_SEL1<br>5.5.12 USR_SEL2<br>5.5.13 USR_SEL3<br>5.5.14 CHSTAT_n_BYTE0-3<br>5.5.15 CHSTAT_FULL_BYTE0-23<br>5.5.16 Slave Mode                                     | 223<br>223<br>224<br>225<br>225<br>226<br>227<br>228<br>228<br>229<br>230<br>231<br>232<br>233<br>233<br>233 |
| <ul> <li>5.6 I<sup>n</sup>S Transmitters</li> <li>5.6.1 System view</li> <li>5.6.2 Clock Ports</li> <li>5.6.3 Data transmission</li> <li>5.6.4 Signal Description</li> <li>5.6.5 Module Configuration</li> <li>5.6.6 INSm_CLKP_SETUP</li> <li>5.6.7 INSm_TXn_SETUP</li> <li>5.6.8 InSn_MUTE</li> <li>5.6.9 I<sup>2</sup>S compliant operation</li> <li>5.6.10 TDM compliant operation</li> </ul> | 234<br>234<br>235<br>236<br>237<br>238<br>238<br>238<br>239<br>239<br>239<br>239<br>241                      |
| <ul> <li>5.7 InS Receivers</li> <li>5.7.1 System view</li> <li>5.7.2 Signal Description</li> <li>5.7.3 Module Configuration</li> <li>5.7.4 INSm_RXn_SETUP</li> </ul>                                                                                                                                                                                                                             | 242<br>242<br>242<br>242<br>242<br>242                                                                       |
| <ul> <li>5.8 ADAT Receiver</li> <li>5.8.1 Signal Description</li> <li>5.8.2 Module Configuration</li> <li>5.8.3 ADATRX0</li> <li>5.8.4 ADATRX1</li> </ul>                                                                                                                                                                                                                                        | 244<br>244<br>244<br>244<br>244<br>245                                                                       |

| <ul> <li>5.9 ADAT Transmitter</li> <li>5.9.1 Signal Description</li> <li>5.9.2 Module Configuration</li> <li>5.9.3 ADATTX_CTRL1</li> <li>5.9.4 ADATTXn_MUTE</li> </ul>                                                                                                                                                                                                            | 246<br>246<br>246<br>247<br>247                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 5.10 ARM Audio Transceiver<br>5.10.1 Module Configuration<br>5.10.2 ARMAUDIO_BUF<br>5.10.3 ARMAUDIO_CTRL                                                                                                                                                                                                                                                                          | 248<br>248<br>248<br>248                                                                       |
| <ul> <li>5.11 Audio Mixer</li> <li>5.11.1 Module Configuration</li> <li>5.11.2 MIXER_CTRL</li> <li>5.11.3 MIXER_OVERFLOW</li> <li>5.11.4 MIXER_NUMOFCH</li> <li>5.11.5 MIXER COEFFICIENTS RAM</li> </ul>                                                                                                                                                                          | 249<br>249<br>250<br>250<br>251                                                                |
| Chapter 6 AVS                                                                                                                                                                                                                                                                                                                                                                     | 252                                                                                            |
| <ul> <li>6.1 AVS Audio Receivers</li> <li>6.1.1 Module Configuration</li> <li>6.1.2 ARXn_CFG0</li> <li>6.1.3 ARXn_CFG1</li> <li>6.1.4 ARXn_QSEL0</li> <li>6.1.5 ARXn_QSEL1</li> <li>6.1.6 ARXn_QSEL2</li> <li>6.1.7 ARXn_QSEL3</li> <li>6.1.8 ARXn_QSEL4</li> <li>6.1.9 ARXn_PHDR</li> <li>6.1.10 ARXn_CIP1</li> <li>6.1.12 ARXn_ADO_CFG</li> <li>6.1.13 ARXn_ADO_MIDI</li> </ul> | 253<br>254<br>255<br>256<br>257<br>258<br>258<br>258<br>259<br>259<br>260<br>262<br>263<br>263 |
| <ul> <li>6.2 AVS Audio Transmitters</li> <li>6.2.1 Module Configuration</li> <li>6.2.2 ATXn_CFG</li> <li>6.2.3 ATXn_TSTAMP</li> <li>6.2.4 ATXn_PHDR</li> <li>6.2.5 ATXn_CIP0</li> <li>6.2.6 ATXn_CIP1</li> <li>6.2.7 ATXn_ADI_CFG</li> <li>6.2.8 ATXn_ADI_MIDI</li> </ul>                                                                                                         | 265<br>266<br>267<br>268<br>269<br>270<br>271<br>272                                           |
| 6.3 AVS ITP (Internal Time Processor)<br>6.3.1 Module Configuration<br>6.3.2 ITP_CFG                                                                                                                                                                                                                                                                                              | 273<br>273<br>273                                                                              |
| <ul> <li>6.4 AVS Audio Transmitter Format Handler</li> <li>6.4.1 Module Configuration</li> <li>6.4.2 FMT_TXDIn_CFG0</li> <li>6.4.3 FMT_TXDIn_CFG1</li> <li>6.4.4 FMT_TXDI_CFG2</li> <li>6.4.5 FMT_TXDI_CFG3</li> <li>6.4.6 FMT_TXDI_CFG4</li> </ul>                                                                                                                               | 274<br>274<br>275<br>276<br>277<br>278<br>279                                                  |

| 6.4.7 EMT TYDI CEG5                                                 | 200        |
|---------------------------------------------------------------------|------------|
| 6.4.8 FMT_TXDI_CFG6                                                 | 280        |
| 6.4.9 FMT TXDIN CSBLOCK BYTEn                                       | 282        |
| 6.4.10 FMT_TXDIn_CHANNELn_CS/LABEL                                  | 283        |
| 6.5 AVS Audio Receiver Format Handler<br>6.5.1 Module Configuration | 284<br>284 |
| 6.5.2 FORMAT_RXDIN_CFG                                              | 284        |
| 0.5.3 FURMAT_KADIN_LADELIN<br>6.5.4 FORMAT_BADIn_CSBLOCKn           | 284        |
|                                                                     | 200        |
| 6.6 AVS Interrupt Controller                                        | 287        |
| 6.6.1 Module Configuration                                          | 287        |
| 6.6.2 APBA_INTO_MASK                                                | 288        |
| 6.6.4 ADBA INTI STATUS                                              | 290        |
| 6.6.5 APBA INTI MASK                                                | 291        |
|                                                                     | 272        |
| 6./ AVS Media FIFO                                                  | 293        |
| 6.7.1 Module Configuration                                          | 293        |
| 6.7.2 AVSETO PARTO LIMIT                                            | 294        |
| 6.7.4 AVSEIFO PARTO FLUSH                                           | 296        |
| 6.7.5 AVSFIFO STAT                                                  | 297        |
| 6.8 AVS MIDI Interface                                              | 208        |
| 6.8.1 Module Configuration                                          | 290        |
| 6.8.2 AVSMIDI STAT                                                  | 290        |
| 6.8.3 AVSMIDI_CTRL                                                  | 300        |
| 6.8.4 AVSMIDI RX                                                    | 301        |
| 6.8.5 AVSMIDI_TXn                                                   | 302        |
| 6.9 AVS General                                                     | 303        |
| 6.9.1 Module Configuration                                          | 303        |
| 6.9.2 PDB_INT (AVC_CTRL)                                            | 303        |
| Chapter 7 Crystal Oscillator                                        | 304        |
| 7.1.1 Crystal Specifications                                        | 304        |
| Chapter 8 Electrical Characteristics                                | 306        |
| 8.1 DC Characteristics                                              | 307        |
| 8.1.1 3.3V DC Characteristics                                       | 308        |
| 8.1.2 Absolute Maximum Ratings                                      | 310        |
| 8.1.3 Recommended Operating Conditions                              | 311        |
| 8.2 PLL Characteristics                                             | 312        |
| 8.2.1 Recommended Operating Conditions                              | 312        |
| 8.2.2 DC Electrical Characteristics                                 | 312        |
| 8.2.3 AC Electrical Characteristics                                 | 313        |
| Chapter 9 Thermal Ratings                                           | 314        |
| Appendix 1. Memory Map and Register summary                         | 315        |
|                                                                     |            |

| A.2 DICE | JR Register Summary   | 317 |
|----------|-----------------------|-----|
| A.2.1    | ARM Peripherals       | 317 |
| A.2.2    | DICE                  | 323 |
| A.2.3    | AVS                   | 329 |
| Appendi  | x 2. Revision history | 333 |

## List of Figures

| Figure 1: DICE 22xx Block Diagram                                                      | 18       |
|----------------------------------------------------------------------------------------|----------|
| Figure 2: TCD2220 10EP144                                                              | 22       |
| Figure 3' TCD2210 OFP128                                                               | 22       |
| Figure 4: Global Memory Man (allocated address space)                                  | 38       |
| Figure 5: Audio In-port Routing                                                        | 43       |
| Figure 6: Audio Out-port Routing                                                       | +5<br>44 |
| Figure 7: Internal Functional Diagram                                                  | 50       |
| Figure 8: SDPAM Power ON Initialization Diagram                                        |          |
| Figure Q: Auto-Pefresh Diagram                                                         | 70<br>   |
| Figure 10: Power DOWN Diagram                                                          | 00       |
| Figure 10. Fower DOWN Didyi dill                                                       | 02       |
| Figure 11. SDRAM Page Mice Single Write                                                | 00       |
| Figure 12. SDRAM Page Hit Burst Write                                                  | 00       |
| Figure 14: CDDAM Dage Lit Cingle Dead                                                  | 89       |
| Figure 14: SDRAM Page-Fill Single Read                                                 | 91       |
| Figure 15: SDRAM Page-Miss Single Read                                                 | 92       |
| Figure 16: SDRAM Page-Hit Burst Read                                                   | 93       |
| Figure 1/: Static Read Timing                                                          | 96       |
| Figure 18: FLASH and ROM Page Read Timing                                              | 97       |
| Figure 19: SRAM and FLASH Write Timing                                                 | 97       |
| Figure 20: Turnaround Timing                                                           | 98       |
| Figure 21: Reset/Power-Down Timing                                                     | 98       |
| Figure 22: Read Access of the Device with Ready Signal                                 | 100      |
| Figure 23: Write Access of the Device with Ready Signal                                | 100      |
| Figure 24: Generalized Functional Diagram                                              | 137      |
| Figure 25: Serial Frame Format (using 8 data bit configuration)                        | 138      |
| Figure 26: Block Diagram of AIC                                                        | 159      |
| Figure 27: IRQ Internal Diagram (Interrupt 1)                                          | 160      |
| Figure 28: FIQ Internal Diagram (Interrupt 1)                                          | 162      |
| Figure 29: Basic illustration of the watchdog                                          | 167      |
| Figure 30: Wave form illustrating update of wd_int and wd_reset                        | 168      |
| Figure 31, SPI CLOCK & Data for CLKPHASE = 0                                           | 182      |
| Figure 32: SPI CLOCK & Data for CLKPHASE = 1                                           | 182      |
| Figure 33: DICE Router Block Diagram                                                   | 190      |
| Figure 34: Clock Controller Block Diagram                                              | 193      |
| Figure 35: Clock Doubler Block Diagram                                                 | 195      |
| Figure 36: Detailed Jet <sup>™</sup> PLL Block Diagram                                 | 207      |
| Figure 37: Simple block diagram of Jet <sup>™</sup> PLL including location of dividers | 207      |
| Figure 38: Basic Jet <sup>™</sup> PLL registers                                        | 208      |
| Figure 39: Jet <sup>™</sup> PLL Status Registers                                       | 208      |
| Figure 40: Internal sampling rates generated with the Jet <sup>™</sup> PLL             | 209      |
| Figure 41: Jitter rejection bandwidth set in the Jet <sup>™</sup> PLL                  | 210      |
| Figure 42: Resulting spectrum when converting a 20 kHz audio tone. The spectrum lo     | ooks     |
| the same with and without incoming jitter being removed.                               | 210      |
| Figure 43: I2S compliant operation – 32 bit word length                                | 240      |
| Figure 44: TDM functional diagram                                                      | 241      |
| Figure 45 : ADAT lightpipe channel configuration                                       | 244      |
| Figure 46: S-Mux ADAT lightpipe channel configuration                                  | 246      |
| Figure 47: On-Chip oscillator typical connections                                      | 304      |
| Figure 48. Global Memory Map (allocated Address Space)                                 | 316      |
|                                                                                        |          |

## List of Tables

| Table 1: Ordering Information                        | 16  |
|------------------------------------------------------|-----|
| Table 2: Signal Descriptions                         | 31  |
| Table 3: Shared Pins                                 | 32  |
| Table 4: TCD2220 Only                                | 33  |
| Table 5: ARM Peripheral base addresses               | 40  |
| Table 6: Audio In-port Configuration Bits            | 41  |
| Table 7: Audio Out-port Configuration Bits           | 41  |
| Table 8: GPCSR Memory Map                            | 42  |
| Table 9: Physical Interrupt Sources                  | 49  |
| Table 10: EBI Module Description                     | 60  |
| Table 11: Default Chip Select Memory Map             | 67  |
| Table 12: Default Chip Select Memory Attributes      | 68  |
| Table 13: Alias Addresses                            | 69  |
| Table 14: Remap Addresses                            | 71  |
| Table 15: Default Static Memory Timing Parameters    | 72  |
| Table 16: Read/Write Timing Delays                   | 77  |
| Table 17: Calculating t_ref                          | 79  |
| Table 18: Chip Select Decoding                       | 83  |
| Table 19: SDRAM Read/Write Timing Parameters         | 84  |
| Table 20: Static Memory Read/Write Timing Parameters | 96  |
| Table 21: Signal Description                         | 101 |
| Table 22: I2C Register set                           | 108 |
| Table 23: UART Signal Description                    | 136 |
| Table 24: UART Memory Map                            | 139 |
| Table 25: Interrupt Control Functions                | 142 |
| Table 26: Determining Baud Rate                      | 147 |
| Table 27: GPIO Signal Description                    | 148 |
| Table 28: GPIO Memory Map                            | 149 |
| Table 29: Signal Description                         | 155 |
| Table 30: 1394 LLC Memory Map                        | 156 |
| Table 31: GRAY Encoder Signal Description            | 157 |
| Table 32: GRAY Memory Map                            | 157 |
| Table 33: ICTL Memory Map                            | 164 |
| Table 34: Watch Dog Memory Map                       | 169 |
| Table 35: Timer Memory Map                           | 174 |
| Table 36: Timer N Registers                          | 175 |
| Table 37: Timer System Registers                     | 178 |
| Table 38: SPI Signal description                     | 181 |
| Table 39: CLKPHASE & CLKPL configurations            | 181 |
| Table 40: SPI Memory Map                             | 183 |
| Table 41: Address Remap Memory map                   | 187 |
| Table 42: ROUTER Memory Map                          | 190 |
| Table 43: Router Source Block codes                  | 192 |
| Table 44: Router Destination Block Codes             | 192 |
| Table 45: Clock Controller Signal Description        | 196 |
| Table 46: Clock Ctrl Memory Map                      | 197 |
| Table 47: Sample Rate Counter Input Selection        | 201 |
| Table 48: Jet <sup>™</sup> PLL Control Register Map  | 213 |
| Table 49: Jet <sup>™</sup> PLL Status Memory map     | 214 |

| Table 50: | Jet <sup>™</sup> PLL Memory Map                 | 217 |
|-----------|-------------------------------------------------|-----|
| Table 51: | AES Receiver Memory Map                         | 219 |
| Table 52: | AES Transmitter Memory Map                      | 224 |
| Table 53: | InS instance to channel mapping                 | 234 |
| Table 54: | InS modes                                       | 235 |
| Table 55: | InS Clocks in frame                             | 235 |
| Table 56: | bclk relation to sys_f512fs                     | 236 |
| Table 57: | bclk relation to sys_f512fs                     | 236 |
| Table 58: | Data Shuffle table                              | 237 |
| Table 59: | InS Clock & sync signals                        | 237 |
| Table 60: | I <sup>2</sup> S Transmitter Memory Map         | 238 |
| Table 61: | InS Receivers Memory Map                        | 242 |
| Table 62: | ADAT Receiver Memory Map                        | 244 |
| Table 63: | ADAT Transmitter Memory Map                     | 246 |
| Table 64: | ARM Transceiver Memory Map                      | 248 |
| Table 65: | Mixer Memory Map                                | 249 |
| Table 66: | AVS Audio Receiver Memory Map                   | 253 |
| Table 67: | AVS Audio Transmitter Memory Map                | 265 |
| Table 68: | AVS ITP Memory Map                              | 273 |
| Table 69: | AVS Audio Transmitter Format Handler Memory Map | 274 |
| Table 70: | AVS Audio Receiver Format Handler Memory Map    | 284 |
| Table 71: | AVS INT CTRL Memory Map                         | 287 |
| Table 72: | AVS Media FIFO Memory Map                       | 293 |
| Table 73: | AVS MIDI Memory Map                             | 298 |
| Table 74: | AVS General Memory Map                          | 303 |

## Chapter 1 About DICE TCD22xx

DICE 22xx family of chips contains the following members:

- **TCD2220** Full version with dual audio port, this chip is in a LQFP 144 package. This chip is also known as **DICE JR**
- **TCD2210** Reduced version with one audio port, this chip is in a QFP 128 package. This chip is also known as **DICE Mini.**

Both devices are in a **LEAD FREE** package and are **RHOS** compliant.

| ID        | RHOS         | Temp.                           | Package  |
|-----------|--------------|---------------------------------|----------|
| TCD2210   | $\checkmark$ | 0 ° <b>C</b> to 70 ° <b>C</b>   | QFP 128  |
| ТСD2210-Е | $\checkmark$ | -40 ° <b>C</b> to 85 ° <b>C</b> | QFP 128  |
| TCD2220   | $\checkmark$ | -0 ° <b>C</b> to 70 ° <b>C</b>  | LQFP 144 |
| ТСD2220-Е | $\checkmark$ | -40 °C to 85 °C                 | LQFP 144 |

Ordering information

 Table 1: Ordering Information

## **1.1 Introduction**

The TCD22xx chip family covers a wide range of audio applications, professional as well as consumer. Apart from its IEEE1394 audio streaming capability the chip features all common digital audio interfaces and a 50MHz 32 bit RISC processor including a wide range of peripherals. The DICE cross bar router allows any audio sink to connect to any audio source on a per channel basis. The IEEE1394 streaming engine can handle a total of 32 input channels and 32 output channels distributed on several isochronous channels.

## 1.2 Block Diagram



Figure 1: DICE 22xx Block Diagram

#### 1.3 Chip Features

#### CPU core

- Full 32-bit ARM7TDMI RISC processor
- 32-bit internal bus
- 16-bit Thumb mode
- 16 Kb 0 wait state RAM
- 15 general-purpose 32-bit registers
- 32-bit program counter and status register
- 5 supervisor modes, 1 user mode
- External Bus Interface (EBI)
- Remap of Internal RAM during boot.

#### I2C Interface

- Standard and Full Speed support
- Slave mode with address match logic
- Master Mode
- 10 bit and 7 bit addressing mode
- 16 deep FIFO buffer

#### SPI Interface

- Master and Slave mode
- GPIO used for Slave Select
- Interrupt on Byte transfer complete

#### Dual Timer Unit

- 32 bit counter
- Free running and user-defined count
- Interrupt on counter wrap
- Clocked by CPU clock

#### Watch Dog

#### **Dual Universal Asynchronous Receiver Transmitter (UART)**

- Industry standard 16550 Compliant
- 16 deep receive and transmit FIFOs
- Supports all standard RS232 Rates
- Supports MIDI rate

#### General Purpose Input Output (GPIO)

- 15 individual ports
- Each port configurable as input or output

- Each port configurable for level or edge sensitive interrupts
- Configurable deglitching logic for each port

#### Dual Rotary Encoder Interface (Gray Decoder)

- individual rotary encoder counters
- 8 bit signed counter per port
- Configurable interrupt on value change

#### IEEE 1394 Link Layer Controller (LLC)

- IEEE 1394a compliant LLC
- Compliant PHY interface
- Support for isolation barrier
- 512x32 FIFO for asynchronous communication

#### Digital Interface Communication Engine (DICE)

- Jet<sup>™</sup> PLL
- Cross-bar router with peak detector.
- 2 (1) generic audio port.
  - 4 x 2 ch. of I2S Per port (32KHz to 192KHz)
  - 4 x 4 ch. of I4S per port (32KHz to 192KHz)
  - 2 x 8 ch. of I8S per port (32KHz to 96KHz)
  - 4 x 2 ch. of AES, port 1 or port 2 (32KHz to 192KHz)
  - 2 x 8 ch. of ADAT, port 1 only (8 ch. @96KHz, 4 ch @ 192KHz)
- ARM Audio Receiver/Transmitter, 8 channels (4 ch @ 192KHz)
- IEC 61883-6 Isoc. Receiver, 32 channels (16 ch @ 192KHz)
- IEC 61883-6 Isoc. Transmitter, 32 channels (16 ch @ 192KHz)

#### Power and operating voltage

- 950 mW maximum, 500 mW typical (TBD)
- 3.3 volts I/O
- 1.8 volts core

## 1.4 Package

Product TCD2220 is only available in LQFP144 package. Product TCD2210 is only available in QFP128 package. Both packages are LEAD FREE.

Please refer to the TCD22xxHardwareGuide for details on the packages.

#### Dimensions in Millimeters







Figure 3: TCD2210, QFP128

#### 1.5 Signal Description

The following table lists each I/O signal for the TCD2210 and TCD2220. Note that the chips use a number of shared pins, whereby each shared pin can be configured to contain different signals. The GPCSR module is used to configure the shared pins for a particular signal. The shared pins and their multiple functions are also listed in a table that follows the table below. Note that all the shared pins are bi-directional.

Pins that not available in TCD2210 (QFP128) are marked as N/A in the following table.

#### 1.5.1 Signal Description

| Signal   | TCD2220 | TCD2210 | I/O                   | Drive<br>(mA) | Description                                                                           |
|----------|---------|---------|-----------------------|---------------|---------------------------------------------------------------------------------------|
| Data Bus |         |         |                       |               |                                                                                       |
| D0       | 144     | 1       | I/O (S <sup>1</sup> ) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. $(PU^2, 5V^3)$ |
| D1       | 1       | 2       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D2       | 2       | 3       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D3       | 3       | 4       | I/O (S)               | 6             | Data Bus. Shared read/write data<br>for external SDRAM and Static<br>memory. (PU,5V)  |
| D4       | 4       | 5       | I/O (S)               | 6             | Data Bus. Shared read/write data<br>for external SDRAM and Static<br>memory. (PU,5V)  |
| D5       | 5       | 6       | I/O (S)               | 6             | Data Bus. Shared read/write data<br>for external SDRAM and Static<br>memory. (PU,5V)  |
| D6       | 6       | 7       | I/O (S)               | 6             | Data Bus. Shared read/write data<br>for external SDRAM and Static<br>memory. (PU,5V)  |
| D7       | 7       | 8       | I/O (S)               | 6             | Data Bus. Shared read/write data<br>for external SDRAM and Static<br>memory. (PU,5V)  |
| D8       | 8       | 9       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D9       | 9       | 10      | I/0 (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |

<sup>1</sup> S indicates Schmitt Trigger Input

<sup>2</sup> PU indicates that internal Pull-Up resistor is present on PAD

<sup>3</sup> 5V indicates that the input is 5V tolerant

| Signal      | TCD2220 | TCD2210 | I/O     | Drive<br>(mA) | Description                                                                    |
|-------------|---------|---------|---------|---------------|--------------------------------------------------------------------------------|
| D10         | 10      | 11      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| D11         | 13      | 14      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| D12         | 14      | 15      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| D13         | 15      | 16      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| D14         | 16      | 17      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| D15         | 17      | 18      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| Address Bus |         |         |         |               |                                                                                |
| A0          | 18      | 19      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A1          | 19      | 20      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A2          | 20      | 21      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A3          | 21      | 22      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A4          | 22      | 23      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A5          | 23      | 24      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A6          | 26      | 27      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A7          | 27      | 28      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A8          | 28      | 29      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A9          | 29      | 30      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A10         | 30      | 31      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A11         | 31      | 32      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A12         | 32      | 33      | 0       | 8             | Address Bus. Shared address pins                                               |

| Signal           | TCD2220      | TCD2210      | I/O     | Drive<br>(mA) | Description                                                   |
|------------------|--------------|--------------|---------|---------------|---------------------------------------------------------------|
|                  |              |              |         |               | for SDRAM and Static memory.                                  |
| A13              | 33           | 34           | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A14              | 34           | 35           | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A15              | 35           | 36           | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A16              | 36           | 37           | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A17              | 37           | 38           | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A18              | 38           | 39           | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A19              | 39           | 40           | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| Chip Selects     |              |              |         |               |                                                               |
| CS0*             | 136          | 121          | 0       | 4             | Shared SDRAM and Static Memory Chip Selects                   |
| CS1*             | 46           | 45           | 0       | 4             | Shared SDRAM and Static Memory Chip Selects                   |
| CS2*             | 138 (shared) | 123 (shared) | 0       | 6             | Shared SDRAM and Static Memory Chip Selects                   |
| CS3*             | 139 (shared) | 124 (shared) | 0       | 6             | Shared SDRAM and Static Memory Chip Selects                   |
| Grey Code Rotary | y Encoder    |              |         |               |                                                               |
| EN1_A            | 138 (shared) | 123 (shared) | I (S)   | 6             | Rotary Encoder Input (5V)                                     |
| EN1_B            | 139 (shared) | 124 (shared) | I (S)   | 6             | Rotary Encoder Input (5V)                                     |
| EN2_A            | 65 (shared)  | N/A          | I (S)   | 6             | Rotary Encoder Input (5V)                                     |
| EN2_B            | 66 (shared)  | N/A          | I (S)   | 6             | Rotary Encoder Input (5V)                                     |
| General Purpose  | I/O          |              |         |               |                                                               |
| GPIO0            | 42 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V)                                      |
| GPIO1            | 138 (shared) | 123 (shared) | I/O (S) | 6             | General Purpose I/O (5V)                                      |
| GPIO2            | 139 (shared) | 124 (shared) | I/O (S) | 6             | General Purpose I/O (5V)                                      |
| GPIO3            | 137 (shared) | 122 (shared) | I/O (S) | 6             | General Purpose I/O (5V)                                      |
| GPIO4            | 85 (shared)  | 78 (shared)  | I/O (S) | 6             | General Purpose I/O (5V)                                      |
| GPIO5            | 86 (shared)  | 79 (shared)  | I/O (S) | 6             | General Purpose I/O (5V)                                      |
| GPIO6            | 117 (shared) | 106 (shared) | I/O (S) | 6             | General Purpose I/O (5V)                                      |
| GPIO7            | 118 (shared) | 107 (shared) | I/O (S) | 6             | General Purpose I/O (5V)                                      |

| Signal         | TCD2220      | TCD2210      | I/O     | Drive<br>(mA) | Description                                     |
|----------------|--------------|--------------|---------|---------------|-------------------------------------------------|
| GPIO8          | 119 (shared) | 108 (shared) | I/O (S) | 6             | General Purpose I/O (5V)                        |
| GPIO9          | 55           | N/A          | I/O (S) | 6             | General Purpose I/O (5V)                        |
| GPIO10         | 56           | N/A          | I/O (S) | 6             | General Purpose I/O (5V)                        |
| GPIO11         | 57 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V)                        |
| GPIO12         | 65 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V)                        |
| GPIO13         | 66 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V)                        |
| GPIO14         | 67 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V)                        |
| RAM Clock      |              |              |         |               |                                                 |
| CLKO           | 40           | 41           | 0       | 8             | SDRAM Interface AHB Bus Clock (Z <sup>4</sup> ) |
| SDRAM Dedicate | d Signals    |              |         |               |                                                 |
| CLKE           | 42 (shared)  | N/A          | 0       | 6             | SDRAM Interface Clock Enable                    |
| RAS*           | 41           | 42           | 0       | 8             | SDRAM Interface Row Address<br>Strobe           |
| CAS*           | 44           | 43           | 0       | 8             | SDRAM Interface Column Address<br>Strobe        |
| SDRAM_WE       | 45           | 44           | 0       | 8             | SDRAM Interface Write Enable                    |
| SDRAM_DQM0     | 47           | 46           | 0       | 8             | SDRAM Interface Lower byte mask                 |
| SDRAM_DQM1     | 48           | 47           | 0       | 8             | SDRAM Interface Upper byte mask                 |
| SDRAM_BNK0     | 52           | 51           | 0       | 8             | SDRAM Interface Bank Address                    |
| SDRAM_BNK1     | 53           | 52           | 0       | 8             | SDRAM Interface Bank Address                    |
| SDRAM_A10      | 43           | N/A          | 0       | 8             | SDRAM Precharge A10                             |
| SRAM Interface |              |              |         |               |                                                 |
| SRAM_READY     | 137(shared)  | 122 (shared) | Ι       | 6             | SRAM ready                                      |
| SRAM_BS[0]     | 140          | 125          | 0       | 4             | SRAM lower byte select                          |
| SRAM_BS[1]     | 141          | 126          | 0       | 4             | SRAM upper byte select                          |
| SRAM_WE*       | 142          | 127          | 0       | 8             | SRAM write enable                               |
| SRAM_OE*       | 143          | 128          | 0       | 8             | SRAM output enable                              |
| Phy Interface  |              |              |         |               |                                                 |
| SCLK           | 54           | 53           | I (S)   | -             | 49.152MHz PHY Clock input                       |
| PHD0           | 58           | 54           | I/O (S) | 8             | PHY tristatable data line bit 0                 |
| PHD1           | 59           | 55           | I/O (S) | 8             | PHY tristatable data line bit 1                 |

 $^{\rm 4}$  Z indicates that the output is Z-stateable

| Signal          | TCD2220     | TCD2210     | I/O     | Drive<br>(mA) | Description                                                    |
|-----------------|-------------|-------------|---------|---------------|----------------------------------------------------------------|
| PHD2            | 60          | 56          | I/O (S) | 8             | PHY tristatable data line bit 2                                |
| PHD3            | 63          | 59          | I/O (S) | 8             | PHY tristatable data line bit 3                                |
| PHD4            | 64          | 60          | I/O (S) | 8             | PHY tristatable data line bit 4                                |
| PHD5            | 68          | 61          | I/O (S) | 8             | PHY tristatable data line bit 5                                |
| PHD6            | 69          | 62          | I/O (S) | 8             | PHY tristatable data line bit 6                                |
| PHD7            | 70          | 63          | I/O (S) | 8             | PHY tristatable data line bit 7                                |
| РНСТ0           | 71          | 64          | I/O (S) | 8             | PHY tristatable control line bit 0                             |
| PHCT1           | 72          | 65          | I/O (S) | 8             | PHY tristatable control line bit 1                             |
| PHDI            | 73          | 66          | I (S)   | -             | A high indicates isolation barrier is not present (PU, 5V)     |
| PHLR            | 74          | 67          | 0       | 8             | Serial request output from S-LINK<br>(Z)                       |
| PHLP            | 75          | 68          | 0       | 4             | Link power status. Pulsing if isolation barrier present        |
| PHLO            | 76          | 69          | I (S)   | -             | Link on indication from PHY.<br>Pulsing when asserted (PU, 5V) |
| Word Clock      |             |             |         |               |                                                                |
| WCLK_IN0        | 85 (shared) | 77 (shared) | I (S)   |               | Word Clock In (5V)                                             |
| WCLK_IN1        | 65 (shared) | N/A         | I (S)   |               | Word Clock In (5V)                                             |
| WCLK_OUT0       | 86 (shared) | 79 (shared) | 0       | 6             | Word Clock Out                                                 |
| WCLK_OUT1       | 66 (shared) | N/A         | 0       | 6             | Word Clock Out                                                 |
| External Sample | Clocks      |             |         |               |                                                                |
| EXT_FBR         | 85 (shared) | 78 (shared) | I/O (S) | 6             | External 1fs base rate clock (5V)                              |
| EXT_512BR       | 86 (shared) | 79(shared)  | I/O (S) | 6             | External 512 x base rate clock<br>(5V)                         |
| Audio Port 0    |             |             |         |               |                                                                |
| DO0_0           | 122         | 111         | 0       | 2             | Audio port 0 data out 0                                        |
| DO0_1           | 123         | 112         | 0       | 2             | Audio port 0 data out 1                                        |
| DO0_2           | 124         | 113         | 0       | 2             | Audio port 0 data out 2                                        |
| DO0_3           | 125         | 114         | 0       | 2             | Audio port 0 data out 3                                        |
| DI0_0           | 109         | 102         | I       | -             | Audio port 0 data in 0                                         |
| DI0_1           | 110         | 103         | I       | -             | Audio port 0 data in 1                                         |
| DI0_2           | 111         | 104         | I       | -             | Audio port 0 data in 2                                         |
| DI0_3           | 112         | 105         | I       | -             | Audio port 0 data in 3                                         |

| Signal           | TCD2220      | TCD2210      | I/O   | Drive<br>(mA) | Description                                                  |
|------------------|--------------|--------------|-------|---------------|--------------------------------------------------------------|
| Audio Port 1     |              |              |       |               |                                                              |
| DO1_0            | 126          | N/A          | 0     | 2             | Audio port 1 data out 0                                      |
| D01_1            | 127          | N/A          | 0     | 2             | Audio port 1 data out 1                                      |
| DO1_2            | 128          | N/A          | 0     | 2             | Audio port 1 data out 2                                      |
| D01_3            | 129          | N/A          | 0     | 2             | Audio port 1 data out 3                                      |
| DI1_0            | 113          | N/A          | I     | -             | Audio port 1 data in 0                                       |
| DI1_1            | 114          | N/A          | I     | -             | Audio port 1 data in 1                                       |
| DI1_2            | 115          | N/A          | I     | -             | Audio port 1 data in 2                                       |
| DI1_3            | 116          | N/A          | Ι     | -             | Audio port 1 data in 3                                       |
| Audio Clock Port | S            |              |       |               |                                                              |
| МСК0             | 106          | 99           | 0     | 8             | Master Clock 0                                               |
| FCK0             | 107          | 100          | 0     | 8             | Frame Clock 0 (LR Clock)                                     |
| BCK0             | 108          | 101          | 0     | 8             | Bit Clock 0                                                  |
| MCK1             | 117 (shared) | 106 (shared) | 0     | 6             | Master Clock 1                                               |
| FCK1             | 118 (shared) | 107 (shared) | 0     | 6             | Frame Clock 1 (LR Clock)                                     |
| BCK1             | 119 (shared) | 108 (shared) | 0     | 6             | Bit Clock 1                                                  |
| XTAL             |              |              |       |               |                                                              |
| XTAL2            | 102          | 95           | 0     | -             | XTAL for clock doubler/power<br>manager/LLC                  |
| XTAL1            | 103          | 96           | Ι     | -             | XTAL for clock doubler/power<br>manager/LLC                  |
| Reset            |              |              |       |               |                                                              |
| RESET*           | 79           | 72           | I (S) | -             | Reset – active low (PU, 5V)                                  |
| PLL              |              |              |       |               |                                                              |
| PLLE             | 51           | 50           | I     | -             | PLL Enable (5V)                                              |
| Test             |              |              |       |               |                                                              |
| ТЕМО             | 77           | 70           | Ι     | -             | Test mode pin (PD <sup>5</sup> , 5V)                         |
| SCMO             | 78           | 71           | I     | -             | Scan mode select: LO – boundary<br>scan, HI - debug (PD, 5V) |
| JTAG Interface   |              |              |       |               |                                                              |
| TMS              | 80           | 73           | I     | -             | JTAG - Test mode select (PU, 5V)                             |
| ТСК              | 81           | 74           | I     | -             | JTAG - Test clock (5V)                                       |

 $^{\rm 5}$  PD indicates that internal Pull-Down resistor is present on pad.

| Signal               | TCD2220      | TCD2210      | I/O Drive<br>(mA) |   | Description                                      |
|----------------------|--------------|--------------|-------------------|---|--------------------------------------------------|
| TDI                  | 82           | 75           | I                 | - | JTAG - Test Data In (PU, 5V)                     |
| TDO                  | 83           | 76           | 0                 | 4 | JTAG - Test Data Out (Z, 5V)                     |
| TRST*                | 84           | 77           | I                 | - | JTAG – Test Reset (active low)<br>(PD, 5V)       |
| I2C Interface        |              |              |                   |   |                                                  |
| I2C_CLK              | 104 (shared) | 97 (shared)  | I/O (S)           | 6 | I2C Clock (OD <sup>6</sup> , 5V)                 |
| I2C_DATA             | 105 (shared) | 98 (shared)  | I/O (S)           | 6 | I2C Data (OD, 5V)                                |
| SPI Interface        |              |              |                   |   |                                                  |
| SPIA_SS              | 138 (shared) | 123 (shared) | I/O (S)           | 6 | SPI Slave Select                                 |
| SPIA_MISO            | 139 (shared) | 124 (shared) | I/O (S)           | 6 | SPI Master In, Slave Out                         |
| SPIA_MOSI            | 104 (shared) | 97 (shared)  | I/O (S)           | 6 | SPI Master Out, Slave In                         |
| SPIA_CK              | 105 (shared) | 98 (shared)  | I/O (S)           | 6 | SPI Clock                                        |
| SPIB_SS              | 57 (shared)  | N/A          | I/O (S)           | 6 | Alt. SPI Slave Select                            |
| SPIB_MISO            | 65 (shared)  | N/A          | I/O (S)           | 6 | Alt. SPI Master. In, Slave Out                   |
| SPIB_MOSI            | 66 (shared)  | N/A          | I/O (S)           | 6 | Alt. SPI Master. Out, Slave In                   |
| SPIB_CK              | 67 (shared)  | N/A          | I/O (S)           | 6 | Alt. SPI Clock                                   |
| UART Signals         |              |              |                   |   |                                                  |
| UART0_TX             | 130          | 115          | 0                 | 4 | Serial output; active-high                       |
| UART0_RX             | 131          | 116          | I                 | - | Serial input; active-high (5V)                   |
| UART1_TX             | 134          | 119          | 0                 | 4 | Serial output; active-high                       |
| UART1_RX             | 135          | 120          | Ι                 | - | Serial input; active-high (5V)                   |
| Filters              |              |              |                   |   |                                                  |
| FILTER_AES           | 90           | 83           | А                 | - | AES Receiver filter component connection         |
| FILTER_CLK_DBL       | 95           | 88           | А                 | - | Clock Doubler VCO filter<br>component connection |
| FILTER_HPLL          | 98           | 91           | А                 | - | Jet <sup>™</sup> PLL filter component connection |
| PLL 1.8V             |              |              |                   |   |                                                  |
| PLL_1V8 (AES)        | 89           | 82           | Р                 | - | PLL 1.8 V                                        |
| PLL_1V8<br>(CLK_DBL) | 94           | 87           | Р                 | - | PLL 1.8 V                                        |
| PLL_1V8 (HPLL)       | 99           | 92           | Р                 | - | PLL 1.8 V                                        |

 $^{\rm 6}$  OD indicates Open Drain pad type. External Pull-Up resistor required.

| Signal                | TCD2220 | TCD2210 | I/O | Drive<br>(mA) | Description   |
|-----------------------|---------|---------|-----|---------------|---------------|
| PLL Bulk Bias         |         |         |     |               |               |
| PLL_BULK<br>(CLK_DBL) | 93      | 86      | Р   | -             | PLL Bulk Bias |
| PLL_BULK (HPLL)       | 97      | 90      | Р   | -             | PLL Bulk Bias |
| PLL Ground            |         |         |     |               |               |
| PLL_GND (AES)         | 91      | 84      | Р   | -             | PLL Ground    |
| PLL_GND<br>(CLK_DBL)  | 92      | 85      | Р   | -             | PLL Ground    |
| PLL_GND (HPLL)        | 96      | 89      | Р   | -             | PLL Ground    |
| Core 1.8V             |         |         |     |               |               |
| VDD1IH                | 24      | 25      | Р   | -             | Core 1.8 V    |
| VDD1IH                | 61      | 57      | Р   | -             | Core 1.8 V    |
| VDD1IH                | 100     | 93      | Р   | -             | Core 1.8 V    |
| VDD1IH                | 132     | 117     | Р   | -             | Core 1.8 V    |
| I/O 3.3V              |         |         |     |               |               |
| VDD3OP                | 11      | 12      | Р   | -             | I/O 3.3 V     |
| VDD3OP                | 49      | 48      | Р   | -             | I/O 3.3 V     |
| VDD3OP                | 87      | 80      | Р   | -             | I/O 3.3 V     |
| VDD3OP                | 120     | 109     | Р   | -             | I/O 3.3 V     |
| Core Ground           |         |         |     |               |               |
| VSS3I                 | 25      | 26      | Р   | -             | Core Ground   |
| VSS3I                 | 62      | 58      | Р   | -             | Core Ground   |
| VSS3I                 | 101     | 94      | Р   | -             | Core Ground   |
| VSS3I                 | 133     | 118     | Ρ   | -             | Core Ground   |
| I/O Ground            |         |         |     |               |               |
| VSS3OP                | 12      | 13      | Р   | -             | I/O Ground    |
| VSS3OP                | 50      | 49      | Р   | -             | I/O Ground    |
| VSS3OP                | 88      | 81      | Р   | -             | I/O Ground    |
| VSS3OP                | 121     | 110     | Р   | -             | I/O Ground    |

**Table 2: Signal Descriptions** 

#### 1.5.2 Multi-function Pins

The following table lists all the multiple signal (shared) pins, along with the various signals assigned to each pin.

| LQFP<br>144 | QFP<br>128 | Function   | 1     | Functi   | ion 2   | Functior | 13   | Functio   | n 4   |
|-------------|------------|------------|-------|----------|---------|----------|------|-----------|-------|
| 85          | 78         | EXT_FBR    | (I/O) | GPIO4    | (I/O)   | WCLK_IN0 | (I)  |           |       |
| 86          | 79         | EXT_512BR  | (I/O) | GPIO5    | (I/O)   | WCLK_OUT | 0(0) |           |       |
| 104         | 97         | I2C_CLK    | (I/O) | SPIA_MOS | I (I/O) |          |      |           |       |
| 105         | 98         | I2C_DATA   | (I/O) | SPIA_CK  | (I/O)   |          |      |           |       |
| 117         | 106        | MCK1       | (I/O) | GPIO6    | (I/O)   |          |      |           |       |
| 118         | 107        | FCK1       | (I/O) | GPIO7    | (I/O)   |          |      |           |       |
| 119         | 108        | BCK1       | (0)   | GPIO8    | (I/O)   |          |      |           |       |
| 137         | 122        | SRAM_READY | (I)   | GPIO3    | (I/O)   |          |      |           |       |
| 138         | 123        | CS2*       | (0)   | GPIO1    | (I/O)   | EN1_A    | (I)  | SPIA_SS   | (I/O) |
| 139         | 124        | CS3*       | (0)   | GPIO2    | (I/O)   | EN1_B    | (I)  | SPIA_MISO | (I/O) |
| 42          | N/A        | CLKE       | (0)   | GPIO0    | (I/O)   |          |      |           |       |
| 57          | N/A        | SPIB_SS    | (I/O) | GPIO11   | (I/O)   |          |      |           |       |
| 65          | N/A        | SPIB_MISO  | (I/O) | GPIO12   | (I/O)   | EN2_A    | (I)  | WCLK_IN1  | (I)   |
| 66          | N/A        | SPIB_MOSI  | (I/O) | GPIO13   | (I/O)   | EN2_B    | (I)  | WCLK_OUT  | (0)   |
| 67          | N/A        | SPIB_CK    | (I/O) | GPIO14   | (I/O)   |          |      |           |       |
|             |            |            |       |          |         |          |      |           |       |

**Table 3: Shared Pins** 

#### 1.5.3 TCD2220 Pins (not available on TCD2210)

| Signal          | TCD2220     | I/O     | Drive<br>(mA) | Description               |
|-----------------|-------------|---------|---------------|---------------------------|
| Data Bus        |             |         |               |                           |
| EN2_A           | 65 (shared) | I (S)   | 6             | Rotary Encoder Input (5V) |
| EN2_B           | 66 (shared) | I (S)   | 6             | Rotary Encoder Input (5V) |
| General Purpose | e I/O       |         |               |                           |
| GPIO0           | 42 (shared) | I/O (S) | 6             | General Purpose I/O (5V)  |
| GPIO9           | 55          | I/O (S) | 6             | General Purpose I/O (5V)  |
| GPIO10          | 56          | I/O (S) | 6             | General Purpose I/O (5V)  |
| GPIO11          | 57 (shared) | I/O (S) | 6             | General Purpose I/O (5V)  |
| GPIO12          | 65 (shared) | I/O (S) | 6             | General Purpose I/O (5V)  |
| GPIO13          | 66 (shared) | I/O (S) | 6             | General Purpose I/O (5V)  |



| GPIO14        | 67 (shared) | I/O (S) | 6 | General Purpose I/O (5V)                                           |
|---------------|-------------|---------|---|--------------------------------------------------------------------|
| SDRAM Dedicat | ed Signals  |         |   |                                                                    |
| CLKE          | 42 (shared) | 0       | 6 | SDRAM Interface Clock Enable                                       |
| SMPCHG        | 43          | 0       | 8 | SDRAM Precharge A10                                                |
| Word Clock    |             |         |   |                                                                    |
| WCLK_IN1      | 65 (shared) | I (S)   | 6 | Word Clock In (5V), Suggest using WCLK_INO as that is the default. |
| WCLK_OUT1     | 66 (shared) | 0       | 6 | Word Clock Out, Suggest using WCLK_OUT0 as that is the default.    |
| Audio Port 1  |             |         |   |                                                                    |
| DO1_0         | 126         | 0       | 2 | Audio port 1 data out 0                                            |
| D01_1         | 127         | 0       | 2 | Audio port 1 data out 1                                            |
| DO1_2         | 128         | 0       | 2 | Audio port 1 data out 2                                            |
| DO1_3         | 129         | 0       | 2 | Audio port 1 data out 3                                            |
| DI1_0         | 113         | Ι       | - | Audio port 1 data in 0                                             |
| DI1_1         | 114         | I       | - | Audio port 1 data in 1                                             |
| DI1_2         | 115         | I       | - | Audio port 1 data in 2                                             |
| DI1_3         | 116         | I       | - | Audio port 1 data in 3                                             |
| SPI Interface |             |         |   | TCD2210 has alternative SPI Pins.                                  |
| SPIB_SS       | 57 (shared) | I/O (S) | 6 | Alt. SPI Slave Select                                              |
| SPIB_MISO     | 65 (shared) | I/O (S) | 6 | Alt. SPI Master. In, Slave Out                                     |
| SPIB_MOSI     | 66 (shared) | I/O (S) | 6 | Alt. SPI Master. Out, Slave In                                     |
| SPIB_CK       | 67 (shared) | I/O (S) | 6 | Alt. SPI Clock                                                     |

Table 4: TCD2220 Only

## Chapter 2 The ARM7TDMI

The ARM7TDMI is a member of the Advanced RISC Machines (ARM) family of general purpose 32bit microprocessors, which offer high performance for very low power consumption and price.

The ARM architecture is based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and related decode mechanism are much simpler than those of microprogrammed Complex Instruction Set Computers. This simplicity results in a high instruction throughput and impressive real-time interrupt response from a small and cost-effective chip. Pipelining is employed so that all parts of the processing and memory systems can operate continuously. Typically, while one instruction is being executed, its successor is being decoded, and a third instruction is being fetched from memory.

The ARM memory interface has been designed to allow the performance potential to be realized without incurring high costs in the memory system. Speed-critical control signals are pipelined to allow system control functions to be implemented in standard low-power logic, and these control signals facilitate the exploitation of the fast local access modes offered by industry standard dynamic RAMs.

#### 2.1 Architecture

The ARM7TDMI processor employs a unique architectural strategy known as THUMB, which makes it ideally suited to high-volume applications with memory restrictions, or applications where code density is an issue.

#### 2.1.1 The THUMB Concept

The key idea behind THUMB is that of a super-reduced instruction set. Essentially, the ARM7TDMI processor has two instruction sets:

- the standard 32-bit ARM set
- a 16-bit THUMB set

The THUMB set's 16-bit instruction length allows it to approach twice the density of standard ARM code while retaining most of the ARM's performance advantage over a traditional 16-bit processor using 16-bit registers. This is possible because THUMB code operates on the same 32-bit register set as ARM code.

THUMB code is able to provide up to 65% of the code size of ARM, and 160% of the performance of an equivalent ARM processor connected to a 16-bit memory system.

#### 2.1.2 THUMB's Advantages

THUMB instructions operate with the standard ARM register configuration, allowing excellent interoperability between ARM and THUMB states. Each 16-bit THUMB instruction has a corresponding 32-bit ARM instruction with the same effect on the processor model.

The major advantage of a 32-bit (ARM) architecture over a 16-bit architecture is its ability to manipulate 32-bit integers with single instructions, and to address a large address space efficiently. When processing 32-bit data, a 16-bit architecture will take at least two instructions to perform the same task as a single ARM instruction.

However, not all the code in a program will process 32-bit data (for example, code that performs character string handling), and some instructions, like Branches, do not process any data at all.

If a 16-bit architecture only has 16-bit instructions, and a 32-bit architecture only has 32-bit instructions, then overall the 16-bit architecture will have better code density, and better than one half the performance of the 32-bit architecture. Clearly 32-bit performance comes at the cost of code density.

THUMB breaks this constraint by implementing a 16-bit instruction length on a 32-bit architecture, making the processing of 32-bit data efficient with a compact instruction coding. This provides far better performance than a 16-bit architecture, with better code density than a 32-bit architecture.

THUMB also has a major advantage over other 32-bit architectures with 16-bit instructions. This is the ability to switch back to full ARM code and execute at full speed. Thus critical loops for applications such as

- fast interrupts
- DSP algorithms

can be coded using the full ARM instruction set, and linked with THUMB code. The overhead of switching from THUMB code to ARM code is folded into sub-routine entry

time. Various portions of a system can be optimized for speed or for code density by switching between THUMB and ARM execution as appropriate.
# Chapter 3 Memory Map and Interrupts

This section explains how the various modules in the system are addressed from the ARM. There are two memory maps, one in the case where Remap is active and one where it is inactive. The remap functionality is used during boot. The ARM processor assumes that the exception vectors are placed from address 0x0000 0000 after reset and therefore it is essential that the external program memory (typically a flash) is mapped to this address after reset. In most applications it is necessary to be able to change exception vectors at runtime, and for that purpose the internal RAM can be mapped into the low address space. A reset will always force CS0 to be mapped to address 0x0000 0000. By writing a "1" to register 0xc0000008 in the Remap module the low portion of the address space can be replaced with the internal RAM. A shadow of the internal RAM will always be present at address 0x8000 0000 enabling the application to write to it before the remapping is done. The size of internal SRAM is 16KB; however, 16MB of address space is allocated to it. The address bits 14-24 are ignored when internal SRAM is accessed.

Note, that in regular DICE JR/Mini applications only boot mode is used. All applications run from SDRAM. ARM core remap function is only used for testing purposes and not recommended for the users.

| 0xffff_ffff | Boot Mode<br>(Remap active)          | 0xffff_ffff | ( |
|-------------|--------------------------------------|-------------|---|
|             | Reserved<br>AHB Space                |             |   |
| 0xD100_0000 |                                      | 0xD100_0000 |   |
| 0xD000_0000 |                                      | 0xD000_0000 |   |
| 0xCF00_0000 | AVS                                  | 0xCF00_0000 |   |
| 0xCE00_0000 | DICE                                 | 0xCE00_0000 | _ |
| 0xCD00_0000 | Reserved<br>APB Space                | 0xCD00_0000 |   |
| 0xCC00 0000 | HPLL                                 | 0xCC00 0000 |   |
| _           | Reserved<br>APB Space                | _           |   |
| 0xC600_0000 | PDBINT                               | 0xC600_0000 |   |
| 0xC700_0000 | GPCSR                                | 0xC700_0000 |   |
| 0xC600_0000 | GRAY                                 | 0xC600_0000 |   |
| 0xC500_0000 | SPI                                  | 0xC500_0000 |   |
| 0xC400_0000 | 2 Wire IF<br>Master/Slave            | 0xC400_0000 |   |
| 0xC300_0000 | GPIO                                 | 0xC300_0000 |   |
| 0xC200_0000 | Timer                                | 0xC200_0000 |   |
| 0xC100_0000 | Interrupt Controller                 | 0xC100_0000 |   |
| 0xC000_0000 | Address Remap                        | 0xC000_0000 |   |
| 0xBF00_0000 | Watchdog                             | 0xBF00_0000 |   |
| 0xBE00_0000 | UART #0                              | 0xBE00_0000 |   |
| 0xBD00_0000 | UART #1                              | 0xBD00_0000 |   |
| 0x8300_0000 | Reserved<br>AHB Space                | 0x8300_0000 |   |
| 0x8200_0000 | 1394LLC Memory<br>Space              | 0x8200_0000 |   |
| 0x8100_0000 | Memory Controller<br>Setup Registers | 0x8100_0000 |   |
| 0x8000_0000 | Internal SRAM<br>Mirror Address      | 0x8000_0000 |   |
|             | Memory Controller                    | 0x0100_0000 |   |
| 0x0000_0000 |                                      | 0x0000_0000 |   |

| 0xffff_ffff      | Normal mode<br>(Remap inactive)      | _      |
|------------------|--------------------------------------|--------|
|                  | Reserved<br>AHB Space                |        |
| 0xD100_0000      | PWRMGR                               | 16MB   |
| 0xD000_0000      | AVS                                  | 16MB   |
| 0xCF00_0000      | DICE                                 | 16MP   |
| 0xCE00_0000      | Reserved                             |        |
| 0xCD00_0000      | APB Space                            | 16MB   |
| 0xCC00_0000      | HPLL                                 | 16MB   |
|                  | Reserved<br>APB Space                |        |
| 0xC600_0000      | PDBINT                               | 16MB   |
| 0xC700_0000      | GPCSR                                | 16MB   |
| 0xC600_0000      | GRAY                                 | 16MB   |
| 0xC500_0000      | SPI                                  | 16MB   |
| 0xC400 0000      | 2 Wire IF<br>Master/Slave            | 16MB   |
| -<br>0xC300 0000 | GPIO                                 | 16MB   |
| -<br>0xC200 0000 | Timer                                | 16MB   |
| _<br>0xC100 0000 | Interrupt Controller                 | 16MB   |
| -<br>0xC000 0000 | Address Remap                        | 16MB   |
| 0xBF00 0000      | Watchdog                             | 16MB   |
| -<br>0xbe00 0000 | UART #0                              | 16MB   |
| -<br>0xbd00 0000 | UART #1                              | 16MB   |
| -<br>0x8300_0000 | Reserved<br>AHB Space                | 928MB  |
| 0×8200 0000      | 1394LLC Memory<br>Space              | 16MB   |
| 0                | Memory Controller<br>Setup Registers | 16MB   |
| 0~8000 0000      | Internal SRAM                        | 16MB   |
| 0×0100 0000      | Memory Controller                    | 2032MB |
| 0x0000_0000      | Internal SRAM                        | 16MB   |

#### Figure 4: Global Memory Map (allocated address space)

| TECHN | OLOGIES |
|-------|---------|
|       |         |

# Chapter 4 ARM Peripherals

| Base Address | Functional Block                      |
|--------------|---------------------------------------|
| 0x8100 0000  | Memory Controller                     |
| 0x8200 0000  | 1394LLC                               |
| 0xBD00 0000  | UART#1                                |
| 0xBE00 0000  | UART#0                                |
| 0xBF00 0000  | Watch Dog                             |
| 0xC000 0000  | Address Remap Register                |
| 0xC100 0000  | Interrupt Controller                  |
| 0xC200 0000  | Dual Timer/Counter                    |
| 0xC300 0000  | GPIO                                  |
| 0xC400 0000  | I2C                                   |
| 0xC500 0000  | SPI                                   |
| 0xC600 0000  | Gray                                  |
| 0xC700 0000  | GPCSR                                 |
| 0xC800 0000  | PDB Interface (AVS Global Enable)     |
| 0xCC00 0000  | Jet <sup>™</sup> PLL                  |
| 0xCE00 0000  | DICE Sub System                       |
| 0xCF00 0000  | AVS Sub System (1394 Audio Interface) |
| 0xD000 0000  | Power Manager                         |

Table 5: ARM Peripheral base addresses

# 4.1 General Purpose Control and Status Registers

The GPCSR controls various modes and pin mappings in the TCD2210/20. Due to the high integration some pins share several functions. The GPCSR selects the mapping of those pins. GPCSR Registers control the function of all multipurpose pins including GPIOs as well as the function of AUDIO PORTS

#### 4.1.1 Audio Input ports

The DICE JR (2220) has 2 audio input ports and DICE Mini (2210) only has Port 0. Each port has 4 data lines. The 4 data lines in each port are routed to the corresponding InS interface. The lines can also be routed to the AES receivers and ADAT receivers depending on the configuration setting. See AUDIO PORT register description.

The following configuration signals exist for the configuration of the Audio Input Ports

| Name        | bits | Values                                            |
|-------------|------|---------------------------------------------------|
| CFG_AES0_RX | 2    | 00: AES Off, logic 0 routed to receiver           |
| CFG_AES1_RX | 2    | 01: AES received from Audio port 0 signal         |
| CFG_AES2_RX | 2    | 10:AES received from Audio port 1 signal (TCD2220 |
| CFG_AES3_RX | 2    | 11: Reserved                                      |

 Table 6: Audio In-port Configuration Bits

# 4.1.2 Audio Output ports

The DICE JR (2220) has 2 audio input ports and DICE Mini (2210) only has Port 0. Each port has 4 data lines. The 4 data lines in each port can source from the corresponding InS, AES or ADAT interface. Only Port 0 can be configured for ADAT.

| Name      | bits | Values            |
|-----------|------|-------------------|
| CFG_A0_L0 | 1    | 0: InS0 Tx0/1     |
| CFG_A0_L1 | 1    | 1: AES            |
| CFG_A0_L2 | 2    | 00: InS0 Tx2/3    |
| CFG_A0_L3 | 2    | 01: AES           |
|           |      | 10: ADAT          |
|           |      | 11: Reserved      |
| CFG_A1_L0 | 1    | 0: InS1 Tx0/1/2/3 |
| CFG_A1_L1 | 1    | 1: AES            |
| CFG_A1_L2 | 1    |                   |
| CFG_A1_L3 | 1    |                   |

**Table 7: Audio Out-port Configuration Bits** 

| Address     | Register           |
|-------------|--------------------|
| 0xc700 0000 | GPCSR_SYSTEM       |
| 0xC700 0004 | GPCSR_AUDIO_SELECT |
| 0xC700 0008 | GPCSR_GPIO_SELECT  |
| 0xC700 0014 | GPCSR_CHIP_ID      |
| 0xC700 0024 | GPCSR_IRQ_SEL0_5   |
| 0xC700 0028 | GPCSR_IRQ_SEL6_11  |
| 0xC700 002c | GPCSR_IRQ_SEL12_17 |
| 0xC700 0030 | GPCSR_IRQ_SEL18    |
| 0xC700 0034 | GPCSR_FIQ_SEL0_5   |
| 0xC700 0038 | GPCSR_FIQ_SEL6_7   |

# 4.1.3 Module Configuration

 Table 8: GPCSR Memory Map

# 4.1.4 GRCSR\_SYSTEM

0xc700 0000

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9        | 8 | 7 | 6 | 5 | 4 | 3 | 2    | 1    | 0    |
|--------|----|----|----|----|----|----|----------|---|---|---|---|---|---|------|------|------|
|        |    |    |    |    |    |    | Reserved |   |   |   |   |   |   | RMAP | LPIE | LLCM |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0    | 0    |
|        | R  | R  | R  | R  | R  | R  | R        | R | R | R | R | R | R | RW   | RW   | RW   |

| Name | Bit | Reset | Dir | Description                                                                                     |
|------|-----|-------|-----|-------------------------------------------------------------------------------------------------|
| RMAP | 2   | 0     | RW  | Remap signal to Memory controller. This is not related to the boot time<br>remap functionality. |
| LPIE | 1   | 1     | RW  | Enable LPI during startup.<br>0: Ask PHY to remove SCLK.<br>1: Keep SCLK running.               |
| LLCM | 0   | 1     | RW  | Select 1394 LLC Mode.<br>0: 1394-1995<br>1: 1394-2000a                                          |

# 4.1.5 GPCSR\_AUDIO\_SELECT

The audio ports share the InS, AES and ADAT interfaces. The figures below show how the signals are multiplexed onto the audio port.



Figure 5: Audio In-port Routing







| Name    | Bit   | Reset | Dir  | Description                                                                                                                                          |
|---------|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| AO1_3   | 17    | 0     | RW   | Audio Out Port 1, Line 3. Selects between I <sup>n</sup> S or AES functionality.<br>0: I <sup>n</sup> S1_3<br>1: AES3                                |
|         |       |       |      | Note: This only applies to TCD2220.                                                                                                                  |
| AO1_2   | 16    | 0     | RW   | Audio Out Port 1, Line 2. Selects between I <sup>n</sup> S or AES functionality.<br>0: I <sup>n</sup> S1_2<br>1: AES2                                |
|         |       |       | 5.47 | Note: This only applies to TCD2220.                                                                                                                  |
| AO1_1   | 15    | 0     | RW   | Audio Out Port 1, Line 1. Selects between I'S or AES functionality.<br>0: I <sup>°</sup> S1_1<br>1: AES1                                             |
|         |       |       |      | Note: This only applies to TCD2220.                                                                                                                  |
| AO1_0   | 14    | 0     | RW   | Audio Out Port 1, Line 0. Selects between I <sup>n</sup> S or AES functionality.<br>0: I <sup>n</sup> S1_0<br>1: AES0                                |
|         |       |       |      | Note: This only applies to TCD2220.                                                                                                                  |
| AO0_3   | 13:12 | 00    | RW   | Audio Out Port 0, Line 3. Selects between I <sup>n</sup> S, AES or ADAT<br>functionality.<br>00: I <sup>n</sup> S0_3<br>01: AES3<br>10: ADAT1        |
|         |       |       |      | 11: Reserved                                                                                                                                         |
| AO0_2   | 11:10 | 00    | RW   | Audio Out Port 0, Line 2. Selects between I'S, AES or ADAT<br>functionality.<br>00: I'S0_2<br>01: AES2<br>10: ADAT0<br>11: Reserved                  |
| AO0_1   | 9     | 0     | RW   | Audio Out Port 0, Line 1. Selects between I <sup>n</sup> S or AES functionality.<br>0: I <sup>n</sup> S0_1<br>1: AES1                                |
| AO0_0   | 8     | 0     | RW   | Audio Out Port 0, Line 0. Selects between I <sup>n</sup> S or AES functionality.<br>0: I <sup>r</sup> S0_0<br>1: AES0                                |
| AES3_RX | 7:6   | 00    | RW   | Selects the source pin for AES3 Receiver<br>00: Off<br>01: Audio Port 0, line 3<br>10: Audio Port 1, line 3 (only valid for TCD2220)<br>11: Reserved |
| AES2_RX | 5:4   | 00    | RW   | Selects the source pin for AES2 Receiver<br>00: Off<br>01: Audio Port 0, line 2<br>10: Audio Port 1, line 2 (only valid for TCD2220)<br>11: Reserved |
| AES1_RX | 3:2   | 00    | RW   | Selects the source pin for AES1 Receiver<br>00: Off<br>01: Audio Port 0, line 1<br>10: Audio Port 1, line 1 (only valid for TCD2220)<br>11: Reserved |
| AES0_RX | 1:0   | 00    | RW   | Selects the source pin for AES0 Receiver<br>00: Off<br>01: Audio Port 0, line 0<br>10: Audio Port 1, line 0 (only valid for TCD2220)<br>11: Reserved |

# 4.1.6 GPCSR\_GPIO\_SELECT

Address - 0xc700 0008

|                                                         | 31     | 30     | 29   | 28        | 27    | 26      | 25                                                                                    | 24                     | 23                | 22                   | 21                   | 20             | 19                                      | 18        | 17         | 16    |  |
|---------------------------------------------------------|--------|--------|------|-----------|-------|---------|---------------------------------------------------------------------------------------|------------------------|-------------------|----------------------|----------------------|----------------|-----------------------------------------|-----------|------------|-------|--|
|                                                         |        |        |      |           |       |         |                                                                                       | Reserved               |                   |                      |                      |                |                                         |           |            | ENC1  |  |
| Reset:                                                  | 0      | 0      | 0    | 0         | 0     | 0       | 0                                                                                     | 0                      | 0                 | 0                    | 0                    | 0              | 0                                       | 0         | 0          | 0     |  |
|                                                         | RW     | RW     | RW   | RW        | RW    | RW      | RW                                                                                    | RW                     | RW                | RW                   | RW                   | RW             | RW                                      | RW        | RW         | RW    |  |
|                                                         |        |        |      |           |       |         |                                                                                       |                        |                   |                      |                      |                |                                         |           |            |       |  |
|                                                         | 15     | 14     | 13   | 12        | 11    | 10      | 9                                                                                     | 8                      | 7                 | 6                    | 5                    | 4              | 3                                       | 2         | 1          | 0     |  |
|                                                         | GPIO13 | GPIO12 | ENC2 | GPIO8     | GPIO7 | GPIO6   | 0                                                                                     | SPIO5                  | G                 | SPIO4                | GPIO3                | GPIO2          | GPI01                                   | SPI       |            | GPIO0 |  |
| Reset:                                                  | 0      | 0      | 0    | 0         | 0     | 0       | 0                                                                                     | 0                      | 0                 | 0                    | 0                    | 0              | 0                                       | 0         | 0          | 0     |  |
|                                                         | RW     | RW     | RW   | RW        | RW    | RW      | RW                                                                                    | RW                     | RW                | RW                   | RW                   | RW             | RW                                      | RW        | RW         | RW    |  |
|                                                         |        |        |      |           |       |         |                                                                                       |                        |                   |                      |                      |                |                                         |           |            |       |  |
| Name                                                    | 9      |        | Bit  | Res       | set   | Dir     | De                                                                                    | scription              | ן<br>י            |                      |                      |                |                                         |           | ·          |       |  |
| ENC                                                     | 1      |        | 16   | 0         |       | RW      | Se                                                                                    | lects be<br>hored if p | tween<br>bins co  | Encode               | r 1 and<br>I for SP  | other fi<br>I. | unction                                 | ality, tr | nis settir | ng is |  |
|                                                         |        |        |      |           |       |         | 0:<br>1:                                                                              | Encodei<br>Other fu    | r 1 (Ov<br>nction | errules :<br>See Gl) | setting 1<br>PIO1/2) | for GPI        | O1/2)                                   |           |            |       |  |
| GPIC                                                    | 013    |        | 15   | 00        |       | RW      | Se<br>0:                                                                              | lects be<br>GPIO13     | tween             | GPIO13               | 8 and W              | CLK_C          | DUT1.                                   |           |            |       |  |
| GRIC                                                    | 12     |        | 11   | 1: WCLK_O |       |         |                                                                                       | <u>OUT ((</u>          | 0)<br>GPI012      |                      |                      |                |                                         |           |            |       |  |
| GFIC                                                    | /12    |        | 14   | 0         |       |         | 0:                                                                                    | GPIO12                 |                   | GFIOTZ               |                      |                | NT.                                     |           |            |       |  |
| ENC                                                     | 2      |        | 13   | 0         |       | RW      | Se                                                                                    | lects be               | tween             | Encode               | r 2 and              | other f        | unction                                 | ality, th | nis settir | ng is |  |
|                                                         |        |        |      |           |       |         | ignored if pins configured for SPI.<br>0: Encoder 2 (Overrules setting for GPIO12/13) |                        |                   |                      |                      |                |                                         |           |            |       |  |
| GPIC                                                    | 08     |        | 12   | 0         |       | RW      | 1:<br>Se                                                                              | Other fu<br>lects be   | nction<br>tween   | (See Gl<br>GPIO8     | PIO12/1<br>and BC    | I3)<br>K1.     |                                         |           |            |       |  |
|                                                         |        |        |      |           |       |         | 0:<br>1                                                                               | GPIO8 (<br>BCK1 (      | (I/O)             |                      |                      |                |                                         |           |            |       |  |
| GPIC                                                    | )7     |        | 11   | 0         |       | RW      | Se                                                                                    | lects be               | tween             | GPIO7                | and FC               | K1.            |                                         |           |            |       |  |
|                                                         |        |        |      |           |       |         | 0.<br>1:                                                                              | GFI07 (<br>FCK1 (0     | )<br>)            |                      |                      |                |                                         |           |            |       |  |
| GPIC                                                    | 06     |        | 10   | 0         |       | RW      | Se<br>0:                                                                              | elects be<br>GPIO6 (   | tween<br>[I/O)    | GPIO6                | and MC               | :K1.           |                                         |           |            |       |  |
| GPIC                                                    | )5     |        | 9:8  | 0         |       | RW      | 1:<br>Se                                                                              | MCK1 (<br>lects be     | D)<br>tween       | GPIO5.               | EXT F                | 512 in         | . EXT                                   | F512      | out and    |       |  |
|                                                         | -      |        |      | -         |       |         | W                                                                                     |                        |                   | ,                    | _                    |                | , _                                     |           |            |       |  |
|                                                         |        |        |      |           |       |         | 01                                                                                    | : EXT_F                | 512 In            | n (I)                |                      |                |                                         |           |            |       |  |
|                                                         |        |        |      |           |       |         | 10                                                                                    | : EXT_F<br>: WCLK      | _OUT(             | Dut (O)              |                      |                |                                         |           |            |       |  |
| GPIC                                                    | 04     |        | 7:6  | 0         |       | RW      | Se<br>00                                                                              | lects be<br>: GPIO4    | tween<br>(I/O)    | GPIO4,               | EXT_F                | BR In d        | or EXT_                                 | _FBR d    | out.       |       |  |
| 01: EXT_FBR In (I) (or WCLK_IN0)<br>10: EXT_FBR Out (O) |        |        |      |           |       |         |                                                                                       |                        |                   |                      |                      |                |                                         |           |            |       |  |
| GPIC                                                    | )3     |        | 5    | 0         |       | RW      | 11<br>Se                                                                              | : Reserv               | red<br>tween      | GPIO3                | and SR               | AM RF          | ADY                                     |           |            |       |  |
|                                                         |        |        | U    | U         |       | 1 1 1 1 | 0:<br>1                                                                               | GPIO3 (                | (I/O)<br>READ     | Y (I)                |                      | / UVI_I \L     | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |            |       |  |
| GPIC                                                    | )2     |        | 4    | 0         |       | RW      | Se                                                                                    | lects be               | tween             | GPIO2                | and CS               | 3, this        | setting                                 | is igno   | red if pi  | าร    |  |
|                                                         |        |        |      |           |       |         | co<br>0:                                                                              | GPIO2 (                | 101 SF<br>[I/O)   | -1 (321=(            | ) or (1              |                | 0).                                     |           |            |       |  |
|                                                         |        |        |      |           |       |         | 1:                                                                                    | CS3* (C                | )                 |                      |                      |                |                                         |           |            |       |  |

| Name  | Bit | Reset | Dir | Description                                                                                                                                                                                                                                        |
|-------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIO1 | 3   | 0     | RW  | Selects between GPIO1 and CS2, this setting is ignored if pins<br>configured for SPI or ENC1.<br>0: GPIO1 (I/O)<br>1: CS2* (O)                                                                                                                     |
| SPI   | 2:1 | 00    | RW  | Selects the pins used for SPI. On TCD2210 there are two alternative<br>sets of pins for SPI.<br>00: No SPI (default)<br>01: SPI_a (overrules setting for ENC1 and GPI01/2)<br>10: SPI_b (overrules setting for ENC2 and GPI012/13)<br>11: Reserved |
| GPIO0 | 0   | 0     | RW  | Selects between GPIO0 and CLKE functionality.<br>0: GPIO0 (I/O)<br>1: CLKE (O)                                                                                                                                                                     |

### 4.1.7 GPCSR\_CHIP\_ID

Address - 0xc700 0014



| Name      | Bit   | Reset | Dir | Description                                                                                  |
|-----------|-------|-------|-----|----------------------------------------------------------------------------------------------|
| CHIP_ID   | 31:24 | 01h   | RO  | Chip ID, always 01h for DICE_JR Family                                                       |
| CHIP_REV  | 23:16 | 00h   | RO  | Chip Revision, 00h                                                                           |
| CHIP_TYPE | 3:0   | XX    | RO  | Chip Type<br>1111: TCD2220<br>1110: TCD2210<br>xxxx: All other types reserved for future use |

#### 4.1.8 Considerations for Chip Selects

Chip select 2 and 3 (CS2-CS3) are by default programmed to have an alternative function as an input. If external memories or peripherals are connected to those pins, a pull-up should be added in order not to select those devices during boot.

#### 4.1.9 GPCSR\_IRQ/FIQ\_SEL - 0xc700 0024 - 0xc700 0038

The Interrupt controller defined in section 4.8 has 32 vectored, prioritized IRQ sources and 8 FIQ sources. Only IRQ sources 0 to 18 are used by the TCD22XX. Each of those

| TC | APPLIED<br>TECHNOLOGIES |
|----|-------------------------|
|    |                         |

19 logical IRQ sources and 8 logical FIQ can be connected to any of the 19 physical interrupt sources. The IRQ\_SEL registers controls this routing.

| Value         | Interrupt source     |
|---------------|----------------------|
| 00000         | SPI                  |
| 00001         | WatchDog             |
| 00010         | 1394Link_on          |
| 00011         | 1394Link             |
| 00100         | Gray                 |
| 00101         | GPIO                 |
| 00110         | Timer                |
| 00111         | UART0                |
| 01000         | UART1                |
| 01001         | 12C                  |
| 01010         | Reserved             |
| 01011         | AVS_IRQ0             |
| 01100         | AVS_IRQ1             |
| 01101         | ARM_AUDIO_OVERFLOW   |
| 01110         | ARM_AUDIO_IRQ        |
| 01111         | Jet <sup>™</sup> PLL |
| 10000         | MIXER_OVL            |
| 10001         | POWER_MGR            |
| 10010         | MIDI                 |
| 10011 – 11111 | Reserved             |

Each register is 5 bits wide and the assignment is as follows:

**Table 9: Physical Interrupt Sources** 

# 4.1.10 IRQ\_SEL0\_5

Address - 0xc700 0024



4.1.11 IRQ\_SEL6\_11

#### Address - 0xc700 0028

|        | 31   | 30   | 29 | 28   | 27    | 26 | 25 | 24 | 23   | 22    | 21 | 20 | 19 | 18   | 17 | 16 |
|--------|------|------|----|------|-------|----|----|----|------|-------|----|----|----|------|----|----|
|        | Rese | rved |    |      | IRQ11 |    |    |    |      | IRQ10 |    |    |    | IRC  | 29 |    |
| Reset: | 0    | 0    | 0  | 0    | 0     | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0    | 0  | 0  |
|        | RW   | RW   | RW | RW   | RW    | RW | RW | RW | RW   | RW    | RW | RW | RW | RW   | RW | RW |
|        |      |      |    |      |       |    |    |    |      |       |    |    |    |      |    |    |
|        | 15   | 14   | 13 | 12   | 11    | 10 | 9  | 8  | 7    | 6     | 5  | 4  | 3  | 2    | 1  | 0  |
|        | IRQ9 |      |    | IRQ8 |       |    |    |    | IRQ7 |       |    |    |    | IRQ6 |    |    |
| Reset: | 0    | 0    | 0  | 0    | 0     | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0    | 0  | 0  |
|        | RW   | RW   | RW | RW   | RW    | RW | RW | RW | RW   | RW    | RW | RW | RW | RW   | RW | RW |

# 4.1.12 IRQ\_SEL12\_17

Address - 0xc700 002c



### 4.1.13 IRQ\_SEL18

Address - 0xc700 0030

|        | 15 | 14 | 13 | 12 | 11 | 10       | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2     | 1  | 0  |
|--------|----|----|----|----|----|----------|----|----|----|----|----|----|----|-------|----|----|
|        |    |    |    |    |    | Reserved |    |    |    |    |    |    |    | IRQ18 |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  |
|        | RW | RW | RW | RW | RW | RW       | RW | RW | RW | RW | RW | RW | RW | RW    | RW | RW |

### 4.1.14 FIQ\_SEL0\_5

Address - 0xc700 0034

|        | 31  | 30    | 29 | 28 | 27   | 26 | 25 | 24 | 23 | 22   | 21 | 20 | 19 | 18  | 17 | 16 |
|--------|-----|-------|----|----|------|----|----|----|----|------|----|----|----|-----|----|----|
|        | Res | erved |    |    | FIQ5 |    |    |    |    | FIQ4 |    |    |    | FIC | 13 |    |
| Reset: | 0   | 0     | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0   | 0  | 0  |
|        | RW  | RW    | RW | RW | RW   | RW | RW | RW | RW | RW   | RW | RW | RW | RW  | RW | RW |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|        | FIQ3 |    | FIQ2 |    |    |    | FIQ1 |    |    |    |    | FIQ0 |    |    |    |    |  |
|--------|------|----|------|----|----|----|------|----|----|----|----|------|----|----|----|----|--|
| Reset: | 0    | 0  | 0    | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  |  |
|        | RW   | RW | RW   | RW | RW | RW | RW   | RW | RW | RW | RW | RW   | RW | RW | RW | RW |  |

# 4.1.15 FIQ\_SEL6\_7

Address - 0xc700 0038

|        | 15 | 14 | 13   | 12   | 11 | 10 | 9  | 8  | 7    | 6  | 5  | 4  | 3  | 2    | 1  | 0  |
|--------|----|----|------|------|----|----|----|----|------|----|----|----|----|------|----|----|
|        |    |    | Rese | rved |    |    |    |    | FIQ7 |    |    |    |    | FIQ6 |    |    |
| Reset: | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  |
|        | RW | RW | RW   | RW   | RW | RW | RW | RW | RW   | RW | RW | RW | RW | RW   | RW | RW |

# 4.2 External Bus Interface

The External Bus Interface (EBI) is a highly configurable generic memory interface supporting a wide variety of static and dynamic memories as well as memory mapped peripherals.

Below is a list of the main features:

- Memory interface Unit is clocked from the ARM system clock enabling 49.152MHz (typical) memory accesses.
- Support for 8 bit and 16 bit memories.
- Support for both SDRAM and static memory types
- 20 address bits (lsb addresses 16bit data word) and 16bit data on memory interface. Byte lane enables/masks are available for byte wide accesses into 16bit memory.
- Supports 4 chip selects. Each chip select is assigned a memory type: SDRAM, SRAM, FLASH or ROM. Both chip select assignment and memory type timing characteristics are runtime reconfigurable.
- Base address and block size for each chip select is configurable at runtime.
- Address aliasing will be available for both chip select 0 and 1. The feature allows two concurrent AHB bus address mappings to be available for each chip select. This feature can be enabled or disabled at runtime.
- Address remapping will be available for both chip select 0 and chip select 1. A control signal **remap** on dictates which of two AHB bus address mappings to apply for chip select 0 and chip select 1.
- Supports SDRAM precharge.

The memory map illustrated in Table 11 is the default after reset. The FLASH type access chosen as default for CS\_0 is set-up using a very conservative timing. As CS\_0 will have a default base address at  $0x0000_0000$  a 16bit FLASH/ROM or any similar for ARM SW booting should be mounted here.

The memory controller contains two main control modules; one for SDR SDRAM control and one for static memory including asynchronous SRAM, ROM and FLASH memory. The memory controller can be connected to 4 different memory devices at a time, with the choice of SDRAM, SRAM, FLASH or ROM for each. The memory type, size, addressing, and timing are all programmable. The data bus for both the SDRAM and static memory controllers is shared between the two controllers. The address bus for the two controllers is also shared.

# 4.2.1 Signal Description

| Signal   | TCD2220 | TCD2210 | I/O                   | Drive<br>(mA) | Description                                                                           |
|----------|---------|---------|-----------------------|---------------|---------------------------------------------------------------------------------------|
| Data Bus |         |         |                       |               |                                                                                       |
| D0       | 144     | 1       | I/O (S <sup>7</sup> ) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. $(PU^8, 5V^9)$ |
| D1       | 1       | 2       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D2       | 2       | 3       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D3       | 3       | 4       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D4       | 4       | 5       | I/O (S)               | 6             | Data Bus. Shared read/write data<br>for external SDRAM and Static<br>memory. (PU,5V)  |
| D5       | 5       | 6       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D6       | 6       | 7       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D7       | 7       | 8       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D8       | 8       | 9       | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D9       | 9       | 10      | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D10      | 10      | 11      | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |
| D11      | 13      | 14      | I/O (S)               | 6             | Data Bus. Shared read/write data<br>for external SDRAM and Static<br>memory. (PU,5V)  |
| D12      | 14      | 15      | I/O (S)               | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V)        |

<sup>7</sup> S indicates Schmitt Trigger Input

<sup>8</sup> PU indicates that internal Pull-Up resistor is present on PAD

 $^{\rm 9}$  5V indicates that the input is 5V tolerant

| Signal      | TCD2220 | TCD2210 | I/O     | Drive<br>(mA) | Description                                                                    |
|-------------|---------|---------|---------|---------------|--------------------------------------------------------------------------------|
| D13         | 15      | 16      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| D14         | 16      | 17      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| D15         | 17      | 18      | I/O (S) | 6             | Data Bus. Shared read/write data for external SDRAM and Static memory. (PU,5V) |
| Address Bus |         |         |         |               |                                                                                |
| A0          | 18      | 19      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A1          | 19      | 20      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A2          | 20      | 21      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A3          | 21      | 22      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A4          | 22      | 23      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A5          | 23      | 24      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A6          | 26      | 27      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A7          | 27      | 28      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A8          | 28      | 29      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A9          | 29      | 30      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A10         | 30      | 31      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A11         | 31      | 32      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A12         | 32      | 33      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A13         | 33      | 34      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A14         | 34      | 35      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A15         | 35      | 36      | 0       | 8             | Address Bus. Shared address pins for SDRAM and Static memory.                  |
| A16         | 36      | 37      | 0       | 8             | Address Bus. Shared address pins                                               |

| Signal         | TCD2220         | TCD2210      | I/O | Drive<br>(mA) | Description                                                   |
|----------------|-----------------|--------------|-----|---------------|---------------------------------------------------------------|
|                |                 |              |     |               | for SDRAM and Static memory.                                  |
| A17            | 37              | 38           | 0   | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A18            | 38              | 39           | 0   | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| A19            | 39              | 40           | 0   | 8             | Address Bus. Shared address pins for SDRAM and Static memory. |
| Chip Selects   |                 |              |     |               |                                                               |
| CS0*           | 136             | 121          | 0   | 4             | Shared SDRAM and Static Memory<br>Chip Selects                |
| CS1*           | 46              | 45           | 0   | 4             | Shared SDRAM and Static Memory<br>Chip Selects                |
| CS2*           | 138<br>(shared) | 123 (shared) | 0   | 6             | Shared SDRAM and Static Memory<br>Chip Selects                |
| CS3*           | 139<br>(shared) | 124 (shared) | 0   | 6             | Shared SDRAM and Static Memory<br>Chip Selects                |
| RAM Clock      |                 |              |     |               |                                                               |
| СLКО           | 40              | 41           | 0   | 8             | SDRAM Interface AHB Bus Clock $(Z^{10})$                      |
| SDRAM Dedicate | d Signals       |              |     |               |                                                               |
| CLKE           | 42 (shared)     | N/A          | 0   | 6             | SDRAM Interface Clock Enable                                  |
| RAS*           | 41              | 42           | 0   | 8             | SDRAM Interface Row Address<br>Strobe                         |
| CAS*           | 44              | 43           | 0   | 8             | SDRAM Interface Column Address<br>Strobe                      |
| SDRAM_WE       | 45              | 44           | 0   | 8             | SDRAM Interface Write Enable                                  |
| SDRAM_DQM0     | 47              | 46           | 0   | 8             | SDRAM Interface Lower byte mask                               |
| SDRAM_DQM1     | 48              | 47           | 0   | 8             | SDRAM Interface Upper byte mask                               |
| SDRAM_BNK0     | 52              | 51           | 0   | 8             | SDRAM Interface Bank Address                                  |
| SDRAM_BNK1     | 53              | 52           | 0   | 8             | SDRAM Interface Bank Address                                  |
| SDRAM_A10      | 43              | N/A          | 0   | 8             | SDRAM Precharge A10                                           |
| SRAM Interface |                 |              |     |               |                                                               |
| SRAM_READY     | 137(shared)     | 122 (shared) | Ι   | 6             | SRAM ready                                                    |
| SRAM_BS[0]     | 140             | 125          | 0   | 4             | SRAM lower byte select                                        |
| SRAM_BS[1]     | 141             | 126          | 0   | 4             | SRAM upper byte select                                        |

 $^{\rm 10}$  Z indicates that the output is Z-stateable

| Signal   | TCD2220 | TCD2210 | I/O | Drive<br>(mA) | Description        |
|----------|---------|---------|-----|---------------|--------------------|
| SRAM_WE* | 142     | 127     | 0   | 8             | SRAM write enable  |
| SRAM_OE* | 143     | 128     | 0   | 8             | SRAM output enable |

Note that several pins used in the memory interface module are multi-purpose or shared. The function of these pins is software configurable via the GPCSR module, specifically GPCSR\_GPIO\_SELECT – 0xc700 0008. Refer to the GPCSR module documentation for more information.

Note that in general, to set the shared pins to function as memory pins, the register mentioned above should be set as shown in 4.1.6.

### 4.2.2 Functional Description

The memory controller consists of two main functional blocks, the Host Interface Unit (HIU) and the Memory Interface Unit (MIU). The HIU is the interface between the MIU and the AMBA Advanced High-performance Bus (AHB). The HIU generates memory read/write requests or control register read/write requests to the MIU block, which correspond to transfers on the AMBA bus. The MIU is the interface for both SDRAM and Static memories. It generates appropriate address, data, and control signals corresponding to memory read/write transfers.

### 4.2.3 Host Interface Unit

The HIU has the following functions:

- Buffers register/memory access requests and sends them to the memory controller MIU.
- Converts an AMBA burst size into a memory burst size.
- Supports AMBA early-burst termination.
- Breaks AMBA wrapping burst into two separate memory bursts.
- Supplies the wrapping address before the slave sees it on the AMBA in order to save overhead cycles between two bursts.
- Detects memory page boundaries; terminates the current burst and reissues a new burst.
- Masks invalid bytes for transfers that are narrower than the width of the AMBA bus.

The HIU consists of the following sub-blocks:

- Address FIFO Buffers the request of the AMBA AHB and sends memory/register access requests to the MIU; also contains some control information for a read/write transfer.
- Write Data FIFO Buffers write data to the memory and control registers.
- Read Data Buffer Buffers the read data from the memory.
- Burst Control Controls all the HIU sub-blocks by generating the control logic for read and write transfers.

#### 4.2.4 Memory Interface Unit

The MIU includes the following modules:

SDRAM control unit – Generates the SDRAM control signals

- Static control unit Generates the SRAM/FLASH/ROM control signals
- Refresh unit Generates the SDRAM refresh request at appropriate intervals
- Address decoder unit For SDRAM generates the row, column, and bank addresses that correspond to the logical address provided by the AHB host interface. For SRAM/FLASH/ROM generates and decodes the memory address that corresponds to the logical address provided by the AHB host interface.
- Control register unit Holds the memory controller SDRAM/SRAM/FLASH/ROM control and configuration registers, as well as address decoder registers, and three sets of static memory timing registers.

You can use three separate Static memories (SRAM/FLASH/ROM) or multiple memories of the same type, perhaps with different timings.

# 4.2.5 Internal Functional Diagram



Figure 7: Internal Functional Diagram

# 4.2.6 Considerations for Chip Selects

Chip select 2 to 3 (CS2-CS3) are default programmed to have an alternative function as an input. If external memories or peripherals are connected to those pins a pull-up should be added in order not to select those devices during boot.

# 4.2.7 Module Configuration

| Address     | Register        |
|-------------|-----------------|
| 0x8100 0000 | EBI_SCONR       |
| 0x8100 0004 | EBI_STMG0R      |
| 0x8100 0008 | EBI_STMG1R      |
| 0x8100 000c | EBI_SCTLR       |
| 0x8100 0010 | EBI_SREFR       |
| 0x8100 0014 | EBI_SCSLR0      |
| 0x8100 0018 | EBI_SCSLR1      |
| 0x8100 001c | EBI_SCSLR2      |
| 0x8100 0020 | EBI_SCSLR3      |
| 0x8100 0024 | EBI_SCSLR4      |
| 0x8100 0028 | EBI_SCSLR5      |
| 0x8100 002c | EBI_SCSLR6      |
| 0x8100 0030 | EBI_SCSLR7      |
| 0x8100 0054 | EBI_SMSKR0      |
| 0x8100 0058 | EBI_SMSKR1      |
| 0x8100 005c | EBI_SMSKR2      |
| 0x8100 0060 | EBI_SMSKR3      |
| 0x8100 0064 | EBI_SMSKR4      |
| 0x8100 0068 | EBI_SMSKR5      |
| 0x8100 006c | EBI_SMSKR6      |
| 0x8100 0070 | EBI_SMSKR7      |
| 0x8100 0074 | EBI_CSALIAS0    |
| 0x8100 0078 | EBI_CSALIAS1    |
| 0x8100 0084 | EBI_CSREMAP0    |
| 0x8100 0088 | EBI_CSREMAP1    |
| 0x8100 0094 | EBI_SMTMGR_SET0 |
| 0x8100 0098 | EBI_SMTMGR_SET1 |
| 0x8100 009c | EBI_SMTMGR_SET2 |
| 0x8100 00a0 | EBI_FLASH_TRPDR |
| 0x8100 00a4 | EBI_SMCTLR      |
|             |                 |

#### **Table 10: EBI Module Description**

## 4.2.8 SCONR – SDRAM Configuration Register

Address - 0x8100 0000

Reset values are considered to be the default and are the maximum configurable values. Programmed values should always be less than or equal to the reset values. This applies to all the programmable registers.



| Name              | Bit   | Reset | Dir | Description                                                                                                                                                                                 |
|-------------------|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| s_sda_oe_n        | 20    | 1     | RW  | Output enable for bi-directional data pin for I2C serial presence<br>detect (SPD) logic<br>1 – corresponds to data written into bit 19<br>0 – programs for data reads                       |
| s_sd              | 19    | 0     | RW  | Bi-directional data for serial presence detect (SPD) logic; data written into bit goes in as data for SPD. During reads to this register, bit represents data read back from the SPD logic. |
| s_scl             | 18    | 1     | RW  | Clock for serial presence detect logic.                                                                                                                                                     |
| s_sa              | 17:15 | 0     | RW  | Serial presence detect address bits.                                                                                                                                                        |
| s_data_width      | 14:13 | 16    | RW  | Specifies SDRAM data width in bits<br>00 – 16 bits. 16bits is the only allowable value                                                                                                      |
| s_col_addr_width  | 12:9  | 15    | RW  | Number of address bits for column address<br>15 – reserved, 7-14 – correspond to 8-15 bits, 0-6 – reserved                                                                                  |
| s_row_addr_width  | 8:5   | 16    | RW  | Number of address bits for row address<br>10-15 – correspond to 11-16 bits, 0-10 – reserved                                                                                                 |
| s_bank_addr_width | 4:3   | 4     | RW  | Number of bank address bits; values of 0-3 correspond to 1-4 bits, and therefore select 2-16 banks.                                                                                         |

# 4.2.9 STMG0R – SDRAM Timing Register 0

#### Address - 0x8100 0004

Reset values are considered to be the default values. Programmed values should always be less than or equal to the reset values. The STMG0R and STMG1R registers hold the SDRAM timing parameters.

The memory controller uses the CAS latency value during the initialization sequence in order to program the mode register of the SDRAM. The user can also specifically force the memory controller to do a mode register update by programming the set\_mode\_reg bit (bit 9 of SCTLR). If you want to change the value of CAS latency during normal operation, you should first program the STMGOR timing register, and then program bit 9 of SCTLR to 1. The memory controller will reset this bit once it has updated the mode register.



| Name      | Bit   | Reset | Dir | Description                                                                                                                                                                                                                                     |
|-----------|-------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t_rc      | 25:22 | 10    | RW  | Active-to-active command period; values of 0-15 correspond to t_rc of 1-16 clocks.                                                                                                                                                              |
| t_xsr     | 21:18 | 11    | RW  | Exit self-refresh to active or auto-refresh command time; minimum time controller should wait after taking SDRAM out of self-refresh mode before issuing any active or auto-refresh commands; values 1-512 correspond to t_xsr of 1-512 clocks. |
| t_rcar    | 17:14 | 10    | RW  | Auto-refresh period; minimum time between two auto-refresh commands; values 0-15 correspond to t_rcar of 1-16 clocks.                                                                                                                           |
| t_wr      | 13:12 | 2     | RW  | For writes, delay from last data in to next precharge command; values 0-3 correspond to t_wr of 1-4 clocks.                                                                                                                                     |
| t_rp      | 11:9  | 3     | RW  | Precharge period; values of 0-7 correspond to t_rp of 1-8 clocks                                                                                                                                                                                |
| t_rcd     | 8:7   | 3     | RW  | Minimum delay between active and read/write commands; values 0-7 correspond to t_rcd values of 1-8 clocks.                                                                                                                                      |
| t_ras_min | 5:2   | 6     | RW  | Minimum delay between active and precharge commands; values of 0-15 correspond to t_ras_min of 1-16 clocks.                                                                                                                                     |

| Name        | Bit | Reset | Dir | Description                                                                                                                         |
|-------------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| cas_latency | 1:0 | 3     | RW  | Delay in clock cycles between read command and availability of first data.<br>0 – 1 clock, 1 – 2 clocks, 2 – 3 clocks, 3 – 4 clocks |

# 4.2.10 STMG1R – SDRAM Timing Register 1

#### Address - 0x8100 0008

Reset values are considered to be the default values. Programmed values should always be less than or equal to the reset values. The STMGOR and STMG1R registers hold the SDRAM timing parameters. See section 2.1.3 for more details.



| Name         | Bit   | Reset | Dir | Description                                                                                    |
|--------------|-------|-------|-----|------------------------------------------------------------------------------------------------|
| num_init_ref | 19:16 | 8     | RW  | Number of auto-refreshes during initialization; values 0-15 correspond to 1-16 auto-refreshes  |
| t_init       | 15:0  | 8     | RW  | Number of clock cycles to hold SDRAM inputs stable after power up, before issuing any commands |

# 4.2.11 SCTLR – SDRAM Control Register

Address - 0x8100 000C

You can program SDRAM control registers at any time after power-up. However, the SDRAM controller does not poll the registers until the SDRAM controller finishes current and pending SDRAM accesses in the write FIFO.



| Name                | Bit   | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|-------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved            | 31:19 | 0     | RW  |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| exn_mode_reg_update | 18    | 0     | RW  | Commands controller to update Mobile-SDRAM extended-mode register; once mode register update is done, controller automatically clears bit                                                                                                                                                                                                                                                                        |
| s_rd_ready_mode     | 17    | 0     | RW  | SDRAM read-data-ready mode; set to 1, indicates SDRAM read data is sampled after s_rd_ready goes active                                                                                                                                                                                                                                                                                                          |
| num_open_banks      | 16:12 | 2     | RW  | Number of SDRAM internal banks to be open at any time; values of 0-15 correspond to 0-15 banks open                                                                                                                                                                                                                                                                                                              |
| self_refresh_status | 11    | 0     | RW  | Read only. When "1," indicates SDRAM is in self refresh mode.<br>When "self_refresh/deep_power_mode" bit (bit 1 of SCTLR) is set,<br>it may take some time before SDRAM is put into self-refresh mode,<br>depending on whether all rows or one row are refreshed before<br>entering self refresh mode defined by full_refresh_before_sr bit.<br>Before gating clock in self-refresh mode, ensure this bit is set |
| sync_flash_soft_seq | 10    | 0     | RW  | Specify type of command sequences used forSyncFlash<br>operations:<br>1 – Software Command Sequence (SCS)<br>0 – Hardware Command Sequence (HCS)<br>SyncFlash operation is not supported                                                                                                                                                                                                                         |
| set_mode_reg        | 9     | 0     | RW  | Set to 1, forces controller to do update of SDRAM mode register;<br>bit is cleared by controller once it has finished mode register<br>update                                                                                                                                                                                                                                                                    |

| Name                   | Bit | Reset | Dir | Description                                                                                                                                                                                                                        |
|------------------------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| read_pipe              | 8:6 | 2     | RW  | Indicates number of registers inserted in read data path for SDRAM in order to correctly latch data; values 0-7 indicate 0-7 registers                                                                                             |
| full_refresh_after_sr  | 5   | 0     | RW  | Controls number of refreshes done by the memory controller after<br>SDRAM is taken out of self-refresh mode.<br>1 – Refresh all rows before entering self-refresh mode<br>0 – Refresh just 1 row before entering self-refresh mode |
| full_refresh_before_sr | 4   | 0     | RW  | Controls number of refreshes done by memory controller before<br>putting SDRAM into self-refresh mode.<br>1 – Refresh all rows before entering self-refresh mode<br>0 – Refresh just one row before entering self-refresh mode     |
| precharge_algorithm    | 3   | 1     | RW  | Determines when row is precharged.<br>0 – Immediate precharge; row precharged at end of read/write<br>operation<br>1 – Delayed precharge; row kept open after read/write operations                                                |
| power_down_mode        | 2   | 0     | RW  | Forces memory controller to put SDRAM in power-down mode                                                                                                                                                                           |
| self_refresh_mode      | 1   | 0     | RW  | Forces memory controller to put SDRAM in self-refresh mode. Bit can be cleared by writing to this bit or by clear_sr_dp pin, generated by external power management unit.                                                          |
| initialize             | 0   | 0     | RW  | Forces memory controller to initialize SDRAM; bit reset to 0 by memory controller once initialization sequence is complete.                                                                                                        |

## 4.2.12 SREFR – SDRAM Refresh Interval Register

Address - 0x8100 0010



| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |



RW

| Name | Bit   | Reset | Dir | Description                                                                                                                                                                                                                                 |
|------|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gpi  | 31:24 | -     | RW  | General purpose inputs; directly connected to gpi.<br>Connects status bits from FLASH memory to bits 2:0 of gpi; three<br>bits of gpi used for FLASH status because three separate FLASH<br>memories can be connected to memory controller. |

| gpo   | 23:16 | 0    | RW | General purpose output signals; directly connected to gpo                                                                          |
|-------|-------|------|----|------------------------------------------------------------------------------------------------------------------------------------|
| t_ref | 15:0  | Sec. | RW | Number of clock cycles between consecutive refresh cycles. For details on programming this register refer to Section Auto-Refresh. |

### 4.2.13 SCSLR (0-7) – Chip Select Registers

#### Address - 0x8100 0014 - 0x8100 0030

The memory controller has eight chip selects and a 32-bit AHB address width. There are four external chip select registers, each one holding the base address value that corresponds to its chip select.

The memory controller uses mask registers that specify the size of the memory connected to each chip select. Starting address of each memory segment (connected to a chip select) should be full multiple of the segment size. For example, a segment of 0x20000000 size (32mB) can only start at the addresses 0x00000000 or 0x20000000 or 0x40000000 etc. So, the starting address defined here should be in accordance with memory segment size defined in SMSKRn register.

The memory controller also supports aliasing and remapping, but these features are available only for chip select0 and chip select1.

The memory map illustrated in Table 11 below is the default after reset. You can later change a default chip select addresses by programming it. The FLASH type access chosen as default for chip select 0 (CS\_0) is set-up using a very conservative timing. As CS\_0 will have a default base address at 0x0000\_0000, a 16bit FLASH/ROM or similar, that requires ARM, SW booting should be mounted here.

| 0x7FD0_0000 | ROM (CS_3)       |
|-------------|------------------|
| 0x7fA0_0000 | ROM (CS_2)       |
| 0x7F90_0000 | ROM (CS_1)       |
| 0x4000_0000 | Unassigned Space |
| 0x0000_0000 | FLASH (CS_0)     |

#### Table 11: Default Chip Select Memory Map

|        | 31        | 30 | 29 | 28 | 27 | 26 | 25   | 24                | 23            | 22    | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|-----------|----|----|----|----|----|------|-------------------|---------------|-------|----|----|----|----|----|----|
|        |           |    |    |    |    |    | Uppe | er bits of chip s | elect base ad | dress |    |    |    |    |    |    |
| Reset: | see above |    |    |    |    |    |      |                   |               |       |    |    |    |    |    |    |
|        | RW        |    |    |    |    |    |      |                   |               |       |    |    |    |    |    |    |
| _      | 15        | 14 | 13 | 12 | 11 | 10 | 9    | 8                 | 7             | 6     | 5  | 4  | 3  | 2  | 1  | 0  |

# TC APPLIED TECHNOLOGIES

|        | Unused |
|--------|--------|
| Reset: | 0      |
|        | RW     |

| Name                | Bit   | Reset        | Dir | Description                                           |
|---------------------|-------|--------------|-----|-------------------------------------------------------|
| Chip Select Address | 31:16 | see<br>above | RW  | The address of the selected one of eight memory chips |

### 4.2.14 SMSKR (0 - 7) - Address Mask Registers

Address - 0x8100 0054 - 0x8100 0070

There are eight address mask registers, one for each chip select. They specify the size, type and timing mode of their corresponding memory chip.



| chip_select | reg_select | mem_type | mem_size |
|-------------|------------|----------|----------|
| 0           | set 2      | FLASH    | 1 GB     |
| 1           | set 0      | ROM      | 16 MB    |
| 2           | set 0      | ROM      | 16 MB    |
| 3           | set 0      | ROM      | 16 MB    |
| 4           | set 0      | ROM      | 16 MB    |
| 5           | set 0      | ROM      | 16 MB    |
| 6           | set 0      | ROM      | 16 MB    |
| 7           | set 0      | ROM      | 16 MB    |

 Table 12: Default Chip Select Memory Attributes

| Name B | Bit | Reset | Dir | Description |
|--------|-----|-------|-----|-------------|
|--------|-----|-------|-----|-------------|

| Name       | Bit  | Reset        | Dir | Description                                                                                                                                                                                                                                                                                                                                                       |
|------------|------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reg_select | 10:8 | see<br>table | RW  | Register determines which timing parameters of memory connect<br>to associated chip select; primarily used for specifying static<br>memories.<br>0 – register set 0, 1 – register set 1, 2 – register set 2                                                                                                                                                       |
|            |      |              |     | This is don't care if mem_type is SDRAM                                                                                                                                                                                                                                                                                                                           |
| mem_type   | 7:5  | see<br>table | RW  | Type of memory connected to corresponding chip select.<br>0 – SDRAM, 1 – SRAM, 2 – FLASH, 3 – ROM<br>Others – Reserved                                                                                                                                                                                                                                            |
| mem_size   | 4:0  | see<br>table | RW  | Size of memory connected to corresponding chip select. Value of 0 specifies that no memory is connected to chip select.<br>0 – No memory is connected to the chip select<br>1 – 64KB, 2 – 128KB, 3 – 256KB, 4 – 512KB, 5 – 1MB, 6 – 2MB,<br>7 – 4MB, 8 – 8MB, 9 – 16MB, 10 – 32MB, 11 – 64MB, 12 – 128MB,<br>13 – 256MB, 14 – 512MB, 15 – 1GB, 16 – 2GB, 17 – 4GB |

### 4.2.15 CSALIAS (0 - 1) - Alias Register

Address - 0x8100 0074 - 0x8100 0078

This register holds the aliasing address value for the given chip select. Note that only chip selects 0 and 1 support aliasing. When aliasing is enabled, the chip select becomes active when the AHB address matches either the base address for that chip select or the alias address for the chip select.



| Chip Select | Alias Address |
|-------------|---------------|
| 0           | 0x0           |
| 1           | 0x7f900000    |

| Table | 13: | Alias | Addresses |
|-------|-----|-------|-----------|
|-------|-----|-------|-----------|

| Name            | Bit   | Reset     | Dir | Description                                                                                                                                                                                                                                                                                                         |
|-----------------|-------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| csalias (0 – 1) | 31:15 | see table | RW  | <ul> <li>Aliasing register bits for the chip select. Compared with corresponding AHB address to generate the chip select. The number of bits compared depends on size of memory selected by chip select (specified in mask register).</li> <li>64 KB – bits 31:15 compared, 128 KB – bits 31:16 compared</li> </ul> |
| Unused          | 14:0  | 0         | RW  | Unused since memory smaller than 64KB is not supported.                                                                                                                                                                                                                                                             |

### 4.2.16 CSREMAP (0 – 1) – Remap Register

Address - 0x8100 0084 - 0x8100 0088

This register holds the remapping address value for the given chip select. Note that only chip select 0 and 1 support remapping. The chip select will be generated under the following conditions:

- When the remap input is 1 and the AHB address matches the remap address for the chip select.
- When the remap input is 0 and the AHB address matches the base address for chip select.

|        | 31                        | 30 | 29 | 28 | 27 | 26 | 25 | 24      | 23      | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|---------------------------|----|----|----|----|----|----|---------|---------|----|----|----|----|----|----|----|
|        |                           |    |    |    |    |    |    | csremap | (0 – 1) |    |    |    |    |    |    |    |
| Reset: | see table                 |    |    |    |    |    |    |         |         |    |    |    |    |    |    |    |
|        | RW                        |    |    |    |    |    |    |         |         |    |    |    |    |    |    |    |
|        |                           |    |    |    |    |    |    |         |         |    |    |    |    |    |    |    |
|        | 15                        | 14 | 13 | 12 | 11 | 10 | 9  | 8       | 7       | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|        | csremap<br>(0 - 1) Unused |    |    |    |    |    |    |         |         |    |    |    |    |    |    |    |
| Reset: | uset: see 0<br>table      |    |    |    |    |    |    |         |         |    |    |    |    |    |    |    |
|        | RW                        |    |    |    |    |    |    |         | RW      |    |    |    |    |    |    |    |

| Chip Select | Remap Address |
|-------------|---------------|
| 0           | 0x0           |
| 1           | 0x7f900000    |

#### Table 14:Remap Addresses

| Name            | Bit   | Reset     | Dir | Description                                                                                                                                                                                                                                                                   |
|-----------------|-------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| csremap (0 – 1) | 31:15 | see table | RW  | Remap register bits for chip select. Compared with corresponding AHB address to generate chip select. The number of compared bits depends on size of memory selected by chip select (specified in mask register).<br>64KB – bits 31:15 compared, 128 KB – bits 31:16 compared |

## 4.2.17 SMTMGR (0 – 2) – Static Memory Timing Register

Address - 0x8100 0094 - 0x8100 009C

There are 3 timing registers available to hold 3 sets of the various parameters for static memory. This allows the programming of 3 different timing modes, 1 in each register.



| Se<br>t | sm_read_pip<br>e | low_freq_sync_devi<br>ce | ready_mod<br>e | page_siz<br>e | page_mod<br>e | t_pr<br>c | t_bt<br>a | t_w<br>p | t_w<br>r | t_a<br>s | t_r<br>c |
|---------|------------------|--------------------------|----------------|---------------|---------------|-----------|-----------|----------|----------|----------|----------|
| 0       | 1                | 0                        | 0              | 4             | 0             | 1         | 1         | 2        | 0        | 1        | 2        |
| 1       | 1                | 0                        | 0              | 4             | 0             | 16        | 4         | 20       | 3        | 1        | 28       |
| 2       | 1                | 0                        | 0              | 4             | 0             | 15        | 4         | 20       | 3        | 3        | 63       |

 Table 15: Default Static Memory Timing Parameters

| Name                 | Bit   | Reset     | Dir | Description                                                                                                                                                                                                                                       |
|----------------------|-------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sm_read_pipe         | 29:28 | see table | RW  | Number of registers inserted in the read data path for latching the data correctly, in the case of Static memory associated with register set0                                                                                                    |
| low_freq_sync_device | 27    | see table | RW  | Valid if register set0 is used to control low-frequency synchronous device; instructs the memory controller to sample sm_clken before starting any Static memory operation. Synchronous memory device could be same or sub-multiple of AMBA clock |
| ready_mode           | 26    | see table | RW  | Indicates if the static memory associated with register set 0 is a data-ready device (valid data indicated by a ready signal)                                                                                                                     |
| page_size            | 25:24 | see table | RW  | Page size.<br>0 – 4-word page, 1 – 8-word page, 2 – 16-word page, 3 – 32-word<br>page                                                                                                                                                             |
| page_mode            | 23    | see table | RW  | Page-mode device.<br>0 – device does not support page mode<br>1 – device supports page mode                                                                                                                                                       |
| Name  | Bit   | Reset     | Dir | Description                                                                                                                                             |
|-------|-------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| t_prc | 22:19 | see table | RW  | Page mode read cycle time. Values of 0 – 15 correspond to read cycle time of 1 - 16 clock cycles.                                                       |
| t_bta | 18:16 | see table | RW  | Idle cycles between read to write, or write to read, for memory data<br>bus turn around time. Values of 0 - 7 correspond to 0 - 7 idle clock<br>cycles. |
| t_wp  | 15:10 | see table | RW  | Write pulse width. Values of 0 - 63 correspond to write pulse width of 1 - 64 clock cycles.                                                             |
| t_wr  | 9:8   | see table | RW  | Write address/data hold time. Values of $0 - 3$ correspond to write address/data hold time of $0 - 3$ clock cycles.                                     |
| t_as  | 7:6   | see table | RW  | Write address setup time. Values of $0 - 3$ correspond to address setup time of $0 - 3$ clock cycles. Value of 0 is only valid in case of SSRAM.        |
| t_rc  | 5:0   | see table | RW  | Read cycle time. Values of 0 – 63 correspond to read cycle time of 1 – 64 clock cycles.                                                                 |

## 4.2.18 FLASH\_TRPDR – Flash Timing Register

Address - 0x8100 00A0



| Name  | Bit  | Reset         | Dir | Description                                                                                                       |
|-------|------|---------------|-----|-------------------------------------------------------------------------------------------------------------------|
| t_rpd | 11:0 | 200<br>cycles | RW  | FLASH reset/power-down high to read/write delay. Values correspond to sm_rp_n high to read/write delay minus one. |

## 4.2.19 SMCTLR – Static Memory Control Register

### Address - 0x8100 00A4



| Name               | Bit   | Reset | Dir | Description                                                                                                                                                                                                   |
|--------------------|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sm_data_width_set2 | 15:13 | 16    | RW  | Width of Static memory data bus for Set2. Maximum of 16 bits.<br>000 – 16 bits, 100 – 8 bits                                                                                                                  |
| sm_data_width_set1 | 12:10 | 16    | RW  | Width of Static memory data bus for Set1. Maximum of 16 bits.<br>000 – 16 bits, 100 – 8 bits                                                                                                                  |
| sm_data_width_set0 | 9:7   | 16    | RW  | Width of Static memory data bus for Set0. Maximum of 16 bits.<br>000 – 16 bits, 100 – 8 bits                                                                                                                  |
| wp_n               | 3:1   | 0     | RW  | FLASH write-protection mode. Writing 0 forces FLASH memory boot block to write protect. The three bits correspond to three register sets.                                                                     |
| sm_rp_n            | 0     | 0     | RW  | FLASH reset/power-down mode. After reset, controller internally performs a power-down for FLASH and then sets this bit to 1. To force FLASH to power-down mode during normal operation the following applies. |
|                    |       |       |     | 0 – Forces FLASH to power-down mode<br>1 – Takes FLASH out of power-down mode                                                                                                                                 |

## 4.2.20 SDRAM Power ON Initialization

The SDR-SDRAM controller follows the JEDEC-recommended SDR-SDRAM poweron initialization sequence as follows:

- Apply power and start clock; maintain a NOP condition at the inputs.
- Maintain stable power, stable clock, and NOP input conditions for a minimum of t\_init clock cycles.
- Issue precharge commands for all banks of the device.
- Issue auto-refresh commands, depending on the value num\_init\_ref in the programmable register.
- Issue a set-mode register command to initialize the mode register.

The memory controller performs a power-on sequence of the SDRAM under these circumstances:

- Immediately after reset.
- When the programmable initialize bit (bit 0 of SCTLR) is set, the memory controller resets the bit when it comes out of initialization.

All SDRAM read/write requests that occur during initialization are queued in the memory controller.

The memory controller initializes the SDRAM after reset using the default timing parameters, shown in the figure below. After reset, if you feel that these timing parameters are not adequate, then you can program them accordingly using the SDRAM timing registers and then program the initialize bit (set bit 0 of SCTLR to 1), which forces the memory controller to re-initialize the SDRAM. If you feel that the reset time of the system is long enough to take care of the t\_init time, then you can assign a value of zero to this parameter. The t\_mrd is fixed at a value of 3 clock cycles, according to the JEDEC standard.





### 4.2.21 SDRAM Read and Write

The memory controller converts all AHB bursts to 4-word bursts on the SDRAM side. The memory bursts are concatenated to achieve continuous data flow for long AHB bursts. You can terminate the memory read/write burst with either a precharge command or terminate command, depending on which precharge mode (immediate precharge or delayed precharge) that you program. You can also terminate the write burst with a subsequent write burst.

The memory controller does not use auto-precharge mode. If you program for an immediate precharge mode, then the memory controller closes the open row after a read or write access. If you program for a delayed precharge mode, then the memory controller keeps the row open after an access. The memory controller can keep multiple banks open at the same time, depending on the value of num\_open\_bank in the programmable register. When the number of open banks reaches the num\_open\_bank and an access to a new bank comes, the memory controller will close the oldest bank (the bank opened first) before opening the new bank. The table below lists the memory controller performance during read/writes to the SDRAM in various circumstances, with the following assumptions:

- Memory controller is idle; that is, no pending read/write request is in the address FIFO.
- In the case of a read, timing information is relative to the latency from the time the select signal is asserted on the AMBA bus to when the first data is available on the AMBA bus.
- In the case of a write, timing information is relative to the latency from the time the select signal is asserted on the AMBA bus to when the first data is written to the SDRAM.
- Timing parameters in used in the table are:
  - 1. t\_init internal delay before a command is sent to the memory device
  - 2. t\_rcd active-to-read/write command time; assumed to be 3
  - 3. t\_cas CAS latency; assumed to be 3

| Transfer Type | Condition | Timing                              | Latency |
|---------------|-----------|-------------------------------------|---------|
| Writes        | Page hit  | t_init = 2                          | 2       |
|               | Page miss | (t_init = 2) + (t_rcd = 3)          | 5       |
| Reads         | Page hit  | (t_init = 2) + (t_cas = 3)          | 5       |
|               | Page miss | $(t_i = 2) + (t_r = 3) + (t_c = 3)$ | 8       |

Table 16: Read/Write Timing Delays

### 4.2.22 SDRAM Set Mode Register

The memory controller automatically sets the SDR-SDRAM mode register during the power-up initialization. During normal operation, if you want to set the mode register you need to set set\_mode\_reg (bit 9) in the control register (SCTLR).

After the memory controller finishes the mode register setting, it clears the set\_mode\_reg to 0. The "burst length" field and the "burst type" field of the SDR-SDRAM-mode register are fixed by the memory controller to "010" (burst length 4) and "0" (sequential burst), respectively. The memory controller programs the "CAS latency" field and the "operating mode" field of the mode register according to the values provided by the user in the control and timing registers.

### 4.2.23 SDRAM Refresh

### 4.2.23.1 Auto-Refresh Mode

During normal refresh operations, the memory controller always refreshes one row at a time. It is important for the user to program the t\_ref refresh interval register after a reset.

If you need to refresh the SDRAM while a burst is active, normally the memory controller will issue the refresh command after the ongoing burst completes. However, if the ongoing burst is an AHB INCR burst, the memory controller will stop the burst, issue the refresh command, and then resume the burst.

The memory controller takes into account the maximum time it takes to complete a worst-case burst. This is the time to complete a read burst corresponding to an INCR16 burst on the AMBA bus, and with an AMBA-to-SDRAM data width ratio of 2:1. It is reasonable to assume 50 cycles for this worst-case burst, with 32 cycles for the data and the remaining 17 cycles for various latencies for the worst case.

The t\_ref value can be calculated using the following equation:

t\_ref = refresh\_period / clock\_period

where refresh\_period = typically 7.8 or 15.6  $\mu$ s (see table)

| Number of Rows | t_ref                      | Minimum Frequency |
|----------------|----------------------------|-------------------|
| 64K            | (64ms - (50 / f)) / 65536  | 51 MHz            |
| 32K            | (64ms - (50 / f)) / 32768  | 26 MHz            |
| 16K            | (64ms - (50 / f)) / 163904 | 13 MHz            |
| 8K             | (64ms - (50 / f)) / 8192   | 6 MHz             |
| 4K             | (64ms - (50 / f)) / 4096   | 3 MHz             |
| 2K             | (64ms - (50 / f)) / 2048   | 1.5 MHz           |

### Table 17: Calculating t\_ref

The t\_ref is the value of a free-running counter that the refresh logic in the memory controller operates on. When the count expires, the refresh logic gives a refresh request to the SDRAM control.

Since the 64 ms refresh period is the same for most SDRAMs, the total number of rows in the SDRAM limits the minimum operating frequency for the memory controller. While calculating the minimum frequency, use the following equation:

 $t_ref > 50*(1/f)$ 

The refresh logic in the memory controller is inactive when the memory controller forces the SDRAM into self-refresh or power-down mode.

## 4.2.23.2 Self-Refresh Mode

You can put the SDRAM into self-refresh mode, at which point the SDRAM retains data without external clocking and auto-refresh.

You can force the memory controller to enter self-refresh mode by programming bit 1 of the SDRAM control register (SCTLR). The memory controller forces the SDRAM to come out of self-refresh mode when bit 2 of the SCTLR is set to 0. You can set this bit to 0 by either programming the SDRAM control register or driving the clear\_sr\_dp pin high. You can use the clear\_sr\_dp pin when the code resides in the SDRAM, and the SDRAM itself is in self-refresh mode.

Bits 4 and 5 of the SCTLR specify the type of refresh done by the memory controller just prior to entering self-refresh mode and just after entering self-refresh mode. Programming bit 4 of the SCTLR to 0 forces the memory controller to refresh only one row before putting the SDRAM into self-refresh mode. The default value of 1 forces the memory controller to perform auto-refreshes for all rows. Bit 5 does the same, except that it controls the refresh pattern just after coming out of self-refresh mode.

Since it takes time between programming the control register bit, to the SDRAM entering self-refresh mode, the memory controller provides a read-only register bit (bit 11 of the SDRAM control register) to indicate that the SDRAM is already in self-refresh mode. If you want to gate off the clock to the memory controller when the SDRAM is in self-refresh mode, you should ensure this bit is set to 1 before you stop the clock.

The SDRAM must remain in self-refresh mode for a minimum period of t\_ras and can remain in self-refresh mode for an indefinite period of time. After the SDRAM exits self-refresh mode, the memory controller issues NOP commands for t\_xsr before it issues any other command. The t\_ras and t\_xsr are programmable register values and have default values. These registers can be programmed only once after reset.

When an AHB read/write request to the SDRAM occurs while the SDRAM is in self-refresh mode, the memory controller generates dummy ready signals to the AHB without accessing external memory; no error response is generated on the AHB bus.



Figure 9: Auto-Refresh Diagram

## 4.2.24 SDRAM Power DOWN

The SDRAM can be put into power-down mode to save power. There are two ways to force the memory controller to put the SDRAM in power-down mode:

- Program bit 2 of SCTLR to 1; should be 0 to bring the SDRAM out of power-down mode.
- Use the power-down input pin; can be driven by an external power management unit; the SDRAM will be in power-down mode as long as this signal stays high.

When in SDRAM power-down mode, the memory controller keeps switching the device back and forth between power-down and refresh mode. It remains in power-down for a t\_ref period of time, then comes out of power-down and does a single-row refresh, then it again goes into power-down mode. The memory controller keeps the SDRAM in this periodical power-down/refresh/power-down sequence until it is commanded to exit power-down mode (set bit 2 of SCTLR to 0).

When an AHB read/write request to the SDRAM occurs while the SDRAM is in power-down mode, the memory controller brings the SDRAM out of power-down mode and issues the read/write access to the SDRAM. The memory controller then puts the SDRAM back to power-down mode after the read/write access.



Figure 10: Power DOWN Diagram

## 4.2.25 SDRAM Chip Select Decoding

There can be a maximum of 8 chip selects. You should specify the size of the memory connected to each chip select in bits 4:0 of the corresponding Address Mask Registers (SMSKRn). The table lists the number of address bits that are used to generate a chip select, which is dependent on the block size programmed in the mask register. Only these bits will be compared with the host address for generating chip selects.

The memory controller supports address aliasing and remapping, which can be done only on chip select0 and chip select 1.

In normal application aliasing is always enabled, so the chip select becomes active when the AHB address matches either the chip select base address or the chip select alias address. If for some reason aliasing is not wanted the alias register should be set equal to the base address i.e. CSALIASn = SCSLRn.

When remapping is enabled, the chip select becomes active when the AHB address matches the chip select base address and remap pin is 0, or when the AHB address matches the chip select remap address and the remap pin is 1.

| Mask Register Bits | Block Size | Number of Address Bits for<br>Addressing a Block | Bits Used in Address<br>Comparison |
|--------------------|------------|--------------------------------------------------|------------------------------------|
|--------------------|------------|--------------------------------------------------|------------------------------------|

| 00000 | Unused | Unused | Unused                |
|-------|--------|--------|-----------------------|
| 00001 | 64 KB  | 16     | 31:16                 |
| 00010 | 128 KB | 17     | 31:17                 |
| 00011 | 256 KB | 18     | 31:18                 |
| 00100 | 512 KB | 19     | 31:19                 |
| 00101 | 1 MB   | 20     | 31:20                 |
| 00110 | 2 MB   | 21     | 31:21                 |
| 00111 | 4 MB   | 22     | 31:22                 |
| 01000 | 8 MB   | 23     | 31:23                 |
| 01001 | 16 MB  | 24     | 31:24                 |
| 01010 | 32 MB  | 25     | 31:25                 |
| 01011 | 64 MB  | 26     | 31:26                 |
| 01100 | 128 MB | 27     | 31:27                 |
| 01101 | 256 MB | 28     | 31:28                 |
| 01110 | 512 MB | 29     | 31:29                 |
| 01111 | 1 GB   | 30     | 31:30                 |
| 10000 | 2 GB   | 31     | 31:31                 |
| 10001 | 4 GB   | 32     | No Address Comparison |

 Table 18: Chip Select Decoding

# 4.2.26 SDRAM Read/Write Timing

| Timing Parameter | Register and Bit | Description                                                                             |
|------------------|------------------|-----------------------------------------------------------------------------------------|
| t_init           | STMG1R (15:0)    | Internal delay before a command is sent to the memory device                            |
| t_rcd            | STMG1R (8:7)     | Active-to-read/write command time.                                                      |
| t_cas            | STMG0R (1:0)     | CAS latency. Delay in clock cycles between read command and availability of first data. |

### Table 19: SDRAM Read/Write Timing Parameters





TC TECHNOLOGIES

# 4.2.26.2 SDRAM Page-Miss Single Write (hburst = Single)







## 4.2.26.3 SDRAM Page-Hit Burst Write (hburst = Incr 8)

Figure 13: SDRAM Page-Hit Burst Write

4.2.26.4 SDRAM Page-Hit Single Read (hburst = single)





TC TECHNOLOGIES



4.2.26.5 SDRAM Page-Miss Single Read (hburst = single)

Figure 15: SDRAM Page-Miss Single Read





Figure 16: SDRAM Page-Hit Burst Read

## 4.2.27 Static Memory Configuration

This chapter describes the functional details of the static memory controller. Under the Static memory category, the memory controller supports asynchronous SRAMs, asynchronous FLASH memories, asynchronous ROMs, synchronous SRAMs (non-ZBT) and non-memory devices with ready pin.

The memory controller supports Static memories of various data widths. The memory controller has three sets of timing registers for controlling the Static memory:

- Static Memory Timing Register Set 0 (SMTMGR\_SET0)
- Static Memory Timing Register Set 1 (SMTMGR\_SET1)
- Static Memory Timing Register Set 2 (SMTMGR\_SET2)

The following compile-time and programmable parameters apply when configuring the memory controller for static memories:

- The maximum data width for the static memory data bus is 16 bits.
- You can dynamically specify the Static memory data widths by programming the Static Memory Control Register (SMCTLR). Bits 9:7 specify the static memory data bus width of the memory associated with all three timing registers. If you configure the memory controller as both a static memory controller and an SDRAM controller, then the static memory data width must be less than or equal to the SDRAM data width.
- The maximum address width for the static memory data bus is 24 bits.
- You can dynamically specify the read latencies which are required if you put extra flip-flops in the read data path to the Static memory by programming the Static Memory Timing Registers.
- The write latency for the static memory controller is 1cc. A write latency is required if you put extra flip-flops in the write data path to the static memory.

### 4.2.28 Static Memory Chip Selection

The memory controller supports up to eight chip selects. The Address Mask Registers (SMSKR*n*) and the Chip Select Registers (SCSLR*n*) control the chip select selection.

Bits 4:0 of the mask register specify the size of the memory assigned to a particular chip select. The memory controller supports static memory sizes from 64KB to 4GB. Bits 6:5 specify the type of memory connected to that particular chip select. Bits 8:7 specify the Static Memory Timing Register set which this particular memory is associated with.

The chip select base address registers hold the base address values that correspond to each chip select. The memory controller compares the AHB address with the chip select base address register values in order to generate the chip select.

## 4.2.29 FLASH Memory

### 4.2.29.1 Reset/Power DOWN

When the sm\_rp\_n pin (connected to a FLASH memory module) is driven low, the following happens:

- FLASH internal status registers are cleared.
- Many internal circuits are turned off.
- Device goes into power-down mode.

In this mode, all inputs to the FLASH except sm\_rp\_n have a value of "Don't Care," and all outputs from the FLASH are high-impedance.

During reset, the memory controller asserts sm\_rp\_n, which is de-asserted by the memory controller immediately after reset. After reset, all requests to the FLASH will be queued until the t\_rpd timer for the FLASH expires. During normal operation, the FLASH Timing Register (FLASH\_TRPDR), the sm\_power\_down pin, and the Static Memory Control Register (SMCTLR) enable you to control the reset/power-down mode of the FLASH.

Even though the memory controller can support up to three different FLASH memories with different timing parameters, there is only one register for specifying t\_rpd.

There are two ways to control the reset/power-down mode of a FLASH memory:

- Program bit 0 of Static Memory Control Register. A 0 commands the memory controller to put the FLASH in reset/power-down mode. A 1 commands the memory controller to take the FLASH out of reset/power-down mode.
- Use sm\_power\_down input pin. FLASH will be in reset/ power-down mode as soon as this signal stays high.

## 4.2.29.2 Write Protection

Some FLASH memories have a write protection pin that protects important system information in the boot block. For the memory controller, you can control this pin by programming the Static Memory Control Register (SMCTLR). Writing 0 to bits 3:1 of SMCTLR forces a 0 on the WP pin of the FLASH memory.

### 4.2.29.3 Status Information

Some FLASH memories have a status pin that indicates the status of the internal state machine of the FLASH memory. The memory controller does not have dedicated pins for the status inputs from the FLASH memories. However, you can connect the FLASH status pins to the General Purpose Input (GPI) pins of the memory controller and get the status information by reading corresponding bits in the SDRAM Refresh Interval Register (SREFR).

# 4.2.30 Static Memory Read/Write Timing

This section explains how the timing parameter specified in the static memory timing registers affect the functioning of static memory read/write operation. The following table gives brief descriptions of the various timing parameters.

| Timing Parameter | Register and Bits   | Description                                       |
|------------------|---------------------|---------------------------------------------------|
| t_rc             | SMTMGR_SETn (5:0)   | Read cycle time                                   |
| t_prc            | SMTMGR_SETn (22:19) | Page mode read cycle time                         |
| t_as             | SMTMGR_SETn (7:6)   | Write address setup time                          |
| t_wp             | SMTMGR_SETn (15:10) | Write pulse width                                 |
| t_wr             | SMTMGR_SETn (9:8)   | Write address/data hold time                      |
| t_bta            | SMTMGR_SETn (18:16) | Idle cycles between read to write / write to read |
| t_rpd            | FLASH_TRPDR (11:0)  | FLASH reset/power-down                            |

 Table 20:
 Static Memory Read/Write Timing Parameters

## 4.2.30.1 Read Timing of SRAM, FLASH and ROM



#### Figure 17: Static Read Timing



## 4.2.30.2 Page Read Timing of FLASH and ROM



## 4.2.30.3 Write Timing of SRAM and FLASH







## 4.2.30.4 External Memory Data Bus Turnaround Timing



4.2.30.5 First Read After Reset/Power-Down





### 4.2.31 Interfacing to Non-Memory Devices with Ready Pin (DSP)

The Memory Controller supports non-memory devices with a ready pin, such as a DSP. This type of device has the same interface as an asynchronous SRAM, except that it has a ready pin to indicate that the read data is available on the data bus or that the write data is accepted by the device.

The ready pin of the device should be connected to the SRAM\_READY pin on the DICEJR/Mini. Note that the SRAM\_READY pin is a multi-function pin, so the SRAM\_READY bit of the GPCSR\_GPIO\_SELECT register must be set to 1.

The READY\_MODE bit of the Static Timing Register (SMTMGR\_SET0/1/2 – bit 26) should be set to 1.

# 4.2.31.1 I/O Interface between Non-Memory Device and DICE JR/Mini

The following are conditions for interfacing Non-Memory device pins to the DICE JR/Mini Memory Controller pins:

- Address pins Connect the address pins to the DICE JR/Mini SDRAM/SRAM shared address pins.
- Chip select pin Connect the chip select pin to one of the chip select pins. Specify which chip select is connected to the Non-Memory device in the memory type bits (bits 6:5) of the mask register (SMSKR0-7) that correspond to a particular chip select.
- Output enable pin Connect the output enable pin of the Non-Memory device to the SRAM\_OE pin.
- Write enable pin Connect the write enable pin of the Non-Memory device to the SRAM\_WE pin.
- Byte control pins Connect the byte enable pins to the SRAM\_BS pins. The lower byte enable should be connected to SRAM\_BS[0] and the upper byte enable should be connected to SRAM\_BS[1].
- Data inputs/outputs Drive the bidirectional data pins of the Non-Memory device using the DICE JR/Mini data bus pins.

### 4.2.31.2 Timing Diagrams of Read/Write Accesses

The figure below shows the timing diagram of a read access. The Memory Controller checks SRAM\_READY after the tRC read access time. When SRAM\_READY is high, the Memory Controller latches read data at the next rising clock edge.



### Figure 22: Read Access of the Device with Ready Signal

The figure below shows the timing diagram of a write access. The Memory Controller checks SRAM\_READY after a time equal to "tAS (address setup time) + tWP (write period)." When the SRAM\_READY is high, the write is finished.



Figure 23: Write Access of the Device with Ready Signal

# 4.2.31.3 Specifying the Timing Parameters

You can specify timing parameters of the Non-Memory device by programming the Static Memory Timing Register - Set 0 (SMTMGR\_SET0), Static Memory Timing Register - Set 1 (SMTMGR\_SET1), or Static Memory Timing Register - Set 2 (SMTMGR\_SET2), depending on which of the three register sets should control the device.

You can use the following timing parameters:

- Read cycle time (tRC) Bits 5:0 of SMTMGR\_SET0/1/2 specify the read cycle time.
- Address setup time (tAS) Bits 7:6 of the Static Memory Timing Register SMTMGR\_SET0/1/2.
- Write period (tWP) Bits 15:10 of SMTMGR\_SET0/1/2.
- Bus turnaround time (tBTA) Bits 18:16 of SMTMGR\_SET0/1/2 force the Memory Controller to insert tBTA number of cycles between back-to-back read/writes.

# 4.3 $I^{2}C$

## 4.3.1 Signal Description

| Signal   | TCD2220         | TCD2210     | I/O     | Drive<br>(mA) | Description                       |
|----------|-----------------|-------------|---------|---------------|-----------------------------------|
| I2C_CLK  | 104<br>(shared) | 97 (shared) | I/O (S) | 6             | I2C Clock (OD <sup>11</sup> , 5V) |
| I2C_DATA | 105<br>(shared) | 98 (shared) | I/O (S) | 6             | I2C Data (OD, 5V)                 |

 Table 21: Signal Description

## 4.3.2 Features

For a full description of the I2C standard, including timing and frame format diagrams, see the Phillips I2C specification.

The I2C interface implemented in the TCD22XX is fully compliant with Philips I2C definitions. The following is a list of general features of the DICE JR I2C Interface:

- The APB data width is 32 bits.
- The highest I2C speed mode supported is high (standard and fast modes are also supported).
- Supports 10-bit addressing in both master and slave mode
- 8-bit receive and transmit buffers
- 100pF bus loading

Note that all pins used by the I2C module are multi-purpose or shared. The function of these pins is software configurable via the GPCSR module, specifically register GPCSR\_GPIO\_SELECT – 0xc700 0008. Refer to the GPCSR module documentation for more information.

<sup>&</sup>lt;sup>11</sup> OD indicates Open Drain pad type. External Pull-Up resistor required.

## 4.4 I2C Overview

The I2C bus is a two-wire serial interface. The I2C Interface module can operate in both standard mode (with data rates up to 100 Kb/s), fast mode (with data rates up to 400 Kb/s), and high-speed mode (with data rates up to 3.4 Mb/s). The I2C Interface can communicate with devices only of these modes as long as they are attached to the bus. The I2C serial clock determines the transfer rate.

The I2C interface protocol is setup with a master and slave. The master is responsible for generating the clock and controlling the transfer of data. The slave is responsible for either transmitting or receiving data to/from the master. The acknowledgement of data is sent by the device that is receiving data, which can be either the master or the slave. The protocol also allows multiple masters to reside on the I2C bus, which requires the masters to arbitrate for ownership.

The slaves each have a unique address that is determined by the system designer. When the master wants to communicate with a slave, the master transmits a start condition that is then followed by the slave's address and a control bit (R/W) to determine if the master wants to transmit data or receive data from the slave. The slave then sends acknowlegment (ACK) pulse after the address and R/W bit is received to notify the master that the slave has received the request.

If the master (master-transmitter) is writing to the slave (slave-receiver), the receiver receives a byte of data. This transaction continues until the master terminates the transmission with a stop condition. If the master is reading from a slave, the slave transmits a byte of data to the master, and the master then acknowledges the transaction with the ACK pulse. This transaction continues until the master terminates the transmission by not acknowledging the transaction after the last byte is received, and then the master issues a stop condition or addresses another slave after issuing a restart condition.

The I2C Interface is a synchronous serial interface. The data signal (SDA) is a bidirectional signal and changes only while the serial clock signal (SCL) is low. The output drivers are open-drain or open-collector to perform wire-AND functions on the bus. The maximum number of devices on the bus is limited by only the maximum capacitance specification of 400 pF. Data is transmitted in byte packages.

## 4.4.1 I2C START and STOP Condition Protocol

When the bus is IDLE both the SCL and SDA signals are pulled high through external pull-up resistors on the bus. When the master wants to start a transmission on the bus, the master issues a START condition. This is defined to be a high-to-low transition of the SDA signal while SCL is 1. When the master wants to terminate the transmission, the master issues a STOP condition. This is defined to be a low-to-high transition of the SDA line while SCL is 1.

### 4.4.2 I2C Addressing Slave Protocol

There are two address formats: the 7-bit address format and the 10-bit address format. During the 7-bit address format, the first seven bits (bits 7:1) of the first byte set the slave address and the LSB bit (bit 0) is the R/W bit When Bit 8 is set to 0, the master writes to the slave. When Bit 8 (R/W) is set to 1, the master reads from the slave. Data is transmitted most significant bit (MSB) first. During 10-bit addressing, two bytes are transferred to set the 10-bit address. The transfer of the first byte contains the following bit definition. The first five bits (bits 7:3) notify the slaves that this is a 10-bit transfer followed by the next two bits (bits 2:1), which set the slaves address bits 9:8, and the LSB bit (Bit 8) is the R/W bit. The second byte transferred sets bits 7:0 of the slave address.

### 4.4.3 I2C Transmitting and Receiving Protocol

All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer. After the master sends the address and R/W bit or the master transmits a byte of data to the slave, the slave-receiver must respond with the acknowledge signal. When a slave-receiver does not respond with an acknowledge pulse, the master aborts the transfer by issuing a STOP condition. The slave shall leave the SDA line high so the master can abort the transfer.

## 4.4.4 I2C START BYTE Transfer Protocol

The START BYTE transfer protocol is set up for systems that do not have an on board dedicated I2C hardware module. When the I2C Interface is addressed as a slave, it always samples the I2C bus at the highest speed supported so that it never requires a START BYTE transfer. However, when the I2C Interface is a master, it supports the generation of START BYTE transfers at the beginning of every transfer in case a slave device requires it. The START BYTE protocol consists of seven zeros being transmitted followed by a 1. This allows the processor that is polling the bus to under-sample the address phase until 0 is detected. Once the microcontroller detects a 0, it switches from the under sampling rate to the correct rate of the master. The START BYTE procedure is as follows:

- 1. Master generates a START condition.
- 2. Master transmits the START byte (0000 0001).
- 3. Master transmits the ACK clock pulse.
- 4. No slave sets the ACK signal to 0.
- 5. Master generates a repeated START (Sr) condition.

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after the Sr (restart condition) is generated.

## 4.4.5 Operation Modes

### Slave Mode Operation Initial configuration

To use the I2C Interface as a slave, perform the following steps:

- 1. Disable the I2C Interface by writing a 0 to the IC\_ENABLE register.
- 2. Write to the IC\_SAR register to set the slave address. This is the address to which the I2C Interface responds.
- 3. Write to the IC\_CON register to specify whether 10-bit addressing is supported and whether the I2C Interface is in slave-only or master-slave mode.
- 4. Enable the I2C Interface with the IC\_ENABLE register.

Note: Depending on the reset values chosen, Steps 2 and 3 may not be necessary. If the I2C Interface is configured to use a default reset address, these registers do not need to be programmed. The values stored are static and do not need to be reprogrammed if the I2C Interface is disabled.

### Slave-Transmitter Operation

When another master addresses the I2C Interface and requests data, the I2C Interface acts as a slave-transmitter and the following steps occur:

- 1. The other master initiates an I2C transfer with an address that matches the slave address in the IC\_SAR register of the I2C Interface.
- 2. The I2C Interface acknowledges the sent address and recognizes the direction of transfer to indicate that it is acting as a slave-transmitter.
- 3. The I2C Interface asserts the RD\_REQ interrupt (IC\_RAW\_INTR\_STAT register) and holds the SCL line low. It is in a wait state until software responds.
- 4. If there is any data remaining in the TX FIFO before receiving the read request, then the I2C Interface asserts a TX\_ABRT interrupt (IC\_RAW\_INTR\_STAT register) to flush the old data from the TX FIFO.
- 5. Software then writes the IC\_DATA\_CMD register with the data to be written. The CMD bit, Bit 8, should be set to write (0).
- 6. Software should clear the RD\_REQ and TX\_ABRT interrupts before proceeding.
- 7. The I2C Interface releases the SCL and transmits the byte.
- 8. The master may hold the I2C bus by issuing a restart condition or release the bus by assuming a stop condition.

### **Slave-Receiver operation**

When another master addresses the I2C Interface and is sending data, the I2C Interface acts as a slave-receiver and the following steps occur:

- 1. The other master initiates an I2C transfer with an address that matches the I2C Interface's slave address in the IC\_SAR register.
- 2. The I2C Interface acknowledges the sent address and recognizes the direction of transfer to indicate that the I2C Interface is acting as a slave-receiver.
- 3. The I2C Interface receives the transmitted byte and place it in the receive buffer, assuming there is room.
- 4. The status and interrupt bits corresponding to the receive buffer is updated.
- 5. Software may read the byte from the IC\_DATA\_CMD register.

6. The other master may hold the I2C bus by issuing a restart condition or release the bus by issuing a stop condition.

### Slave Bulk Transfer Mode

In the standard I2C protocol, all transaction are single byte transactions and the programmer responds to a remote master read request by writing one byte into the TXFIFO. For the Slave Bulk Transfer mode, if the remote master acknowledged the sent byte to request more data, then the slave must hold the I2C SCL line low and request the next byte from the processor side.

If the programmer knows in advance that the remote master is requesting a packet of *n* bytes, then when another master addresses the I2C Interface and request data, the TXFIFO could be written with *n* number bytes and the remote master will receive it as a continuous stream of data. For example, the I2C Interface slave will continue to send data to the remote master as long as the remote master is acknowledging the data sent and there is data available in the TX\_FIFO. There is no need to hold the SCL line low or to issue RD-REQ again.

If the remote master is to receive n bytes from the I2C Interface but the programmer wrote a number of bytes larger than n to the TX-FIFO then when the slave finishes sending the requested n bytes, it will clear the TX-FIFO and ignore any excess bytes.

### Master Mode Operation

### Initial configuration

To use the I2C Interface as a master, perform the following steps:

- 1. Disable the I2C Interface by writing 0 to the IC\_ENABLE register.
- 2. Write to the IC\_SAR register to set the slave address, which is the address to which the I2C Interface responds.
- 3. Write to the IC\_CON register to set the maximum speed mode supported for slave operation and the desired speed of the I2C Interface master-initiated transfers, either 7-bit or 10-bit addressing.
- Write to the IC\_TAR register to the address of the I2C device to be addressed. It also indicates whether adding a START BYTE or issuing a general call is going to occur.
- 5. *Only applicable for high-speed mode transfers*. Write to the IC\_HS\_MADDR register the desired master code for the I2C Interface.
- 6. Enable the I2C Interface with the IC\_ENABLE register.
- 7. Commands and data to be sent may be written now to the IC\_DATA\_CMD register. If the IC\_DATA\_CMD register is written before the I2C Interface is enabled, the data and commands are lost as the buffers are kept cleared when I2C Interface is not enabled.

Note: Depending on the reset values chosen, Steps 2, 3, 4, and 5 may not be necessary because the reset values can be configured. The values stored are static and do not need to be reprogrammed if the I2C Interface is disabled, with the exception of the commands and data.

### **Master Transmit and Master Receive**

The I2C Interface supports switching back and forth between reading and writing dynamically. To transmit data, write the data to be written to the lower byte of the IC\_DATA\_CMD register. The CMD bit, Bit 8, should be written to 0 for write operations.

Subsequently, a read command may be issued by writing "don't cares" to the lower byte of the IC\_DATA\_CMD register, and a 1 should be written to the CMD bit. As data is transmitted and received, the transmit and receive buffer status bits and interrupts change.

## 4.4.6 I2C IC\_CLK Frequency Configuration

The \*CNT registers must be set when configured as a master before any I2C bus transaction can take place to ensure proper I/O timing. The \*CNT registers are:

- IC\_SS\_SCL\_HCNT
- IC\_SS\_SCL\_LCNT
- IC\_FS\_SCL\_HCNT
- IC\_FS\_SCL\_LCNT
- IC\_HS\_SCL\_HCNT
- IC\_HS\_SCL\_LCNT

Setting the \*\_LCNT registers, configures the number of IC\_CLKs that are required for setting the low time of the SCL clock in each speed mode. Setting the \*\_HCNT\* registers, configures the number of IC\_CLKs that are required for setting the high time of the SCL clock in each speed mode. Setting the registers to the correct value is described as follows.

The equation to calculate the proper number of IC\_CLKs required for setting the proper SCL clocks high and low times is as follows:

IC\_xCNT = (ROUNDUP(MIN\_SCL\_xxxtime\*OSCFREQ,0))

ROUNDUP is an explicit Excel function call that is used to roundup the results of the division to an integer.

| MIN_SCL_HIGHtime =<br>MIN_SCL_HIGHtime = | Minimum High Period<br>4000 ns for 100 kbps<br>600 ns for 400 kbps<br>60 ns for 3.4 Mbs, bus loading = 100pF<br>160 ns for 3.4 Mbs, bus loading = 400pF |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| MIN_SCL_LOWtime =<br>MIN_SCL_LOWtime =   | Minimum Low Period<br>4700 ns for 100 kbps<br>1300 ns for 400 kbps<br>120 ns for 3.4Mbs, bus loading = 100pF<br>320 ns for 3.4Mbs, bus loading = 400pF  |

OSCFREQ = IC\_CLK Clock Frequency (Hz).

For example:

OSCFREQ = 100 MHz I2Cmode = fast, 400 kbit/s MIN\_SCL\_HIGHtime = 600 ns. MIN\_SCL\_LOWtime = 1300 ns. IC\_xCNT = (ROUNDUP(MIN\_SCL\_HIGH\_LOWtime\*OSCFREQ,0))

IC\_HCNT = (ROUNDUP(600 ns \* 100 MHz,0)) IC\_HCNTSCL PERIOD = 60 IC\_LCNT = (ROUNDUP(1300 ns \* 100 MHz,0)) IC\_LCNTSCL PERIOD = 130

Actual MIN\_SCL\_HIGHtime = 60\*(1/100 MHz) = 600 nsActual MIN\_SCL\_LOWtime = 130\*(1/100 MHz) = 1300 ns

### 4.4.7 I2C General Notes

When the I2C Interface is configured in the master mode of operation, the minimum value for \*\_LCNT is 8 and the minimum \*\_HCNT is 6. Also, because of the digital filtering on the receiver, the actual SCL high and low times are slightly longer than the specified count value—8 more ic\_clks for SCL high and 1 more ic\_clk for SCL low period. You may subtract 8 from your low count and 1 from the high count values to account for this. The following six points describe why this occurs:

The minimum ic\_clk oscillator frequency for standard mode is 2 MHz; fast mode is 10 MHz; and for high-speed mode is 100 MHz. According to the I2C specifications, the minimum time period to be able to generate or detect at a 3.4 Mb/s data rate is 60 ns (HIGH), which means theoretically that the minimum ic\_clk clock frequency should be  $\geq$  33 MHz. Given this:

You do not have to have the I2C module running at the clock speeds listed previously to support all different modes. However, you have to run at only those speeds if you are willing to operate your master at a 3.4 Mb/s data rate or at the highest supported clock rate. These MIN\_SCL\_HIGHtime and MIN\_SCL\_LOWtime values for high-speed mode depend on loading in the system as described in the previous equation. Please see the *I2C-BUS Specification* and information from Phillips for more detail.

The final values calculated in the equation for IC\_\*\_HCNT and IC\_\*\_LCNT (where \* represents SS, FS, or HS) are decimal values. For programming the actual registers, the values must be converted to hexadecimal. The 16-bit range on these registers allows a wide range of input clock frequencies to be used.

# 4.4.8 Module Configuration

| Address     | Register          |
|-------------|-------------------|
| 0xc400 0000 | IC_CON            |
| 0xc400 0004 | IC_TAR            |
| 0xc400 0008 | IC_SAR            |
| 0xc400 000c | IC_HS_MAR         |
| 0xc400 0010 | IC_DATA_COMMAND   |
| 0xc400 0014 | IC_SS_HCNT        |
| 0xc400 0018 | IC_SS_LCNT        |
| 0xc400 001c | IC_FS_HCNT        |
| 0xc400 0020 | IC_FS_LCNT        |
| 0xc400 0024 | IC_HS_HCNT        |
| 0xc400 0028 | IC_HS_LCNT        |
| 0xc400 002c | IC_INTR_STAT      |
| 0xc400 0030 | IC_INTR_MASK      |
| 0xc400 0034 | IC_RAW_INTR_STAT  |
| 0xc400 0038 | IC_RX_TL          |
| 0xc400 003c | IC_TX_TL          |
| 0xc400 0040 | IC_CLR_INTR       |
| 0xc400 0044 | IC_CLR_RX_UNDER   |
| 0xc400 0048 | IC_CLR_RX_OVER    |
| 0xc400 004c | IC_CLR_TX_OVER    |
| 0xc400 0050 | IC_CLR_RD_REQ     |
| 0xc400 0054 | IC_CLR_TX_ABRT    |
| 0xc400 0058 | IC_CLR_RX_DONE    |
| 0xc400 005c | IC_CLR_ACTIVITY   |
| 0xc400 0060 | IC_CLR_STOP_DET   |
| 0xc400 0064 | IC_CLR_START_DET  |
| 0xc400 0068 | IC_CLR_GEN_CALL   |
| 0xc400 006c | IC_ENABLE         |
| 0xc400 0070 | IC_STATUS         |
| 0xc400 0074 | IC_TXFLR          |
| 0xc400 0078 | IC_RXFLR          |
| 0xc400 007c | IC_SRESET         |
| 0xc400 0080 | IC_TX_ABRT_SOURCE |

### Table 22: I2C Register set
## 4.4.9 Programming the I2C Interface

Some registers may only be written when the I2C module is disabled as corresponding to Register IC\_ENABLE. Software should not disable the I2C module while it is active. If the module was transmitting it will stop as well as delete the contents of the transmit buffer after the current transfer is complete. If the module was receiving, it will stop the current transfer at the end of the current byte and not acknowledge the transfer. Registers that cannot be written to when the I2C module is disabled are indicated in their descriptions.

# 4.4.10 IC\_CON register – I2C Control

|        | 15 | 14 | 13 | 12 | 11       | 10 | 9 | 8 | 7 | 6                        | 5                     | 4                               | 3                              | 2 1   | 0                      |
|--------|----|----|----|----|----------|----|---|---|---|--------------------------|-----------------------|---------------------------------|--------------------------------|-------|------------------------|
|        |    |    |    |    | Reserved |    |   |   |   | IC_SLA<br>VE_DIS<br>ABLE | IC_RES<br>TART_<br>EN | IC_10BI<br>TADDR<br>_MAST<br>ER | IC_10BI<br>TADDR<br>_SLAV<br>E | SPEED | IC_MA<br>STER_<br>MODE |
| Reset: | 0  | 0  | 0  | 0  | 0        | 0  | 0 | 0 | 0 | 0                        | 0                     | 0                               | 0                              | 3     | 1                      |
|        | R  | R  | R  | R  | R        | R  | R | R | R | RW                       | RW                    | RW                              | RW                             | RW    | RW                     |

This register can be written only when the I2C interface is disabled. That condition corresponds to the IC\_ENABLE register being set to 0. Writes at other times have no

| Name                | Bit | Reset | Dir | Description                                                                                                                                                                                               |
|---------------------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_SLAVE_DISABLE    | 6   | 0     | RW  | This bit controls whether I2C has its slave disabled after reset.<br>The slave can be disabled by programming a '1' into<br>IC_CON[6]. By default the slave is enabled.                                   |
|                     |     |       |     | 0: slave is enabled                                                                                                                                                                                       |
|                     |     |       |     | 1: slave is disabled                                                                                                                                                                                      |
| IC_RESTART_EN       | 5   | 1     | RW  | Determines whether re-start conditions may be sent when acting as a master.                                                                                                                               |
|                     |     |       |     | Some older slaves do not support handling re-start conditions.<br>Re-start conditions are used in several I2C operations.<br>Disabling re-start will not allow the master to perform these<br>functions:  |
|                     |     |       |     | - send multiple bytes per transfer (split)                                                                                                                                                                |
|                     |     |       |     | - change direction within a transfer (split)                                                                                                                                                              |
|                     |     |       |     | - send a start byte                                                                                                                                                                                       |
|                     |     |       |     | - perform any high speed mode operation                                                                                                                                                                   |
|                     |     |       |     | <ul> <li>perform combined format transfers in 7 or 10 bit addressing<br/>modes (split for 7 bit)</li> </ul>                                                                                               |
|                     |     |       |     | - perform a read operation with a 10 bit address                                                                                                                                                          |
|                     |     |       |     | Operations which are split are broken down into multiple I2C transfers with a stop and start condition in between. The other operations will not be performed at all, and will result in setting TX_ABRT. |
| IC_10BITADDR_MASTER | 4   | 1     | RW  | Controls whether the I2C module starts its transfers in 10-bit addressing mode.                                                                                                                           |
|                     |     |       |     | 0 = 7-bit addressing, 1 = 10-bit addressing                                                                                                                                                               |

Address - 0xC400 0000

effect on the register.

| Name               | Bit | Reset | Dir | Description                                                                                                                                                                   |
|--------------------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_10BITADDR_SLAVE | 3   | 1     | RW  | When acting as a slave, this bit controls whether the I2C module responds to 7 or 10 bit addresses.                                                                           |
|                    |     |       |     | 0: 7 bit addressing, the I2C module will ignore transactions which involve 10 bit addressing, for 7 bit addressing only the lower 7 bits of Register IC_SAR will be compared. |
|                    |     |       |     | 1: 10 bit addressing, the I2C module will only respond to 10 bit addressing transfers which match the full 10 bits of Register IC_SAR.                                        |
| SPEED              | 2:1 | 3     | RW  | Controls what speed the I2C module will operate at. 0 = illegal, writing a 0 will result in setting SPEED to 3                                                                |
|                    |     |       |     | 1 = standard mode (100 kbit/s)                                                                                                                                                |
|                    |     |       |     | 2 = fast mode (400 kbit/s)                                                                                                                                                    |
|                    |     |       |     | 3 = high speed mode (3.4 Mbit/s)                                                                                                                                              |
| MASTER_MODE        | 0   | 1     | RW  | This bit controls whether the I2C master is enabled or not. The slave is always enabled.                                                                                      |
|                    |     |       |     | 0: master disabled                                                                                                                                                            |
|                    |     |       |     | 1: master enabled                                                                                                                                                             |

# 4.4.11 IC\_TAR register – I2C Target Address

Address - 0xC400 0004

|        | 15 | 14  | 13     | 12 | 11          | 10                  | 9 | 8 | 7 | 6 | 5   | 4   | 3 | 2 | 1 | 0 |
|--------|----|-----|--------|----|-------------|---------------------|---|---|---|---|-----|-----|---|---|---|---|
|        |    | Res | served |    | SPECI<br>AL | GC_OR<br>_STAR<br>T |   |   |   |   | IC_ | TAR |   |   |   |   |
| Reset: | 0  | 0   | 0      | 0  | 0           | 0                   |   |   |   |   | (   | 1   |   |   |   |   |
|        | R  | R   | R      | R  | RW          | RW                  |   |   |   |   | R   | N   |   |   |   |   |

This register can be written only when the I2C interface is disabled. That condition corresponds to the IC\_ENABLE register being set to 0. Writes at other times have no effect on the register.

| Name        | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                          |
|-------------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPECIAL     | 11  | 0     | RW  | This bit indicates whether software would like to perform a general call or start byte I2C command.                                                                                                                                                                                                  |
|             |     |       |     | 0 = ignore bit 10 GC_OR_START and use IC_TAR normally                                                                                                                                                                                                                                                |
|             |     |       |     | 1 = perform special I2C command as specified in<br>GC_OR_START bit                                                                                                                                                                                                                                   |
| GC_OR_START | 10  | 0     | RW  | This bit indicates whether a general call or start byte command is to be performed by the I2C module.                                                                                                                                                                                                |
|             |     |       |     | 0 = General Call Address – after issuing a general call, only<br>writes may be performed. Attempting to issue a read command<br>will result in setting TX_ABRT. After the I2C module is disabled<br>by writing logic 0 to Register IC_ENABLE the I2C module will<br>revert back to normal operation. |
|             |     |       |     | 1 = Start Byte                                                                                                                                                                                                                                                                                       |

| Name   | Bit | Reset | Dir | Description                                                                                                                                                                                                                     |
|--------|-----|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_TAR | 9:0 | 0     | RW  | This is the target address for any master transactions. This register can only be written when the I2C interface is disabled which corresponds to Register IC_ENABLE being set to 0. Writes at other times will have no effect. |

# 4.4.12 IC\_SAR register – I2C Slave Address

Address - 0xC400 0008

|        | 15 | 14 | 13 | 12     | 11 | 10 | 9 | 8 | 7 | 6 | 5  | 4    | 3 | 2 | 1 | 0 |
|--------|----|----|----|--------|----|----|---|---|---|---|----|------|---|---|---|---|
|        |    |    | Re | served |    |    |   |   |   |   | IC | _SAR |   |   |   |   |
| Reset: | 0  | 0  | 0  | 0      | 0  | 0  |   |   |   |   | c  | Ix55 |   |   |   |   |
|        | R  | R  | R  | R      | R  | R  |   |   |   |   |    | RW   |   |   |   |   |

| Name   | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                     |
|--------|-----|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_SAR | 9:0 | 0x055 | RW  | The IC_SAR holds the slave address when the I2C module is operating as a slave. IC_SAR holds the slave address that the I2C module will respond to. For 7 bit addressing only IC_SAR[6:0] will be used. This register can only be written when the I2C interface is disabled which corresponds to Register IC_ENABLE being set to 0. Writes at other times will have no effect. |

# 4.4.13 IC\_HS\_MAR register – I2C Master Mode Code Address

Address - 0xC400 000C

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9        | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1       | 0  |
|--------|----|----|----|----|----|----|----------|---|---|---|---|---|---|---|---------|----|
|        |    |    |    |    |    |    | Reserved | ł |   |   |   |   |   |   | IC_HS_M | AR |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   | 1       |    |
|        | R  | R  | R  | R  | R  | R  | R        | R | R | R | R | R | R |   | RW      |    |

| Name      | Bit | Reset | Dir | Description                                                                                                                                                                      |
|-----------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_HS_MAR | 2:0 | 1     | RW  | IC_HS_MAR holds the value of the I2C HIGH SPEED mode master code. Valid values are from 1-7, 0 being reserved.                                                                   |
|           |     |       |     | Note that the value 0 should not be used since that code is reserved according to the I2C specification. Writing a value of 0 to this register will be ignored.                  |
|           |     |       |     | This register can only be written when the I2C interface is<br>disabled which corresponds to Register<br>IC_ENABLE being set to 0. Writes at other times will have no<br>effect. |

# 4.4.14 IC\_DATA\_CMD register – I2C RX/TX Data Buffer and Command

Address - 0xC400 0010

|        | 15 | 14 | 13 | 12       | 11 | 10 | 9 | 8   | 7 | 6 | 5 | 4 | 3   | 2 | 1 | 0 |
|--------|----|----|----|----------|----|----|---|-----|---|---|---|---|-----|---|---|---|
|        |    |    |    | Reserved | 1  |    |   | CMD |   |   |   |   | DAT |   |   |   |
| Reset: | 0  | 0  | 0  | 0        | 0  | 0  | 0 | 0   |   |   |   |   | 0   |   |   |   |
|        | R  | R  | R  | R        | R  | R  | R | w   |   |   |   |   | RW  |   |   |   |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                                                |
|------|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CMD  | 8   | 0     | W   | This bit controls whether a read or a write is performed. Logic 1 corresponds to read. Logic 0 corresponds to write. For reads the lower 8 (DAT) bits are ignored by the I2C. Reading this bit returns logic 0.                            |
|      |     |       |     | Attempting to perform a read operation after a general call command has been sent will result in TX_ABRT if the I2C module has not been previously disabled. This bit is ignored if the write to the tx buffer is in response to a RD_REQ. |
| DAT  | 7:0 | 0     | RW  | This register contains the data to be transmitted or received on<br>the I2C bus. Read these bits to read out the data received on<br>the I2C interface. Write these bits to send data out on the I2C<br>interface.                         |

# 4.4.15 IC\_SS\_HCNT register – Standard Speed IC\_CLK High Count

#### Address - 0xC400 0014

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|        | IC_SS_HCNT |
|--------|------------|
| Reset: | 0x0190     |
|        | RW         |

| Name       | Bit  | Reset  | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|------|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_SS_HCNT | 15:0 | 0x0190 | RW  | The IC_SS_HCNT Register must be set before any I2C bus<br>transaction can take place to insure proper I/O timing. This<br>register sets the SCL clock high period count for STANDARD<br>speed. It is not used for HIGH SPEED mode but must be set<br>correctly since HIGH SPEED mode is initiated at lower speeds<br>that may use these values. Sample I2C STANDARD SPEED<br>high period count calculations are shown in Table 2. |
|            |      |        |     | This register can only be written when the I2C interface is disabled which corresponds to Register IC_ENABLE being set to 0. Writes at other times will have no effect.                                                                                                                                                                                                                                                           |
|            |      |        |     | The minimum valid value is 6, values less than that will result in 6 being set.                                                                                                                                                                                                                                                                                                                                                   |
|            |      |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| I2C Data Rate (kbps) | ic_clk (MHz) | SCL High required min (US) | H_CNT (HEX) | SCL High Time (US) |
|----------------------|--------------|----------------------------|-------------|--------------------|
| 100                  | 2            | 4                          | 0008        | 4.00               |
| 100                  | 6.6          | 4                          | 001B        | 4.09               |
| 100                  | 10           | 4                          | 0028        | 4.00               |
| 100                  | 75           | 4                          | 012C        | 4.00               |
| 100                  | 100          | 4                          | 0190        | 4.00               |
| 100                  | 125          | 4                          | 01F4        | 4.00               |
| 100                  | 1000         | 4                          | 0FA0        | 4.00               |

# 4.4.16 IC\_SS\_LCNT register – Standard Speed IC\_CLK Low Count

Address - 0xC400 0018

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|        | IC_SS_LCNT |
|--------|------------|
| Reset: | 0x01d6     |
|        | RW         |

| Name       | Bit  | Reset  | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_SS_LCNT | 15:0 | 0x01d6 | RW  | The IC_SS_LCNT Register must be set before any I2C bus<br>transaction can take place to insure proper I/O timing. This<br>register sets the SCL clock low period count for STANDARD<br>speed. It is not used for HIGH SPEED mode but must be set<br>correctly since HIGH SPEED mode is initiated at lower speeds<br>that may use this value. Sample I2C STANDARD SPEED low<br>period count calculations are shown in Table 3.<br>This register can only be written when the I2C interface is<br>disabled which corresponds to Register IC_ENABLE being set<br>to 0. Writes at other times will have no effect. |
|            |      |        |     | 8 being set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |      |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| I2C Data Rate (kbps) | ic_clk (MHz) | SCL Low required min (US) | L_CNT (HEX) | SCL Low Time (US) |
|----------------------|--------------|---------------------------|-------------|-------------------|
| 100                  | 2            | 4.7                       | 000A        | 5.00              |
| 100                  | 6.6          | 4.7                       | 0020        | 4.85              |
| 100                  | 10           | 4.7                       | 002F        | 4.70              |
| 100                  | 75           | 4.7                       | 0161        | 4.71              |
| 100                  | 100          | 4.7                       | 01D6        | 4.70              |
| 100                  | 125          | 4.7                       | 024C        | 4.70              |
| 100                  | 1000         | 4.7                       | 125C        | 4.70              |

# 4.4.17 IC\_FS\_HCNT register – Fast Speed IC\_CLK High Count

Address - 0xC400 001C

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8   | 7       | 6 | 5 | 4 | 3 | 2 | 1 | 0 |   |
|--------|----|----|----|----|----|----|---|-----|---------|---|---|---|---|---|---|---|---|
|        |    |    |    |    |    |    |   | IC_ | FS_HCNT |   |   |   |   |   |   |   |   |
| Reset: |    |    |    |    |    |    |   |     | 0x003c  |   |   |   |   |   |   |   | _ |
|        |    |    |    |    |    |    |   |     | RW      |   |   |   |   |   |   |   |   |

| Name                 | Bit          | Reset  | Dir      | Description                                                                                                                          |                                                                                                                                                                                                                                                                               |                                                                                                                                                                     |  |  |  |
|----------------------|--------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| IC_FS_HCNT           | 15:0         | 0x003c | RW       | The IC_FS_HCI<br>transaction can<br>register sets the<br>It is not used for<br>since HIGH SPE<br>use these value<br>calculations are | NT Register must be<br>take place to insure<br>SCL clock high peri<br>HIGH SPEED mode<br>EED mode is initiated<br>s. Sample I2C FAS <sup>-</sup><br>shown in Table 4.                                                                                                         | set before any I2C bus<br>proper I/O timing. This<br>od count for FAST SPEED.<br>but must be set correctly<br>I at lower speeds that may<br>SPEED high period count |  |  |  |
|                      |              |        |          | This register go<br>MAX_SPEED_N<br>written when the<br>Register IC_EN<br>have no effect.                                             | This register goes away and becomes read-only returning 0's if<br>MAX_SPEED_MODE = STANDARD. This register can only be<br>written when the I2C interface is disabled which corresponds to<br>Register IC_ENABLE being set to 0. Writes at other times will<br>have no effect. |                                                                                                                                                                     |  |  |  |
|                      |              |        |          | The minimum va<br>6 being set.                                                                                                       | alid value is 6, values                                                                                                                                                                                                                                                       | s less than that will result in                                                                                                                                     |  |  |  |
|                      |              |        |          |                                                                                                                                      |                                                                                                                                                                                                                                                                               |                                                                                                                                                                     |  |  |  |
| I2C Data Rate (kbps) | ic_clk (MHz) | SCL    | High req | uired min (US)                                                                                                                       | H_CNT (HEX)                                                                                                                                                                                                                                                                   | SCL High Time (US)                                                                                                                                                  |  |  |  |
| 400                  | 10           | 0.6    |          |                                                                                                                                      | 0006                                                                                                                                                                                                                                                                          | 0.60                                                                                                                                                                |  |  |  |
| 400                  | 25           | 0.6    |          |                                                                                                                                      | 000F                                                                                                                                                                                                                                                                          | 0.60                                                                                                                                                                |  |  |  |
| 400                  | 50           | 0.6    |          |                                                                                                                                      | 001E                                                                                                                                                                                                                                                                          | 0.60                                                                                                                                                                |  |  |  |

002D

003C

004B

0258

0.60

0.60

0.60

0.60

400

400

400

400

75

100

125

1000

0.6

0.6

0.6

0.6

# 4.4.18 IC\_FS\_LCNT register – Fast Speed IC\_CLK Low Count

Address - 0xC400 0020

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8   | 7       | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|----|----|----|----|----|----|---|-----|---------|---|---|---|---|---|---|---|
|        |    |    |    |    |    |    |   | IC_ | FS_LCNT |   |   |   |   |   |   |   |
| Reset: |    |    |    |    |    |    |   |     | 0x0082  |   |   |   |   |   |   |   |
|        |    |    |    |    |    |    |   |     | RW      |   |   |   |   |   |   |   |

| Name                 | Bit          | Reset  | Dir      | Description                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                              |  |  |
|----------------------|--------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| IC_FS_LCNT           | 15:0         | 0x0082 | RW       | The IC_FS_LCNT Register must be set before any I2C transaction can take place to insure proper I/O timing. T register sets the SCL clock low period count for FAST S It is not used for HIGH SPEED mode but must be set co since HIGH SPEED mode is initiated at lower speeds the use this value. Sample I2C FAST SPEED low period co calculations are shown in Table 5. |                                                                                                               |                              |  |  |
|                      |              |        |          | This register goe<br>MAX_SPEED_M<br>written when the<br>Register IC_ENA<br>have no effect.                                                                                                                                                                                                                                                                               | read-only returning 0's if<br>This register can only be<br>ed which corresponds<br>/rites at other times will |                              |  |  |
|                      |              |        |          | The minimum va<br>8 being set.                                                                                                                                                                                                                                                                                                                                           | lid value is 8, values le                                                                                     | ess than that will result in |  |  |
|                      |              |        |          |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               |                              |  |  |
| I2C Data Rate (kbps) | ic_clk (MHz) | SCL    | Low requ | iired min (US)                                                                                                                                                                                                                                                                                                                                                           | L_CNT (HEX)                                                                                                   | SCL Low Time (US)            |  |  |
| 400                  | 10           | 1.3    |          |                                                                                                                                                                                                                                                                                                                                                                          | 000D                                                                                                          | 1.30                         |  |  |
| 400                  | 25           | 1.3    |          |                                                                                                                                                                                                                                                                                                                                                                          | 0021                                                                                                          | 1.32                         |  |  |
| 400                  | 50           | 1.3    |          |                                                                                                                                                                                                                                                                                                                                                                          | 0041                                                                                                          | 1.30                         |  |  |
| 400                  | 75           | 1.3    |          |                                                                                                                                                                                                                                                                                                                                                                          | 0062                                                                                                          | 1.31                         |  |  |
| 400                  | 100          | 1.3    |          |                                                                                                                                                                                                                                                                                                                                                                          | 0082                                                                                                          | 1.30                         |  |  |

00A3

0514

1.30

1.30

1.3

1.3

125

1000

400

400

# 4.4.19 IC\_HS\_HCNT register – High Speed IC\_CLK High Count

|        | 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |   |
|--------|------------|----|----|----|----|----|---|---|--------|---|---|---|---|---|---|---|---|
|        | IC_HS_HCNT |    |    |    |    |    |   |   |        |   |   |   |   |   |   |   |   |
| Reset: |            |    |    |    |    |    |   |   | 0x0006 |   |   |   |   |   |   |   | _ |
|        |            |    |    |    |    |    |   |   | RW     |   |   |   |   |   |   |   |   |

| Name       | Bit  | Reset  | Dir | Description                                                                                                                                                                                                                                                                                         |
|------------|------|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_HS_HCNT | 15:0 | 0x0006 | RW  | The IC_HS_HCNT Register must be set before any I2C bus<br>transaction can take place to insure proper I/O timing. This<br>register sets the SCL clock high period count for HIGH SPEED.<br>Sample I2C HIGH SPEED high period count calculations are<br>shown in Table 6. The SCL high time is 60ns. |
|            |      |        |     | This register goes away and becomes read-only returning 0's if MAX_SPEED_MODE != HIGH. This register can only be written when the I2C interface is disabled which corresponds to Register IC_ENABLE being set to 0. Writes at other times will have no effect.                                      |
|            |      |        |     | The minimum valid value is 6, values less than that will result in 6 being set.                                                                                                                                                                                                                     |
|            |      |        |     |                                                                                                                                                                                                                                                                                                     |

| I2C Data Rate<br>(kbps) | ic_clk<br>(MHz) | I2C bus loading<br>(pF) | SCL High required min (US) | H_CNT<br>(HEX) | SCL High Time<br>(US) |
|-------------------------|-----------------|-------------------------|----------------------------|----------------|-----------------------|
| 3400                    | 100             | 100                     | 60                         | 0006           | 60                    |
| 3400                    | 125             | 100                     | 60                         | 0008           | 64                    |
| 3400                    | 1000            | 100                     | 60                         | 003C           | 60                    |
| 3400                    | 100             | 400                     | 120                        | 000C           | 120                   |
| 3400                    | 125             | 400                     | 120                        | 000F           | 120                   |
| 3400                    | 1000            | 400                     | 120                        | 0078           | 120                   |
|                         |                 |                         |                            |                |                       |

# 4.4.20 IC\_HS\_LCNT register – High Speed IC\_CLK Low Count

Address - 0xC400 0028

|        | 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|------------|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|        | IC_HS_LCNT |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Reset: | 0x0010     |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|        | RW         |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

| Name                    | Bit             | Reset              | Dir    | Description                                                                                                                                                                                                                                                                                     |                    |                       |  |  |  |
|-------------------------|-----------------|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--|--|--|
| IC_HS_LCNT              | 15:0            | 0x0010             | RW     | The IC_HS_HCNT Register must be set before any I2C bus<br>transaction can take place to insure proper I/O timing. This<br>register sets the SCL clock low period count for HIGH SPEE<br>Sample I2C HIGH SPEED low period count calculations are<br>shown in Table 7. The SCL low time is 160ns. |                    |                       |  |  |  |
|                         |                 |                    |        | This register goes away and becomes read-only returning 0'<br>MAX_SPEED_MODE != high. This register can only be writt<br>when the I2C interface is disabled which corresponds to<br>Register IC_ENABLE being set to 0. Writes at other times wi<br>have no effect.                              |                    |                       |  |  |  |
|                         |                 |                    |        | The minimum valid value is a 8 being set.                                                                                                                                                                                                                                                       | 8, values less tha | n that will result in |  |  |  |
|                         |                 |                    |        |                                                                                                                                                                                                                                                                                                 |                    |                       |  |  |  |
| I2C Data Rate<br>(kbps) | ic_clk<br>(MHz) | I2C bus lo<br>(pF) | oading | SCL Low required min (US)                                                                                                                                                                                                                                                                       | L_CNT<br>(HEX)     | SCL Low Time<br>(US)  |  |  |  |
| 3400                    | 100             | 100                |        | 160                                                                                                                                                                                                                                                                                             | 0010               | 160                   |  |  |  |

00A0

# 4.4.21 IC\_INTR\_STAT register – I2C Interrupt Status

Address - 0xC400 002C

Each bit in this register has a corresponding mask bit in Register IC\_INTR\_MASK. These bits are cleared by reading the matching interrupt clear register. The unmasked raw versions of these bits are available in Register IC\_RAW\_INTR\_STAT.

|        | 15 | 14  | 13    | 12 | 11           | 10            | 9            | 8            | 7           | 6           | 5          | 4            | 3           | 2           | 1           | 0            |
|--------|----|-----|-------|----|--------------|---------------|--------------|--------------|-------------|-------------|------------|--------------|-------------|-------------|-------------|--------------|
|        |    | Res | erved |    | GEN_C<br>ALL | START<br>_DET | STOP_<br>DET | ACTIVI<br>TY | RX_DO<br>NE | TX_AB<br>RT | RE_RE<br>Q | TX_EM<br>PTY | TX_OV<br>ER | RX_FU<br>LL | RX_OV<br>ER | RX_UN<br>DER |
| Reset: | 0  | 0   | 0     | 0  | 0            | 0             | 0            | 0            | 0           | 0           | 0          | 0            | 0           | 0           | 0           | 0            |
|        | R  | R   | R     | R  | R            | R             | R            | R            | R           | R           | R          | R            | R           | R           | R           | R            |

| Name      | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                 |
|-----------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GEN_CALL  | 11  | 0     | R   | Indicates that a general call request was received. The I2C module will store the received data in the RX buffer.                                                                                                                                           |
| START_DET | 10  | 0     | R   | Indicates whether a start condition has occurred on the I2C interface.                                                                                                                                                                                      |
| STOP_DET  | 9   | 0     | R   | Indicates whether a stop condition has occurred on the I2C interface.                                                                                                                                                                                       |
| ACTIVITY  | 8   | 0     | R   | Indicates whether the I2C block is idle. A logic 1 indicates the I2C module is processing data.                                                                                                                                                             |
| RX_DONE   | 7   | 0     | R   | When the I2C module is acting as a slave-<br>transmitter this bit will be set to logic 1 if the<br>master does not acknowledge a transmitted<br>byte. This will occur on the last byte of the<br>transmission, indicating that the transmission is<br>done. |

| Name     | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TX_ABRT  | 6   | 0     | R   | In general this bit will be set to logic 1 when the<br>I2C module acting as a master is unable to<br>complete a command that the processor has<br>sent. The conditions which set TX_ABRT are:                                                                                                                                                                                                                         |
|          |     |       |     | <ul> <li>no slave acknowledges after the address is<br/>sent</li> </ul>                                                                                                                                                                                                                                                                                                                                               |
|          |     |       |     | $\cdot$ the addressed slave does not acknowledge a byte of data                                                                                                                                                                                                                                                                                                                                                       |
|          |     |       |     | arbitration is lost                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |     |       |     | <ul> <li>attempting to send a master command when<br/>configured only to be a slave</li> </ul>                                                                                                                                                                                                                                                                                                                        |
|          |     |       |     | • IC_RESTART_EN bit in Register IC_CON is<br>set to logic 0 (re-start condition disabled) and<br>the processor attempts to issue an I2C function<br>which is impossible to perform without using re-<br>start conditions.                                                                                                                                                                                             |
|          |     |       |     | <ul> <li>high speed master code is acknowledged</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |
|          |     |       |     | start byte is acknowledged                                                                                                                                                                                                                                                                                                                                                                                            |
|          |     |       |     | <ul> <li>general call address is not acknowledged<br/>(impossible condition because slave module is<br/>always active and always acknowledges general<br/>call)</li> </ul>                                                                                                                                                                                                                                            |
|          |     |       |     | • when a RD_REQ occurs and the processor<br>has previously placed data in the TX buffer that<br>has not been transmitted yet. This data could<br>have been intended to service a multi-byte<br>RD_REQ which ended up having fewer numbers<br>of bytes requested. Or, if IC_RESTART_EN is<br>disabled and the I2C module loses control of the<br>bus between transfers and is then accessed as<br>a slave-transmitter. |
|          |     |       |     | <ul> <li>if a read command is issued after a general call<br/>command has been issued. Disabling the I2C<br/>module reverts it back to normal operation.</li> </ul>                                                                                                                                                                                                                                                   |
|          |     |       |     | <ul> <li>if the processor attempts to issue read<br/>command before a RD_REQ is serviced</li> </ul>                                                                                                                                                                                                                                                                                                                   |
|          |     |       |     | Anytime this bit is set the contents of the transmit buffer will be flushed.                                                                                                                                                                                                                                                                                                                                          |
| RE_REQ   | 5   | 0     | R   | This bit will be set to logic 1 when the I2C module is acting as slave and another I2C master is attempting to read data from our module. The I2C module will hold the I2C bus in waiting until this interrupt is serviced. The processor must acknowledge this interrupt and then write the requested data to the Register IC_DATA.                                                                                  |
| TX_EMPTY | 4   | 0     | R   | This bit will be set to logic 1 when the transmit<br>buffer is at or below the threshold value set in<br>Register IC_TX_TL. Automatically cleared by<br>hardware when buffer level goes above the<br>threshold.                                                                                                                                                                                                       |
| TX_OVER  | 3   | 0     | R   | Set during transmit if the transmit buffer is filled<br>to 8 and the processor attempts to issue another<br>I2C command by writing to the Register<br>IC_DATA_CMD.                                                                                                                                                                                                                                                    |

| Name     | Bit | Reset | Dir | Description                                                                                                                                                                         |
|----------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RX_FULL  | 2   | 0     | R   | Set when the transmit buffer reaches or goes<br>above the RX_TL threshold in Register<br>IC_RX_TL. Automatically cleared by hardware<br>when buffer level goes below the threshold. |
| RX_OVER  | 1   | 0     | R   | Set if the receive buffer was completely filled to 8 and more data arrived. That data will be lost.                                                                                 |
| RX_UNDER | 0   | 0     | R   | Set if the processor attempts to read the receive<br>buffer when it is empty by reading from Register<br>IC_DATA_CMD.                                                               |

#### 4.4.22 IC\_INTR\_MASK register – I2C Interrupt Mask

Address – 0xC400 0030

These bits mask their corresponding interrupt status bits. They are active high, a value of logic 0 prevents a bit from generating an interrupt.

|        | 15 | 14   | 13    | 12 | 11             | 10                  | 9              | 8              | 7             | 6             | 5            | 4              | 3             | 2             | 1             | 0              |
|--------|----|------|-------|----|----------------|---------------------|----------------|----------------|---------------|---------------|--------------|----------------|---------------|---------------|---------------|----------------|
|        |    | Rese | erved |    | M_GEN<br>_CALL | M_STA<br>RT_DE<br>T | M_STO<br>P_DET | M_ACT<br>IVITY | M_RX_<br>DONE | M_TX_<br>ABRT | M_RE_<br>REQ | M_TX_<br>EMPTY | M_TX_<br>OVER | M_RX_<br>FULL | M_RX_<br>OVER | M_RX_<br>UNDER |
| Reset: | 0  | 0    | 0     | 0  | 1              | 0                   | 0              | 0              | 1             | 1             | 1            | 1              | 1             | 1             | 1             | 1              |
|        | R  | R    | R     | R  | RW             | RW                  | RW             | RW             | RW            | RW            | RW           | RW             | RW            | RW            | RW            | RW             |

| Name        | Bit | Reset | Dir | Description                                 |
|-------------|-----|-------|-----|---------------------------------------------|
| M_GEN_CALL  | 11  | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_START_DET | 10  | 0     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_STOP_DET  | 9   | 0     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_ACTIVITY  | 8   | 0     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_RX_DONE   | 7   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_TX_ABRT   | 6   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_RE_REQ    | 5   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_TX_EMPTY  | 4   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_TX_OVER   | 3   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_RX_FULL   | 2   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_RX_OVER   | 1   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |
| M_RX_UNDER  | 0   | 1     | RW  | Masks this bit in the register IC_INTR_STAT |

## 4.4.23 IC\_RAW\_INTR\_STAT register – I2C Raw Status

Address - 0xC400 0034

Unlike the Register IC\_INTR\_STAT register, these bits are not masked so they always show the true status of the I2C module.

|        | 15 | 14  | 13    | 12 | 11             | 10                  | 9              | 8              | 7             | 6             | 5            | 4              | 3             | 2             | 1             | 0              |
|--------|----|-----|-------|----|----------------|---------------------|----------------|----------------|---------------|---------------|--------------|----------------|---------------|---------------|---------------|----------------|
|        |    | Res | erved |    | R_GEN<br>_CALL | R_STA<br>RT_DE<br>T | R_STO<br>P_DET | R_ACTI<br>VITY | R_RX_<br>DONE | R_TX_<br>ABRT | R_RE_<br>REQ | R_TX_<br>EMPTY | R_TX_<br>OVER | R_RX_<br>FULL | R_RX_<br>OVER | R_RX_<br>UNDER |
| Reset: | 0  | 0   | 0     | 0  | 0              | 0                   | 0              | 0              | 0             | 0             | 0            | 0              | 0             | 0             | 0             | 0              |
|        | R  | R   | R     | R  | R              | R                   | R              | R              | R             | R             | R            | R              | R             | R             | R             | R              |

| Name        | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                 |
|-------------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R_GEN_CALL  | 11  | 0     | R   | Indicates that a general call request was received. The I2C module will store the received data in the RX buffer.                                                                                                                                           |
| R_START_DET | 10  | 0     | R   | Indicates whether a start condition has occurred<br>on the I2C interface                                                                                                                                                                                    |
| R_STOP_DET  | 9   | 0     | R   | Indicates whether a stop condition has occurred<br>on the I2C interface                                                                                                                                                                                     |
| R_ACTIVITY  | 8   | 0     | R   | The ACTIVITY bit indicates whether the I2C block is idle. A logic 1 indicates the I2C module is processing data.                                                                                                                                            |
| R_RX_DONE   | 7   | 0     | R   | When the I2C module is acting as a slave-<br>transmitter this bit will be set to logic 1 if the<br>master does not acknowledge a transmitted<br>byte. This will occur on the last byte of the<br>transmission, indicating that the transmission is<br>done. |

| Name       | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R_TX_ABRT  | 6   | 0     | R   | In general this bit will be set to logic 1 when the<br>I2C module acting as a master is unable to<br>complete a command that the processor has<br>sent. The conditions which set TX_ABRT are:                                                                                                                                                                                                                         |
|            |     |       |     | <ul> <li>no slave acknowledges after the address is<br/>sent</li> </ul>                                                                                                                                                                                                                                                                                                                                               |
|            |     |       |     | <ul> <li>the addressed slave does not acknowledge a<br/>byte of data</li> </ul>                                                                                                                                                                                                                                                                                                                                       |
|            |     |       |     | arbitration is lost                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |     |       |     | <ul> <li>attempting to send a master command when<br/>configured only to be a slave</li> </ul>                                                                                                                                                                                                                                                                                                                        |
|            |     |       |     | <ul> <li>IC_RESTART_EN bit in Register IC_CON is<br/>set to logic 0 (re-start condition disabled) and<br/>the processor attempts to issue an I2C function<br/>which is impossible to perform without using re-<br/>start conditions.</li> </ul>                                                                                                                                                                       |
|            |     |       |     | <ul> <li>high speed master code is acknowledge</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
|            |     |       |     | start byte is acknowledged                                                                                                                                                                                                                                                                                                                                                                                            |
|            |     |       |     | <ul> <li>general call address is not acknowledged<br/>(impossible condition because I2C Interface<br/>slave module is always active and always<br/>acknowledges general call)</li> </ul>                                                                                                                                                                                                                              |
|            |     |       |     | • when a RD_REQ occurs and the processor<br>has previously placed data in the TX buffer that<br>has not been transmitted yet. This data could<br>have been intended to service a multi-byte<br>RD_REQ which ended up having fewer numbers<br>of bytes requested. Or, if IC_RESTART_EN is<br>disabled and the I2C module loses control of the<br>bus between transfers and is then accessed as<br>a slave-transmitter. |
|            |     |       |     | <ul> <li>if a read command is issued after a general call<br/>command has been issued. Disabling the I2C<br/>module reverts it back to normal operation.</li> </ul>                                                                                                                                                                                                                                                   |
|            |     |       |     | <ul> <li>if the processor attempts to issue read<br/>command before a RD_REQ is serviced</li> </ul>                                                                                                                                                                                                                                                                                                                   |
|            |     |       |     | Anytime this bit is set the contents of the transmit buffer will be flushed.                                                                                                                                                                                                                                                                                                                                          |
| R_RE_REQ   | 5   | 0     | R   | This bit will be set to logic 1 when the I2C module is acting as slave and another I2C master is attempting to read data from our module. The I2C module will hold the I2C bus in waiting until this interrupt is serviced. The processor must acknowledge this interrupt and then write the requested data to the Register IC_DATA.                                                                                  |
| R_TX_EMPTY | 4   | 0     | R   | This bit will be set to logic 1 when the transmit<br>buffer is at or below the threshold value set in<br>Register IC_TX_TL. Automatically cleared by<br>hardware when buffer level goes above the<br>threshold.                                                                                                                                                                                                       |
| R_TX_OVER  | 3   | 0     | R   | Set during transmit if the transmit buffer is filled<br>to 8 and the processor attempts to issue another<br>I2C command by writing to the Register<br>IC_DATA_CMD.                                                                                                                                                                                                                                                    |

| Name       | Bit | Reset | Dir | Description                                                                                                                                                                         |
|------------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R_RX_FULL  | 2   | 0     | R   | Set when the transmit buffer reaches or goes<br>above the RX_TL threshold in Register<br>IC_RX_TL. Automatically cleared by hardware<br>when buffer level goes below the threshold. |
| R_RX_OVER  | 1   | 0     | R   | Set if the receive buffer was completely filled to 8 and more data arrived. That data will be lost.                                                                                 |
| R_RX_UNDER | 0   | 0     | R   | Set if the processor attempts to read the receive<br>buffer when it is empty by reading from Register<br>IC_DATA_CMD.                                                               |

# 4.4.24 IC\_RX\_TL register – I2C RX Threshold Level

| Address - | 0xC400 | 0038 |
|-----------|--------|------|
| Addiess   | 070400 | 0050 |

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7     | 6 | 5 | 4 | 3  | 2 | 1 | 0 |  |
|--------|----|----|----|----|---------|----|---|---|-------|---|---|---|----|---|---|---|--|
|        |    |    |    | Re | eserved |    |   |   | RX_TL |   |   |   |    |   |   |   |  |
| Reset: |    |    |    |    | 0       |    |   |   | 1     |   |   |   |    |   |   |   |  |
|        |    | R  |    |    |         |    |   |   |       |   |   |   | RW |   |   |   |  |

| Name  | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RX_TL | 7:0 | 1     | RW  | Receive Buffer Threshold Level.<br>Controls the level of entries (or above) that will trigger the<br>RX_FULL interrupt. The valid range is 0-255 with the additional<br>restriction that it may not be set to a value larger than the depth<br>of the buffer. If an attempt is made to do that, the actual value<br>set with the maximum depth of the buffer.<br>A value of 0 sets the threshold for 1 entry and a value of 255<br>sets the threshold for 256 entries. |

# 4.4.25 IC\_TX\_TL register – I2C TX Threshold Level

Address - 0xC400 003C

|        | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6     | 5 | 4 | 3  | 2 | 1 | 0 |  |
|--------|----|----------|----|----|----|----|---|---|---|-------|---|---|----|---|---|---|--|
|        |    | Reserved |    |    |    |    |   |   |   | TX_TL |   |   |    |   |   |   |  |
| Reset: | 0  | 0        | 0  | 0  | 0  | 0  | 0 | 0 |   |       |   |   | 0  |   |   |   |  |
|        | R  | R        | R  | R  | R  | R  | R | R |   |       |   |   | RW |   |   |   |  |

| Name  | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TX_TL | 7:0 | 0     | RW  | Transmit Buffer Threshold Level.<br>Controls the level of entries (or below) that will trigger the<br>TX_EMPTY interrupt. The valid range is 0-255 with the<br>additional restriction that it may not be set to value larger than<br>the depth of the buffer. If an attempt is made to do that, the<br>actual value set with the maximum depth of the buffer.<br>A value of 0 sets the threshold for 0 entries and a value of 255<br>sets the threshold for 255 entries. |

## 4.4.26 IC\_CLR\_INTR register – Clear All Interrupts

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|

|        |   |   |   |   |   |   |   | Reserve | d |   |   |   |   |   |   | IC_CLR<br>_INTR |
|--------|---|---|---|---|---|---|---|---------|---|---|---|---|---|---|---|-----------------|
| Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0               |
|        | R | R | R | R | R | R | R | R       | R | R | R | R | R | R | R | R               |

| Name        | Bit | Reset | Dir | Description                                                                       |
|-------------|-----|-------|-----|-----------------------------------------------------------------------------------|
| IC_CLR_INTR | 0   | 0     | R   | Read this register to clear the combined interrupt and all individual interrupts. |

# 4.4.27 IC\_CLR\_ RX\_UNDER register – Clear RX\_UNDER Interrupt

#### Address – 0xC400 0044

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                       |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|-------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_RX_U<br>NDER |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                       |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                       |

| Name            | Bit | Reset | Dir | Description                                        |
|-----------------|-----|-------|-----|----------------------------------------------------|
| IC_CLR_RX_UNDER | 0   | 0     | R   | Read this register to clear the RX_UNDER interrupt |

# 4.4.28 IC\_CLR\_RX\_OVER register – Clear RX\_OVER Interrupt

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                      |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_RX_O<br>VER |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                      |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                      |

| Name           | Bit | Reset | Dir | Description                                       |
|----------------|-----|-------|-----|---------------------------------------------------|
| IC_CLR_RX_OVER | 0   | 0     | R   | Read this register to clear the RX_OVER interrupt |

# 4.4.29 IC\_CLR\_TX\_OVER register – Clear TX\_OVER Interrupt

#### Address - 0xC400 004C

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                      |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_TX_O<br>VER |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                      |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                      |

| Name           | Bit | Reset | Dir | Description                                       |
|----------------|-----|-------|-----|---------------------------------------------------|
| IC_CLR_TX_OVER | 0   | 0     | R   | Read this register to clear the TX_OVER interrupt |

# 4.4.30 IC\_CLR\_RD\_REQ register – Clear RD\_REQ Interrupt

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                      |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_RD_R<br>_EQ |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                      |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                      |

| Name          | Bit | Reset | Dir | Description                                      |
|---------------|-----|-------|-----|--------------------------------------------------|
| IC_CLR_RD_REQ | 0   | 0     | R   | Read this register to clear the RD_REQ interrupt |

# 4.4.31 IC\_CLR\_TX\_ABRT register – Clear TX\_ABRT Interrupt

#### Address – 0xC400 0054

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                      |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_TX_A<br>BRT |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                      |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                      |

| Name           | Bit | Reset | Dir | Description                                       |
|----------------|-----|-------|-----|---------------------------------------------------|
| IC_CLR_TX_ABRT | 0   | 0     | R   | Read this register to clear the TX_ABRT interrupt |

# 4.4.32 IC\_CLR\_RX\_DONE register – Clear RX\_DONE Interrupt

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|

|        | Reserved |   |   |   |   |   |   |   |   |   |   |   |   |   |   | IC_CLR<br>_TX_D<br>ONE |
|--------|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------------------------|
| Reset: | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                      |
|        | R        | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R                      |

| Name           | Bit | Reset | Dir | Description                                       |
|----------------|-----|-------|-----|---------------------------------------------------|
| IC_CLR_RX_DONE | 0   | 0     | R   | Read this register to clear the RX_DONE interrupt |

# 4.4.33 IC\_CLR\_ACTIVITY register – Clear ACTIVITY Interrupts

#### Address - 0xC400 005C

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                       |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|-------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_ACTIV<br>ITY |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                       |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                       |

| Name            | Bit | Reset | Dir | Description                                        |
|-----------------|-----|-------|-----|----------------------------------------------------|
| IC_CLR_ACTIVITY | 0   | 0     | R   | Read this register to clear the ACTIVITY interrupt |

# 4.4.34 IC\_CLR\_STOP\_DET register – Clear STOP\_DET Interrupts

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                       |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|-------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_STOP<br>_DET |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                       |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                       |

| Name            | Bit | Reset | Dir | Description                                        |
|-----------------|-----|-------|-----|----------------------------------------------------|
| IC_CLR_STOP_DET | 0   | 0     | R   | Read this register to clear the STOP_DET interrupt |

# 4.4.35 IC\_CLR\_START\_DET register – Clear START\_DET Interrupt

#### Address – 0xC400 0064

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                        |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|--------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_CLR<br>_STAR<br>T_DET |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                        |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                        |

| Name             | Bit | Reset | Dir | Description                                         |
|------------------|-----|-------|-----|-----------------------------------------------------|
| IC_CLR_START_DET | 0   | 0     | R   | Read this register to clear the START_DET interrupt |

# 4.4.36 IC\_CLR\_GEN\_CALL register – Clear General Call Interrupt

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                       |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|-------------------------|
|        |    |    |    |    |    |    |   | Reserved | 1 |   |   |   |   |   |   | IC_CLR<br>_GEN_<br>CALL |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                       |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                       |

| Name            | Bit | Reset | Dir | Description                                        |
|-----------------|-----|-------|-----|----------------------------------------------------|
| IC_CLR_GEN_CALL | 0   | 0     | R   | Read this register to clear the GEN_CALL interrupt |

# 4.4.37 IC\_ENABLE register – I2C Enable

Address - 0xC400 006C

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0             |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|---------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | IC_ENA<br>BLE |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0             |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R             |

| Name      | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC_ENABLE | 0   | 0     | RW  | Controls whether the I2C module is enabled. Writing a logic 1<br>enables the I2C and writing a logic 0 disables it. Software<br>should not disable the I2C module while it is active. The<br>ACTIVITY bit can be polled to determine if the I2C module is<br>active. If the module was transmitting it will stop as well as<br>delete the contents of the transmit buffer after the current<br>transfer is complete. If the module was receiving the module<br>will stop the current transfer at the end of the current byte and<br>not acknowledge the transfer. |

## 4.4.38 IC\_STATUS register – I2C Status

#### Address - 0xC400 0070

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read at any time. None of the bits in this register request an interrupt.

|        | 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3    | 2   | 1    | 0            |
|--------|----------|----|----|----|----|----|---|---|---|---|---|-----|------|-----|------|--------------|
|        | Reserved |    |    |    |    |    |   |   |   |   |   | RFF | RFNE | TFE | TFNF | ACTIVI<br>TY |
| Reset: | 0        | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0   | 0    | 0   | 1    | 1            |
|        | R        | R  | R  | R  | R  | R  | R | R | R | R | R | R   | R    | R   | R    | R            |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                          |
|------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RFF  | 4   | 0     | R   | <ul> <li>Receive FIFO Completely Full. When the receive FIFO is completely full, this bit is set. When the receive FIFO contains one or more empty location, this bit is cleared.</li> <li>0 – Receive FIFO is not full</li> <li>1 – Receive FIFO is full</li> </ul> |
|      |     |       |     |                                                                                                                                                                                                                                                                      |

| Name     | Bit | Reset | Dir | Description                                                                                                                                                                                                                            |
|----------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RFNE     | 3   | 0     | R   | <b>Receive FIFO Not Empty.</b> Set when the receive FIFO contains one or more entries and is cleared when the receive FIFO is empty. This bit can be polled by software to completely empty the receive FIFO.                          |
|          |     |       |     | 0 – Receive FIFO is empty                                                                                                                                                                                                              |
|          |     |       |     | 1 – Receive FIFO is not empty                                                                                                                                                                                                          |
| TFE      | 2   | 1     | R   | Transmit FIFO Completely Empty.<br>When the transmit FIFO is completely empty,<br>this bit is set. When the transmit FIFO contains<br>one or more valid entries, this bit is cleared. This<br>bit field does not request an interrupt. |
|          |     |       |     | 0 – Transmit FIFO is not empty                                                                                                                                                                                                         |
|          |     |       |     | 1 – Transmit FIFO is empty                                                                                                                                                                                                             |
| TFNF     | 1   | 1     | R   | <b>Transmit FIFO Not Full</b> . Set when the transmit FIFO contains one or more empty locations, and is cleared when the FIFO is full.                                                                                                 |
|          |     |       |     | 0 – Transmit FIFO is full                                                                                                                                                                                                              |
|          |     |       |     | 1 – Transmit FIFO is not full                                                                                                                                                                                                          |
| ACTIVITY | 0   | 0     | R   | I2C Activity Status.                                                                                                                                                                                                                   |

## 4.4.39 IC\_TXFLR register – I2C Transmit FIFO Level Register

Address - 0xC400 0074

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared when the I2C is disabled, whenever there is a transmit abort, or whenever the Slave Bulk Transfer mode is aborted. It increments whenever data is placed into the transmit FIFO and decrements when data is taken from the transmit FIFO.

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|-------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | TXFLR |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0     |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R     |

| Name  | Bit | Reset | Dir | Description                                                                                  |
|-------|-----|-------|-----|----------------------------------------------------------------------------------------------|
| TXFLR | 0   | 0     | R   | <b>Transmit FIFO Level</b> . Contains the number of valid data entries in the transmit FIFO. |

# 4.4.40 IC\_RXFLR register – I2C Receive FIFO Level Register

Address - 0xC400 0078

This register contains the number of valid data entries in the receive FIFO buffer. It is cleared when the I2C is disabled or whenever there is a transmit abort. It increments whenever data is placed into the receive FIFO and decrements when data is taken from the receive FIFO.

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8       | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
|--------|----|----|----|----|----|----|---|---------|---|---|---|---|---|---|---|-------|
|        |    |    |    |    |    |    |   | Reserve | d |   |   |   |   |   |   | TXFLR |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0     |
|        | R  | R  | R  | R  | R  | R  | R | R       | R | R | R | R | R | R | R | R     |

| Name  | Bit | Reset | Dir | Description                                                                               |
|-------|-----|-------|-----|-------------------------------------------------------------------------------------------|
| TXFLR | 0   | 0     | R   | <b>Receive FIFO Level.</b> Contains the number of valid data entries in the receive FIFO. |

# 4.4.41 IC\_SRESET register – I2C Soft Reset Register

Address – 0xC400 007c

This register is used to issue a soft reset to the master and/or the slave state machines. Reading this register does not clear it; but is automatically cleared by hardware.

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9        | 8 | 7 | 6 | 5 | 4 | 3 | 2                     | 1                      | 0           |
|--------|----|----|----|----|----|----|----------|---|---|---|---|---|---|-----------------------|------------------------|-------------|
|        |    |    |    |    |    |    | Reserved |   |   |   |   |   |   | IC_SLA<br>VE_SR<br>ST | IC_MA<br>STER_<br>SRST | IC_SRS<br>T |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0                     | 0                      | 0           |
|        | R  | R  | R  | R  | R  | R  | R        | R | R | R | R | R | R | R                     | R                      | R           |

|                | D'' | <b>D</b> ( | D.' |                                                   |
|----------------|-----|------------|-----|---------------------------------------------------|
| Name           | Bit | Reset      | Dir | Description                                       |
| IC_SLAVE_SRST  | 2   | 0          | W   | Issues a soft reset to the slave state machines.  |
|                |     |            |     | 1 = perform the reset                             |
| IC_MASTER_SRST | 1   | 0          | W   | Issues a soft reset to the master state machines. |
|                |     |            |     | 1 = perform the reset                             |

| Name    | Bit | Reset | Dir | Description                                                      |
|---------|-----|-------|-----|------------------------------------------------------------------|
| IC_SRST | 0   | 0     | W   | Issues a soft reset to both the master and slave state machines. |
|         |     |       |     | 1 = perform the reset                                            |

#### 4.4.42 IC\_ABRT\_SOURCE register – I2C Transmit Abort Source Register

Address - 0xC400 0080

This register has 16 bits that indicate the source of the tx\_abrt signal, This register is cleared whenever the processor reads it or when the processor issues a clear signal to all interrupts.



| Name                | Bit | Reset | Dir | Description                                                                                                                                     |
|---------------------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ABRT_SLVRD_INTX     | 15  | 0     | RW  | 1 = Slave requesting data to TX and the user wrote a read command into the tx_fifo (9th bit is a 1).                                            |
| ABRT_SLV_           | 14  | 0     | RW  | 1 = Slave lost the bus while it is transmitting<br>data to a remote master. IC_TX_ABRT[12] will<br>be set at the same time.                     |
| ARB_MASTER_DIS      | 13  | 0     | RW  | 1 = Slave has received a read command and<br>some data exists in the tx_fifo so the slave<br>issues a TX_ABRT to flush old data in tx_fifo.     |
| ABRT_10B_RD_NORSTRT | 12  | 0     | RW  | 1 = Master has lost arbitration, or if<br>TX_ABRT_SRC[12] is also set, then the slave<br>transmitter has lost arbitration.                      |
| ABRT_SBYTE_NORSTRT  | 11  | 0     | RW  | 1 = User attempted to use disabled Master.                                                                                                      |
| ABRT_HS_NORSTRT     | 10  | 0     | RW  | 1 = The restart is disabled (IC_RESTART_EN<br>bit (ic_con[5]) = 0) and the Master sends a read<br>command in 10-bit addressing mode.            |
| ABRT_SBYTE_ACKDET   | 9   | 0     | RW  | 1 = The restart is disabled (IC_RESTART_EN<br>bit (ic_con[5]) = 0) and the user is trying to send<br>a Start Byte.                              |
| ABRT_HS_ACKDET      | 8   | 0     | RW  | 1 = The restart is disabled (IC_RESTART_EN<br>bit (ic_con[5]) = 0) and the user is trying to use<br>the master to send data in High Speed mode. |

| Name               | Bit | Reset | Dir | Description                                                                                                                                 |
|--------------------|-----|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| ABRT_SBYTE_ACKDET  | 7   | 0     | RW  | 1 = Master has sent a Start Byte and the Start<br>Byte was acknowledged (wrong behavior).                                                   |
| ABRT_HS_ACKDET     | 6   | 0     | RW  | 1 = Master is in High Speed mode and the High<br>Speed Master code was acknowledged (wrong<br>behavior).                                    |
| ABRT_GCALL_READ    | 5   | 0     | RW  | 1 = Master sent a general call but the user<br>programmed the byte following the G.CALL to<br>be a read from the bus (9th bit is set to 1). |
| ABRT_GCALL_NOACK   | 4   | 0     | RW  | 1 = Master sent a general call and no slave on the bus responded with an ack.                                                               |
| ABRT_TXDATA_NOACK  | 3   | 0     | RW  | <ol> <li>Master has received an acknowledgement<br/>for the address, but didn't receive an<br/>acknowledgement for data.</li> </ol>         |
| ABRT_10ADDR2_NOACK | 2   | 0     | RW  | 1 = Master is in 10-bit address mode and the<br>2nd address byte of the 10-bit address was not<br>acknowledged by any slave.                |
| ABRT_10ADDR1_NOACK | 1   | 0     | RW  | 1 = Master is in 10-bit address mode and the first 10-bit address byte was not acknowledged by any slave.                                   |
| ABRT_7B_ADDR_NOACK | 0   | 0     | RW  | 1 = Master is in 7-bit addressing mode and the address sent was not acknowledged by any slave.                                              |

# 4.5 UART

| Signal   | TCD2220 | TCD2210 | I/O | Drive<br>(mA) | Description                    |
|----------|---------|---------|-----|---------------|--------------------------------|
| UART0_TX | 130     | 115     | 0   | 4             | Serial output; active-high     |
| UART0_RX | 131     | 116     | I   | -             | Serial input; active-high (5V) |
| UART1_TX | 134     | 119     | 0   | 4             | Serial output; active-high     |
| UART1_RX | 135     | 120     | Ι   | -             | Serial input; active-high (5V) |

# 4.5.1 Signal Description

**Table 23: UART Signal Description** 

#### 4.5.2 Features

The UART in the DICE JR is implemented in compliance with industry standard type 16550. The UART uses an internal baud generator clocked by APB clock 'pclk' (connected to ARM system clock – typically 49.152 MHz). 32bit data access is required for the APB bus interface.

The TCD2210 and TCD2220 does not support the UART handshake pins, only the serial communication pins. In applications where the handshake pins are required GPIO signals can be used instead.

#### 4.5.3 Internal Functional Description

This section describes each of the functional blocks that make up the UART. A diagram showing the connections between these functional blocks is given in Figure 2.





## 4.5.4 Registers, Control and Status

Primary control and status registers exist in this module, as well as the main UART functionality. Control registers are stored here and are used for serial data control and status generation. This module is also responsible for interrupt generation based on transmitter and receiver status, as well as which interrupts are enabled.

## 4.5.5 RX and TX FIFO Controllers

These FIFO controllers implement specially designed logic to access data elements before they reach the top of the FIFO. This guarantees correct status and data at all times.

## 4.5.6 Character Timeout Detection

This module sets and clears a timeout counter. This counter is then used to generate Character Timeout Interrupts when enabled.

#### 4.5.7 Baud Clock Generator

This module uses the values in the Divisor Latch registers to generate the divide by 16 Baud Clock.

#### 4.5.8 TX (transmitter)

The transmitter converts parallel data that has been programmed into the Transmitter Holding Register into a serial data stream. This serial data stream is built according to conditions specified in the Line Control Register. The serial data then exits the design on the Sout port. The parallel data will be sourced from the TX FIFO.

#### 4.5.9 RX (receiver)

The receiver converts serial data that has been sent to the uart on the sin port and converts it to a parallel data character, based on Line Control Register settings. Once a complete character is received, it is then sent to the RX FIFO.

#### 4.5.10 Serial Frame Format

The Line Control Register allows a number of different options with regards to frame format, all within the UART standard 16550. Four different character lengths are supported (5, 6, 7, 8 data bits). There is also an option for 1 or 2 stop bits, and an option for 0 or 1 parity bits. Figure 3 shows the frame formats supported.



Figure 25: Serial Frame Format (using 8 data bit configuration)

# 4.5.11 Module Configuration

An address map for the programmable registers is given the table below. Note that several of the registers are accessed with the same address. In these cases control signals such as DLAB and pwrite determine which register is accessed at that time.

| Address     | Register                          |
|-------------|-----------------------------------|
| 0xbd00 0000 | UART#1 RBR, THR, DLL <sup>a</sup> |
| 0xbd00 0004 | UART#1 IER, DLH <sup>a</sup>      |
| 0xbd00 0008 | UART#1 IIR, FCR                   |
| 0xbd00 000c | UART#1 LCR                        |
| 0xbd00 0010 | UART#1 MCR                        |
| 0xbd00 0014 | UART#1 LSR                        |
| 0xbd00 0018 | UART#1 MSR                        |
| 0xbd00 001c | UART#1 SCR                        |
| 0xbe00 0000 | UART#0 RBR, THR, DLL              |
| 0xbe00 0004 | UART#0 IER, DLH                   |
| 0xbe00 0008 | UART#0 IIR, FCR                   |
| 0xbe00 000c | UART#0 LCR                        |
| 0xbe00 0010 | UART#0 MCR                        |
| 0xbe00 0014 | UART#0 LSR                        |
| 0xbe00 0018 | UART#0 MSR                        |
| 0xbe00 001c | UART#0 SCR                        |

#### Table 24: UART Memory Map

<sup>a</sup> Bit 7 of the Line Control Register (LCR) enables reading and writing of the Divisor Latch Registers (DLL, DLH).

The UART contains 12 registers that are programmable via the 5-bit APB address bus. Note that these are actually 8-bit registers. They have 32-bit data boundaries to simplify access to the APB. When reading from the APB the upper 24 bits are ignored, whereas when writing to the APB the 8 bit registers are padded with 24 zeros automatically.

## 4.5.12 Receive Buffer Register (RBR)

#### Address - 0xBD00 0000

The RBR is a read-only register that contains the data byte received on the serial input port (sin). The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. This register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur.

|                | 15                  | 14         | 13  | 12 | 11     | 10  | 9           | 8       | 7       | 6        | 5        | 4        | 3        | 2 | 1 | 0 |  |
|----------------|---------------------|------------|-----|----|--------|-----|-------------|---------|---------|----------|----------|----------|----------|---|---|---|--|
|                |                     |            |     | Re | served |     |             |         |         |          |          |          | RBR      |   |   |   |  |
| Reset:         | 0                   | 0          | 0   | 0  | 0      | 0   | 0           | 0       | 0       | 0        | 0        | 0        | 0        | 0 | 0 | 0 |  |
|                | R                   | R          | R   | R  | R      | R   | R           | R       | R       | R        | R        | R        | R        | R | R | R |  |
|                |                     |            |     |    |        |     |             |         |         |          |          |          |          |   |   |   |  |
| Name           |                     |            | Bit | Re | set    | Dir | Description |         |         |          |          |          |          |   |   |   |  |
| Recei<br>Regis | ive Buf<br>ster (RE | fer<br>BR) | 7:0 | 0  |        | R   | C           | ontains | data ch | naracter | r from s | erial in | out port | • |   |   |  |

#### 4.5.13 Transmit Holding Register (THR)

#### Address - 0xBD00 0000

The THR is a write-only register that contains data to be transmitted on the serial output port (sout). Data can be written to the THR any time that the THR Empty (THRE) bit of the Line Status Register (LSR) is set. If THRE is set, 16 characters of data may be written to the THR before the FIFO is full. Any attempt to write data when the FIFO is full results in the write data being lost.

|                                    | 15 | 14         | 13  | 12    | 11   | 10  | 9           | 8        | 7                                 | 6 | 5 | 4  | 3  | 2 | 1 | 0 |  |  |
|------------------------------------|----|------------|-----|-------|------|-----|-------------|----------|-----------------------------------|---|---|----|----|---|---|---|--|--|
|                                    |    |            |     | Rese  | rved |     |             |          |                                   |   |   | TH | IR |   |   |   |  |  |
| Reset:                             | 0  | 0          | 0   | 0     | 0    | 0   | 0           | 0        | 0                                 | 0 | 0 | 0  | 0  | 0 | 0 | 0 |  |  |
|                                    | R  | R          | R   | R     | R    | R   | R           | R        | w                                 | w | w | w  | w  | w | w | W |  |  |
|                                    |    |            |     |       |      |     |             |          |                                   |   |   |    |    |   |   |   |  |  |
| Name                               | ;  |            | Bit | Reset |      | Dir | Description |          |                                   |   |   |    |    |   |   |   |  |  |
| Transmit Holding<br>Register (THR) |    | ding<br>R) | 7:0 | 0     |      | W   | Cor         | itains d | ata byte for serial transmission. |   |   |    |    |   |   |   |  |  |

# 4.5.14 Divisor Latch Register (DLL)

Address - 0xBD00 0000

The DLL register in conjunction with the DLH register forms a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. It is accessed by first setting the DLAB bit (bit 7) in the Line Control Register (LCR). The output baud rate is equal to the APB clock frequency (pclk) divided by sixteen times the value of the baud rate divisor as follows (see section 3.3 for details):

baud rate = (APB clock freq) / (16 \* divisor)

|                 | 15                                                    | 14 | 13 | 12  | 11    | 10 | 9        | 8         | 7       | 6       | 5  | 4    | 3   | 2  | 1  | 0  |
|-----------------|-------------------------------------------------------|----|----|-----|-------|----|----------|-----------|---------|---------|----|------|-----|----|----|----|
|                 |                                                       |    |    | Res | erved |    |          |           |         |         |    | DLH/ | DLL |    |    |    |
| Reset:          | 0                                                     | 0  | 0  | 0   | 0     | 0  | 0        | 0         | 0       | 0       | 0  | 0    | 0   | 0  | 0  | 0  |
|                 | R                                                     | R  | R  | R   | R     | R  | R        | R         | RW      | RW      | RW | RW   | RW  | RW | RW | RW |
|                 |                                                       |    |    |     |       |    |          |           |         |         |    |      |     |    |    |    |
| Name            | me Bit Reset Dir Descript                             |    |    |     |       |    |          | scriptior | ٦       |         |    |      |     |    |    |    |
| Diviso<br>(High | risor Latch High  7:0   0    RW   High by<br>gh Byte) |    |    |     |       |    | h byte I | Divisor   | Latch R | egister |    |      |     |    |    |    |
| Diviso<br>(Low  | Divisor Latch Low 7:0 0 RW Low byte<br>(Low Byte)     |    |    |     |       |    | v byte D | Divisor L | atch R  | egister |    |      |     |    |    |    |

# 4.5.15 Interrupt Enable Register (IER)

#### Address - 0xBD00 0004

The IER is a read/write register that contains four bits that enable the generation of interrupts. Note that the IER enables inputs, whereas the IIR actually registers those interrupts.

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9      | 8 | 7 | 6 | 5 | 4 | 3     | 2    | 1     | 0     |
|--------|----|----|----|----|----|----|--------|---|---|---|---|---|-------|------|-------|-------|
|        |    |    |    |    |    | Re | served |   |   |   |   |   | EDSSI | ELSI | ETBEI | ERBFI |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0 | 0 | 0 | 0 | 0 | 0     | 0    | 0     | 0     |
|        | R  | R  | R  | R  | R  | R  | R      | R | R | R | R | R | RW    | RW   | RW    | RW    |

| Name  | Bit | Reset | Dir | Description                                             |
|-------|-----|-------|-----|---------------------------------------------------------|
| EDSSI | 3   | 0     | RW  | Enable the Modem Status Interrupt                       |
| ELSI  | 2   | 0     | RW  | Enable the Receiver Line Status Interrupt               |
| ETBEI | 1   | 0     | RW  | Enable the Transmitter Holding Register Empty Interrupt |
| ERBFI | 0   | 0     | RW  | Enable the Received Data Available Interrupt            |

## 4.5.16 Interrupt Identity Register (IIR)

#### Address - 0xBD00 0008

The Interrupt Identity Register is a read-only register that identifies the source of an interrupt. The upper two bits of the register are FIFO-enabled bits. These bits will be "00" if the FIFOs are disabled, and "11" if they are enabled. The lower four bits identify the highest priority pending interrupt. A full description of the interrupt control functions is given in Table 2 below.

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7    | 6             | 5 | 4       | 3 | 2        | 1                | 0 |
|--------|----|----|----|----|---------|----|---|---|------|---------------|---|---------|---|----------|------------------|---|
|        |    |    |    | R  | eserved |    |   |   | FIFC | ) enable bits | R | eserved |   | Interrup | t Identity bits. |   |
| Reset: | 0  | 0  | 0  | 0  | 0       | 0  | 0 | 0 | 0    | 0             | 0 | 0       | 0 | 0        | 0                | 0 |
|        | R  | R  | R  | R  | R       | R  | R | R | R    | R             | R | R       | R | R        | R                | R |

| Name                       | Bit | Reset | Dir | Description                                   |
|----------------------------|-----|-------|-----|-----------------------------------------------|
| Fifo enabled bits          | 7:6 | 0     | R   | 2'b00: FIFO's disabled, 2'b11: FIFO's enabled |
| Interrupt Identity<br>bits | 3:0 | 0     | R   | See Table 2 for details                       |

|   | IIR | bits |   |          | Inter                                 | rupt Set and Reset Functions                                                                                                                  |                                                                                      |
|---|-----|------|---|----------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 3 | 2   | 1    | 0 | Priority | Туре                                  | Source                                                                                                                                        | Reset and Control                                                                    |
| 0 | 0   | 0    | 1 | -        | -                                     | -                                                                                                                                             | -                                                                                    |
| 0 | 1   | 1    | 0 | first    | Receiver line status                  | Overrun/parity/ framing<br>errors or break interrupt                                                                                          | Reading the line status register                                                     |
| 0 | 1   | 0    | 0 | second   | Received data available               | Receiver data available or<br>read data FIFO trigger level<br>reached                                                                         | Reading the receiver buffer<br>register or the FIFO drops<br>below the trigger level |
| 1 | 1   | 0    | 0 | second   | Character timeout<br>indication       | During the last four<br>character times there were<br>no characters in or out of<br>receiver FIFO and at least<br>one character in it already | Reading the receiver buffer<br>register                                              |
| 0 | 0   | 1    | 0 | third    | Transmitter holding<br>register empty | Transmitter holding register<br>empty                                                                                                         | Reading the IIR (if source of interrupt) or writing into THR                         |
| 0 | 0   | 0    | 0 | forth    | Modem status                          | Clear to send or data set<br>ready or ring indicator or<br>data center detect                                                                 | Reading the MSR                                                                      |

 Table 25: Interrupt Control Functions

## 4.5.17 FIFO Control Register (FCR)

Address - 0xBD00 0008

The FIFO control register is a write-only register. It controls the read and write data FIFO. The FIFOs are reset anytime bit 0 of the FCR changes value. Only when the FIFOs are enabled (bit 0 of FCR is set to 1) are bits 3, 6 and 7 active.

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7    | 6            | 5 | 4        | 3 | 2                   | 1                         | 0              |
|--------|----|----|----|----|---------|----|---|---|------|--------------|---|----------|---|---------------------|---------------------------|----------------|
|        |    |    |    | Re | eserved |    |   |   | Rece | iver Trigger |   | Reserved |   | TX<br>FIFO<br>Reset | Receiver<br>FIFO<br>Reset | FIFO<br>Enable |
| Reset: | 0  | 0  | 0  | 0  | 0       | 0  | 0 | 0 | 0    | 0            | 0 | 0        | 0 | 0                   | 0                         | 0              |
|        |    |    |    |    |         |    |   |   | 14/  | 14/          |   |          |   | 14/                 | 147                       | 147            |

| Name                      | Bit | Reset | Dir | Description                                                                                             |
|---------------------------|-----|-------|-----|---------------------------------------------------------------------------------------------------------|
| Receiver Trigger<br>(RT)  | 7:6 | 0     | W   | Sets the trigger level in the receiver FIFO for the Enable Received<br>Data Available Interrupt (ERBFI) |
|                           |     |       |     | 00 = 1 character in FIFO, 01 = 4 characters in FIFO                                                     |
|                           |     |       |     | 10 = 8 characters in FIFO, 11 = 14 characters in FIFO                                                   |
| Transmitter FIFO<br>Reset | 2   | 0     | W   | Resets and flushes transmit FIFO (self-clearing)                                                        |
| Receiver FIFO<br>Reset    | 1   | 0     | W   | Resets and flushes receive FIFO (self-clearing)                                                         |
| FIFO Enable               | 0   | 0     | W   | Allows operation of transmit and receive FIFOs                                                          |

# 4.5.18 Line Control Register (LCR)

Address - 0xBD00 000C

The Line Control Register controls the format of the data that is serially transmitted and received by the UART.



| Name                                | Bit | Reset | Dir | Description                                                                                                                                                                                          |
|-------------------------------------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DLAB (Divisor<br>Latch Address bit) | 7   |       |     | Enables reading and writing of the Divisor Latch register (DLL and DLH) to set the baud rate of the UART. This bit must be cleared after initial baud rate setup in order to access other registers. |

| Name          | Bit | Reset | Dir | Description                                                                                                                                          |
|---------------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Break Control | 6   |       |     | Sends break signal by holding the sout line low, until cleared. When in Loopback Mode, the break condition is internally looped back to the receiver |
| Stick Parity  | 5   |       |     | Not used                                                                                                                                             |
| EPS           | 4   |       |     | Parity Select bit: 0=odd number of ones, 1=even number of ones                                                                                       |
| PEN           | 3   |       |     | Enables the a parity bit in outgoing serial data                                                                                                     |
| STOP bits     | 2   |       |     | Number of stop bits transmitted: 0=1bit, 1=2bits. If there are only 5 bits per character then there will be 1.5 stop bits.                           |
| CLS           | 1:0 |       |     | Number of bits per character: 00=5bits, 01=6bits, 10=7bits, 11=8bits                                                                                 |

## 4.5.19 Modem Control Register (MCR)

Address - 0xBD00 0010

|        | 15 | 14 | 13 | 12 | 11 | 10       | 9 | 8 | 7  | 6  | 5  | 4                | 3    | 2    | 1   | 0   |
|--------|----|----|----|----|----|----------|---|---|----|----|----|------------------|------|------|-----|-----|
|        |    |    |    |    |    | Reserved |   |   |    |    |    | Loop<br>Back bit | OUT2 | OUT1 | RTS | DTR |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0        | 0 | 0 | 0  | 0  | 0  | 0                | 0    | 0    | 0   | 0   |
|        | R  | R  | R  | R  | R  | R        | R | R | RW | RW | RW | RW               | RW   | RW   | RW  | RW  |

| Name          | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|---------------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Loop Back bit | 4   | 0     | RW  | This feature is used for diagnostic purposes. When set, data on the sout line is held HIGH, while serial data output is looped back to the sin line, internally. In this mode all the interrupts are fully functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n, ri_n, dcd_n) are disconnected and the four modem control outputs (dtr_n, rts_n, out1_n, out1_n) are looped back to the inputs, internally. |  |  |  |  |  |
| OUT2          | 3   | 0     | RW  | Bit is inverted and then used to drive the UART output out2_n                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| OUT1          | 2   | 0     | RW  | Bit is inverted and then used to drive the UART output out1_n                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| RTS           | 1   | 0     | RW  | Bit is inverted and then used to drive the UART output rts_n                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| DTR           | 0   | 0     | RW  | Bit is inverted and then used to drive the UART output dtr_n                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

## 4.5.20 Line Status Register (LSR)

Address - 0xBD00 0014

The Line Status Register contains status of the receiver and transmitter data transfers. This status can be read by the programmer at anytime.

|        | 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6    | 5    | 4  | 3  | 2  | 1  | 0  |
|--------|----------|----|----|----|----|----|---|---|---|------|------|----|----|----|----|----|
|        | Reserved |    |    |    |    |    |   |   |   | TEMT | THRE | ВІ | FE | PE | OE | DR |
| Reset: | 0        | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0    | 0    | 0  | 0  | 0  | 0  | 0  |
|        | R        | R  | R  | R  | R  | R  | R | R | R | R    | R    | R  | R  | R  | R  | R  |
| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FERR | 7   | 0     | R   | Error in Receiver FIFO: Set when there is at least one parity error, framing error, or break indication in the FIFO. This bit is cleared when the LSR is read and the character with the error is at the top of the receiver FIFO and there are no subsequent errors in the FIFO.                                                                                                                                                                                           |
| TEMT | 6   | 0     | R   | Transmitter Empty bit: Set whenever the Transmitter Shift Register and the FIFO are both empty.                                                                                                                                                                                                                                                                                                                                                                             |
| THRE | 5   | 0     | R   | Transmitter Holding Register Empty bit: Indicates the UART can accept a new character for transmission. This bit is set whenever data is transferred from the THR to the transmitter shift register and no new data has been written to the THR. This also causes a THRE Interrupt to occur, if the THRE Interrupt is enabled.                                                                                                                                              |
| BI   | 4   | 0     | R   | Break Interrupt bit: Set whenever the serial input (sin) is held in a logic '0' state for longer than the sum of (start time+data bits+parity+stop bits). A break condition on sin causes one and only one character, consisting of all zeros, to be received by the UART. In the FIFO mode, the character associated with the break condition is carried through the FIFO and is revealed when the character is at the top of the FIFO. Reading the LSR clears the BI bit. |
| FE   | 3   | 0     | R   | Framing Error Bit: Set whenever there is a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received data. Since the framing error is associated with a character received, it is revealed when the character with the framing error is at the top of the FIFO. The OE, PE and FE bits are reset when a read of the LSR is performed.                                                                        |
| PE   | 2   | 0     | R   | Parity Error Bit: Set whenever there is a parity error in the receiver if<br>the Parity Enable (PEN) bit in the LCR is set. In the FIFO mode, since<br>the parity error is associated with a character received, it is revealed<br>when the character with the parity error arrives at the top of the FIFO.                                                                                                                                                                 |
| OE   | 1   | 0     | R   | Overrun bit: A new data character was received before the previous data was read. An overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost.                                                                                                                                                                                                           |
| DR   | 0   | 0     | R   | Data Ready bit: Indicates the receiver contains at least one character<br>in the RBR or the receiver FIFO. Bit cleared when the receiver FIFO<br>is empty.                                                                                                                                                                                                                                                                                                                  |

### 4.5.21 Modem Status Register (MSR)

Address - 0xBD00 0018

The Modem Status Register contains the current status of the modem control input lines and if they changed. DCTS (bit 0), DDSR (bit 1) and DDCD (bit 3) bits record whether the modem control lines (cts\_n, dsr\_n and dcd\_n) have changed since the last time the CPU read the MSR. The CTS, DSR, RI and DCD Modem Status bits contain information on the current state of the modem control lines.

|        | 15 | 14 | 13 | 12   | 11   | 10 | 9 | 8 | 7   | 6  | 5   | 4   | 3    | 2    | 1    | 0    |
|--------|----|----|----|------|------|----|---|---|-----|----|-----|-----|------|------|------|------|
|        |    |    |    | Rese | rved |    |   |   | DCD | RI | DSR | CTS | DDCD | TERI | DDSR | DCTS |
| Reset: | 0  | 0  | 0  | 0    | 0    | 0  | 0 | 0 | 0   | 0  | 0   | 0   | 0    | 0    | 0    | 0    |
|        | R  | R  | R  | R    | R    | R  | R | R | R   | R  | R   | R   | R    | R    | R    | R    |

| Name | Bit | Reset | Dir | Description                                                                 |
|------|-----|-------|-----|-----------------------------------------------------------------------------|
| DCD  | 7   | 0     | R   | Compliment of dcd_n. In Loopback Mode, DCD is the same as MCR bit 3 (Out2). |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                |
|------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RI   | 6   | 0     | R   | Compliment of ri_n. In Loopback Mode, RI is the same as MCR bit 2 (Out1).                                                                                                                                  |
| DSR  | 5   | 0     | R   | Compliment of dsr_n. In Loopback Mode, DSR is the same as MCR bit 0 (DTR).                                                                                                                                 |
| CTS  | 4   | 0     | R   | Compliment of cts_n. In Loopback Mode, CTS is the same as MCR bit 1 (RTS).                                                                                                                                 |
| DDCD | 3   | 0     | R   | Record whether the modem control line dcd_n has changed since the last time the CPU read the MSR. In Loopback Mode DDCD reflects changes on MCR bit 3 (OUT2)                                               |
| TERI | 2   | 0     | R   | Indicates ri_n has changed from an active low, to an inactive high state since the last time the MSR was read. In loopback modeTERI reflects when MCR bit 2 (OUT1) has changed state from a high to a low. |
| DDSR | 1   | 0     | R   | Record whether the modem control line dsr_n has changed since the last time the CPU read the MSR. In Loopback Mode DDSR reflects changes on MCR bit 0 (DTR)                                                |
| DCTS | 0   | 0     | R   | Record whether the modem control line cts_n has changed since the last time the CPU read the MSR. In Loopback Mode DCTS reflects changes on MCR bit 1 (RTS).                                               |

### 4.5.22 Scratchpad Register (SCR)

Address - 0xBD00 001C

The SCR register is an 8-bit read/write register for programmers to use as a temporary storage space. It has no defined purpose in this UART.

|        | 15             | 14 | 13  | 12  | 11      | 10        | 9  | 8                                 | 7 | 6 | 5 | 4          | 3      | 2 | 1 | 0 |   |
|--------|----------------|----|-----|-----|---------|-----------|----|-----------------------------------|---|---|---|------------|--------|---|---|---|---|
|        |                |    |     | R   | eserved |           |    |                                   |   |   |   | np Storage | torage |   |   |   |   |
| Reset: | 0              | 0  | 0   | 0   | 0       | 0         | 0  | 0                                 | 0 | 0 | 0 | 0          | 0      | 0 | 0 | 0 | _ |
|        | R              | R  | R   | R   | R       | R         | R  | R                                 | R | R | R | R          | R      | R | R | R |   |
|        |                |    |     |     |         |           |    |                                   |   |   |   |            |        |   |   |   |   |
| Name   | Name Bit Reset |    |     | Dir | D       | escriptio | on |                                   |   |   |   |            |        |   |   |   |   |
|        |                |    | 7:0 | 0   |         | RW        | Τe | Temporary storage for programmers |   |   |   |            |        |   |   |   |   |

#### 4.5.23 Serial Baud Rate

The serial baud rate of the UART can be user defined by entering a 2 byte divisor in the Divisor Latch Register (two 8-bit registers; one high and one low byte register). The divisor effectively divides the APB clock rate to give a baud rate that is 16 x divisor. Table 5 gives the divisor values that are required to specify several common serial baud rates, assuming the APB 'pclk' rate is 49.152 MHz.

| Desired Baud Rate | Divisor | Obtained Rate | Deviation (%) |
|-------------------|---------|---------------|---------------|
| 1200              | 2560    | 1200.00       | 0.00          |
| 2400              | 1280    | 2400.00       | 0.00          |

| 4800    | 640 | 4800.00    | 0.00  |
|---------|-----|------------|-------|
| 9600    | 320 | 9600.00    | 0.00  |
| 19200   | 160 | 19200.00   | 0.00  |
| 31250   | 98  | 31346.94   | 0.31  |
| 38400   | 80  | 38400.00   | 0.00  |
| 57600   | 53  | 57962.26   | 0.63  |
| 115200  | 27  | 113777.78  | -1.23 |
| 1024000 | 3   | 1024000.00 | 0.00  |
|         |     |            |       |

| Table 26: | Determining | Baud | Rate |
|-----------|-------------|------|------|
|-----------|-------------|------|------|

# 4.6 GPIO

The General Purpose I/O (GPIO) module has a 32 bit interface to the APB data bus. It consists of one port with a data width of 16 bits. The default direction of the GPIO is input. The GPIO module includes logic to support the debouncing of glitches. It also includes logic to support interrupt detection. The active level or edge for interrupt detection is active high. The GPIO also includes metastability registers to synchronize read back data.

The GPIO pins share functionality. Consult the GPCSR section for further details.

On TCD2220 GPIO0-14 are available, on TCD2210 GPIO1-8 are available.

| Signal | TCD2220      | TCD2210      | I/O     | Drive<br>(mA) | Description              |
|--------|--------------|--------------|---------|---------------|--------------------------|
| GPIO0  | 42 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO1  | 138 (shared) | 123 (shared) | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO2  | 139 (shared) | 124 (shared) | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO3  | 137 (shared) | 122 (shared) | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO4  | 85 (shared)  | 78 (shared)  | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO5  | 86 (shared)  | 79 (shared)  | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO6  | 117 (shared) | 106 (shared) | I/O (S) | 8             | General Purpose I/O (5V) |
| GPIO7  | 118 (shared) | 107 (shared) | I/O (S) | 8             | General Purpose I/O (5V) |
| GPIO8  | 119 (shared) | 108 (shared) | I/O (S) | 8             | General Purpose I/O (5V) |
| GPIO9  | 55           | N/A          | I/O (S) | 8             | General Purpose I/O (5V) |
| GPIO10 | 56           | N/A          | I/O (S) | 8             | General Purpose I/O (5V) |
| GPIO11 | 57 (shared)  | N/A          | I/O (S) | 8             | General Purpose I/O (5V) |
| GPIO12 | 65 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO13 | 66 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V) |
| GPIO14 | 67 (shared)  | N/A          | I/O (S) | 6             | General Purpose I/O (5V) |

### 4.6.1 Signal Description

 Table 27: GPIO Signal Description

Note that all pins used by the GPIO module are multi-purpose or shared. The function of these pins is software configurable via the GPCSR module, specifically register GPCSR\_IO\_SELECT0 – 0xc700 0004. Refer to the GPCSR module documentation for more information.

Note that each GPIO signal can be configured as an input or output using GPIO\_DDR, the GPIO Data Direction Register at address 0xc300 0004. See section 3.

# 4.6.2 Module Configuration

| Address     | Register        |
|-------------|-----------------|
| 0xc300 0000 | GPIO_DR         |
| 0xc300 0004 | GPIO_DDR        |
| 0xc300 0030 | GPIO_INTEN      |
| 0xc300 0034 | GPIO_INTMSK     |
| 0xc300 0038 | GPIO_INTSENSE   |
| 0xc300 003c | GPIO_INTPOL     |
| 0xc300 0040 | GPIO_INTSTAT    |
| 0xc300 0044 | GPIO_RAWINTSTAT |
| 0xc300 0048 | GPIO_DEBOUNCE   |
| 0xc300 004c | GPIO_EOI        |
| 0xc300 0050 | GPIO_EXT        |
| 0x3c00 0060 | GPIO_SYNC       |

#### Table 28: GPIO Memory Map

Note that all programmable registers are actually 32 bits wide. However, the upper 17 bits of all the registers are Reserved. Therefore, only the lower 15 bits of each register is shown in this document.

### 4.6.3 GPIO\_DR Data Register

Address - 0Xc300 0000

|        | 15 | 14 | 13   | 12 | 11  | 10  | 9                                                                                                                                                                                  | 8   | 7  | 6  | 5  | 4  | 3                             | 2              | 1  | 0  |  |
|--------|----|----|------|----|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|----|----|-------------------------------|----------------|----|----|--|
|        |    |    |      |    |     |     |                                                                                                                                                                                    | Dat | a  |    |    |    |                               |                |    |    |  |
| Reset: |    |    |      |    |     |     |                                                                                                                                                                                    |     |    |    |    |    |                               |                |    |    |  |
|        | RW | RW | RW   | RW | RW  | RW  | RW                                                                                                                                                                                 | RW  | RW | RW | RW | RW | RW                            | RW             | RW | RW |  |
|        |    |    |      |    |     |     |                                                                                                                                                                                    |     |    |    |    |    |                               |                |    |    |  |
| Name   | )  |    | Bit  | Re | set | Dir | Description                                                                                                                                                                        |     |    |    |    |    |                               |                |    |    |  |
| Data   |    |    | 15:0 |    |     | RW  | Values written to this register are output on the I/O pin<br>corresponding data direction bits are set to "output" m<br>read back is equal to the last value written to this regis |     |    |    |    |    | ns. If th<br>node. T<br>ster. | າe<br>⁻he valu | ie |    |  |

### 4.6.4 GPIO\_DDR Data Direction Register

| Add                    | Address – 0Xc300 0004 |    |    |    |    |             |                   |                    |                      |                   |        |          |           |         |         |    |  |
|------------------------|-----------------------|----|----|----|----|-------------|-------------------|--------------------|----------------------|-------------------|--------|----------|-----------|---------|---------|----|--|
|                        | 15                    | 14 | 13 | 12 | 11 | 10          | 9                 | 8                  | 7                    | 6                 | 5      | 4        | 3         | 2       | 1       | 0  |  |
|                        |                       |    |    |    |    |             |                   | Data Di            | rection              |                   |        |          |           |         |         |    |  |
| Reset:                 |                       |    |    |    |    |             |                   |                    |                      |                   |        |          |           |         |         |    |  |
|                        | RW                    | RW | RW | RW | RW | RW          | RW                | RW                 | RW                   | RW                | RW     | RW       | RW        | RW      | RW      | RW |  |
|                        |                       |    |    |    |    |             |                   |                    |                      |                   |        |          |           |         |         |    |  |
| Name                   | Name Bit Reset Dir    |    |    |    |    | Description |                   |                    |                      |                   |        |          |           |         |         |    |  |
| Data Direction 15:0 RV |                       |    |    |    | RW | Val<br>the  | ues wri<br>corres | tten to<br>conding | this reg<br>g data b | ister ind<br>bit. | depend | lently c | ontrol th | e direc | tion of |    |  |

### 4.6.5 GPIO\_INTEN Interrupt Enable Register

Address - 0Xc300 0030

This register is available only if GPIO port is configured to generate interrupts.

|        | 15 | 14 | 13 | 12  | 11  | 10  | 9  | 8        | 7        | 6   | 5   | 4   | 3  | 2  | 1  | 0   |
|--------|----|----|----|-----|-----|-----|----|----------|----------|-----|-----|-----|----|----|----|-----|
|        |    |    |    |     |     |     |    | Interrup | t Enable |     |     |     |    |    |    |     |
| Reset: |    |    |    |     |     |     |    |          |          |     |     |     |    |    |    |     |
|        | PW | PW | PW | PW/ | PW/ | PW/ | PW | PW/      | PW/      | PW/ | PW/ | PW/ | PW | PW | PW | PW/ |

| Name             | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt Enable | 15:0 |       | RW  | <ul> <li>Allows each bit to be configured for interrupts. By default the generation of interrupts is disabled. Whenever a 1 is written to a bit of this register, it configures the corresponding bit to become an interrupt. Otherwise, the GPIO operates as a normal GPIO port. Interrupts are disabled on the corresponding bits if the corresponding data direction register is set to "output".</li> <li>0: configure bit as normal GPIO port (default)</li> <li>1: configure bit as interrupt</li> </ul> |

#### 4.6.6 GPIO\_INTMASK Interrupt Mask Register

Address - 0Xc300 0034

This register is available only if GPIO port is configured to generate interrupts.

|         | 15      | 14 | 13   | 12  | 11 | 10  | 9                                | 8                                                       | 7                                                    | 6                                                       | 5                                                 | 4                                                     | 3                                                  | 2                                            | 1                                            | 0                      |  |
|---------|---------|----|------|-----|----|-----|----------------------------------|---------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------|--|
|         |         |    |      |     |    |     |                                  | Interrup                                                | t Mask                                               |                                                         |                                                   |                                                       |                                                    |                                              |                                              |                        |  |
| Reset:  |         |    |      |     |    |     |                                  |                                                         |                                                      |                                                         |                                                   |                                                       |                                                    |                                              |                                              |                        |  |
|         | RW      | RW | RW   | RW  | RW | RW  | RW                               | RW                                                      | RW                                                   | RW                                                      | RW                                                | RW                                                    | RW                                                 | RW                                           | RW                                           | RW                     |  |
|         |         |    |      |     |    |     |                                  |                                                         |                                                      |                                                         |                                                   |                                                       |                                                    |                                              |                                              |                        |  |
| Name    | ;       |    | Bit  | Res | et | Dir | Des                              | scriptio                                                | า                                                    |                                                         |                                                   |                                                       |                                                    |                                              |                                              |                        |  |
| Interro | upt Mas | k  | 15:0 |     |    | RW  | Cor                              | ntrols w                                                | hether                                               | an inte                                                 | rrupt ca                                          | an creat                                              | e an in                                            | terrupt                                      | for the i                                    | nterrupt               |  |
|         |         |    |      |     |    |     | con<br>unn<br>the<br>inte<br>wel | troller b<br>nasked<br>interrup<br>rrupts a<br>l as the | by not r<br>. When<br>ot gene<br>are allo<br>resulta | nasking<br>never a<br>eration c<br>wed thr<br>ant statu | it. By<br>1 is wr<br>apabili<br>ough.<br>us aftei | default<br>itten to<br>ty for th<br>The unr<br>maskir | , all inte<br>a bit in<br>le whol<br>naskeo<br>ng. | errupts<br>this reg<br>e port, o<br>l status | bits are<br>gister, it<br>otherwis<br>can be | masks<br>se<br>read as |  |
|         |         |    |      |     |    |     | 0: ii                            | nterrup                                                 | t bits ai                                            | e unma                                                  | sked (                                            | default)                                              |                                                    |                                              |                                              |                        |  |
|         |         |    |      |     |    |     | 1: r                             | nask in                                                 | terrupt                                              |                                                         |                                                   |                                                       |                                                    |                                              |                                              |                        |  |

# 4.6.7 GPIO\_INTSENSE Interrupt Level Register

Address - 0Xc300 0038

This register is available only if GPIO port is configured to generate interrupts.



| Name            | Bit  | Reset | Dir | Description                                                                                                                                                                                |
|-----------------|------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt Level | 15:0 |       | RW  | Controls the type of interrupt that can occur. Whenever a 0 is written to a bit of this register, it configures the interrupt type to be level-sensitive; otherwise, it is edge-sensitive. |
|                 |      |       |     | 0: level-sensitive (default)                                                                                                                                                               |
|                 |      |       |     | 1: edge-sensitive                                                                                                                                                                          |

### 4.6.8 GPIO\_INTPOL Interrupt Polarity Register

Address - 0Xc300 003c

This register is available only if GPIO port is configured to generate interrupts.

|         | 15       | 14    | 13   | 12 | 11  | 10  | 9                        | 8                              | 7                                        | 6                                              | 5                                        | 4                                             | 3                                 | 2                                 | 1                               | 0                           |
|---------|----------|-------|------|----|-----|-----|--------------------------|--------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-----------------------------|
|         |          |       |      |    |     |     |                          | Interrupt                      | Polarity                                 |                                                |                                          |                                               |                                   |                                   |                                 |                             |
| Reset:  |          |       |      |    |     |     |                          |                                |                                          |                                                |                                          |                                               |                                   |                                   |                                 |                             |
|         | RW       | RW    | RW   | RW | RW  | RW  | RW                       | RW                             | RW                                       | RW                                             | RW                                       | RW                                            | RW                                | RW                                | RW                              | RW                          |
|         |          |       |      |    |     |     |                          |                                |                                          |                                                |                                          |                                               |                                   |                                   |                                 |                             |
| Name    | ;        |       | Bit  | Re | set | Dir | De                       | scriptio                       | า                                        |                                                |                                          |                                               |                                   |                                   |                                 |                             |
| Interro | upt Pola | arity | 15:0 |    |     | RW  | Co<br>inp<br>the<br>is r | ntrols th<br>ut. Wh<br>interru | ne pola<br>enever<br>pt type<br>lge or a | rity of e<br>a 0 is v<br>to fallin<br>active-h | dge or<br>vritten t<br>g-edge<br>igh ser | level se<br>to a bit<br>e or acti<br>nsitive. | ensitivity<br>of this r<br>ve-low | y that ca<br>egister,<br>sensitiv | an occu<br>it confi<br>re; othe | ır on<br>gures<br>rwise, it |
|         |          |       |      |    |     |     | 0: ;                     | active-lo                      | w (def                                   | ault)                                          |                                          |                                               |                                   |                                   |                                 |                             |
|         |          |       |      |    |     |     | 1: ;                     | active-h                       | igh                                      |                                                |                                          |                                               |                                   |                                   |                                 |                             |

### 4.6.9 GPIO\_INTSTAT Interrupt Status Register

Address - 0Xc300 0040

This register is available only if GPIO port is configured to generate interrupts.

|        | 15                      | 14 | 13  | 12 | 11  | 10   | 9           | 8        | 7         | 6   | 5 | 4 | 3 | 2 | 1 | 0 | _ |
|--------|-------------------------|----|-----|----|-----|------|-------------|----------|-----------|-----|---|---|---|---|---|---|---|
|        |                         |    |     |    |     |      |             | Interrup | et Status |     |   |   |   |   |   |   |   |
| Reset: |                         |    |     |    |     |      |             |          |           |     |   |   |   |   |   |   |   |
|        | R                       | R  | R   | R  | R   | R    | R           | R        | R         | R   | R | R | R | R | R | R |   |
|        |                         |    |     |    |     |      |             |          |           |     |   |   |   |   |   |   |   |
| Name   | )                       |    | Bit | Re | set | Dir  | Description |          |           |     |   |   |   |   |   |   |   |
| Interr | Interrupt Status 15:0 R |    |     |    |     | Inte | errupt s    | tatus o  | f each b  | bit |   |   |   |   |   |   |   |

### 4.6.10 GPIO\_RAWINTSTAT Raw Interrupt Status (Premasking) Register

Address - 0Xc300 0044

|                 | 15                           | 14 | 13  | 12 | 11  | 10       | 9        | 8          | 7          | 6       | 5        | 4    | 3 | 2 | 1 | 0 |  |
|-----------------|------------------------------|----|-----|----|-----|----------|----------|------------|------------|---------|----------|------|---|---|---|---|--|
|                 |                              |    |     |    |     |          |          | Raw Interr | upt Status |         |          |      |   |   |   |   |  |
| Reset:          |                              |    |     |    |     |          |          |            |            |         |          |      |   |   |   |   |  |
|                 | R                            | R  | R   | R  | R   | R        | R        | R          | R          | R       | R        | R    | R | R | R | R |  |
|                 |                              |    |     |    |     |          |          |            |            |         |          |      |   |   |   |   |  |
| Name            | )                            |    | Bit | Re | set | Dir      | De       | scriptio   | n          |         |          |      |   |   |   |   |  |
| Raw I<br>Status | aw Interrupt 15:0 R<br>tatus |    |     |    | Ra  | w interr | upt stat | us or "    | premas     | king" o | f each b | oit. |   |   |   |   |  |

### 4.6.11 GPIO\_DEBOUNCE Debounce Enable Register

| Add    | ress -  | - 0Xc | 300 C | 048 |     |     |                                |                                                          |                                                     |                                                   |                                                         |                                                        |                                                       |                                                         |                                                      |                                            |    |
|--------|---------|-------|-------|-----|-----|-----|--------------------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------------------|----|
|        | 15      | 14    | 13    | 12  | 11  | 10  | 9                              | 8                                                        | 7                                                   | 6                                                 | 5                                                       | 4                                                      | 3                                                     | 2                                                       | 1                                                    | 0                                          |    |
|        |         |       |       |     |     |     |                                | Debounce                                                 | Enable                                              |                                                   |                                                         |                                                        |                                                       |                                                         |                                                      |                                            |    |
| Reset: |         |       |       |     |     |     |                                |                                                          |                                                     |                                                   |                                                         |                                                        |                                                       |                                                         |                                                      |                                            |    |
|        | RW      | RW    | RW    | RW  | RW  | RW  | RW                             | RW                                                       | RW                                                  | RW                                                | RW                                                      | RW                                                     | RW                                                    | RW                                                      | RW                                                   | RW                                         |    |
|        |         |       |       |     |     |     |                                |                                                          |                                                     |                                                   |                                                         |                                                        |                                                       |                                                         |                                                      |                                            |    |
| Name   |         |       | Bit   | Res | set | Dir | De                             | scriptio                                                 | ۱                                                   |                                                   |                                                         |                                                        |                                                       |                                                         |                                                      |                                            |    |
| Debou  | unce Er | nable | 15:0  |     |     | RW  | Co<br>nee<br>to a<br>be<br>pro | ntrols w<br>eds to b<br>a bit in t<br>valid fo<br>cessed | hether<br>e debo<br>his regi<br>r two pe<br>. 0: no | an exte<br>unced<br>ister en<br>eriods o<br>debou | ernal sig<br>to remo<br>ables th<br>of an ex<br>nce (de | gnal tha<br>ive any<br>ne debo<br>ternal o<br>fault) 1 | t is the<br>spuriou<br>buncing<br>clock be<br>: enabl | source<br>us glitch<br>circuitr<br>efore it i<br>e debo | of an in<br>nes. Wr<br>ry. A sig<br>s intern<br>unce | nterrupt<br>iting a 1<br>jnal mus<br>ially | st |

### 4.6.12 GPIO\_EOI Clear Interrupt Register



| Name            | Bit  | Reset | Dir | Description                                                                                                                                                                                                        |
|-----------------|------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clear Interrupt | 15:0 |       | W   | Controls the clearing of edge type interrupts. When a 1 is written into a corresponding bit of this register, the interrupt is cleared. All interrupts are cleared when the port is not configured for interrupts. |
|                 |      |       |     | 0: no interrupt clear (default)                                                                                                                                                                                    |
|                 |      |       |     | 1: clear interrupt                                                                                                                                                                                                 |

### 4.6.13 GPIO\_EXT External Port Register

Address - 0Xc300 0050

|        | 15       | 14 | 13   | 12  | 11  | 10  | 9                         | 8                                     | 7                                | 6                              | 5                               | 4                                  | 3                            | 2                                | 1                              | 0                         |   |
|--------|----------|----|------|-----|-----|-----|---------------------------|---------------------------------------|----------------------------------|--------------------------------|---------------------------------|------------------------------------|------------------------------|----------------------------------|--------------------------------|---------------------------|---|
|        |          |    |      |     |     |     |                           | Externa                               | I Port                           |                                |                                 |                                    |                              |                                  |                                |                           | l |
| Reset: |          |    |      |     |     |     |                           |                                       |                                  |                                |                                 |                                    |                              |                                  |                                |                           |   |
|        | R        | R  | R    | R   | R   | R   | R                         | R                                     | R                                | R                              | R                               | R                                  | R                            | R                                | R                              | R                         |   |
|        |          |    |      |     |     |     |                           |                                       |                                  |                                |                                 |                                    |                              |                                  |                                |                           |   |
| Name   | 9        |    | Bit  | Res | set | Dir | Des                       | scriptior                             | ı                                |                                |                                 |                                    |                              |                                  |                                |                           |   |
| Exter  | nal Port |    | 15:0 |     |     | R   | Wh<br>read<br>set<br>port | en the p<br>ds the v<br>as "out<br>t. | oort is o<br>alues o<br>put", re | configu<br>on the p<br>ading t | red as '<br>oort. W<br>his loca | 'input", t<br>hen the<br>ation rea | then re<br>data c<br>ids the | ading th<br>lirection<br>data re | nis loca<br>of the<br>gister f | tion<br>port is<br>or the |   |

### 4.6.14 GPIO\_SYNC Level Sensitive Synchronization Enable Register

Address - 0Xc300 0060

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0             |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|---------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | Sync<br>Level |
| Reset: |    |    |    |    |    |    |   |          |   |   |   |   |   |   |   |               |

| Name                     | Bit | Reset | Dir | Description                                                                                             |
|--------------------------|-----|-------|-----|---------------------------------------------------------------------------------------------------------|
| Synchronization<br>Level | 0   | 0     | RW  | Writing a 1 to this register results in all level sensitive interrupts being synchronized to pclk_intr. |
|                          |     |       |     | 0: no synchronization to pclk_intr (default)                                                            |
|                          |     |       |     | 1: synchronize to pclk_intr                                                                             |

# 4.7 1394 Link

### 4.7.1 Signal Description

| Signal | TCD2220 | TCD2210 | I/O     | Drive<br>(mA) | Description                                                 |
|--------|---------|---------|---------|---------------|-------------------------------------------------------------|
| SCLK   | 54      | 53      | I (S)   | -             | 49.152MHz PHY Clock                                         |
| PHD0   | 58      | 54      | I/O (S) | 8             | PHY tristatable data line bit 0                             |
| PHD1   | 59      | 55      | I/O (S) | 8             | PHY tristatable data line bit 1                             |
| PHD2   | 60      | 56      | I/O (S) | 8             | PHY tristatable data line bit 2                             |
| PHD3   | 63      | 59      | I/O (S) | 8             | PHY tristatable data line bit 3                             |
| PHD4   | 64      | 60      | I/O (S) | 8             | PHY tristatable data line bit 4                             |
| PHD5   | 68      | 61      | I/O (S) | 8             | PHY tristatable data line bit 5                             |
| PHD6   | 69      | 62      | I/O (S) | 8             | PHY tristatable data line bit 6                             |
| PHD7   | 70      | 63      | I/O (S) | 8             | PHY tristatable data line bit 7                             |
| РНСТ0  | 71      | 64      | I/O (S) | 8             | PHY tristatable control line bit 0                          |
| PHCT1  | 72      | 65      | I/O (S) | 8             | PHY tristatable control line bit 1                          |
| PHDI   | 73      | 66      | I (S)   | -             | A high indicates isolation barrier is not present (PU, 5V)  |
| PHLR   | 74      | 67      | 0       | 8             | Serial request output from S-LINK (Z)                       |
| PHLP   | 75      | 68      | 0       | 4             | Link power status. Pulsing if isol. barrier present         |
| PHLO   | 76      | 69      | I (S)   | -             | Link on indication from PHY. Pulsing when asserted (PU, 5V) |

### Table 29: Signal Description

### 4.7.2 Module Configuration

| Address     | Register             |
|-------------|----------------------|
| 0x8200 0000 | VERSION_REG_DP       |
| 0x8200 0004 | ND_ID_REG_DP         |
| 0x8200 0008 | LNK_CTRL_REG_DP      |
| 0x8200 000c | LCSR_REG_DP          |
| 0x8200 0010 | CY_TMR_REG_DP        |
| 0x8200 0014 | ATFIFO_STAT_REG_DP   |
| 0x8200 0018 | ITFIFO_STAT_REG_DP   |
| 0x8200 001c | ARFIFO_STAT_REG_DP   |
| 0x8200 0020 | IRFIFO_STAT_REG_DP   |
| 0x8200 0024 | ISOC_RX_ENB_REG_1_DP |
| 0x8200 0028 | ISOC_RX_ENB_REG_2_DP |
| 0x8200 002c | ISO_TX_STAT_REG_DP   |

# Table 30: 1394 LLC Memory Map

| Address     | Register                   |
|-------------|----------------------------|
| 0x8200 0030 | ASY_TX_STAT_REG_DP         |
| 0x8200 0044 | PHY_CTRL_REG_DP            |
| 0x8200 0048 | INTERRUPT_REG_SET_DP       |
| 0x8200 004c | INTERRUPT_REG_CLEAR_DP     |
| 0x8200 0050 | INTR_MASK_REG_SET_DP       |
| 0x8200 0054 | INTR_MASK_REG_CLEAR_DP     |
| 0x8200 0058 | DIAG_REG_DP                |
| 0x8200 005c | BUS_STAT_REG_DP            |
| 0x8200 0060 | ASY_TX_FIFO_SPACE_REG_DP   |
| 0x8200 0064 | ASY_RX_FIFO_QLETS_REG_DP   |
| 0x8200 0068 | ISO_TX_FIFO_SPACE_REG_DP   |
| 0x8200 006c | ISO_RX_FIFO_QLETS_REG_DP   |
| 0x8200 0070 | ISO_DATA_PATH_REG_DP       |
| 0x8200 0074 | ASY_TX_FIRST_REG_DP        |
| 0x8200 0078 | ASY_CONTINUE_REG_DP        |
| 0x8200 007c | ASY_CONTINUE_UPDATE_REG_DP |
| 0x8200 0080 | ASY_TX_FIFO_DEPTH_REG_DP   |
| 0x8200 0084 | ASY_RX_FIFO_REG_DP         |
| 0x8200 0088 | ASY_RX_FIFO_DEPTH_REG_DP   |
| 0x8200 008c | ISO_TX_FIRST_REG_DP        |
| 0x8200 0090 | ISO_CONTINUE_REG_DP        |
| 0x8200 0094 | ISO_CONTINUE_UPDATE_REG_DP |
| 0x8200 0098 | ISO_TX_FIFO_DEPTH_REG_DP   |
| 0x8200 009c | ISO_RX_FIFO_REG_DP         |
| 0x8200 00a0 | ISO_RX_FIFO_DEPTH_REG_DP   |
| 0x8200 00a4 | HST_ACC_ERR_REG_DP         |
| 0x8200 00a8 | RET_CT_REG_DP              |
| 0x8200 00ac | DIG_FSM_STAT_REG           |
| 0x8200 00b0 | ISO_TX_ENB_REG_1_DP        |
| 0x8200 00b4 | ISO_TX_ENB_REG_2_DP        |
| 0x8200 00b8 | ISO_HDR_REG_DP             |
| 0x8200 00bc | LPS_REG_DP                 |
| 0x8200 00c0 | PING_REG_DP                |
| 0x8200 00c4 | ISOC_EXPC_CHAN_REG1        |
| 0x8200 00c8 | ISOC_EXPC_CHAN_REG2        |
| 0x8200 00cc | DUP_EXPC_STAT_REG          |
| 0x8200 00d0 | ASYN_RX_ENB_REG_1_DP       |
| 0x8200 00d4 | ASYN_RX_ENB_REG_2_DP       |

# 4.8 GRAY, Rotary Encoder Interface

This module can decode the input from 2 rotary encoders. Each interface consists of 2 pins, A and B.

### 4.8.1 Signal Description

| Signal | TCD2220     | TCD2210     | I/O   | Drive (mA) | Description               |
|--------|-------------|-------------|-------|------------|---------------------------|
| EN1_A  | 138(shared) | 123(shared) | I (S) | 6          | Rotary Encoder Input (5V) |
| EN1_B  | 139(shared) | 124(shared) | I (S) | 6          | Rotary Encoder Input (5V) |
| EN2_A  | 65(shared)  | N/A         | I (S) | 6          | Rotary Encoder Input (5V) |
| EN2_B  | 66 (shared) | N/A         | I (S) | 6          | Rotary Encoder Input (5V) |

Table 31: GRAY Encoder Signal Description

### 4.8.2 Module Configuration

| Address     | Register  |
|-------------|-----------|
| 0xc600 0000 | GRAY_STAT |
| 0xc600 0004 | GRAY_CTRL |
| 0xc600 0008 | GRAY_CNT  |

#### Table 32: GRAY Memory Map

# 4.8.3 GRAY\_STAT

| Add    | Address – 0Xc600 0000 |    |    |    |    |    |   |         |   |   |   |   |   |   |      |      |
|--------|-----------------------|----|----|----|----|----|---|---------|---|---|---|---|---|---|------|------|
|        | 15                    | 14 | 13 | 12 | 11 | 10 | 9 | 8       | 7 | 6 | 5 | 4 | 3 | 2 | 1    | 0    |
|        |                       |    |    |    |    |    | R | eserved |   |   |   |   |   |   | INT1 | INT0 |
| Reset: | 0                     | 0  | 0  | 0  | 0  | 0  | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0    |
|        | R                     | R  | R  | R  | R  | R  | R | R       | R | R | R | R | R | R | R    | R    |

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                    |
|----------|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reserved | 31:2 | 0     | R   | Reads back as zero.                                                                                                                                            |
| INT1     | 1    | 0     | R   | This bit indicates the changed status of counter 1. This bit will be set<br>whenever the counter is changed and cleared when the GRAY_CNT<br>register is read. |
| INTO     | 0    | 0     | R   | This bit indicates the changed status of counter 0. This bit will be set<br>whenever the counter is changed and cleared when the GRAY_CNT<br>register is read. |

### 4.8.4 GRAY\_CTRL

Address - 0Xc600 0004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|        |   |   |   |   |   |   | F | Reserved |   |   |   |   |    |    | INTE1 | INTE0 |
|--------|---|---|---|---|---|---|---|----------|---|---|---|---|----|----|-------|-------|
| Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0  | 0  | 0     | 0     |
|        | R | R | R | R | R | R | R | R        | R | R | R | R | RW | RW | RW    | RW    |

| Name     | Bit  | Reset | Dir | Description                                             |
|----------|------|-------|-----|---------------------------------------------------------|
| reserved | 31:2 | 0     | R   | This bit enables the interrupt on change for counter 2. |
| INTE1    | 1    | 0     | RW  | This bit enables the interrupt on change for counter 1. |
| INTE0    | 0    | 0     | RW  | This bit enables the interrupt on change for counter 0. |

### 4.8.5 GRAY\_CNT

Address - 0Xc600 0008



| Name     | Bit   | Reset | Dir | Description                                                                                              |
|----------|-------|-------|-----|----------------------------------------------------------------------------------------------------------|
| reserved | 31:16 | 0     | R   | Reads back as zeros                                                                                      |
| CNT1     | 15:8  | 0     | R   | Count indicating amount of change since last read. The value range is -128 to 127 with saturation logic. |
| CNT0     | 7:0   | 0     | R   | Count indicating amount of change since last read. The value range is -128 to 127 with saturation logic. |

## 4.9 Interrupt Controller

#### 4.9.1 Features

AIC supports the following features:

- 32 IRQ normal interrupt sources
- 8 FIQ fast interrupt sources
- Vectored interrupts
- Software interrupts
- Priority filtering
- Masking

### 4.9.2 Functional Description

AIC is a configurable, vectored interrupt controller. It supports 32 normal interrupts (IRQ) sources that are processed to produce a single IRQ interrupt to the processor. It supports 8 fast interrupts (FIQ) sources that are processed to produce a single FIQ interrupt to the processor.

AIC supports IRQ interrupts, software interrupts, priority filtering, and vector generation. FIQ interrupts are similar to IRQ interrupts with the exception that priority filtering and vector generation are not included. Figure 1 shows a block diagram of the AIC.



Figure 26: Block Diagram of AIC

### 4.9.3 IRQ Processing

The AIC processes 32 interrupt sources to produce a single IRQ interrupt to the processor. The processing of the interrupt sources is shown in Figure 2 and described in the following sections.



Figure 27: IRQ Internal Diagram (Interrupt 1)

#### 4.9.4 IRQ Software Programmable Interrupts

The AIC supports forcing interrupts from software. To force an interrupt to be active, write to the corresponding bit in the INTCTRL\_FORCE registers

#### 4.9.5 IRQ Enable and Masking

To enable each interrupt source independently, write a 1 to the corresponding bit of the INTCTRL\_ENABLE registers. Writing 1 in the INTCTRL\_MASK register masks an interrupt.

#### 4.9.6 IRQ Priority Filter

The AIC supports priority filtering. Each interrupt source has one of 16 priority levels (0 to 15), where 0 is the lowest priority. A system priority level can be programmed into the INTCTRL\_SYSTEM\_PRIORITY\_LEVEL register, which holds values from 0 to 15. The reset value of this register is set to 0. AIC filters out any interrupt source with a configured priority level less than the priority currently programmed in this register.

#### 4.9.7 IRQ Interrupt Status Registers

The AIC includes up to four status registers used for querying the current status of any interrupt at various stages of the processing. A 1 indicates that an interrupt is active; a 0 indicates it is inactive.

#### • INTCTRL\_RAW

This register contains the state of the interrupt sources. Each bit of this register is set to 1 if the corresponding interrupt source bit is active and is set to 0 if it is inactive

#### • INTCTRL\_STATUS

This register contains the state of all interrupts after the enabling stage, meaning that an active-high bit indicates that particular interrupt source is active and enabled.

#### • INTCTRL\_MASKSTAT

This register contains the state of all interrupts after the masking stage, meaning that an active-high bit indicates that particular interrupt source is active, enabled, and not masked.

#### • INTCTRL\_FINALSTAT

This register contains the state of all interrupts after the priority filtering stage, meaning an active-high bit indicates that particular interrupt source is active, enabled, not masked, and its configured priority level is greater or equal to the value programmed in the INTCRTL\_SYSTEM\_PRIORITY\_LEVEL register.

#### 4.9.8 IRQ Interrupt Vectors

The AIC supports interrupt vectors. The AIC has one vector register associated with each of the 16 interrupt priority levels: INTCTRL\_VECTOR0 to INTCTRL\_VECTOR15. These registers are 32 bits wide. The value of each interrupt vector register is hard-coded.

Vector processing proceeds as follows:

- Active interrupts are conditioned by their enable and mask control bits.
- All active interrupts with priority level less than the current value programmed into the INTCTRL\_SYSTEM\_PRIORITY\_LEVEL register are filtered out.
- The highest priority level from among the remaining active interrupts is used to select one of the 16 interrupt vectors.
- The user retrieves the vector associated with the highest priority level that has an active interrupt source by reading the interrupt vector register The register is "read coherent," you need to be guaranteed that you are reading a valid value for the entire vector. The contents of the register will be stored in a shadow location,

when the user starts to read the register, so that the register can be read without being corrupted by it being changed by subsequent interrupts occurring.

### 4.9.9 FIQ Interrupt Processing

AIC supports 8 FIQ interrupt sources. AIC processes these interrupt sources to produce a single FIQ interrupt to the processor. FIQ interrupt processing is similar to IRQ interrupt processing except that priority filtering and interrupt vectors are not supported for the FIQ interrupts. This section describes how the AIC handles the FIQ interrupt processing. Figure 3 for further detail



Figure 28: FIQ Internal Diagram (Interrupt 1)

#### 4.9.10 FIQ Software-Programmable Interrupts

AIC supports forcing interrupts from software. You force an interrupt to be active by writing to the corresponding bit in the INTCTRL\_FIQ\_FORCE register

### 4.9.11 FIQ Enable and Masking

You can enable each interrupt source independently by writing a 1 to the corresponding bit of the INTCTRL\_FIQ\_FORCE register. At reset all interrupts are disabled. You can mask each interrupt source independently by writing a 1 to the corresponding bit of the INTCTRL\_FIQ\_MASK register. The reset value for each mask bit is 0(unmasked).

#### 4.9.12 FIQ Interrupt Status Registers

AIC includes three status registers that you can use to query the current status of any FIQ interrupt at various stages of the processing. A 1 indicates that in interrupt is active, a 0 indicates inactive

• INTCTRL\_FIQ\_RAW

This register contains the state of the interrupt sources. Each bit of this register is set to 1 if the corresponding interrupt source bit is active and is set to 0 if it is inactive.

#### • INTCTRL\_FIQ\_STAT

This register contains the state of all interrupts after the enabling stage, meaning that an active-high bit indicates that particular interrupt source is active and enabled.

#### • INTCTRL\_FIQ\_FINALSTAT

This register contains the state of all interrupts after the masking, meaning that an active-high bit indicates that particular interrupt source is active, enabled, and unmasked.

|   | Address     | Reset Value | Priority Level | Register                      |
|---|-------------|-------------|----------------|-------------------------------|
|   | 0xc100 0000 | 0x00        |                | INTCTRL_ENABLE                |
|   | 0xc100 0008 | 0x00        |                | INTCTRL_MASK                  |
|   | 0xc100 0010 | 0x00        |                | INTCTRL_FORCE                 |
|   | 0xc100 0018 | 0x00        |                | INTCTRL_RAW                   |
|   | 0xc100 0020 | 0x00        |                | INTCTRL_STAT                  |
|   | 0xc100 0028 | 0x00        |                | INTCTRL_MASKSTAT              |
|   | 0xc100 0030 | 0x00        |                | INTCTRL_FINALSTAT             |
|   | 0xc100 0038 | 0x00        |                | INTCTRL_INTVECTOR             |
|   | 0xc100 0040 | 0x00        | 15             | INTCTRL_VECTOR0               |
|   | 0xc100 0048 | 0x01        | 14             | INTCTRL_VECTOR1               |
|   | 0xc100 0050 | 0x02        | 13             | INTCTRL_VECTOR2               |
|   | 0xc100 0058 | 0x03        | 12             | INTCTRL_VECTOR3               |
|   | 0xc100 0060 | 0x04        | 11             | INTCTRL_VECTOR4               |
|   | 0xc100 0068 | 0x05        | 10             | INTCTRL_VECTOR5               |
|   | 0xc100 0070 | 0x06        | 9              | INTCTRL_VECTOR6               |
|   | 0xc100 0078 | 0x07        | 8              | INTCTRL_VECTOR7               |
|   | 0xc100 0080 | 0x08        | 7              | INTCTRL_VECTOR8               |
|   | 0xc100 0088 | 0x09        | 6              | INTCTRL_VECTOR9               |
|   | 0xc100 0090 | 0x0a        | 5              | INTCTRL_VECTOR10              |
|   | 0xc100 0098 | 0x0b        | 4              | INTCTRL_VECTOR11              |
|   | 0xc100 00a0 | 0x0c        | 3              | INTCTRL_VECTOR12              |
|   | 0xc100 00a8 | 0x0d        | 2              | INTCTRL_VECTOR13              |
|   | 0xc100 00b0 | 0x0e        | 1              | INTCTRL_VECTOR14              |
|   | 0xc100 00b8 | 0x0f        | 0              | INTCTRL_VECTOR15              |
|   | 0xc100 00c0 | 0x00        |                | INTCTRL_FIQ_ENABLE            |
|   | 0xc100 00c4 | 0x00        |                | INTCTRL_FIQ_MASK              |
|   | 0xc100 00c8 | 0x00        |                | INTCTRL_FIQ_FORCE             |
|   | 0xc100 00cc | 0x00        |                | INTCTRL_FIQ_RAW               |
|   | 0xc100 00d0 | 0x00        |                | INTCTRL_FIQ_STAT              |
|   | 0xc100 00d4 | 0x00        |                | INTCTRL_FIQ_FINALSTAT         |
|   | 0xc100 00d8 | 0x00        |                | INTCTRL_SYSTEM_PRIORITY_LEVEL |
| - |             |             |                |                               |

# 4.9.13 Module Configuration

 Table 33: ICTL
 Memory
 Map

#### 4.9.14 INTCTRL\_ENABLE

This is a Read/Write Register to enable/disable interrupts. Writing 1 in the corresponding bit enables interrupt and 0 disables it. At Reset all interrupts are disabled.

#### 4.9.15 INTCTRL\_MASK

This is a Read/Write Register to mask interrupts. A 0 indicates the corresponding interrupt is unmasked and 1 indicates that it's masked. At Reset all interrupts are unmasked.

#### 4.9.16 INTCTRL\_FORCE

This is a Read/Write Register to force interrupts. Writing 1 to a bit location forces the interrupt to occur. At Reset this register is initialized to all zeros.

#### 4.9.17 INTCTRL\_RAW

This is a Read Only Register which shows the actual state of interrupt as generated by the corresponding device. A 1 indicates that an interrupt occurred. At Reset this register is initialized to all zeros.

#### 4.9.18 INTCTRL\_STAT

This is a Read Only Register. Only those bits are set for which the interrupts are enabled. At Reset this register is initialized to all zeros.

#### 4.9.19 INTCTRL\_MASKSTAT

This is a Read Only Register. Only those bits are set for which the interrupts are enabled and unmasked. At Reset this register is initialized to all zeros.

#### 4.9.20 INTCTRL\_FINALSTAT

This is a Read Only Register. Only those bits are set for which the interrupts are enabled, unmasked and whose priority level is higher than the system level priority or in case of two interrupts occurring at the same instant the one with the highest priority. At Reset this register is initialized to all zeros.

#### 4.9.21 INTCTRL\_INTVECTOR

This is a Read Only Register which contains the address of interrupt vector corresponding to the highest priority interrupt source.

#### 4.9.22 INTCTRL\_VECTOR0 to INTCTRL\_VECTOR15

These are 16 Read/Write Registers which contain the interrupt vectors for interrupts corresponding to priority level 0 to 15.

#### 4.9.23 INTCTRL\_FIQ\_ENABLE

This is a Read/Write Register to enable/disable fast interrupts. Writing 1 in the corresponding bit enables that interrupt and 0 disables it. At Reset all interrupts are disabled.

#### 4.9.24 INTCTRL\_FIQ\_MASK

This is a Read/Write Register to mask interrupts. A 0 indicates the corresponding interrupt is unmasked and 1 indicates that it's masked. At Reset all interrupts are unmasked.

#### 4.9.25 INTCTRL\_FIQ\_FORCE

This is a Read/Write Register to force interrupts. Writing 1 to a bit location forces the interrupt to occur. At Reset this register is initialized to all zeros.

#### 4.9.26 INTCTRL\_FIQ\_RAW

This is a Read Only Register which shows the actual state of interrupt as generated by the corresponding device. A 1 indicates that an interrupt occurred. At Reset this register is initialized to all zeros.

#### 4.9.27 INTCTRL\_FIQ\_STAT

This is a Read Only Register. Only those bits are set for which the interrupts are enabled. At Reset this register is initialized to all zeros.

#### 4.9.28 INTCTRL\_FIQ\_FINALSTAT

This is a Read Only Register. Only those bits are set for which the interrupts are enabled and unmasked. At Reset this register is initialized to all zeros.

#### 4.9.29 INTCTRL\_SYSTEM\_PRIORITY\_LEVEL

This is a Read/Write Register. Only interrupts having priority levels higher than this figure are served.

# 4.10 Watch Dog

The watchdog is basically a counter that is capable of resetting the ARM core on a counter timeout. In order to avoid a reset the software must access the watchdog on a regular basis. The benefit of the watchdog functionality is that software dead locks, software runaway and corrupted RAM will be caught by the watchdog and the ARM core will be re-initialized.

Watchdog functionality may not be required in all applications. For theses occasions watchdog reset generation can be disabled, and the watchdog can be utilized as a periodic interrupt generator or timer.

### 4.10.1 Functional Description

The watchdog internal modules are illustrated in Figure 29. Two separate counters **prescale\_cnt** (16bit) and **wd\_12bit\_cnt** (12bit) are used for what effectively becomes a single free running 28bit counter. Two status registers are maintained during operation, **wd\_int\_reg** which drives the interrupt signal *wd\_int* and **wd\_reset\_reg** who drives the reset signal *wd\_reset*, when the setup signal *wd\_reset\_en\_reg* has been set.



Figure 29: Basic illustration of the watchdog

**prescale\_cnt** decrements every *pclk* cycle. When reaching zero *prescale\_cnt\_time\_out* is set and **prescale\_cnt** loads the value on *prescale\_cnt\_load\_value[15:0]* into the counter register. *prescale\_cnt\_load\_value[15:0]* is driven by a register mapped into the

APB bus memory space. The *prescale\_cnt\_load\_value[15:0]* register initializes to 0xFFFF when wd\_reset pulses.

**wd\_12bit\_cnt** differs from **prescale\_cnt** in that the counter register only decrements when *prescle\_cnt\_time\_out* is set. When it reaches zero *wd\_12bit\_cnt\_time\_out* is set and the counter register initializes to 0xFFF.

Understanding of signals *wd\_int* and *wd\_reset* is best achieved by studying the two scenarios in 26.

In "Scenario 1" generation of an ARM reset pulse *wd\_reset* is illustrated. First *wd\_12bit\_cnt\_time\_out* pulses, which sets **wd\_int\_reg**. *wd\_12bit\_cnt\_time\_out* pulses again while **wd\_int\_reg** is set, which sets wd\_reset\_reg. In "Scenario 1" *wd\_reset\_en\_reg* is enabled, and hence *wd\_reset* will pulse, and the ARM core gets reset. At the same time **wd\_int\_reg** is cleared.

In "Scenario 2" wd\_12bit\_cnt\_time\_out pulses and sets the wd\_int\_reg. Next wd\_int\_reg is accessed from the APB bus and cleared. Continuing this pattern of operation will ensure that the watchdog will never reset the ARM core. If wd\_reset\_en\_reg was not set "Scenario 2" would have illustrated timer operation or operation of a periodic interrupt generator.



Figure 30: Wave form illustrating update of wd\_int and wd\_reset.

The wd\_int\_reg\_access is a virtual signal illustrating that the wd\_int\_reg gets cleared.

# 4.10.2 Module Configuration

| Address     | Register         |
|-------------|------------------|
| 0xbf00 0000 | WD_RESET_EN      |
| 0xbf00 0004 | WD_INT           |
| 0xbf00 0008 | WD_PRESCALE_LOAD |
| 0xbf00 000c | WD_PRESCALE_CNT  |
| 0xbf00 0010 | WD_COUNT         |

#### Table 34: Watch Dog Memory Map

### 4.10.3 WD\_RESET\_EN

#### 0xbf00 0000

|        | 15     | 14 | 13   | 12    | 11 10 | 9                                                                      | 8                                                                     | 7                                                                         | 6                                                             | 5                                                     | 4                                                       | 3                                                      | 2                                                        | 1                                                    | 0                                         |
|--------|--------|----|------|-------|-------|------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
|        |        |    |      |       |       |                                                                        | unlock_wd                                                             |                                                                           |                                                               |                                                       |                                                         |                                                        |                                                          |                                                      | wd_reset<br>_en                           |
| Reset: |        |    |      |       |       |                                                                        | 0                                                                     |                                                                           |                                                               |                                                       |                                                         |                                                        |                                                          |                                                      | 0                                         |
|        |        |    |      |       |       |                                                                        | RW                                                                    |                                                                           |                                                               |                                                       |                                                         |                                                        |                                                          |                                                      | RW                                        |
| Name   |        |    | Bit  | Reset | Dir   | Descrip                                                                | otion                                                                 |                                                                           |                                                               |                                                       |                                                         |                                                        |                                                          |                                                      |                                           |
| unlock | k_wd   |    | 15:1 | 0     | RW    | This fea<br>watchd<br>unlock_<br>0x1234<br>to 0x0.<br>The wa<br>wd_res | ature he<br>log time<br>_wd mus<br>4). To er<br>atchdog<br>set_en. \$ | elps pre<br>r <i>reset</i><br>st be se<br>nable th<br>reset fu<br>See bel | vent ac<br>functior<br>et to 0x9<br>e watch<br>inction<br>ow. | cidenta<br>n. To dia<br>91A (ec<br>ndog re<br>may the | I enabli<br>sable th<br>juivalen<br>set fund<br>en be d | ing and<br>ne watc<br>it to set<br>ction, u<br>isablec | disabli<br>hdog re<br>ting wh<br>nlock_v<br>/enable      | ng of th<br>set fun<br>ole reg<br>vd mus<br>vd using | ne<br>loction,<br>ister to<br>t be set    |
| wd_res | set_en |    | 0    | 0     | RW    | Used to<br>disable<br>IMPOR<br>first be<br>enable<br>See ab            | o enable<br>e = low<br>RTANT:<br>set to 0<br>the wat                  | e/disabl<br>To disa<br>x91A (e<br>chdog i                                 | e the w<br>able the<br>equivale<br>eset fu                    | atchdog<br>watch<br>ent to sin<br>nction,             | g timer<br>dog res<br>etting w<br>unlock_               | reset fu<br>et func<br>/hole re<br>_wd mu              | <i>inction</i> :<br>tion, un<br>gister te<br>ist first l | enable<br>lock_w<br>o 0x123<br>be set f              | e = high,<br>d must<br>34). To<br>to 0x0. |

# 4.10.4 WD\_INT

0xbf00 0004

|        | 15       | 14 | 13   | 12  | 11 | 10  | 9                                  | 8                                                         | 7                                                             | 6                                                | 5                                            | 4                                         | 3                                          | 2                                           | 1                                       | 0                               |   |
|--------|----------|----|------|-----|----|-----|------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------|---|
|        |          |    |      |     |    |     |                                    | unlock_wd_int                                             |                                                               |                                                  |                                              |                                           |                                            |                                             |                                         | wd_int                          |   |
| Reset: |          |    |      |     |    |     |                                    | 0                                                         |                                                               |                                                  |                                              |                                           |                                            |                                             |                                         | 0                               |   |
|        |          |    |      |     |    |     |                                    | RW                                                        |                                                               |                                                  |                                              |                                           |                                            |                                             |                                         | RW                              |   |
|        |          |    |      |     |    |     |                                    |                                                           |                                                               |                                                  |                                              |                                           |                                            |                                             |                                         |                                 |   |
| Name   | •        |    | Bit  | Res | et | Dir | Des                                | cription                                                  |                                                               |                                                  |                                              |                                           |                                            |                                             |                                         |                                 |   |
| unlocł | <_wd_int | :  | 15:1 | 0   |    | RW  | This<br>wat<br>unlo<br>regi<br>mus | s feature<br>chdog ti<br>ock_wd_<br>ster to (<br>st be se | e helps<br>imer <i>int</i><br>_int mu:<br>0x5678)<br>t to 0x0 | preven<br><i>errupt</i> .<br>st be se<br>. To er | t accide<br>To disa<br>et to 0x2<br>nable th | ental en<br>ble the<br>2B3C (e<br>e watch | abling a<br>watchc<br>equivale<br>idog int | and dis<br>log inte<br>ent to so<br>errupt, | abling<br>errupt,<br>etting v<br>unlock | of the<br>whole<br>c_wd_int     |   |
|        |          |    |      |     |    |     | The<br>See                         | watcho<br>below.                                          | log inte                                                      | rrupt m                                          | ay ther                                      | ı be disa                                 | abled/e                                    | nabled                                      | using                                   | wd_int.                         |   |
| wd_in  | t        |    | 0    | 0   |    | RW  | Use                                | d to en                                                   | able/dis                                                      | able th                                          | e watcł                                      | ndog tirr                                 | ner <i>inte</i>                            | rrupt.                                      |                                         |                                 |   |
|        |          |    |      |     |    |     | ena                                | ble = hi                                                  | gh, disa                                                      | able = l                                         | ow                                           |                                           |                                            |                                             |                                         |                                 |   |
|        |          |    |      |     |    |     | IMF<br>first<br>To (<br>0x0        | ORTAN<br>be set<br>enable t<br>. See al                   | IT: To<br>to 0x2B<br>he wate<br>bove.                         | disable<br>3C (eq<br>chdog i                     | the wa<br>uivalen<br>nterrup                 | tchdog<br>t to sett<br>t, unlocl          | interrup<br>ing who<br>k_wd_in             | pt, unlo<br>ple regi<br>nt must             | ock_wd<br>ster to<br>t first b          | _int mus<br>0x5678)<br>e set to | t |

### 4.10.5 WD\_PRESCALE\_LOAD

0xbf00 0008



# 4.10.6 WD\_PRESCALE\_CNT

0xbf00 000c

|        | 15        | 14    | 13   | 12   | 11 | 10  | 9    | 8             | 7        | 6       | 5         | 4        | 3       | 2        | 1 | 0 |
|--------|-----------|-------|------|------|----|-----|------|---------------|----------|---------|-----------|----------|---------|----------|---|---|
|        |           |       |      |      |    |     |      | prescale_cnt_ | value    |         |           |          |         |          |   |   |
| Reset: |           |       |      |      |    |     |      | 0             |          |         |           |          |         |          |   |   |
|        |           |       |      |      |    |     |      | RW            |          |         |           |          |         |          |   |   |
|        |           |       |      |      |    |     |      |               |          |         |           |          |         |          |   |   |
| Name   |           |       | Bit  | Rese | t  | Dir | Desc | ription       |          |         |           |          |         |          |   |   |
| presca | ale_cnt_v | value | 15:0 | 0    |    | R   | Read | I the cu      | rrent wa | atchdog | ı timer p | orescale | er coun | t value. |   |   |

# 4.10.7 WD\_COUNT

0xbf00 0010

|        | 15 | 14   | 13   | 12 | 11  | 10  | 9 | 8         | 7 | 6     | 5   | 4 | 3 | 2 | 1 | 0 |
|--------|----|------|------|----|-----|-----|---|-----------|---|-------|-----|---|---|---|---|---|
|        |    | Rese | rved |    |     |     |   |           |   | wd_co | int |   |   |   |   |   |
| Reset: |    | a    | )    |    |     |     |   |           |   | 0     |     |   |   |   |   |   |
|        |    | R    | 2    |    |     |     |   |           |   | R     |     |   |   |   |   |   |
|        |    |      |      |    |     |     |   |           |   |       |     |   |   |   |   |   |
| AL.    |    |      | D'1  | D  | - 1 | D'a | D | at a Cart |   |       |     |   |   |   |   |   |

| Name     | Bit  | Reset | Dir | Description                            |
|----------|------|-------|-----|----------------------------------------|
| wd_count | 11:0 | 0     | R   | Read the current watchdog timer count. |

# 4.11 Dual Timer

### 4.11.1 Introduction

Timers count down from a programmed value and generate an interrupt when the count reaches zero. DICE JR provides 2 programmable timers that can be configured independently.

### 4.11.2 Features

The timer module has following features:

- Two programmable timers
- Configurable timer width: 32 bits
- Support for two operation modes: free-running and user-defined count

### 4.11.3 Internal Functional Description

This section describes each of the functional blocks that make up the Timers. The timer component implements two identical but separately programmable timers. The timers are accessed through a single AMBA APB interface.

A combined interrupt is also provided, which is active if any of the individual timer interrupts is active. Each loadable down counter is clocked by the ARM system clock (typically 49.152Mhz). The width of the counter is 32 bits. The initial value for each timer (the value it counts down from) is loaded into the counter by writing the desired value into the timer Local Count register (Timer/LoadCount, where *N* is in the range 1 to 2). Two events can cause the timer to load the initial count from its Timer/LoadCount register as follows:

- Timer is enabled after being reset or disabled
- Timer counts down to zero
- •

#### Enabling/Disabling a Timer

Timers are disabled on reset. To enable a timer, write a 1 to bit 0 of its control register (Timer/ControlReg, where *N* is in the range 1 to 2). To disable a timer, write a 0 to bit 0 of its control register. When a timer is enabled, its counter decrements on each rising edge of its clock signal. When a timer transitions from disabled to enabled, the current value of its Timer/LoadCount register is loaded into the counter on the next rising edge of the timer clock.

When the timer enable (timer\_en) goes low, it asynchronously resets the timer counter and any associated registers that exist in the timer clock domain, such as the toggle register and the at\_zero register that is used to detect interrupts. When the timer enable is set, then a rising edge on the timer enable is used to load the initial value into the counter. One always reads back 0 when the timer is not enabled; otherwise, one reads back the current value of the timer (Timer/NCurrentValue register).

If the timer reset is asserted when the timer rolls over, the timer is reset to all 1s, the interrupt register is cleared, and the toggle register is cleared.

#### Setting a Timer Operating Mode

When a timer counts down to 0, it loads one of two values depending on the timer operating mode. In user-defined count mode, the timer loads the current value of the Timer/NLoadCount register. In free-running mode, the timer loads the maximum value depending on the timer width  $(2^{**}32 - 1)$ .

Use the user-defined count mode if you want a fixed, timed interrupt. Use the free running mode if you want a single-timed interrupt. When in free-running mode, the counter wrapping to its maximum value allows time to reprogram or disable the timer before another interrupt occurs.

Select the user-defined count mode by writing a 1 to bit 1 of the timer control register. Select the free-running mode by writing a 0 to bit 1 of the timer control register.

Normal operation of the timer is as follows:

- 1. Disable the timer and program its operating mode by writing to its control register.
- 2. Load the Timer/VLoadCount register.
- 3. Enable the timer.

#### Note

Before writing to a TimerNLoadCount register, you must disable the timer by writing a 0 to bit 0 of its control register.

#### **Toggle Generation**

A timer can be configured to generate a toggle output that toggles each time the timer reaches 0, the toggle signal is not available on DICE JR.

#### **Interrupt Handling and Generation**

In both the free-running and user-defined count modes of operation, a timer generates an interrupt when its count changes from 0 to its maximum count value. The setting of the internal interrupt occurs synchronous to the timer clock domain. This interrupt is transferred to the system clock domain in order to set the actual interrupt. The internal and actual interrupt are not generated if the timer is disabled; if the actual interrupt is set, then it is cleared when the timer is disabled.

The timer interrupt, once set, remains asserted until it is cleared by reading one of two registers, provided the timer is enabled. When the timer is disabled, the timer interrupt is cleared. You can clear an individual timer interrupt by reading its End of Interrupt register (Timer/NEOI). You can clear all active timer interrupts at once by reading the global End of Interrupt register (TimersEOI) or by disabling the interrupt.

When reading the TimersEOI register, an interrupt is cleared at the rising edge of pclk, and when penable is low.

If the TimersEOI register is read during the time when the internal interrupt pulse is high, the interrupt is set. This occurs because setting the interrupts is of higher precedence than clearing the interrupts.

You can query the interrupt status of an individual timer without clearing the interrupt by reading the Timer/VIntStatus register. You can query the interrupt status of all timers without clearing the interrupts by reading the global TimersIntStatus register.

Each individual timer interrupt can be masked using its control register. To mask an interrupt, write a 1 to bit 2 of the Timer/NControlReg control register. If all individual timer interrupts are masked, then the combined interrupt is also masked.

The two timer interrupts are combined into one global interrupt signal which is fed to the interrupt controller through the interrupt switching block described in the GP\_CSR section of the DICE JR User Guide.

### 4.11.4 APB Interface

Standard AMBA 2.0 compliant APB interface is provided for reading and writing the internal registers. This component is configured for 32 bits bus width.

### 4.11.5 Module Configuration

The Timer module is little-endian. All timers are disabled on reset and can be enabled only by writing 1 to the Timer Enable Select bit of the timer control register.

Timer module contains both timer-specific and system registers. Table 1 show the address range of the registers of each timer, which are aligned to 32-bit boundaries.

The TimerLoadCount register and the Timer Mode Select bit of the Timer Control Register can be written only when the timer is disabled. Writing these registers while a timer is active results in undefined behavior. The proper sequence for programming these registers is as follows:

- 1. Write the Timer Control Register to set the Timer Mode and to disable the timer.
- 2. Write the TimerLoadCount register to program a new terminal count for the
- 3. Write the TimerControlRegister to enable the timer.

All interrupt status and clearing registers can be accessed at any time.

The address range of timer is listed below:

| Address Range              | Function               |
|----------------------------|------------------------|
| 0xc200 0000 to 0xc200 0010 | Timer 1 Registers      |
| 0xc200 0014 to 0xc200 0024 | Timer 2 Registers      |
| 0xc200 00a0 to 0xc200 00a4 | Timer System Registers |
|                            |                        |

 Table 35: Timer Memory Map

| 4.11.6 | Timer | Registers |
|--------|-------|-----------|
|--------|-------|-----------|

| Address     | Name/Type          | Description                                                                                                                                                                                                        |
|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base + 0x0  | TimerNLoadCount    | Width: 32                                                                                                                                                                                                          |
|             | Read/Write         | Range: 0 to 2**31                                                                                                                                                                                                  |
|             |                    | Default value: 0                                                                                                                                                                                                   |
|             |                    | Description: Value to be loaded into Timer1. This<br>is the value from which counting commences.<br>Any value written to this register is loaded into<br>the associated timer.                                     |
| Base + 0x4  | TimerNCurrentValue | Width: 32 bits wide                                                                                                                                                                                                |
|             | Read-only          | Range: 0 to 2**31                                                                                                                                                                                                  |
|             |                    | Default value: 0                                                                                                                                                                                                   |
|             |                    | Description: Current Value of Timer1. This register is supported only when timer_ $N_{clk}$ is tied to the system clock (pclk). Reading this register when using independent clocks results in an undefined value. |
| Base + 0x8  | TimerNControlReg   | Width: 3 bits                                                                                                                                                                                                      |
|             | Read/Write         | Default value: 0                                                                                                                                                                                                   |
|             |                    | Description: Control Register for TimerN.<br>Controls enabling, operating mode (free-running<br>or defined-count), and interrupt mask of TimerN.                                                                   |
| Base + 0xc  | TimerNEOI          | Width: 1 bit                                                                                                                                                                                                       |
|             | Read-only          | Default value: 0                                                                                                                                                                                                   |
|             |                    | Description: Reading from this register clears the interrupt from Timer N. It is set when a timer terminal count is reached                                                                                        |
| Base + 0x10 | TimerNIntStatus    | Width: 1 bit                                                                                                                                                                                                       |
|             | Read-only          | Default value: 0                                                                                                                                                                                                   |
|             |                    | Description: This register contains the interrupt status for Timer N. Reading from this register does not clear the interrupt from Timer N.                                                                        |
|             | Table              | 36: Timer N Registers                                                                                                                                                                                              |

### 4.11.6.1 TimerNLoadCount

|        | 31 | 30 | 29 | 28 | 27 | 26 | 25    | 24              | 23             | 22       | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|----|----|----|----|----|----|-------|-----------------|----------------|----------|----|----|----|----|----|----|
|        |    |    |    |    |    |    | Uppe  | 16 bits of Time | r N load count | t value  |    |    |    |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0               | 0              | 0        | 0  | 0  | 0  | 0  | 0  | 0  |
|        | RW    | RW              | RW             | RW       | RW | RW | RW | RW | RW | RW |
|        |    |    |    |    |    |    |       |                 |                |          |    |    |    |    |    |    |
|        | 15 | 14 | 13 | 12 | 11 | 10 | 9     | 8               | 7              | 6        | 5  | 4  | 3  | 2  | 1  | 0  |
|        |    |    |    |    |    |    | Lower | 16 bits of Time | er N load coun | it value |    |    |    |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0               | 0              | 0        | 0  | 0  | 0  | 0  | 0  | 0  |
|        | RW    | RW              | RW             | RW       | RW | RW | RW | RW | RW | RW |

### 4.11.6.2 TimerNCurrentValue

|        | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24              | 23             | 22        | 21 | 20 | 19 | 18 | 17 | 16 |   |
|--------|----|----|----|----|----|----|----|-----------------|----------------|-----------|----|----|----|----|----|----|---|
|        |    |    |    |    |    |    | Up | ope16 bits of T | imer N's Curre | ent Value |    |    |    |    |    |    |   |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0               | 0              | 0         | 0  | 0  | 0  | 0  | 0  | 0  |   |
|        | R  | R  | R  | R  | R  | R  | R  | R               | R              | R         | R  | R  | R  | R  | R  | R  |   |
|        |    |    |    |    |    |    |    |                 |                |           |    |    |    |    |    |    |   |
|        | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8               | 7              | 6         | 5  | 4  | 3  | 2  | 1  | 0  |   |
|        |    |    |    |    |    |    | Lo | ower 16 bits T  | imer N's Curre | nt Value  |    |    |    |    |    |    |   |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0               | 0              | 0         | 0  | 0  | 0  | 0  | 0  | 0  | - |
|        | R  | R  | R  | R  | R  | R  | R  | R               | R              | R         | R  | R  | R  | R  | R  | R  |   |

## 4.11.6.3 TimerNControl

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9        | 8 | 7 | 6 | 5 | 4 | 3 | 2                      | 1              | 0            |
|--------|----|----|----|----|----|----|----------|---|---|---|---|---|---|------------------------|----------------|--------------|
|        |    |    |    |    |    |    | Reserved | I |   |   |   |   |   | Timer_I<br>nt_Mas<br>k | Timer_<br>Mode | Timer_<br>En |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0                      | 0              | 0            |
|        | R  | R  | R  | R  | R  | R  | R        | R | R | R | R | R | R | RW                     | RW             | RW           |

| Field          | Function             | Post-Reset Value               |
|----------------|----------------------|--------------------------------|
| Timer_En       | Timer Enable Select  | 0: disabled                    |
| RW             |                      | 1: enabled                     |
| Timer_Mode     | Timer Mode Select    | 0: free-running mode           |
| RW             |                      | 1: user defined count mode     |
| Timer_Int_Mask | Timer Interrupt Mask | 0: timer interrupt not masked, |
| RW             |                      | 1: timer interrupt masked      |

## 4.11.6.4 Timer\_N\_EOI



| Field           | Function                  | Description                                                                                                    |
|-----------------|---------------------------|----------------------------------------------------------------------------------------------------------------|
| Timer_EOI<br>RO | Clear Timer N's interrupt | Reading from this register clears the interrupt from Timer N. It is set when a timer terminal count is reached |

## 4.11.6.5 TimerNIntStatus

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8        | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                        |
|--------|----|----|----|----|----|----|---|----------|---|---|---|---|---|---|---|--------------------------|
|        |    |    |    |    |    |    |   | Reserved |   |   |   |   |   |   |   | Timer_I<br>nt_Stat<br>us |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0                        |
|        | R  | R  | R  | R  | R  | R  | R | R        | R | R | R | R | R | R | R | R                        |

| Field                  | Function                   | Description                                                                                                                             |
|------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Timer_Int_Status<br>RO | Timer N's interrupt status | This register contains the interrupt<br>status for Timer N. Reading from this<br>register does not clear the interrupt<br>from Timer N. |

# 4.11.7 Timer System Registers

| Address     | Name/Type          | Description                                                                                                                                                       |
|-------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xc200 00a0 | TimersIntStatus    | Width: 2                                                                                                                                                          |
|             | Read-only          | Default value: 0                                                                                                                                                  |
|             |                    | Description: The register contains the interrupt<br>status of all timers in the component. Reading<br>from this register does not clear any active<br>interrupts: |
|             |                    | 0 = either timer_intr or timer_intr_n is not active<br>after masking                                                                                              |
|             |                    | 1 = either timer_intr or timer_intr_n is active<br>after masking                                                                                                  |
| 0xc200 00a4 | TimersEOI          | Width: 2                                                                                                                                                          |
|             | Read-only          | Default value: 0                                                                                                                                                  |
|             |                    | Description: Reading this register returns all zeroes (0) and clears all active interrupts.                                                                       |
| 0xc200 00a8 | TimersRawIntStatus | Width: 2                                                                                                                                                          |
|             | Read-only          | Default value: 0                                                                                                                                                  |
|             |                    | Description: The register contains the unmasked interrupt status of all timers in the component.                                                                  |
|             |                    | 0 = either timer_intr or timer_intr_n is not active<br>prior to masking                                                                                           |
|             |                    | 1 = either timer_intr or timer_intr_n is active<br>prior to masking                                                                                               |
| 0xc200 00ac | TIMERS_            | Width: 32 bits                                                                                                                                                    |
|             | COMP_VERSION       | Description: Current revision number of the                                                                                                                       |
|             |                    | Timer component. This is a read-only register.                                                                                                                    |
|             | Table 37           | 7: Timer System Registers                                                                                                                                         |

# 4.11.7.1 TimersIntStatus

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8       | 7 | 6 | 5 | 4 | 3 | 2 | 1                         | 0                         |
|--------|----|----|----|----|----|----|---|---------|---|---|---|---|---|---|---------------------------|---------------------------|
|        |    |    |    |    |    |    | R | eserved |   |   |   |   |   |   | Timer1<br>_int_St<br>atus | Timer0<br>_int_St<br>atus |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 0 | 0                         | 0                         |
|        | R  | R  | R  | R  | R  | R  | R | R       | R | R | R | R | R | R | R                         | R                         |

| Field                 | Function                                    | Description                                                                         |  |  |  |  |  |  |
|-----------------------|---------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Timer0_Int_Stat<br>us | Timer 0's interrupt status<br>after masking | 5 This bit contains the interrupt status for<br>Timer 0 after masking. Reading from |  |  |  |  |  |  |
| RO                    |                                             | this register does not clear the interru from Timer 0.                              |  |  |  |  |  |  |
| Timer1_Int_Stat<br>us | Timer 1's interrupt status after masking    | This bit contains the interrupt status for<br>Timer 1 after masking. Reading from   |  |  |  |  |  |  |
| RO                    | -                                           | this register does not clear the interrupt from Timer 1.                            |  |  |  |  |  |  |

## 4.11.7.2 TimersEOI

|        | 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5     | 4     | 3 | 2 | 1 | 0 |
|--------|----------|----|----|----|----|----|---|---|---|---|-------|-------|---|---|---|---|
|        | Reserved |    |    |    |    |    |   |   |   |   | EOI_1 | EOI_0 |   |   |   |   |
| Reset: | 0        | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0     | 0     | 0 | 0 | 0 | 0 |
|        | R        | R  | R  | R  | R  | R  | R | R | R | R | R     | R     | R | R | R | R |

| Field | Function                  | Description                                               |  |  |  |  |
|-------|---------------------------|-----------------------------------------------------------|--|--|--|--|
| EOI_0 | Clear Timer 0's interrupt | Reading this bit clears the interrupt from                |  |  |  |  |
| RO    |                           | limer 0. It is set when a timer terminal count is reached |  |  |  |  |
| EOI_1 | Clear Timer 1's interrupt | Reading this bit clears the interrupt from                |  |  |  |  |
| RO    |                           | limer 1. It is set when a timer termina count is reached  |  |  |  |  |

# 4.11.7.3 TimersRawIntStatus

|        | 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6     | 5     | 4 | 3 | 2 | 1 | 0 |
|--------|----------|----|----|----|----|----|---|---|---|-------|-------|---|---|---|---|---|
|        | Reserved |    |    |    |    |    |   |   |   | INT_1 | INT_0 |   |   |   |   |   |
| Reset: | 0        | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0     | 0     | 0 | 0 | 0 | 0 | 0 |
|        | R        | R  | R  | R  | R  | R  | R | R | R | R     | R     | R | R | R | R | R |

| Field                         | Function                       | Description                                                                                                                                       |  |  |  |  |  |  |
|-------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Timer0_Raw_Int_St<br>atus, RO | Timer 0's raw interrupt status | This bit contains the interrupt status for<br>Timer 0 before masking. Reading from<br>this register does not clear the interrupt<br>from Timer 0. |  |  |  |  |  |  |
| Timer1_Raw_Int_St<br>atus, RO | Timer 1's raw interrupt status | This bit contains the interrupt status for<br>Timer 1 before masking. Reading from<br>this register does not clear the interrupt<br>from Timer 1. |  |  |  |  |  |  |

## 4.11.8 Interrupt Handling

The Timer/VIntStatus and Timer/VEOI registers handle interrupts to ensure safe operation of the interrupt clearing. If the system bus (AHB) can perform a write to clear an interrupt, it could continue with another transfer on the bus without knowing whether the write has occurred because of the hclk/pclk ratio. Therefore, it is much safer to clear the interrupt by a read operation.

To detect and service an interrupt, the system clock must be active. The timer\_en output bus from this block is used to activate the necessary timer clocks and to ensure that the component is supplied with an active system clock while timers are running.
# 4.12 SPI Interface

## 4.12.1 SPI features

The SPI interface implemented in TCD22xx can be programmed to be master or slave and supports four different combinations of clock phases and polarity. The clock polarity and clock phase should be identical for the master device and all slave devices involved in the communication link. The transfer format from the master may be changed between transfers to accommodate various requirements of the slave device. The SPI bit rate can be controlled in master mode.

Several Data Lengths are supported: 8-bit, 16-bit, 24-bit & 32 bit. MSB can be transferred first or last, depending on the configuration.

| Signal    | TCD2220      | TCD2210      | I/O     | Drive<br>(mA) | Description                    |
|-----------|--------------|--------------|---------|---------------|--------------------------------|
| SPIA_SS   | 138 (shared) | 123 (shared) | I/O (S) | 6             | SPI Slave Select               |
| SPIA_MISO | 139 (shared) | 124 (shared) | I/O (S) | 6             | SPI Master. In, Slave Out      |
| SPIA_MOSI | 104 (shared) | 97 (shared)  | I/O (S) | 6             | SPI Master. Out, Slave In      |
| SPIA_CK   | 105 (shared) | 98 (shared)  | I/O (S) | 6             | SPI Clock                      |
| SPIB_SS   | 57 (shared)  | N/A          | I/O (S) | 6             | Alt. SPI Slave Select          |
| SPIB_MISO | 65 (shared)  | N/A          | I/O (S) | 6             | Alt. SPI Master. In, Slave Out |
| SPIB_MOSI | 66 (shared)  | N/A          | I/O (S) | 6             | Alt. SPI Master. Out, Slave In |
| SPIB_CK   | 67 (shared)  | N/A          | I/O (S) | 6             | Alt. SPI Clock                 |

#### 4.12.2 Signal Description

#### Table 38: SPI Signal description

The SPI clock is generated by the master, and the SPI\_SS signal represents the slave device select from the SPI master. The SPI clock, MISO & MOSI pins are directly connected between master and slave. The MISO signal is the output from the slave (slave transmission) and the MOSI signal is the output from the master (master transmission). On the chip interface SPI signals can be mapped to two locations depending on GPCSR register configuration (see 4.1.6). Location B is not available in TCD2210.

## 4.12.3 SPI Transfer formats

| CLKPL | CLKPHASE | Sample On     |
|-------|----------|---------------|
| 0     | 0        | Positive edge |
| 0     | 1        | Negative edge |
| 1     | 0        | Negative edge |
| 1     | 1        | Positive edge |

#### Table 39: CLKPHASE & CLKPL configurations

The four SPI formats are controlled by CLKPHASE and CLKPL bits in the SPI control register. Any combination of those two bits is valid. Table 39 shows the edge of SPICLK on which data is sampled in various combinations of CLKPHASE & CLKPL.



Figure 31, SPI CLOCK & Data for CLKPHASE = 0

Figure 31 shows the SPI transfer protocol for CLKPHASE = 0. Figure 32 shows the SPI transfer for CLKPHASE = 1. Note that in both cases the transfer length is 8-bit and MSB is transferred first.



Figure 32: SPI CLOCK & Data for CLKPHASE = 1

#### 4.12.4 SPI Data Formats

The SPI interface is able to transfer 8, 16, 24 or 32 bits of data, if configured so through the SPICTL register.

When configured to be 8-bit, SPI sends and receives one byte of data in each transfer. If transmitting, only lower byte of 32-bit data register is transmitted. In 16-bit mode, SPI transmits 2 lower bytes of the SPI transmit buffer. In 24-bit mode three lower bytes of the SPI data register are transmitted.

#### 4.12.5 SPI Interrupts

SPI status is reported trough Status register or through interrupts (if not masked). SPI reports the following interrupt conditions:

- TX underrun happens when there is no relevant data to be loaded into TX register (not possible in master mode)
   RX overrun - happens when new data is ready, but the old data has not yet been read by the processor. If configured through SPI\_CTL register, the old data could be either kept or overwritten by the new one.
   RX full - Data is ready to be read
   Data was pushed to shift register
- TX done Actual shifting is done

First two conditions are cleared, when status is read by the processor.

#### 4.12.6 SPI Module Configuration

| Address     | Register                    |
|-------------|-----------------------------|
| 0xc500 0000 | SPI Control register        |
| 0xC500 0004 | SPI Status Register         |
| 0xC500 0008 | SPI Interrupt Mask Register |
| 0xC500 000c | SPI Data Register           |
| 0xC500 0010 | SPI Baud Rate Register      |

 Table 40: SPI Memory Map

# 4.12.7 SPI programming model

0

#### 4.12.7.1 SPI\_CNTL Register

0

RW

RW





0

RW

0

RW

RW

RW

0

RW

RW

| Name     | Bit  | Reset | Dir   | Description                                                     |
|----------|------|-------|-------|-----------------------------------------------------------------|
| Reserved | 31:8 | 0     | R     | Reads back as 0                                                 |
| WSIZE    | 7:6  | 0     | RW    | Word size for SPI Transfer                                      |
|          |      |       |       | 01: 16-bit                                                      |
|          |      |       |       | 10: 24-bit                                                      |
|          |      |       |       | 11: 32-bit                                                      |
| CLKPL    | 5    | 0     | RW    | SPI Clock polarity (see Error! Reference source not found.,     |
|          |      |       |       | Figure 32)                                                      |
| CLKPHASE | 4    | 0     | RW    | SPI Clock phase (see Error! Reference source not found., Figure |
|          |      |       |       | 32)                                                             |
| KPOLD    | 3    | 1     | RW    | Keep old data or overwrite it in case of overrun in RX          |
|          |      |       |       | 0: Overwrite                                                    |
|          |      |       |       | 1: Keep old data                                                |
| CLRIUR   | 2    | 1     | RW    | Data fill in case of underrun                                   |
|          |      |       |       | 0: transmit last                                                |
| MODE     | 4    | 0     |       | 1: transmit all zeroes                                          |
| MSBF     | 1    | 0     | RW    | I ransmit MSB first                                             |
|          |      |       |       | 0. IVIOD IIISI<br>1. L SB first                                 |
| MSTR     | 0    | 1     | RW/   | Master/Slave mode                                               |
| WOTT     | U    | í     | 17.00 | 0. slave                                                        |
|          |      |       |       | 1: master                                                       |

# 4.12.7.2 SPI Status Register

0xc500 0004

|        | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23    | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|----|----|----|----|----|----|----|-----|-------|----|----|----|----|----|----|----|
|        |    |    |    |    |    |    |    | Res | erved |    |    |    |    |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | R  | R  | R  | R  | R  | R  | R  | R   | R     | R  | R  | R  | R  | R  | R  | R  |

|        | 15 | 14 | 13 | 12 | 11 | 10       | 9 | 8 | 7 | 6 | 5 | 4          | 3          | 2          | 1           | 0          |
|--------|----|----|----|----|----|----------|---|---|---|---|---|------------|------------|------------|-------------|------------|
|        |    |    |    |    |    | Reserved |   |   |   |   |   | TX<br>DONE | TX<br>URUN | RX<br>ORUN | TX<br>EMPTY | RX<br>FULL |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0        | 0 | 0 | 0 | 0 | 0 | 0          | 0          | 0          | 0           | 0          |
|        | R  | R  | R  | R  | R  | R        | R | R | R | R | R | R          | R          | R          | R           | R          |

| Name     | Bit  | Reset | Dir | Description                    |
|----------|------|-------|-----|--------------------------------|
| Reserved | 31:5 | 0     | R   | Reads back as 0                |
| TX_DONE  | 4    | 0     | R   | Actual Shifting out is done    |
| TX_URUN  | 3    | 0     | R   | Underrun condition detected    |
| RX_ORUN  | 2    | 0     | R   | Overrun condition detected     |
| TX_EMPTY | 1    | 0     | R   | No Data in SPI TX data buffer  |
| RX_FULL  | 0    | 0     | R   | Data is ready in SPI RX buffer |

## 4.12.7.3 SPI Interrupt Mask Register

0xc500 0008

|        | 51 50 20 21 20 23 24 23 22 21 20 |      |      |    |      |     |                    |                          |          |        |   |   |            | 10         | 17          | 10         |
|--------|----------------------------------|------|------|----|------|-----|--------------------|--------------------------|----------|--------|---|---|------------|------------|-------------|------------|
|        |                                  |      |      |    |      |     |                    | Res                      | erved    |        |   |   |            |            |             |            |
| Reset: | 0                                | 0    | 0    | 0  | 0    | 0   | 0                  | 0                        | 0        | 0      | 0 | 0 | 0          | 0          | 0           | 0          |
|        | R                                | R    | R    | R  | R    | R   | R                  | R                        | R        | R      | R | R | R          | R          | R           | R          |
|        |                                  |      |      |    |      |     |                    |                          |          |        |   |   |            |            |             |            |
|        |                                  |      |      |    |      |     |                    |                          |          |        |   |   |            |            |             |            |
|        | 15                               | 14   | 13   | 12 | 11   | 10  | 9                  | 8                        | 7        | 6      | 5 | 4 | 3          | 2          | 1           | 0          |
|        |                                  |      |      |    |      | Res | erved              |                          |          |        |   |   | TX<br>URUN | RX<br>ORUN | TX<br>EMPTY | RX<br>FULL |
| Reset: | 0                                | 0    | 0    | 0  | 0    | 0   | 0                  | 0                        | 0        | 0      | 0 | 0 | 0          | 0          | 0           | 0          |
|        | R                                | R    | R    | R  | R    | R   | R                  | R                        | R        | R      | R | R | R          | R          | R           | R          |
|        |                                  |      |      |    |      |     |                    |                          |          |        |   |   |            |            |             |            |
| Name   | e                                |      | Bit  | R  | eset | Dir | De                 | scriptio                 | n        |        |   |   |            |            |             |            |
| Rese   | rved                             |      | 31:4 |    | 0    | R   | Re                 | ads bao                  | ck as 0  |        |   |   |            |            |             |            |
| TX_U   | IRUN N                           | MASK | 3    |    | 0    | R   | Un<br>0: I<br>1: I | derrun<br>Vask<br>Enable | interrup | t mask |   |   |            |            |             |            |
| RX_C   | )RUN I                           | MASK | 2    |    | 0    | R   | Ov                 | errun Ir                 | nterrupt | mask   |   |   |            |            |             |            |
|        |                                  |      |      |    |      |     | 0: I<br>1: E       | viask<br>Enable          |          |        |   |   |            |            |             |            |
| TX_E   | MPTY                             |      | 1    |    | 0    | R   | Em                 | npty inte                | errupt N | lask   |   |   |            |            |             |            |
| iviA3r | `                                |      |      |    |      |     | 1: 6               | Enable                   |          |        |   |   |            |            |             |            |

Full Interrupt mask 0: Mask 1: Enable

#### 4.12.7.4 **SPI Data register**

0

R

#### 0xc500 000c

RX\_FULL MASK

0

|        | 31  | 30  | 29   | 28  | 27   | 26  | 25  | 24        | 23      | 22     | 21     | 20  | 19  | 18  | 17  | 16  |
|--------|-----|-----|------|-----|------|-----|-----|-----------|---------|--------|--------|-----|-----|-----|-----|-----|
|        | D31 | D30 | D29  | D28 | D27  | D26 | D25 | D24       | D23     | D22    | D21    | D20 | D19 | D18 | D17 | D16 |
| Reset: | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0         | 0       | 0      | 0      | 0   | 0   | 0   | 0   | 0   |
|        | RW  | RW  | RW   | RW  | RW   | RW  | RW  | RW        | RW      | rW     | RW     | RW  | RW  | RW  | RW  | RW  |
|        |     |     |      |     |      |     |     |           |         |        |        |     |     |     |     |     |
|        |     |     |      |     |      |     |     |           |         |        |        |     |     |     |     |     |
|        | 15  | 14  | 13   | 12  | 11   | 10  | 9   | 8         | 7       | 6      | 5      | 4   | 3   | 2   | 1   | 0   |
|        | D15 | D14 | D13  | D12 | D11  | D10 | D9  | D8        | D7      | D6     | D5     | D4  | D3  | D2  | D1  | D0  |
| Reset: | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0         | 0       | 0      | 0      | 0   | 0   | 0   | 0   | 0   |
|        | RW  | RW  | RW   | RW  | RW   | RW  | RW  | RW        | RW      | RW     | RW     | RW  | RW  | RW  | RW  | RW  |
|        |     |     |      |     |      |     |     |           |         |        |        |     |     |     |     |     |
| Name   | 9   |     | Bit  | Re  | eset | Dir | Des | scriptior | ۱       |        |        |     |     |     |     |     |
| Data   |     |     | 31:0 |     | 0    | RW  | Wri | tes TX    | data, R | eads R | X data |     |     |     |     |     |

# 4.12.7.5 SPI Baud Rate Register

0xc500 0010

|        | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30  | 29  | 28  | 27   | 26  | 25  | 24        | 23    | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|-----|-----|-----------|-------|----|----|----|----|----|----|----|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |     |      |     |     | Res       | erved |    |    |    |    |    |    |    |
| Reset: | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0   | 0   | 0   | 0    | 0   | 0   | 0         | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RW  | RW  | RW  | RW   | RW  | RW  | RW        | RW    | rW | RW | RW | RW | RW | RW | RW |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |     |      |     |     |           |       |    |    |    |    |    |    |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |     |      |     |     |           |       |    |    |    |    |    |    |    |
|        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14  | 13  | 12  | 11   | 10  | 9   | 8         | 7     | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|        | D15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D14 | D13 | D12 | D11  | D10 | D9  | D8        | D7    | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| Reset: | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0   | 0   | 0   | 0    | 0   | 1   | 1         | 1     | 1  | 1  | 0  | 1  | 0  | 0  | 0  |
|        | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RW  | RW  | RW  | RW   | RW  | RW  | RW        | RW    | RW | RW | RW | RW | RW | RW | RW |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |     |      |     |     |           |       |    |    |    |    |    |    |    |
| Name   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Bit | Re  | eset | Dir | Des | scription | ۱     |    |    |    |    |    |    |    |
| Rese   | seet       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |     |     |     |      |     |     |           |       |    |    |    |    |    |    |    |
| Baud   | 31       30       29       28       27       20       24       23       22       21       20       19       18       17       16         Reserved         Reserved         Reserved         RW       RW <th col<="" td=""></th>                                                                                                                                                                                                                                                                                                      |     |     |     |      |     |     |           |       |    |    |    |    |    |    |    |

# 4.13 Remap Block

#### 4.13.1 Remap features

The Remap block contains an address decoder that supports up to two memory maps: a boot memory map, and a normal memory map. A typical use of this feature is to allow ROM to be mapped to 0x0000 on system reset (boot memory map) and RAM to be remapped to the same memory space after initialization (normal memory map). The DW\_apb\_rap can be configured to include a remap control register that is used to switch the DW\_ahb address decoder from boot mode to normal mode operation.

With power-on reset, the boot memory map is selected. This is reprogrammed some time later to the normal memory map by writing to the remap register in the Remap block. This in turn sends a signal to the AHB address decoder to change its memory map. The memory map cannot be changed back to the boot map by writing to this register. It is reset only when a power-on reset occurs. The remap register is cleared by the power-on reset.

Remap block also implements a configurable, read-only, identification register. This is used to store a processor-accessible system ID of the whole DICE family.

#### 4.13.2 Remap block Memory map

| Address Range | Function                |
|---------------|-------------------------|
| 0xc000 0004   | DICE Family ID Register |
| 0xc000 0008   | Remap Register          |

#### Table 41: Address Remap Memory map

#### 4.13.3 Address Remap Register description

#### 4.13.3.1 DICE Family ID Register

0xc000 0004



#### 4.13.3.2 Address Remap Register

0xc000 0008

|        | 31   | 30 | 29   | 28 | 27   | 26  | 25        | 24                  | 23                  | 22                | 21     | 20     | 19     | 18       | 17        | 16        |
|--------|------|----|------|----|------|-----|-----------|---------------------|---------------------|-------------------|--------|--------|--------|----------|-----------|-----------|
|        |      |    |      |    |      |     |           | Res                 | erved               |                   |        |        |        |          |           |           |
| Reset: | 0    | 0  | 0    | 0  | 0    | 0   | 0         | 0                   | 0                   | 0                 | 0      | 0      | 0      | 0        | 0         | 0         |
|        | RW   | RW | RW   | RW | RW   | RW  | RW        | RW                  | RW                  | rW                | RW     | RW     | RW     | RW       | RW        | RW        |
|        |      |    |      |    |      |     |           |                     |                     |                   |        |        |        |          |           |           |
|        |      |    |      |    |      |     |           |                     |                     |                   |        |        |        |          |           |           |
|        | 15   | 14 | 13   | 12 | 11   | 10  | 9         | 8                   | 7                   | 6                 | 5      | 4      | 3      | 2        | 1         | 0         |
|        |      |    |      |    |      |     |           | Reserved            |                     |                   |        |        |        |          |           | Remap     |
| Reset: | 0    | 0  | 0    | 0  | 0    | 0   | 1         | 1                   | 1                   | 1                 | 1      | 0      | 1      | 0        | 0         | 0         |
|        | RW   | RW | RW   | RW | RW   | RW  | RW        | RW                  | RW                  | RW                | RW     | RW     | RW     | RW       | RW        | RW        |
|        |      |    |      |    |      |     |           |                     |                     |                   |        |        |        |          |           |           |
| Name   | 9    |    | Bit  | R  | eset | Dir | De        | scriptio            | n                   |                   |        |        |        |          |           |           |
| Rese   | rved |    | 31:1 |    | 0    | R0  | Rea       | ads bad             | k as ze             | erroes            |        |        |        |          |           |           |
| Rema   | ар   |    | 0    |    | 0    | RW  | Sho<br>Co | ould be<br>uldn't b | set to s<br>e reset | switch n<br>by SW | nemory | map fr | om boc | ot (defa | ult) to a | pplicatio |

# Chapter 5 DICE 5.1 Router

The DICE router module handles all audio transfers from all inputs to all outputs. It is able to handle up to 32 units (16 Rx and 16 Tx) that match the standard DICE router interface. Each Rx/Tx is defined to contain up to 16 channels of 32 bit audio samples.

The DICE Router module has the following features:

- Handles all audio transfers between Rx and Tx modules
- The router contains a router table of 128 entries making it possible to make up to 128 data moves within one sample.
- Each router entry has an associated peak value which will be updated with the max magnitude of every sample. This value is cleared when read from the ARM host.
- Router contains error detection to indicate that the number of selected data moves cannot be made within one sample period. (This is only applicable at high sample rates (176.4-192kHz in which case only 100 channels can be routed).

Peak Detection description

Peak value is calculated per channel and basically means the highest data value read by the router from the channel. All peak values are initialized to zero and stored in the router RAM in upper 12 bits [27:16]

The router reads the RAM to get the next destination and source address located in bits [15:0] of the same RAM address. With that Router gets a previous peak value for that channel. In the next clock router fetches the data from the source address. This Data is compared to a peak value as well as being delivered to destination address. If present value of data is less or equal to the peak value, peak does not change. If the value is bigger, new data is written to the peak location for that channel.

Peak operation is enabled when "Peak\_ON" bit in the Router CTRL register is set. Peak value is cleared by ARM Read from memory.

SW should initialize the peak portion of all router entries to zeroes prior to use.



Figure 33: DICE Router Block Diagram

# 5.1.1 Module Configuration

Note that there are 128 entry points (moves) in the router.

| Address     | Register        |
|-------------|-----------------|
| 0xce00 0000 | ROUTER_CTRL     |
| 0xce00 0400 | ROUTER_ENTRY0   |
| 0xce00 0404 | ROUTER_ENTRY1   |
| :           | :               |
| 0xce00 07fc | ROUTER_ENTRY127 |

| Table 42: ROUTEF | R Memory Map |
|------------------|--------------|
|------------------|--------------|

## 5.1.2 ROUTERn\_CTRL

Address - 0xce00 0000

|        | 15    | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5        | 4  | 3  | 2          | 1   | 0            |
|--------|-------|----|----|----|----|----|----|----|----|----|----------|----|----|------------|-----|--------------|
|        | COUNT |    |    |    |    |    |    |    |    |    | Reserved |    |    | Peak<br>ON | ERR | Router<br>ON |
| Reset: | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 0          | 0   | 0            |
|        | RW    | RW | RW | RW | RW | RW | RW | RW | RW | RW | RW       | RW | RW | RW         | R   | RW           |

| Name      | Bit  | Reset | Dir | Description                                                                                        |
|-----------|------|-------|-----|----------------------------------------------------------------------------------------------------|
| COUNT     | 15:8 | 0     | RW  | Selects the number of valid entries for this router. The router will handle COUNT+1 entries.       |
| Peak_ON   | 2    | 0     | RW  | Enables PEAK operation                                                                             |
| ERR       | 1    | 0     | R   | This read-only bit indicates that the router was not able to complete the routing within on cycle. |
| Router_ON | 0    | 0     | RW  | This bit enables this router.                                                                      |

## 5.1.3 ROUTERn\_ENTRYm

Address - 0xce00 0400 - 0xce00 07fc

|        | 15      | 14 | 13 | 12 | 11     | 10 | 9  | 8  | 7  | 6       | 5  | 4  | 3  | 2      | 1  | 0  |  |
|--------|---------|----|----|----|--------|----|----|----|----|---------|----|----|----|--------|----|----|--|
|        | SRC_BLK |    |    |    | SRC_CH |    |    |    |    | DST_BLK |    |    |    | DST_CH |    |    |  |
| Reset: | 0       | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0       | 0  | 0  | 0  | 0      | 0  | 0  |  |
|        | RW      | RW | RW | RW | RW     | RW | RW | RW | RW | RW      | RW | RW | RW | RW     | RW | RW |  |

| Nomo       | Dit   | Ponot | Dir | Description                                            |
|------------|-------|-------|-----|--------------------------------------------------------|
| Name       | DIL   | Resel | ווט | Description                                            |
| PEAK Value | 27:16 | 0     | RW  | Peak value for that particular channel                 |
|            |       |       |     |                                                        |
| SRC BLK    | 15:12 | 0     | RW  | Selects the source block for this router entry.        |
|            |       |       |     | ,                                                      |
| SRC CH     | 11:8  | 0     | RW  | Selects the source channel for this router entry.      |
| —          |       |       |     | ,                                                      |
| DST BLK    | 7:4   | 0     | RW  | Selects the destination block for this router entry.   |
|            |       |       |     | ······································                 |
| DST CH     | 3:0   | 0     | RW  | Selects the destination channel for this router entry. |
|            |       | -     |     | ······································                 |

### 5.1.4 Source Block ID's

| ID | Block    | Channels |
|----|----------|----------|
| 0  | AES      | 8        |
| 1  | ADAT     | 16       |
| 2  | Mixer    | 16       |
| 3  | Reserved | N/A      |
| 4  | INS0     | 16       |
| 5  | INS1     | 16       |
| 6  | Reserved | N/A      |
| 7  | Reserved | N/A      |
| 8  | Reserved | N/A      |

| ID | Block         | Channels |
|----|---------------|----------|
| 9  | Reserved      | N/A      |
| 10 | ARM APB Audio | 8        |
| 11 | AVS-0         | 16       |
| 12 | AVS-1         | 16       |
| 13 | Reserved      | N/A      |
| 14 | Reserved      | N/A      |
| 15 | Mute          | Any      |

Table 43: Router Source Block codes

# 5.1.5 Destination Block ID's

| ID | Block         | Channels |
|----|---------------|----------|
| 0  | AES           | 8        |
| 1  | ADAT          | 16       |
| 2  | Mixer TX0     | 16       |
| 3  | Mixer Tx1     | 2        |
| 4  | INS0          | 16       |
| 5  | INS1          | 16       |
| 6  | Reserved      | N/A      |
| 7  | Reserved      | N/A      |
| 8  | Reserved      | N/A      |
| 9  | Reserved      | N/A      |
| 10 | ARM APB Audio | 8        |
| 11 | AVS-0         | 16       |
| 12 | AVS-1         | 16       |
| 13 | Reserved      | N/A      |
| 14 | Reserved      | N/A      |
| 15 | Reserved      | N/A      |

Table 44: Router Destination Block Codes

# 5.2 Clock Controller



Figure 34: Clock Controller Block Diagram

The clock controller contains the logic to handle selection of clock sources, clock domain memberships, block sync selection for the 60958 and AES receivers and transmitters, as well as setup for receiver clock regeneration (onboard VCO's), sample rate/phase detection and other clock related functions of the TCD22XX.

The clock system consists of three types of blocks.

- Router
- Synchronizer
- Jet<sup>™</sup> PLL

The router is described in the section above. It handles the routing of audio data from source devices (Rx Modules) to sink devices (Tx Modules). Router gets its clocks from a synchronizer. To operate correctly, router requires a 1fs and system clock.

Each synchronizer takes as input a base rate clock and a 512 x base rate clock and generates at its output the actual 1fs (sys\_1fs) and base rate signals for use with ADAT and dual wire AES modes (sys\_fbr and sys\_f2br). The sys\_f512br clock is also used in Tx modules to generate bit clocks. In most cases the synchronizer will get its input from one of the Jet<sup>TM</sup> PLL's, but in certain cases the synchronizer will slave to other sources such as the external slave interface.

The Jet<sup>™</sup> PLL takes any reference input and generates a base rate and 512 times the base rate clocks. The base rate can be programmed to have a fractional relationship to the incoming reference. The reference is called the event.

The clock controller also contains two measurement blocks, each programmable to act as either a sample rate counter or a phase detector. Each block outputs a 32 bit value that can be read by the ARM, and each block can be programmed to count a maximum number of cycles before outputting this value. The counters/detectors count in cycles at the frequency of the ARM system clock (typically 49.152MHz). Each block contains two multiplexers used to select either the two input values when in phase detector mode or the one input value when in sample rate counter mode. When in sample rate counter mode the blocks will count the sample rate of the signal at input 1.

The Clock doubler is part of the Clock Controller, and is used to double the clock frequency generated by the oscillator circuit whose inputs are pins xtal 1 and xtal2 (typically 25.000MHz at xtal1/xtal2 doubled to 50.000MHz). Figure 27 illustrates how it is connected inside DICE 22xx. As seen in the figure both sclk and the clock doubler output can be selected as main clock for the Jet<sup>TM</sup> PLL. The flexibility provided by the design allows convenient support of both 1394 applications and non-1394 applications, without sacrificing Jet<sup>TM</sup> PLL performance.

The typical setup for 1394 applications will be that 'clk\_out\_hpll' feeds from the clock doubler and 'clk\_out\_system' from the sclk (PHY clock) input. This is so because the 1394 LLC and PHY need to be 'synchronous'. Since the sclk (from the PHY) has been generated within the PHY device using "unknown" PLL technology the quality of this clock cannot be guaranteed. For this reason, the Jet<sup>™</sup> PLL by default uses the output of the clock doubler, since we are in "full control" of the quality of this clock. Furthermore, we have the possibility to choose an X-tal frequency that is "out of sync" with the normal audio sample rates (recommended 25.000 MHz) which avoids beating and improves Jet<sup>™</sup> PLL performance. For 1394 applications we also want to be able to power-up/power-down on a request sent through 1394. When powered down, the sclk from the PHY will be disabled. To be able to detect a wake-up both our Power Manager and the 1394 LLC require a "second clock". This clock is in our case the direct input from 'xtl1'.

The typical setup for non-1394 applications will be that both clocks ( $Jet^{TM}$  PLL and system) feed from the clock doubler and the sclk input is unused (hardwired). This requires only one external clock source. The flexibility is still there to be able to distinguish between the 2 clocks by forcing a clock on the sclk input if it is requested.

"clk\_out\_hpll' is dedicated for the Jet<sup>™</sup> PLL block only, which means that the rest (including the prescalers within the Clock Controller) are fed with 'clock\_out\_system'.



Figure 35: Clock Doubler Block Diagram

# 5.2.1 Signal Description

| Signal    | TCD2220 | TCD2210 | I/O | Drive<br>(mA) | Description                            |
|-----------|---------|---------|-----|---------------|----------------------------------------|
| EXT_FBR   | 85      | 78      | В   | 6             | External 1fs base rate clock (5V)      |
| WCLK_IN0  |         |         |     |               |                                        |
| EXT_512BR | 86      | 79      | В   | 6             | External 512 x base rate clock (5V)/   |
| WCLK_OUT0 |         |         |     |               | Word clock out                         |
| XTAL2     | 102     | 95      | 0   | -             | XTAL - clock doubler/power manager/LLC |
| XTAL1     | 103     | 96      | Ι   | -             | XTAL - clock doubler/power manager/LLC |
| WCLK_IN1  | 65      | N/A     | В   | 6             | Word Clock In (5V)                     |
| WCLK_OUT1 | 66      | N/A     | В   | 6             | Word Clock Out                         |

 Table 45: Clock Controller Signal Description

# 5.2.2 Module Configuration

| Address     | Register      |
|-------------|---------------|
| 0xce01 0000 | SYNC_CTRL     |
| 0xce01 0004 | DOMAIN_CTRL   |
| 0xce01 0008 | EXTCLK_CTRL   |
| 0xce01 000c | BLK_CTRL      |
| 0xce01 0010 | REFEVENT_CTRL |
| 0xce01 0014 | SRCNT_CTRL    |
| 0xce01 0018 | SRCNT_MODE    |
| 0xce01 001c | Reserved      |
| 0xce01 0020 | Reserved      |
| 0xce01 0024 | AES_VCO_SETUP |
| 0xce01 0028 | Reserved      |
| 0xce01 002c | Reserved      |
| 0xce01 0030 | Reserved      |
| 0xce01 0034 | PRESCALER     |
| 0xce01 0038 | Reserved      |
| 0xce01 003c | HPLL_REF      |
| 0xce01 0040 | SRCNT1        |
| 0xce01 0044 | SRCNT2        |
| 0xce01 0048 | SR_MAX_CNT1   |
| 0xce01 004c | SR_MAX_CNT2   |

Table 46: Clock Ctrl Memory Map

# 5.2.3 SYNC\_CTRL

Address - 0xce01 0000

|                     | 15 | 14 | 13  | 12  | 11  | 10                                                                                                                                                                          | 9        | 8        | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|---------------------|----|----|-----|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----|----|----|----|----|----|----|----|
|                     |    |    |     |     |     |                                                                                                                                                                             | Reserved |          |    |    |    |    |    |    |    |    |
| Reset:              | 0  | 0  | 0   | 0   | 0   | 0                                                                                                                                                                           | 0        | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|                     | RW | RW | RW  | RW  | RW  | RW                                                                                                                                                                          | RW       | RW       | RW | RW | RW | RW | RW | RW | RW | RW |
|                     |    |    |     |     |     |                                                                                                                                                                             |          |          |    |    |    |    |    |    |    |    |
| Name                | )  |    | Bit | Res | set | Dir                                                                                                                                                                         | Des      | cription | ו  |    |    |    |    |    |    |    |
| SYNC_SRC 1:0 0x3 RW |    |    |     |     | RW  | Selects the clock source for Synchronizer 1<br>00: aes_1fs ( or ~ aes_1fs, res. for test and debug)<br>01: reserved<br>10: Slave Inputs (EXT_FBR and EXT_512FB)<br>11: hPLL |          |          |    |    |    |    |    |    |    |    |

xx: Reserved for internal use

## 5.2.4 DOMAIN\_CTRL

Address - 0xce01 0004

|        | 15 | 14 | 13 | 12 | 11 | 10     | 9  | 8  | 7  | 6  | 5  | 4     | 3  | 2  | 1       | 0  |
|--------|----|----|----|----|----|--------|----|----|----|----|----|-------|----|----|---------|----|
|        |    |    |    |    | Re | served |    |    |    |    | R  | TR_FS |    | Re | eserved |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0       | 0  |
|        | RW | RW | RW | RW | RW | RW     | RW | RW | RW | RW | RW | RW    | RW | RW | RW      | RW |

| Name       | Bit | Reset | Dir | Description                                                                                                                   |
|------------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------|
| reserved   | 7:6 | 0     | RW  | Reserved                                                                                                                      |
| RTR_FS     | 5:4 | 0     | RW  | Selects the FS source for Router (rate mode)                                                                                  |
| (SYS_MODE) |     |       |     | 00: base rate from Synchronizer<br>01: 2 x base rate from Synchronizer<br>10: 4 x base rate from Synchronizer<br>11: reserved |
| Reserved   | 3:2 | 0     | RW  | Reserved                                                                                                                      |
| Reserved   | 1:0 | 0     | RW  | Reserved                                                                                                                      |

# 5.2.5 EXTCLK\_CTRL

Address - 0xce01 0008

|        | 15 | 14 | 13 | 12 | 11  | 10    | 9  | 8  | 7  | 6  | 5  | 4   | 3  | 2   | 1  | 0   |
|--------|----|----|----|----|-----|-------|----|----|----|----|----|-----|----|-----|----|-----|
|        |    |    |    |    | Res | erved |    |    |    |    | wo | LK1 | EX | TBR | wc | LK0 |
| Reset: | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0   | 0  | 0   |
|        | RW | RW | RW | RW | RW  | RW    | RW | RW | RW | RW | RW | RW  | RW | RW  | RW | RW  |

| Name      | Bit | Reset | Dir | Description                                                                   |
|-----------|-----|-------|-----|-------------------------------------------------------------------------------|
| WCLK_OUT1 | 5:3 | 0     | RW  | Selects the source for the word clock output (WCLK_OUT1)<br>000: off(default) |
|           |     |       |     | 001: base rate from Synchronizer                                              |
|           |     |       |     | 010: 2 x base rate from Synchronizer                                          |
|           |     |       |     | 011: 4 x base rate from Synchronizer                                          |
|           |     |       |     | 100: sys_1fs                                                                  |
| EXT_FBR / | 2:0 | 0     | RW  | Selects the source for the external master mode output for base rate          |
|           |     |       |     | rate (EXT_FBR / WCLK_OUT0)                                                    |
| WCLK_0010 |     |       |     | 000: off (default)                                                            |
|           |     |       |     | 001: base rate from Synchronizer                                              |
|           |     |       |     | 010: 2 x base rate from Synchronizer                                          |
|           |     |       |     | 011: 4 x base rate from Synchronizer                                          |
|           |     |       |     | 100: sys_1fs                                                                  |
|           |     |       |     | 101: ext_fbr from synchronizer input (for master to slave op.)                |

# 5.2.6 BLK\_CTRL

Address - 0xce01 000c

|        | 15 | 14 | 13 | 12 | 11 | 10       | 9  | 8  | 7        | 6  | 5  | 4        | 3  | 2  | 1    | 0  |
|--------|----|----|----|----|----|----------|----|----|----------|----|----|----------|----|----|------|----|
|        |    |    |    |    |    | TXDI2BLK |    |    | TXDI1BLK |    |    | AESTXBLK |    |    | BLKO |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0    | 0  |
|        | RW | RW | RW | RW | RW | RW       | RW | RW | RW       | RW | RW | RW       | RW | RW | RW   | RW |

| Name     | Bit  | Reset | Dir | Description                                                   |
|----------|------|-------|-----|---------------------------------------------------------------|
| TXDI2BLK | 11:9 | 000   | RW  | Selects the source of the block sync for AVS ATX2 transmitter |
|          |      |       |     | 000: Blocksync from AES Rx                                    |
|          |      |       |     | 001: Blocksync from AVS ARx1                                  |
|          |      |       |     | 010: Blocksync from AVS ARx2                                  |
|          |      |       |     | 011: Reserved                                                 |
|          |      |       |     | 100: Reserved                                                 |
|          |      |       |     | 101: Blocksync from AES Tx Blocksync Generator                |
|          |      |       |     | 111: Blocksync from AVS ATx1                                  |
|          |      |       |     | 110: Reserved                                                 |
| TXDI1BLK | 8:6  | 000   | RW  | Selects the source of the block sync for AVS ATX1 transmitter |
|          |      |       |     | 000: Blocksync from AES Rx                                    |
|          |      |       |     | 001: Blocksync from AVS ARx1                                  |
|          |      |       |     | 010: Blocksync from AVS ARx2                                  |
|          |      |       |     | 011: Reserved                                                 |
|          |      |       |     | 100: Reserved                                                 |
|          |      |       |     | 101: Blocksync from AES Tx Blocksync Generator                |
|          |      |       |     | 110: Reserved                                                 |
|          |      |       |     | 111: Blocksync from AVS ATx2                                  |

| Name     | Bit | Reset | Dir | Description                                       |
|----------|-----|-------|-----|---------------------------------------------------|
| AESTXBLK | 5:3 | 000   | RW  | Selects the block sync source for the AES Tx.     |
|          |     |       |     | 000: Blocksync from AES Rx                        |
|          |     |       |     | 001: Blocksync from AVS ARx1                      |
|          |     |       |     | 010: Blocksync from AVS ARx2                      |
|          |     |       |     | 011: Reserved                                     |
|          |     |       |     | 100: Reserved                                     |
|          |     |       |     | 101: Reserved                                     |
|          |     |       |     | 110: Blocksync from AVS ATx1                      |
|          |     |       |     | 111: Blocksync from AVS ATx2                      |
| BLKO     | 2:0 | 000   | RW  | Selects the source for the block sync output pin. |
|          |     |       |     | 000: Blocksync from AES Rx                        |
|          |     |       |     | 001: Blocksync from AVS ARx1                      |
|          |     |       |     | 010: Blocksync from AVS ARx2                      |
|          |     |       |     | 011: Reserved                                     |
|          |     |       |     | 100: Reserved                                     |
|          |     |       |     | 101: Blocksync from AES TX Blocksync Generator    |
|          |     |       |     | 110: Blocksync from AVS ATx1                      |
|          |     |       |     | 111: Blocksync from AVS ATx2                      |

# 5.2.7 REFEVENT\_CTRL

| Address - 0 | 0xce01 | 0010 |
|-------------|--------|------|
|-------------|--------|------|

|        | 15 | 14 | 13 | 12 | 11 | 10       | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2   | 1  | 0  |
|--------|----|----|----|----|----|----------|----|----|----|----|----|----|----|-----|----|----|
|        |    |    |    |    |    | Reserved |    |    |    |    |    |    |    | REF |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  |
|        | RW | RW | RW | RW | RW | RW       | RW | RW | RW | RW | RW | RW | RW | RW  | RW | RW |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                             |
|------|-----|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REF  | 4:0 | 0x8   | RW  | Selects the ref. event source for PLL1.<br>00000: AES Rx (1fs)<br>00001: ADAT Rx0 (1fs)<br>00010: ADAT Rx1 (1fs)<br>00011: WCLK_IN1<br>00100: 1394 Rx1 (1fs/SYT_INTERVAL)<br>00101: 1394 Rx2 (1fs/SYT_INTERVAL)<br>00110:<br>00111:<br>01000: Prescaler<br>01001: EXT_FBR / WCLK_IN0<br>xxxxx: Reserved |

## 5.2.8 SRCNT\_CTRL

Address - 0xce01 0014

|        | 31           | 30              | 29    | 28    | 27  | 26                                                                | 25                                                               | 24                 | 23                 | 22     | 21       | 20     | 19       | 18   | 17    | 16 |  |
|--------|--------------|-----------------|-------|-------|-----|-------------------------------------------------------------------|------------------------------------------------------------------|--------------------|--------------------|--------|----------|--------|----------|------|-------|----|--|
|        |              |                 |       |       |     |                                                                   |                                                                  |                    |                    |        |          |        |          | SRC2 | 2_IN2 |    |  |
| Reset: | 0            | 0               | 0     | 0     | 0   | 0                                                                 | 0                                                                | 0                  | 0                  | 0      | 0        | 0      | 0        | 0    | 0     | 0  |  |
|        | RW           | RW              | RW    | RW    | RW  | RW                                                                | RW                                                               | RW                 | RW                 | RW     | RW       | RW     | RW       | RW   | RW    | RW |  |
|        |              |                 |       |       |     |                                                                   |                                                                  |                    |                    |        |          |        |          |      |       |    |  |
|        | 15           | 14              | 13    | 12    | 11  | 10                                                                | 9                                                                | 8                  | 7                  | 6      | 5        | 4      | 3        | 2    | 1     | 0  |  |
|        | SRC2_I<br>N2 | SRC2_I SRC2_IN1 |       |       |     |                                                                   |                                                                  |                    | SRC1_IN2           |        |          |        | SRC1_IN1 |      |       |    |  |
| Reset: | 0            | 0               | 0     | 0     | 0   | 0                                                                 | 0                                                                | 0                  | 0                  | 0      | 0        | 0      | 0        | 0    | 0     | 0  |  |
|        | RW           | RW              | RW    | RW    | RW  | RW                                                                | RW                                                               | RW                 | RW                 | RW     | RW       | RW     | RW       | RW   | RW    | RW |  |
| Name   | 9            |                 | Bit   | Res   | set | Dir                                                               | Des                                                              | cription           | ۱                  |        |          |        |          |      |       |    |  |
| SRC2   | 2_IN2        |                 | 15:12 | 2 0x0 |     | RW                                                                | Sel<br>See                                                       | ects so<br>table t | urce 2 f<br>oelow. | or sam | ple rate | counte | r 2      |      |       |    |  |
| SRC2   | 2_IN1        |                 | 11:8  | 0x8   |     | RW                                                                | V Selects source 1 for sample rate counter 2<br>See table below. |                    |                    |        |          |        |          |      |       |    |  |
| SRC1   | _IN2         |                 | 7:4   | 0x0   |     | RW                                                                | Sel                                                              | ects so            | urce 2 f           | or sam | ple rate | counte | r 1      |      |       |    |  |
| SRC1   | _IN1         |                 | 3:0   | 0x8   |     | RW Selects source 1 for sample rate counter 1<br>See table below. |                                                                  |                    |                    |        |          |        |          |      |       |    |  |

| Source Select Value | Source                      |
|---------------------|-----------------------------|
| 0000                | AES Rx (1fs)                |
| 0001                | ADAT Rx0 (1fs)              |
| 0010                | ADAT Rx1 (1fs)              |
| 0011                | WCLK_IN1                    |
| 0100                | 1394 Rx1 (1fs/SYT_INTERVAL) |
| 0101                | 1394 Rx2 (1fs/SYT_INTERVAL) |
| 0110                | Reserved                    |
| 0111                | Reserved                    |
| 1000                | Router 1fs                  |
| 1001                | Reserved                    |
| 1010                | EXT_FBR / WCLK_IN0 pin      |
| 1011                | AES Rx0 (1fs)               |
| 1100                | AES Rx1 (1fs)               |
| 1101                | AES Rx2 (1fs)               |
| 1110                | AES Rx3 (1fs)               |
| 1111                | Reserved                    |

| Table 47: Sample Rate Counter Input Selecti | on |
|---------------------------------------------|----|
|---------------------------------------------|----|

## 5.2.9 SRCNT\_MODE

#### Address - 0xce01 0018

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8       | 7  | 6  | 5  | 4  | 3  | 2  | 1    | 0    |  |
|--------|----|----|----|----|----|----|----|---------|----|----|----|----|----|----|------|------|--|
|        |    |    |    |    |    |    | R  | eserved |    |    |    |    |    |    | SRM2 | SRM1 |  |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    |  |
|        | RW      | RW | RW | RW | RW | RW | RW | RW   | RW   |  |

| Name | Bit | Reset | Dir | Description                                                                                   |
|------|-----|-------|-----|-----------------------------------------------------------------------------------------------|
| SRM2 | 1   | 0     | RW  | Selects the sample rate counter mode for counter 2<br>0: Phase counting<br>1: Period Counting |
| SRM1 | 0   | 0     | RW  | Selects the sample rate counter mode for counter 1<br>0: Phase counting<br>1: Period Counting |

## 5.2.10 AES\_VCO\_SETUP

Address - 0xce01 0024

|        | 31 | 30 | 29 | 28 | 27 | 26  | 25    | 24 | 23 | 22 | 21 | 20 | 19               | 18             | 17         | 16    |
|--------|----|----|----|----|----|-----|-------|----|----|----|----|----|------------------|----------------|------------|-------|
|        |    |    |    |    |    | Res | erved |    |    |    |    |    | aes_do<br>wn_pol | aes_up<br>_pol | aes_clk_re | gen_s |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0                | 1              | :          | 2     |
|        | RW | RW | RW | RW | RW | RW  | RW    | RW | RW | RW | RW | RW | RW               | RW             | RW         | RW    |
|        |    |    |    |    |    |     |       |    |    |    |    |    |                  |                |            |       |

| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|---------------------------------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                                       | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

|        | aes_clk_regen_m |    |    |    |    |    |    |    |    |    |    | aes_clk<br>_regen<br>_vco_p<br>wrdn | aes_clk<br>_regen_<br>vco_pw<br>rdn |    |    |    |
|--------|-----------------|----|----|----|----|----|----|----|----|----|----|-------------------------------------|-------------------------------------|----|----|----|
| Reset: | 248             |    |    |    |    |    |    |    |    |    | 6  | 2                                   |                                     |    | 1  | 0  |
|        | RW              | RW | RW | RW | RW | RW | RW | RW | RW | RW | RW | RW                                  | RW                                  | RW | RW | RW |

| Name                    | Bit   | Reset | Dir | Description                                                                                                                              |
|-------------------------|-------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| aes_down_pol            | 19    | 0     | RW  | Select polarity of DOWN signal to on-chip AES VCO<br>0: Down signal to AES VCO is active low<br>1: Down signal to AES VCO is active high |
| aes_up_pol              | 18    | 1     | RW  | Select polarity of UP signal to on-chip AES VCO<br>0: Up signal to AES VCO is active low<br>1: Up signal to AES VCO is active high       |
| aes_clk_regen_s         | 17:16 | 2     | RW  | Set the value for the Post - Scaler (S)<br>00: Divide by 1<br>01: Divide by 2<br>10: Divide by 4<br>11: Divide by 8                      |
| aes_clk_regen_m         | 15:8  | 248   | RW  | Set the value for the Main - Divider (M)<br>Range is 1 to 248                                                                            |
| aes_clk_regen_p         | 7:2   | 62    | RW  | Set the value for the Pre - Divider (P)<br>Range is 1 to 62                                                                              |
| aes_clk_regen_vco_pwrdn | 1     | 1     | RW  | Disable/Enable the internal VCO for the AES Receiver<br>0: Enable internal AES Receiver VCO<br>1: Disable internal AES Receiver VCO      |

| Name                          | Bit | Reset | Dir | Description                                                                                                                              |
|-------------------------------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| aes_clk_regen_vco_ext_clk_sel | 0   | 0     | RW  | Selects source of VCO clock for AES Receiver either int.<br>or ext.<br>0: From internal VCO / Clock<br>1: From external AES Receiver VCO |

#### 5.2.11 PRESCALER

Address - 0xce01 0034 - 0xce010038

|        | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23    | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|----|----|----|----|----|----|----|------|-------|----|----|----|----|----|----|----|
|        |    |    |    |    |    |    |    | PRE_ | DIVn  |    |    |    |    |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | RW   | RW    | RW | RW | RW | RW | RW | RW | RW |
|        |    |    |    |    |    |    |    |      |       |    |    |    |    |    |    |    |
|        | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7     | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|        |    |    |    |    |    |    |    | PRE_ | _DIVn |    |    |    |    |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | RW   | RW    | RW | RW | RW | RW | RW | RW | RW |

| Name    | Bit  | Reset | Dir | Description                                                                                                                  |
|---------|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------|
| PREDIVn | 31:0 | 0     | RW  | Sets the divider for the prescaler. Fs = pclk/PREDIVn<br>Note: Values lower than 2 are illegal. Pclk typical freq. 49.152MHz |

## 5.2.12 HPLL\_REF

Address - 0xce01 003c 18 31 30 29 28 27 26 25 24 23 22 21 20 19 17 16 system\_ clk\_vco \_s Reserved 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset: 0 0 RW 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 system \_clk\_vc o\_s system\_clk\_vco\_m system\_clk\_vco\_p PLLCLK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset: 0 0 RW Bit Reset Dir Description Name

| Name             | Bit   | Reset | Dir | Description                                                        |
|------------------|-------|-------|-----|--------------------------------------------------------------------|
| system_clk_vco_s | 16:15 | 3     | RW  | Set the value for the Post - Scaler (S)                            |
|                  |       |       |     | 00: Divide by 1                                                    |
|                  |       |       |     | 01: Divide by 2                                                    |
|                  |       |       |     | 10: Divide by 4                                                    |
|                  |       |       |     | 11: Divide by 8                                                    |
| system_clk_vco_m | 14:7  | 40    | RW  | Set the value for the Main - Divider (M)                           |
|                  |       |       |     | Range is 1 to 248                                                  |
| system_clk_vco_p | 6:1   | 1     | RW  | Set the value for the Pre - Divider (P)                            |
|                  |       |       |     | Range is 1 to 62                                                   |
| PLLCLK           | 0     | 0     | RW  | Sets the reference clock for the PLL's.                            |
|                  |       |       |     | 0: Locally doubled clock (typical 49.152Mhz) from pins XTAL1/XTAL2 |
|                  |       |       |     | 1: PHY clock, (SCLK pin)                                           |

# 5.2.13 SRCNTn

Address - 0xce01 0040

|        | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|----|----|----|----|----|----|----|-----|------|----|----|----|----|----|----|----|
|        |    |    |    |    |    |    |    | CO  | UNTn |    |    |    |    |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | R  | R  | R  | R  | R  | R  | R  | R   | R    | R  | R  | R  | R  | R  | R  | R  |
|        |    |    |    |    |    |    |    |     |      |    |    |    |    |    |    |    |
|        | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|        |    |    |    |    |    |    |    | COL | JNTn |    |    |    |    |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | R  | R  | R  | R  | R  | R  | R  | R   | R    | R  | R  | R  | R  | R  | R  | R  |

| Name   | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COUNTn | 31:0 | 0     | R   | This register holds the last count for Sample Rate Counter n. The counter runs at the freq. of the ARM system clock (typically 49.152MHz). When set for phase detection, an edge on input 1 will reset the counter and an edge on input 2 will latch it into this register. When set for sample rate counting every edge on input 1 will latch the count into this register and restart the counter. |

## 5.2.14 SR\_MAX\_CNTn

Address - 0xce01 0048 - 0xce01 004c



# 5.3 Jet<sup>™</sup> PLL

## 5.3.1 Jet<sup>™</sup> PLL Background

The Jitter Elimination Technologies  $(Jet)^{TM}$  PLL on the TCD22XX chips feature state-ofthe-art jitter rejection abilities and extremely low intrinsic jitter levels. The PLL is ideally suited for the clock and data boundaries between any analog or digital source and destination.

Like all phase-locked loops,  $Jet^{TM}$  PLL use feedback to lock an oscillator to a timing reference. They track slow reference changes, but effectively free-run through rapid modulations of the reference. From a jitter transfer point of view, they provide increasing jitter attenuation above some chosen corner frequency.

Jitter attenuation is just one aspect of PLL design. Other considerations include frequency range and intrinsic jitter. It can be shown that conventional designs are bound by a fundamental trade-off between these three aspects. For example, specifying a frequency range of one octave means using a low-Q oscillator. But that makes for high intrinsic jitter when the loop corner frequency is held down. Conversely, good jitter attenuation and low intrinsic jitter can be had by using a voltage-controlled crystal oscillator (VCXO). But the frequency range is then tiny. A further consideration is that only low-Q oscillators are easy to integrate on chip.

Jet<sup>™</sup> PLL sidesteps the above-mentioned trade-off. It incorporates two loops. One is largely or wholly numeric, and has its corner frequency set low enough to give good reference-jitter attenuation. The other regulates the analog oscillator and has its corner frequency set much higher, to moderate the intrinsic jitter. The two corner frequencies might be around 10 Hz and 100 kHz, for example.

Another benefit of having a high corner frequency in the analog loop is that interference, e.g. via the oscillator's supply rail, is suppressed more effectively.

Jet<sup>TM</sup> PLL requires a fast, stable, fixed-frequency clock. It is this that gives it stability in the band between the two corner frequencies. (Equally, in this band any jitter on this clock passes straight through to the Jet<sup>TM</sup> PLL's clock output.) The stable clock is usually derived from a free-running crystal oscillator.

Jet<sup>TM</sup> PLL contains a number-controlled oscillator, which can also be called a fractional frequency divider. Like the analog oscillator, this injects jitter. Typically, spectrum shaping is used to push most of that jitter up to frequencies where it will be heavily attenuated by the analog loop.

As well as frequency-locking the analog oscillator to the provided reference,  $Jet^{TM}$  PLL can also phase-lock an associated frame sync to the reference.

Jet<sup>TM</sup> PLL can generate internal master clock rates with extremely fine frequency resolution and precision e.g. 44.056 kHz +/- 0.4 PPM. Depending on the precision of the master XTAL connected to the TCD22XX.

The Jet<sup>™</sup> PLL also allows clock "slew rate" to be controlled when the operating frequency is changing (e.g. 44.1kHz to 48kHz or when experiencing a clock source phase shift). With a slow slew rate, downstream equipment might not need to go into "unlock" state and back to lock state during such a shift.

Jet<sup>TM</sup> PLL has the ability to lock to frequencies as low as 15Hz (e.g. 24/25/Drop Frame video rates), and as high as 256xFs "super clock" (e.g. 12.288MHz).

The Jet<sup>™</sup> PLL intrinsic jitter performance can be lowered even further by overriding the internal analog VCO with an ultra-high performance external TCXO if desired.

Jet<sup>™</sup> PLL have additional facilities for measuring frequency and phase of the incoming reference signal and posting events to firmware if clock quality falls outside acceptable limits (e.g. reference signal disappears).

The Jet<sup>™</sup> technologies in are covered by several patents.

## 5.3.2 Block Diagram









## 5.3.3 Basic registers

The Jet<sup>TM</sup> PLL is handled by control registers and status registers.

#### 5.3.4 Control registers

In the control registers the  $Jet^{TM}$  PLL can be set to lock to different reference frequencies and generate different output frequencies.

The Jitter rejection bandwidth can be set to different frequencies, e.g. 1 Hz or 100Hz. The lock response time is somewhat related to this.

Name Bit Reset Dir Description

| register / field name | r, w * | addr.<br>hex | Value<br>decimal | Width<br>bits | brief description                                        |
|-----------------------|--------|--------------|------------------|---------------|----------------------------------------------------------|
| bandwidth_f           | W      | `h60         | `d4              | 4             | Loop bandwidth floor. Enforced while the loop is locked. |
| bandwidth_c           | W      | `h64         | `d9              | 4             | Loop bandwidth ceiling. Has a role in acquisition mode.  |
| ndiv_f                | W      | `hA0         | ′d255            | 11            | Controls NL Divider stage F ('frame_b').                 |
| ndiv_e                | W      | `hB4         | ′d0              | 12            | Controls NL Divider stage E ('fbk_event').               |

Figure 38: Basic Jet<sup>TM</sup> PLL registers

### 5.3.5 Status Registers

At address ...308hex the Jet<sup>TM</sup> PLL is presenting its main status register. The 2 least significant bits are presented here:

| Name       | Bit | Reset | Dir | Description                                                    |
|------------|-----|-------|-----|----------------------------------------------------------------|
| Unlocked   | 1   | 0     | R   | Triggered if phase offset wraps or exceeds `u_threshold'.      |
| Ref_flawed | 0   | 0     | R   | Triggered by reference discontinuities. Hi when auto coasting. |

Figure 39: Jet<sup>TM</sup> PLL Status Registers

The register read value "unlocked" going high means that the Jet<sup>TM</sup> PLL is unlocked. The ref\_flawed is triggered when the reference is discontinuous e.g. by being disconnected. If e.g. an AES input (id#) feeds the Jet<sup>TM</sup> PLL, 'unlocked' bit will go high as well when the AES receiver is unlocked.

#### 5.3.6 Frequency Reconstruction Generation.

When locking to frequency range 30 - 50 kHz the Jet<sup>TM</sup> PLL should be set to lock to 1Fs. This is done by setting the divider ndiv\_f to 255dec and ndiv\_e to 0dec. When locking to 60 - 100 kHz range the divider ndiv\_f should be set to 127dec and ndiv\_e to 0dec.

When locking to a 1394 ISOC stream the Jet<sup>TM</sup> PLL should refer to the SYT\_match signal which is a sub 8KHz rate linked to the sample rate. Sample rates of 44.1kHz and 88.2kHz respectively both have a SYT\_match signal of 5.513kHz = 44100/8 = 88200/16. This means that the ndiv\_e should be set to 8dec if the sample rate is 44.1kHz and 16dec if the sample rate is 88.2kHz.

When generating internal master sample rates on DICE JR the prescalers (outside the Jet<sup>TM</sup> PLL modules) can be used together with the ndiv\_e divider. This way a 49.152MHz (2 times the reference 24.576MHz XTAL at the 1394 phy chip) can be used to generate multiple extremely low jitter extremely high precision internal sample rates using only one XTAL.

| Required FS |                   | Prescaler | ndiv_e divider | Actual FS   | Deviation |
|-------------|-------------------|-----------|----------------|-------------|-----------|
| (Hz)        |                   | (32bit)   | (12bit)        | (Hz)        | (ppm)     |
| 44100       |                   | * 491520  | 441            | 44100       | 0         |
| 44144,1     | (44.1k + 0.1%)    | 10021     | 9              | 44144,0974  | 0,059     |
| 44055,9     | (44.1k - 0.1%)    | 51321     | 46             | 44055,88356 | 0,3732    |
| 45864       | (44.1k + 4%)      | 76090     | 71             | 45864,00315 | 0,0688    |
| 42336       | (44.1k - 4%)      | * 512000  | 441            | 42336       | 0         |
|             | (44.1k +          |           |                |             |           |
| 44283,75    | 4.1666%)          | 16649     | 15             | 44283,74077 | 0,2085    |
| 42262,5     | (44.1k - 4.1666%) | 68618     | 59             | 42262,49672 | 0,0776    |
|             |                   |           |                |             |           |
| 48000       |                   | 1024      | 1              | 48000       | 0         |
| 48048       | (48k + 0.1%)      | 45011     | 44             | 48047,98827 | 0,2441    |
| 47952       | (48k - 0.1%)      | 41001     | 40             | 47952,00117 | 0,0244    |
| 49920       | (48k + 4%)        | 12800     | 13             | 49920       | 0         |
| 46080       | (48k - 4%)        | 3200      | 3              | 46080       | 0         |
| 50000       | (48k + 4.1666%)   | 24576     | 25             | 50000       | 0         |
| 46000       | (48k - 4.1666%)   | 24576     | 23             | 46000       | 0         |

The formula used is: FS = 49.152MHz / 'Prescaler' \* 'ndiv\_e divider'

Figure 40: Internal sampling rates generated with the Jet<sup>TM</sup> PLL.

\* When generating internal rates with great precision the register bandwidth\_c should be set to 2dec. This will ensure stability in the Jet<sup>TM</sup> PLL while the reference is a very low frequency e.g 100Hz – the very low reference frequency is the key for the high precision on the resulting internal sample rates.

#### 5.3.7 Jitter Transfer Function JTF, BW and peaking.

The bandwidth in the Jet<sup>TM</sup> PLL can be set by firmware. This is the -3dB frequency of the jitter rejection low pass filter. It can be set to 0hex to Fhex, which corresponds to approx. 0.1Hz to 2.8kHz in steps of an octave.

| bandwidth_f | Hz    |
|-------------|-------|
| 00hex       | 0.085 |
| 01hex       | 0.17  |
| 02hex       | 0.34  |
| 03hex       | 0.68  |
| 04hex       | 1.4   |
| 05hex       | 2.7   |

| 06hex | 5.5  |
|-------|------|
| 07hex | 10.9 |
| 08hex | 21.9 |
| 09hex | 43.8 |
| 0Ahex | 87.5 |
| 0Bhex | 175  |
| 0Chex | 350  |
| 0Dhex | 700  |
| 0Ehex | 1400 |
| 0Fhex | 2800 |
|       |      |

#### Figure 41: Jitter rejection bandwidth set in the Jet<sup>TM</sup> PLL.

The -60dB frequency is at approx 13 times the -3dB frequency. The roll off is of 4<sup>th</sup> order approaching a rejection ability that increases by 80dB/decade.

Peaking is maximum 1.5dB at a frequency approx 1/4 of the -3dB point.

## 5.3.8 Jet<sup>™</sup> PLL Performance

- Frequency range: 15.8 MHz to 27.7 MHz (scalable)
- Jitter attenuation: more than 60 dB above 100 Hz
- Period jitter: less than 50ps RMS
- Wideband jitter: less than 200ps RMS (100 Hz highpass)
- Baseband jitter: less than 20ps RMS (100 Hz to 40 kHz)
- Jitter density: less than 0.1ps/rootHz above 100 Hz



Figure 42: Resulting spectrum when converting a 20 kHz audio tone. The spectrum looks the same with and without incoming jitter being removed.

# 5.3.9 Jet<sup>™</sup> PLL Registers

The Jet<sup>™</sup> PLL registers are categorized as Basic or Advanced. Application firmware typically reads and writes the values of the basic registers. Firmware provided by TC

Applied Technologies in the DICE 22xx SDK handles these registers and provides a simple API that hides the complexity. **To ensure a reliable operation the advanced registers should remain untouched.** 

All hex addresses should be multiplied by 4 to get the real address.

| register / field name | r, w * | Adr.<br>hex | Value<br>decimal | Width<br>bits | brief description                                        |
|-----------------------|--------|-------------|------------------|---------------|----------------------------------------------------------|
|                       |        |             |                  |               |                                                          |
| caf_enable            | W      | `h00        | 1                | 1             | Internal. Initialized by constant in the basic SW.       |
| caf_select            | W      | `h01        | 0                | 2             | Internal. Initialized by constant in the basic SW.       |
| coast                 | W      | `h02        | 0                | 1             | Internal. Initialized by constant in the basic SW.       |
| ref_select            | W      | `h06        | 1                | 5             | Internal. Initialized by constant in the basic SW.       |
| ref_edges             | W      | `h07        | 0                | 2             | Internal. Initialized by constant in the basic SW.       |
| rdiv                  | W      | `h0A        | 0                | 16            | Internal. Initialized by constant in the basic SW.       |
| throttle_r            | W      | `h0B        | 0                | 1             | Internal. Initialized by constant in the basic SW.       |
| gravity               | w      | `h11        | 1                | 1             | Internal. Initialized by constant in the basic SW.       |
| u_threshold           | W      | `h16        | 100              | 8             | Internal. Initialized by constant in the basic SW.       |
| bandwidth_f           | W      | `h18        | 4                | 4             | Loop bandwidth floor. Enforced while the loop is locked. |
| bandwidth_c           | W      | `h19        | 9                | 4             | Loop bandwidth ceiling. Has a role in acquisition mode.  |
| shape_f               | W      | `h1A        | 0                | 2             | Internal. Initialized by constant in the basic SW.       |
| shape_v               | W      | `h1B        | 3                | 2             | Internal. Initialized by constant in the basic SW.       |
| max_slew_f            | W      | `h1C        | 15               | 4             | Internal. Initialized by constant in the basic SW.       |
| Max_slew_v            | W      | `h1D        | 15               | 4             | Internal. Initialized by constant in the basic SW.       |
| descent_lin           | W      | `h1E        | 4                | 3             | Internal. Initialized by constant in the basic SW.       |
| descent_exp           | W      | `h1F        | 4                | 3             | Internal. Initialized by constant in the basic SW.       |
| loose_thr             | W      | `h22        | 10               | 8             | Internal. Initialized by constant in the basic SW.       |
| Min_period            | W      | `h26        | 58               | 8             | Internal. Initialized by constant in the basic SW.       |
| Max_period            | W      | `h27        | 111              | 8             | Internal. Initialized by constant in the basic SW.       |
| ndiv_f                | W      | `h2C        | 255              | 11            | Controls NL Divider stage F ('frame_b').                 |
| ndiv_e                | W      | `h2D        | 0                | 12            | Controls NL Divider stage E ('fbk_event').               |
| ndiv_b                | W      | `h2E        | 1                | 7             | Internal. Initialized by constant in the basic SW.       |
| bypass_f              | W      | `h2F        | 0                | 1             | Internal. Initialized by constant in the basic SW.       |
| phase_lag             | W      | `h30        | 0                | 11            | Internal. Initialized by constant in the basic SW.       |
| fract_res             | W      | `h32        | 1                | 2             | Internal. Initialized by constant in the basic SW.       |
| burst_len             | W      | `h34        | 3                | 6             | Internal. Initialized by constant in the basic SW.       |
| gpo_grant             | W      | `h36        | 0                | 3             | Not available in TCD22xx                                 |
| x1_gpo                | W      | `h37        | 0                | 2             | Not available in TCD22xx                                 |

#### 5.3.9.1 Control registers:

| register / field name | r, w * | Adr.<br>hex | Value<br>decimal | Width<br>bits | brief description                                  |
|-----------------------|--------|-------------|------------------|---------------|----------------------------------------------------|
| x2_gpo                | W      | `h38        | 0                | 2             | Not available in TCD22xx                           |
| x3_gpo                | W      | `h39        | 0                | 2             | Not available in TCD22xx                           |
| x1x2_mode             | W      | `h3C        | 1                | 3             | Internal. Initialized by constant in the basic SW. |
|                       |        |             |                  |               |                                                    |
| chain_i               | W      | `h40        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| sink_i                | W      | `h41        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| anchor_i              | W      | `h42        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| i_anc_val             | W      | `h43        | 4                | 5             | Internal. Initialized by constant in the basic SW. |
| unbind_i              | W      | `h44        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| idet                  | W      | `h46        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| idiv_c                | W      | `h48        | 1                | 3             | Internal. Initialized by constant in the basic SW. |
| idiv_f                | W      | `h49        | 511              | 13            | Internal. Initialized by constant in the basic SW. |
| idiv_s                | W      | `h4A        | 3                | 4             | Internal. Initialized by constant in the basic SW. |
| invert_cdi            | W      | `h4C        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| hobble_cdi            | W      | `h4D        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
|                       |        |             |                  |               |                                                    |
| sink_e                | W      | `h51        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| anchor_e              | W      | `h52        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| e_anc_val             | W      | `h53        | 4                | 5             | Internal. Initialized by constant in the basic SW. |
| unbind_e              | W      | `h54        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| edet_x1               | W      | `h56        | 0                | 4             | Internal. Initialized by constant in the basic SW. |
| edet_x2               | W      | `h57        | 0                | 4             | Internal. Initialized by constant in the basic SW. |
| ediv_c                | W      | `h58        | 1                | 3             | Internal. Initialized by constant in the basic SW. |
| ediv_f                | W      | `h59        | 511              | 13            | Internal. Initialized by constant in the basic SW. |
| ediv_s                | W      | `h5A        | 3                | 4             | Internal. Initialized by constant in the basic SW. |
| invert_cde            | W      | `h5C        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| hobble_cde            | W      | `h5D        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
|                       |        |             |                  |               |                                                    |
| divide_cj             | W      | `h60        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| invert_cj             | W      | `h61        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
|                       |        |             |                  |               |                                                    |
| config_ac             | W      | `hF8        | 1                | 2             | Internal. Initialized by constant in the basic SW. |
|                       |        |             |                  |               |                                                    |
| shutdown_m            | W      | `hFC        | 1                | 1             | Internal. Initialized by constant in the basic SW. |
| shutdown_i            | W      | `hFD        | 0                | 1             | Internal. Initialized by constant in the basic SW. |
| shutdown_e            | W      | `hFE        | 1                | 1             | Internal. Initialized by constant in the basic SW. |

| register / field name | r, w * | Adr.<br>hex | Value<br>decimal | Width<br>bits | brief description |
|-----------------------|--------|-------------|------------------|---------------|-------------------|
|                       |        |             |                  |               |                   |

#### Table 48: Jet<sup>TM</sup> PLL Control Register Map

| register / field name     | r, w * | Adr.<br>hex | Value<br>decimal | Width<br>bits | brief description                                   |
|---------------------------|--------|-------------|------------------|---------------|-----------------------------------------------------|
| family_id                 | R      | `hA0        | "SB″             | 16            | Internal. Not used in the basic SW.                 |
| form_id                   | R      | `hA1        | "A ″             | 16            | Internal. Not used in the basic SW.                 |
| revision_id               | R      | `hA2        | " 0 <i>"</i>     | 16            | Internal. Not used in the basic SW.                 |
| instance_id               | R      | `hA3        | ?*               | 16            | Internal. Not used in the basic SW.                 |
| mtr_select                | W      | `hAE        | 0                | 5             | Internal. Not used in the basic SW.                 |
| mtr_edges                 | W      | `hAF        | 0                | 2             | Internal. Not used in the basic SW.                 |
| res_ex                    | W      | `hB0        | 7                | 4             | Internal. Not used in the basic SW.                 |
| punc_mp                   | W      | `hB1        | -*               | 1             | Internal. Not used in the basic SW.                 |
| mtr_period                | R      | `hB3        | -                | 16            | Internal. Not used in the basic SW.                 |
| greatest_mp               | R      | `hB4        | -                | 16            | Internal. Not used in the basic SW.                 |
| greatest_mp_\$            | R\$    | `hB5        | -                | 16            | Internal. Not used in the basic SW.                 |
| <pre>smallest_mp</pre>    | R      | `hB6        | -                | 16            | Internal. Not used in the basic SW.                 |
| <pre>smallest_mp_\$</pre> | R\$    | `hB7        | -                | 16            | Internal. Not used in the basic SW.                 |
| tick_rate                 | W      | `hC0        | 3                | 4             | Internal. Not used in the basic SW.                 |
| turn_rate                 | W      | `hC1        | 0                | 1             | Internal. Not used in the basic SW.                 |
| main_status               | R      | `hC2        | -                | 16            | Internal. Not used in the basic SW.                 |
| main_status_\$            | R\$    | `hC3        | -                | 16            | Internal. Not used in the basic SW.                 |
| detect_r                  | W      | `hC8        | 0                | 16            | Internal. Not used in the basic SW.                 |
| detect_f                  | W      | `hC9        | 0                | 16            | Internal. Not used in the basic SW.                 |
| sticky_bits               | RW*    | `hCA        | -                | 16            | Internal. Not used in the basic SW.                 |
| sticky_bits_\$            | R\$    | `hCB        | -                | 16            | Internal. Not used in the basic SW.                 |
| irq_enables               | W      | `hD4        | 0                | 16            | Internal. Not used in the basic SW.                 |
| nco_period                | R      | `hE3        | -                | 16            | Internal. Not used in the basic SW.                 |
| greatest_np               | R      | `hE4        | -                | 16            | Internal. Not used in the basic SW.                 |
| greatest_np_\$            | R\$    | `hE5        | -                | 16            | Internal. Not used in the basic SW.                 |
| <pre>smallest_np</pre>    | R      | `hE6        | -                | 16            | Internal. Not used in the basic SW.                 |
| <pre>smallest_np_\$</pre> | R\$    | `hE7        | -                | 16            | Internal. Not used in the basic SW.                 |
| gpi                       | R      | `hF6        | -                | 1             | For reading one or more pins as gen-purpose inputs. |

# 5.3.9.2 Status registers

 Table 49: Jet<sup>TM</sup> PLL Status Memory map

| bit | name           | stretched? | ? brief description                                            |  |
|-----|----------------|------------|----------------------------------------------------------------|--|
| 15  | turn           | no         | Internal. Not used in the basic SW.                            |  |
| 14  | gmp_over       | no         | Internal. Not used in the basic SW.                            |  |
| 13  | gathered       | no         | Internal. Not used in the basic SW.                            |  |
| 12  | mp_flushed     | no         | Internal. Not used in the basic SW.                            |  |
| 11  | (Unspecified.) | -          | Internal. Not used in the basic SW.                            |  |
| 10  | slew_is_max    | yes        | Internal. Not used in the basic SW.                            |  |
| 9   | period_is_max  | yes        | Internal. Not used in the basic SW.                            |  |
| 8   | period_is_min  | yes        | Internal. Not used in the basic SW.                            |  |
| 7   | e_shaky        | yes        | Internal. Not used in the basic SW.                            |  |
| 6   | e_slipping     | yes        | Internal. Not used in the basic SW.                            |  |
| 5   | i_shaky        | yes        | Internal. Not used in the basic SW.                            |  |
| 4   | i_slipping     | yes        | Internal. Not used in the basic SW.                            |  |
| 3   | loose          | yes        | Internal. Not used in the basic SW.                            |  |
| 2   | varying        | yes        | Internal. Not used in the basic SW.                            |  |
| 1   | unlocked       | yes        | Triggered if phase offset wraps or exceeds 'u_threshold'.      |  |
| 0   | ref_flawed     | yes        | Triggered by reference discontinuities. Hi when auto coasting. |  |

# 5.3.9.3 Main\_status

# 5.3.9.4 Module Configuration

| Address     | Register         |
|-------------|------------------|
| 0xcc00 0000 | PLL1_CAF_ENABLE  |
| 0xcc00 0004 | PLL1_CAF_SELECT  |
| 0xcc00 0008 | PLL1_COAST       |
| 0xcc00 0018 | PLL1_REF_SEL     |
| 0xcc00 001c | PLL1_REF_EDG     |
| 0xcc00 0028 | PLL1_RDIV        |
| 0xcc00 002c | PLL1_THROTTLE    |
| 0xcc00 0058 | PLL1_U_THRESHOLD |
| 0xcc00 0060 | PLL1_BW_FLOOR    |
| 0xcc00 0064 | PLL1_BW_CEILING  |
| 0xcc00 0068 | PLL1_SHP_FIX     |
| 0xcc00 006c | PLL1_SHP_VAR     |
| 0xcc00 0070 | PLL1_MAX_SLW_FIX |
| 0xcc00 0074 | PLL1_MAX_SLW_VAR |

| Address     | Register         |
|-------------|------------------|
| 0xcc00 0078 | PLL1_DCNT_LIN    |
| 0xcc00 007c | PLL1_DCNT_EXP    |
| 0xcc00 0088 | PLL1_LOOSE_THR   |
| 0xcc00 0098 | PLL1_MIN_PER     |
| 0xcc00 009c | PLL1_MAX_PER     |
| 0xcc00 00b0 | PLL1_NDIV_F      |
| 0xcc00 00b4 | PLL1_NDIV_E      |
| 0xcc00 00b8 | PLL1_NDIV_B      |
| 0xcc00 00bc | PLL1_BYP_F       |
| 0xcc00 00c0 | PLL1_PHASE_LAG   |
| 0xcc00 00c8 | PLL1_FRACT_RES   |
| 0xcc00 00d0 | PLL1_BURST_LEN   |
| 0xcc00 00d8 | PLL1_GPO_EN      |
| 0xcc00 00dc | PLL1_GPO_1       |
| 0xcc00 00e0 | PLL1_GPO_2       |
| 0xcc00 00e4 | PLL1_GPO_3       |
| 0xcc00 00f0 | PLL1_X1X2_MODE   |
| 0xcc000100  | PLL1_CHAIN_I     |
| 0xcc000104  | PLL1_SINK_I      |
| 0xcc000108  | PLL1_ANCHOR_I    |
| 0xcc00010c  | PLL1_IANCHOR_VAL |
| 0xcc000110  | PLL1_UNBND_I     |
| 0xcc000118  | PLL1_IDET        |
| 0xcc000120  | PLL1_IDIV_C      |
| 0xcc000124  | PLL1_IDIV_F      |
| 0xcc000128  | PLL1_IDIV_S      |
| 0xcc000130  | PLL1_INV_CDI     |
| 0xcc000134  | PLL1_HBL_CDI     |
| 0xcc000144  | PLL1_SINK_E      |
| 0xcc000148  | PLL1_ANCHOR_E    |
| 0xcc00014c  | PLL1_E_ANC_VAL   |
| 0xcc000150  | PLL1_UNBIND_E    |
| 0xcc000158  | PLL1_EDET_X1     |
| 0xcc00015c  | PLL1_EDET_X2     |
| 0xcc000160  | PLL1_EDIV_C      |
| 0xcc000164  | PLL1_EDIV_F      |
| 0xcc000168  | PLL1_EDIV_S      |
| 0xcc000170  | PLL1_INV_CDE     |
| 0xcc000174  | PLL1_HBL_CDE     |
| Address    | Register            |
|------------|---------------------|
| 0xcc000180 | PLL1_DIVIDE_CJ      |
| 0xcc000184 | PLL1_INVERT_CJ      |
| 0xcc000280 | PLL1_FAMILY_ID      |
| 0xcc000284 | PLL1_FORM_ID        |
| 0xcc000288 | PLL1_REVISION_ID    |
| 0xcc00028c | PLL1_INSTANCE_ID    |
| 0xcc0002b8 | PLL1_MTR_SELECT     |
| 0xcc0002bc | PLL1_MTR_EDGES      |
| 0xcc0002c0 | PLL1_RES_EX         |
| 0xcc0002c4 | PLL1_PUNC_MP        |
| 0xcc0002cc | PLL1_MTR_PERIOD     |
| 0xcc0002d0 | PLL1_GREATEST_MP    |
| 0xcc0002d4 | PLL1_GREATEST_MP_\$ |
| 0xcc0002d8 | PLL1_SMALLEST_MP    |
| 0xcc0002dc | PLL1_SMALLEST_MP_\$ |
| 0xcc000300 | PLL1_TICK_RATE      |
| 0xcc000304 | PLL1_TURN_RATE      |
| 0xcc000308 | PLL1_MAIN_STATUS    |
| 0xcc00030c | PLL1_MAIN_STATUS_\$ |
| 0xcc000320 | PLL1_DETECT_R       |
| 0xcc000324 | PLL1_DETECT_F       |
| 0xcc000328 | PLL1_STICKY_BITS    |
| 0xcc00032c | PLL1_STICKY_BITS_\$ |
| 0xcc000350 | PLL1_IRQ_ENABLES    |
| 0xcc00038c | PLL1_NCO_PERIOD     |
| 0xcc000390 | PLL1_GREATEST_NP    |
| 0xcc000394 | PLL1_GREATEST_NP_\$ |
| 0xcc000398 | PLL1_SMALLEST_NP    |
| 0xcc00039c | PLL1_SMALLEST_NP_\$ |
| 0xcc0003d8 | PLL1_GPI            |
| 0xcc0003e0 | PLL1_CONFIG_AC      |
| 0xcc0003f0 | PLL1_SHUTDOWN_M     |
| 0xcc0003f4 | PLL1_SHUTDOWN_I     |
| 0xcc0001f8 | PLL1_SHUTDOWN_E     |

 Table 50: Jet<sup>TM</sup> PLL Memory Map

## 5.4 AES Receivers

The DICE TCD22xx contains 4 independent, fully compliant AES/EBU Receivers. The main features of these receivers are:

- Handling / buffering (4 layers) of up to 8 channels of audio and control data.
- Handling of CS/USER bits through both memory-mapping and AM824 format. First 4 bytes of CS from each channel and one full block of Channel Status from a selected channel can be accessed by the ARM. User bits from all 8 channels are serially output and can be routed to relevant transmitter modules.
- Slipped sample detection in case of differences in clock rate of the incoming data compared to the clock of the interfacing system
- Slipped sample detection in case of phase/frequency differences between the AES input chosen to be clock master and other AES inputs.
- Memory-mapped error/lock indication.

### 5.4.1 Signal Description

AES receives data from AUDIO ports depending on configuration (see 4.1.1)

### 5.4.2 Module Configuration

| Address                   | Register         |
|---------------------------|------------------|
| 0xce02 0000               | CTRL             |
| 0xce02 0004               | STAT_ALL         |
| 0xce02 0008               | STAT_RX0         |
| 0xce02 000c               | STAT_RX1         |
| 0xce02 0010               | STAT_RX2         |
| 0xce02 0014               | STAT_RX3         |
| 0xce02 0018               | V_BIT            |
| 0xce02 0040               | PLL_PULSE_WIDTH  |
| 0xce02 0044               | FORCE_VCO        |
| 0xce02 0048               | VCO_MIN_LSB      |
| 0xce02 004c               | VCO_MIN_MSB      |
| 0xce02 0080               | CHSTAT_0_BYTE0   |
| 0xce02 0084               | CHSTAT_0_BYTE1   |
| 0xce02 0088               | CHSTAT_0_BYTE2   |
| 0xce02 008c               | CHSTAT_0_BYTE3   |
| 0xce02 0090 - 0xce02 009c | CHSTAT_1_BYTE0-3 |
| 0xce02 00a0 - 0xce02 00ac | CHSTAT_2_BYTE0-3 |
| 0xce02 00b0 - 0xce02 00bc | CHSTAT_3_BYTE0-3 |
| 0xce02 00c0 - 0xce02 00cc | CHSTAT_4_BYTE0-3 |
| 0xce02 00d0 - 0xce02 00dc | CHSTAT_5_BYTE0-3 |
| 0xce02 00e0 - 0xce02 00ec | CHSTAT_6_BYTE0-3 |

| Address                   | Register             |
|---------------------------|----------------------|
| 0xce02 00f0 - 0xce02 00fc | CHSTAT_7_BYTE0-3     |
| 0xce02 0100 – 0xce02 015c | CHSTAT_FULL_BYTE0-23 |

### Table 51: AES Receiver Memory Map

Note that all registers are 8 bits wide aligned to 32 bit word addresses. The upper 24 bits of the data will be ignored and will be read as '0'.

### 5.4.3 CTRL

Address - 0xce02 0000

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7  | 6      | 5 | 4       | 3            | 2   | 1    | 0   |
|--------|----|----|----|----|---------|----|---|---|----|--------|---|---------|--------------|-----|------|-----|
|        |    |    |    | R  | eserved |    |   |   | N  | MASTER | R | eserved | Dual<br>Wire |     | CSCH |     |
| Reset: | 0  | 0  | 0  | 0  | 0       | 0  | 0 | 0 | 0  | 0      | 0 | 0       | 0            | 0   | 0    | 0   |
|        | в  | Р  | Р  | D  | P       | D  | P | Р | DW | DW/    | Р | P       | Р            | DW/ | DW/  | DW/ |

| Name      | Bit | Reset | Dir | Description                                              |
|-----------|-----|-------|-----|----------------------------------------------------------|
| MASTER    | 7:6 | 0     | RW  | Selects the master receiver.                             |
| DUAL WIRE | 3   | 0     | RW  | 1'b0 – Single wire mode<br>1'b1 – Dual wire mode         |
| CSCH      | 2:0 | 0     | RW  | Selects the channel to receive full Channel Status from. |

## 5.4.4 STAT\_ALL

Address - 0xce02 0004

|        | 15 | 14 | 13 | 12   | 11   | 10 | 9 | 8 | 7    | 6   | 5   | 4 | 3 | 2        | 1 | 0 |
|--------|----|----|----|------|------|----|---|---|------|-----|-----|---|---|----------|---|---|
|        |    |    |    | Rese | rved |    |   |   | OU_R | U_R | O_R |   |   | Reserved |   |   |
| Reset: | 0  | 0  | 0  | 0    | 0    | 0  | 0 | 0 | 0    | 0   | 0   | 0 | 0 | 0        | 0 | 0 |
|        | R  | R  | R  | R    | R    | R  | R | R | R    | R   | R   | R | R | R        | R | R |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                   |
|------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OU_R | 7   | 0     | R   | An or'ed function of O_R and U_R and therefore indicates that a<br>slipped sample or resampling condition has occurred.                                                                                                                                                                       |
| U_R  | 6   | 0     | R   | Indicates resampling that typically happen when the system 1FS is<br>faster than 1FS from the master receiver. Can also be due to jitter and<br>phase differences between the router 1FS and 1FS from master<br>receiver.<br>This bit is sticky and will be cleared immediately after a read. |
| 0_R  | 5   | 0     | R   | Indicates slipped sample which typically happen when the system 1FS is slower than 1FS from the master receiver. Can also be due to jitter and phase differences between router 1FS and 1FS from master receiver.<br>This bit is sticky and will be cleared immediately after a read.         |

## 5.4.5 STAT\_RXn

#### Address - 0xce02 0008 - 0xce02 0014

|        | 15 | 14 | 13 | 12  | 11    | 10 | 9 | 8 | 7    | 6   | 5   | 4   | 3    | 2   | 1     | 0    |
|--------|----|----|----|-----|-------|----|---|---|------|-----|-----|-----|------|-----|-------|------|
|        |    |    |    | Res | erved |    |   |   | OU_R | U_R | O_R | VAL | PRTY | CRC | NLOCK | LOCK |
| Reset: | 0  | 0  | 0  | 0   | 0     | 0  | 0 | 0 | 0    | 0   | 0   | 0   | 0    | 0   | 0     | 0    |
|        | R  | R  | R  | R   | R     | R  | R | R | R    | R   | R   | R   | R    | R   | R     | R    |

| Name  | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                               |
|-------|-----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OU_R  | 7   | 0     | R   | An or'ed function of O_R and U_R and therefore indicates that a<br>slipped sample or resampling condition has occurred.                                                                                                                                                                                                                   |
| U_R   | 6   | 0     | R   | Indicates resampling from a specific receiver. Typically caused by jitter and phase differences between the failing receiver and the master receiver. Can also be due to a very small difference in sample rate between failing receiver and the master receiver. This bit is sticky and will be cleared immediately after a read.        |
| O_R   | 5   | 0     | R   | Indicates slipped sample from a specific receiver. Typically caused by jitter and phase differences between the failing receiver and the master receiver. Can also be due to a very small difference in sample rate between failing receiver and the master receiver.<br>This bit is sticky and will be cleared immediately after a read. |
| VAL   | 4   | 0     | R   | Indicates that the v bit has been detected as a 1 in either of the channels in the receiver since last time the register was read. This bit is sticky and will be cleared immediately after a read.                                                                                                                                       |
| PRTY  | 3   | 0     | R   | Indicates that a parity error has been detected in either of the channels in the receiver since last time the register was read. This bit is sticky and will be cleared immediately after a read.                                                                                                                                         |
| CRC   | 2   | 0     | R   | Indicates that a crc error has been detected in either of the channels<br>in Receiver X since last time the register was read.<br>This bit is sticky and will be cleared immediately after a read.                                                                                                                                        |
| NLOCK | 1   | 0     | R   | Indicates that Receiver X has been out of lock since last time the register was read.<br>This bit is sticky and will be cleared immediately after a read.                                                                                                                                                                                 |
| LOCK  | 0   | 0     | R   | Indicates whether or not the receiver is currently locked.                                                                                                                                                                                                                                                                                |

# 5.4.6 V\_BIT



| Name  | Bit | Reset | Dir | Description                 |
|-------|-----|-------|-----|-----------------------------|
| V_BIT | 7:0 | 0     | RW  | V-bits for AES channels 7-0 |

### 5.4.7 PLL\_PULSE\_WIDTH

Address - 0xce02 0040

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

| Reserved | UP_PULSE_WIDTH | DOWN_PULSE_WIDTH |
|----------|----------------|------------------|
|          |                |                  |

| Res              | et:            | 0  | 0    | 0   | 0   | 0    | 0  | 0                                                                                                    | 0                                                                                                | 0       | 0  | 0  | 0  | 0  | 0  | 0    | 0  |  |
|------------------|----------------|----|------|-----|-----|------|----|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|----|----|----|----|----|------|----|--|
|                  |                | RW | RW   | RW  | RW  | RW   | RW | RW                                                                                                   | RW                                                                                               | RW      | RW | RW | RW | RW | RW | RW   | RW |  |
|                  |                |    |      |     |     |      |    |                                                                                                      |                                                                                                  |         |    |    |    |    |    |      |    |  |
| Na               | ame            |    |      |     | Bit | Rese | t  | Dir                                                                                                  | Descr                                                                                            | ription |    |    |    |    |    |      |    |  |
| U                | UP_PULSE_WIDTH |    |      |     | 7:4 | 0    |    | RW                                                                                                   | Up Pulse Width 1 – 16 cycles wide. Sets the width of the up signal when receiver is out of lock. |         |    |    |    |    |    | e up |    |  |
| DOWN_PULSE_WIDTH |                |    | IDTH | 3:0 | 0   |      | RW | Down Pulse Width 1 – 16 cycles wide. Sets the width of the down signal when receiver is out of lock. |                                                                                                  |         |    |    |    |    |    |      |    |  |
|                  |                |    |      |     |     |      |    |                                                                                                      |                                                                                                  |         |    |    |    |    |    |      |    |  |

# 5.4.8 FORCE\_VCO

Address - 0xce02 0044

|        | 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1            | 0                  |
|--------|----|----|----|----|----|----|------|------|----|----|----|----|----|----|--------------|--------------------|
|        |    |    |    |    |    |    | Rese | rved |    |    |    |    |    |    | FORCE<br>_UP | FORCE<br>_DOW<br>N |
| Reset: | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0            | 0                  |
|        | RW   | RW   | RW | RW | RW | RW | RW | RW | RW           | RW                 |
|        |    |    |    |    |    |    |      |      |    |    |    |    |    |    |              |                    |

| Name       | Bit | Reset | Dir | Description         |
|------------|-----|-------|-----|---------------------|
| FORCE_UP   | 1   | 0     | RW  | AES VCO force up.   |
| FORCE_DOWN | 0   | 0     | RW  | AES VCO force down. |

## 5.4.9 VCO\_MIN\_LSB

Address - 0xce02 0048

|        | 15 | 14 | 13 | 12 | 11     | 10 | 9  | 8  | 7  | 6  | 5  | 4     | 3        | 2  | 1  | 0  |
|--------|----|----|----|----|--------|----|----|----|----|----|----|-------|----------|----|----|----|
|        |    |    |    | Re | served |    |    |    |    |    |    | MIN_I | FREQ_LSB |    |    |    |
| Reset: | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0        | 0  | 0  | 0  |
|        | RW | RW | RW | RW | RW     | RW | RW | RW | RW | RW | RW | RW    | RW       | RW | RW | RW |

| Name         | Bit | Reset | Dir | Description                                                                                                                            |
|--------------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| MIN_FREQ_LSB | 7:4 | 0     | RW  | 8 LSB's for setting minimum frequency on VCO.<br>Minimum VCO Sample frequency (1FS) =<br>ARM System clock (typ. 49.152MHz) / [MSB,LSB] |

# 5.4.10 VCO\_MIN\_MSB

Address - 0xce02 004c

|        | 15    | 14                       | 13  | 12  | 11    | 10 | 9                 | 8                             | 7                                                                                                            | 6  | 5  | 4       | 3      | 2  | 1  | 0  |  |
|--------|-------|--------------------------|-----|-----|-------|----|-------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------|----|----|---------|--------|----|----|----|--|
|        |       |                          |     | Res | erved |    |                   |                               |                                                                                                              |    |    | MIN_FRI | EQ_MSB |    |    |    |  |
| Reset: | 0     | 0                        | 0   | 0   | 0     | 0  | 0                 | 0                             | 0                                                                                                            | 0  | 0  | 0       | 0      | 0  | 0  | 0  |  |
|        | RW    | RW                       | RW  | RW  | RW    | RW | RW                | RW                            | RW                                                                                                           | RW | RW | RW      | RW     | RW | RW | RW |  |
|        |       |                          |     |     |       |    |                   |                               |                                                                                                              |    |    |         |        |    |    |    |  |
| Name   | 9     | e Bit Reset Dir Descript |     |     |       |    |                   |                               | in                                                                                                           |    |    |         |        |    |    |    |  |
| MIN_   | FREQ_ | MSB                      | 3:0 | 0   |       | RW | 8 M<br>Min<br>ARI | SB's fo<br>imum \<br>VI Syste | r setting minimum frequency on VCO.<br>/CO Sample frequency (1FS) =<br>em clock (typ. 49.152MHz) / [MSB,LSB] |    |    |         |        |    |    |    |  |
|        |       |                          |     |     |       |    |                   |                               |                                                                                                              |    |    |         |        |    |    |    |  |

### 5.4.11 CHSTAT\_n\_BYTE0-3

0xce02 0080 - 0xce02 008c

The four bytes represents the first 32 bits of channel status for channel n. BYTE0 bit 0 corresponds to CS bit 0 and BYTE3 bit 7 corresponds to CS bit 31.

## 5.4.12 CHSTAT\_FULL\_BYTE0-23

0xce02 0100 - 0xce02 015c

The 24 bytes represent the full 192 bits of channel status for the channel selected by CSCH in the CTRL register. BYTE0 bit 0 corresponds to CS bit 0 and BYTE23 bit 7 corresponds to CS bit 191.

## 5.5 AES Transmitters

The DICE TCD22xx contains 4 independent, fully compliant AES/EBU transmitters. The main features of these transmitters are:

- Sampling and buffering of up to 8 channels of audio to be transmitted at a common sample rate.
- Transmission of Channel Status (CS) bits from either memory mapped bits (master mode) or through AM824 frames (slave mode).
- Individual setting for each channel of first 4 bytes of Channel Status (master mode)
- U bit directly sourced from a selected AES Receiver channel (master mode) or from AM824 frames (slave mode).

For a given channel, block sync can be configured to be generated internally (free running), or synchronized to an external source. Note that the particular external source is selected by the BLKCTRL register described in the section titled Clock Controller. Block sync is used as the synchronization signal for the CS information, defining the beginning and end of each CS block.

## 5.5.1 Signal Description

AES transmits through AUDIO Ports, for usage & configuration please see 4.1.2

### 5.5.2 Module Configuration

| Address                   | Register         |
|---------------------------|------------------|
|                           |                  |
| 0xce03 0000               | MODE_SEL         |
| 0xce03 0004               | CBL_SEL          |
| 0xce03 0008               | CS_SEL0          |
| 0xce03 000c               | CS_SEL1          |
| 0xce03 0010               | CS_SEL2          |
| 0xce03 0014               | MUTE             |
| 0xce03 0018               | V_BIT            |
| 0xce03 0040               | USR_SEL0         |
| 0xce03 0044               | USR_SEL1         |
| 0xce03 0048               | USR_SEL2         |
| 0xce03 004c               | USR_SEL3         |
| 0xce03 0080               | CHSTAT_0_BYTE0   |
| 0xce03 0084               | CHSTAT_0_BYTE1   |
| 0xce03 0088               | CHSTAT_0_BYTE2   |
| 0xce03 008c               | CHSTAT_0_BYTE3   |
| 0xce03 0090 - 0xce03 009c | CHSTAT_1_BYTE0-3 |
| 0xce03 00a0 - 0xce03 00ac | CHSTAT_2_BYTE0-3 |
| 0xce03 00b0 - 0xce03 00bc | CHSTAT_3_BYTE0-3 |
| 0xce03 00c0 - 0xce03 00cc | CHSTAT_4_BYTE0-3 |
| 0xce03 00d0 - 0xce03 00dc | CHSTAT_5_BYTE0-3 |

| Address                   | Register             |
|---------------------------|----------------------|
| 0xce03 00e0 - 0xce03 00ec | CHSTAT_6_BYTE0-3     |
| 0xce03 00f0 - 0xce03 00fc | CHSTAT_7_BYTE0-3     |
| 0xce03 0100 – 0xce03 015c | CHSTAT_FULL_BYTE0-23 |

### Table 52: AES Transmitter Memory Map

### 5.5.3 MODE\_SEL

Address - 0xce03 0000

|        | 15                                                                                                                | 14 | 13  | 12 | 11      | 10  | 9                                                                                                                                                                                                | 8                                                                                  | 7                             | 6                         | 5        | 4     | 3 | 2        | 1            | 0    |   |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------|----|-----|----|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|---------------------------|----------|-------|---|----------|--------------|------|---|--|--|
|        |                                                                                                                   |    |     | R  | eserved |     |                                                                                                                                                                                                  |                                                                                    | CRC4                          | CRC3                      | CRC2     | CRC1  |   | Reserved | Dual<br>Wire | MSTR |   |  |  |
| Reset: | 0                                                                                                                 | 0  | 0   | 0  | 0       | 0   | 0                                                                                                                                                                                                | 0                                                                                  | 0                             | 0                         | 0        | 0     | 0 | 0        | 0            | 0    | • |  |  |
|        | R                                                                                                                 | R  | R   | R  | R       | R   | R                                                                                                                                                                                                | R                                                                                  | RW                            | RW                        | RW       | RW    | R | R        | R            | RW   |   |  |  |
| Name   | )                                                                                                                 |    | Bit | R  | eset    | Dir | D                                                                                                                                                                                                | escriptio                                                                          | n                             |                           |          |       |   |          |              |      |   |  |  |
| CRC4   | 1                                                                                                                 |    | 7   | 0  |         | RW  | E<br>0:<br>1:                                                                                                                                                                                    | Enables auto CRC for transmitter 4.<br>0: Auto CRC Enabled<br>1: Auto CRC Disabled |                               |                           |          |       |   |          |              |      |   |  |  |
| CRC    | 6 0 RW Enables auto CRC for transmitter 3.<br>0: Auto CRC Enabled<br>1: Auto CRC Disabled<br>1: Auto CRC Disabled |    |     |    |         |     |                                                                                                                                                                                                  |                                                                                    |                               |                           |          |       |   |          |              |      |   |  |  |
| CRC2   | 2                                                                                                                 |    | 5   | 0  |         | RW  | E<br>0:<br>1:                                                                                                                                                                                    | nables a<br>Auto Cl<br>Auto Cl                                                     | uto CR(<br>RC Enal<br>RC Disa | C for tra<br>bled<br>bled | ansmitte | er 2. |   |          |              |      |   |  |  |
| CRC1   |                                                                                                                   |    | 4   | 0  |         | RW  | E<br>0:<br>1:                                                                                                                                                                                    | nables a<br>Auto Cl<br>Auto Cl                                                     | uto CR(<br>RC Enal<br>RC Disa | C for tra<br>bled<br>bled | ansmitte | er 1. |   |          |              |      |   |  |  |
| Dual   | Wire                                                                                                              |    | 1   | 0  |         | RW  | Dual Wire Mode Enable/Disable<br>0: Disabled<br>1: Enabled                                                                                                                                       |                                                                                    |                               |                           |          |       |   |          |              |      |   |  |  |
| MSTR   | २                                                                                                                 |    | 0   | 0  |         | RW  | <ul> <li>W Selects the transmitter mode. Refer to 5.5</li> <li>0: Master (only 24 bits from the audio stream is used)</li> <li>1: Slave (upper bits can be used for sync, U, C and V)</li> </ul> |                                                                                    |                               |                           |          |       |   |          |              |      |   |  |  |

## 5.5.4 CBL\_SEL

Address - 0xce03 0004

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7  | 6  | 5      | 4  | 3  | 2   | 1      | 0  |
|--------|----|----|----|----|---------|----|---|---|----|----|--------|----|----|-----|--------|----|
|        |    |    |    | R  | eserved |    |   |   |    | CB | L_MSTR |    |    | CBL | _SLAVE |    |
| Reset: | 0  | 0  | 0  | 0  | 0       | 0  | 0 | 0 | 0  | 0  | 0      | 0  | 0  | 0   | 0      | 0  |
|        | R  | R  | R  | R  | R       | R  | R | R | RW | RW | RW     | RW | RW | RW  | RW     | RW |

| Name      | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CBL_MSTR  | 7:4 | 0     | RW  | Selects the Block Sync source in master mode.<br>0000: Internal CBL (free running)<br>0001: External CBL (Selected in Clock Controller)<br>xxxx: All other values are reserved                                                                                                                                                                                                                                                     |
| CBL_SLAVE | 3:0 | 0     | RW  | Selects the Block Sync in slave mode. The block sync is extracted<br>from the AM824 defined frame (bit 29).<br>0000: CBL from audio channel 0<br>0001: CBL from audio channel 1<br>0010: CBL from audio channel 2<br>0011: CBL from audio channel 3<br>0100: CBL from audio channel 4<br>0101: CBL from audio channel 5<br>0110: CBL from audio channel 6<br>0111: CBL from audio channel 7<br>xxxx: All other values are reserved |

## 5.5.5 CS\_SEL0

Address - 0xce03 0008

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7  | 6   | 5  | 4   | 3  | 2   | 1  | 0   |
|--------|----|----|----|----|---------|----|---|---|----|-----|----|-----|----|-----|----|-----|
|        |    |    |    | R  | eserved |    |   |   |    | СНЗ |    | CH2 |    | CH1 |    | CH0 |
| Reset: | 0  | 0  | 0  | 0  | 0       | 0  | 0 | 0 | 0  | 0   | 0  | 0   | 0  | 0   | 0  | 0   |
|        | R  | R  | R  | R  | R       | R  | R | R | RW | RW  | RW | RW  | RW | RW  | RW | RW  |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                            |
|------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СНЗ  | 7:6 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 3<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |
| CH2  | 5:4 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 2<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |
| CH1  | 3:2 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 1<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                            |
|------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СНО  | 1:0 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 0<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |

## 5.5.6 CS\_SEL1

Address - 0xce03 000c

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7  | 6   | 5  | 4   | 3  | 2   | 1  | 0   |
|--------|----|----|----|----|---------|----|---|---|----|-----|----|-----|----|-----|----|-----|
|        |    |    |    | R  | eserved |    |   |   |    | CH7 |    | CH6 |    | CH5 |    | CH4 |
| Reset: | 0  | 0  | 0  | 0  | 0       | 0  | 0 | 0 | 0  | 0   | 0  | 0   | 0  | 0   | 0  | 0   |
|        | R  | R  | R  | R  | R       | R  | R | R | RW | RW  | RW | RW  | RW | RW  | RW | RW  |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                            |
|------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH7  | 7:6 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 7<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |
| CH6  | 5:4 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 6<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |
| CH5  | 3:2 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 5<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |
| CH4  | 1:0 | 0     | RW  | Selects the Channel Status source in slave mode.<br>00: From bit 26 in audio channel 4<br>01: From bit 26 in audio channel selected by CBL_SLAVE<br>10: From Memory mapped CS registers defined below.<br>11: reserved |

## 5.5.7 CS\_SEL2

### 0xce03 0010

When the memory mapped Channel Status mode is selected for a channel, the first 4 channel status bytes (bit 0-31) can come from either a common memory mapped file or an individual per channel file. The remaining 20 bytes (bit 32-192) are always defined by the common file.

|         | 15 | 14 | 13  | 12 | 11       | 10  | 9 | 8                     | 7                  | 6      | 5        | 4        | 3         | 2   | 1   | 0   |
|---------|----|----|-----|----|----------|-----|---|-----------------------|--------------------|--------|----------|----------|-----------|-----|-----|-----|
|         |    |    |     | R  | teserved |     |   |                       | CH7                | CH6    | CH5      | CH4      | CH3       | CH2 | CH1 | CH0 |
| Reset:  | 0  | 0  | 0   | 0  | 0        | 0   | 0 | 0                     | 0                  | 0      | 0        | 0        | 0         | 0   | 0   | 0   |
|         | R  | R  | R   | R  | R        | R   | R | R                     | RW                 | RW     | RW       | RW       | RW        | RW  | RW  | RW  |
|         |    |    |     |    |          |     |   |                       |                    |        |          |          |           |     |     |     |
| Name    | 9  |    | Bit | R  | eset     | Dir | 0 | Descriptio            | า                  |        |          |          |           |     |     |     |
| CH7     |    |    | 7   | 0  |          | RW  | S | Selects Me            | emory r            | napped | CS so    | urce for | bit 0-3   | 1.  |     |     |
|         |    |    |     |    |          |     | 1 | : Individu<br>: Commo | al file.<br>n file |        |          |          |           |     |     |     |
| CH6     |    |    | 6   | 0  |          | RW  | S | Selects Me            | emory r            | napped | CS so    | urce for | · bit 0-3 | 1.  |     |     |
|         |    |    |     |    |          |     | 1 | : Individu<br>: Commo | ai file.<br>n file |        |          |          |           |     |     |     |
| CH5     |    |    | 5   | 0  |          | RW  | S | Selects Me            | emory r            | mapped | CS so    | urce for | · bit 0-3 | 1.  |     |     |
|         |    |    |     |    |          |     | 1 | : Individu<br>: Commo | ai file.<br>n file |        |          |          |           |     |     |     |
| CH4     |    |    | 4   | 0  |          | RW  | S | Selects Me            | emory r            | napped | CS so    | urce for | · bit 0-3 | 1.  |     |     |
|         |    |    |     |    |          |     | 1 | : Individu<br>: Commo | al file.<br>n file |        |          |          |           |     |     |     |
| CH3     |    |    | 3   | 0  |          | RW  | S | Selects Me            | emory r            | napped | CS so    | urce for | · bit 0-3 | 1.  |     |     |
|         |    |    |     |    |          |     | C | ): Individu           | al file.           |        |          |          |           |     |     |     |
| <u></u> |    |    |     |    |          |     | 1 | : Commo               | n file             | mannad | <u> </u> | uraa fai | hit 0 2   | 4   |     |     |
| CHZ     |    |    | Z   | 0  |          | RVV |   | Selects ivie          | al filo            | napped | CS 50    | lice ioi | DIL 0-3   | 1.  |     |     |
|         |    |    |     |    |          |     | 1 | : Commo               | n file             |        |          |          |           |     |     |     |
| CH1     |    |    | 1   | 0  |          | RW  | ę | Selects Me            | emory r            | napped | CS sou   | urce for | · bit 0-3 | 1.  |     |     |
|         |    |    |     |    |          |     | C | ): Individu           | al file.           |        |          |          |           |     |     |     |
|         |    |    |     |    |          |     | 1 | : Commo               | n file             |        |          |          |           |     |     |     |
| CH0     |    |    | 0   | 0  |          | RW  | 5 | Selects Me            | emory r            | napped | CS sou   | urce for | bit 0-3   | 1.  |     |     |
|         |    |    |     |    |          |     | C | ): Individu           | al file.           |        |          |          |           |     |     |     |
|         |    |    |     |    |          |     |   | . Commo               | nine               |        |          |          |           |     |     |     |

## 5.5.8 MUTE

Address - 0xce03 0014

|        | 15      | 14 | 13  | 12 | 11       | 10  | 9 | 8                                     | 7                           | 6                            | 5                           | 4                          | 3                 | 2                   | 1                  | 0                    |        |
|--------|---------|----|-----|----|----------|-----|---|---------------------------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|-------------------|---------------------|--------------------|----------------------|--------|
|        |         |    |     | I  | Reserved |     |   |                                       |                             |                              |                             | ML                         | ITE 0-7           |                     |                    |                      |        |
| Reset: |         |    |     |    | 0        |     |   |                                       |                             |                              |                             |                            | 0xFF              |                     |                    |                      |        |
|        |         |    |     |    | RW       |     |   |                                       |                             |                              |                             |                            | RW                |                     |                    |                      |        |
|        |         |    |     |    |          |     |   |                                       |                             |                              |                             |                            |                   |                     |                    |                      |        |
| Name   | e       |    | Bit | R  | leset    | Dir |   | Descriptio                            | n                           |                              |                             |                            |                   |                     |                    |                      |        |
| MUTI   | E 0 - 7 |    | 7:0 | 0  |          | RW  |   | One bit fo<br>muted (a<br>is that all | or ea<br>III bits<br>I char | ch cha<br>s zero)<br>nnels a | nnel se<br>or not<br>re mut | elects v<br>. Defa<br>.ed. | vhethe<br>ult cor | er the a<br>nfigura | audio s<br>tion af | should b<br>ter rese | e<br>t |
|        |         |    |     |    |          |     |   | <b>0</b> = Char                       | nnel r                      | not mu                       | ted.                        |                            |                   |                     |                    |                      |        |
|        |         |    |     |    |          |     |   | <b>1</b> = Char                       | nnel r                      | nuted.                       |                             |                            |                   |                     |                    |                      |        |

## 5.5.9 V\_BIT

Address - 0xce03 0018

|        | 15 | 14 | 13 | 12   | 11   | 10 | 9  | 8  | 7  | 6  | 5  | 4     | 3     | 2  | 1  | 0  |
|--------|----|----|----|------|------|----|----|----|----|----|----|-------|-------|----|----|----|
|        |    |    |    | Rese | rved |    |    |    |    |    |    | V_BIT | 0 - 7 |    |    |    |
| Reset: | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  |
|        | RW | RW | RW | RW   | RW   | RW | RW | RW | RW | RW | RW | RW    | RW    | RW | RW | RW |

| Name        | Bit | Reset | Dir | Description                                                                                                                                                                |
|-------------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V_BIT 0 - 7 | 7:0 | 0     | RW  | One bit for each channel selects whether the V bit should indicate valid audio (V=0) or invalid audio (V=1). Default configuration after reset is to indicate valid audio. |
|             |     |       |     | <b>0</b> = Audio valid.                                                                                                                                                    |
|             |     |       |     | 1 = Audio invalid.                                                                                                                                                         |

## 5.5.10 USR\_SEL0

Address - 0xce03 0040

|        | 15 | 14  | 13    | 12 | 11       | 10           | 9             | 8            | 7             | 6       | 5       | 4         | 3      | 2       | 1       | 0      |
|--------|----|-----|-------|----|----------|--------------|---------------|--------------|---------------|---------|---------|-----------|--------|---------|---------|--------|
|        |    |     |       |    | Reserved |              |               |              |               |         | USR1    |           |        |         | USR0    |        |
| Reset: | 0  | 0   | 0     | 0  | 0        | 0            | 0             | 0            | 0             | 0       | 0       | 0         | 0      | 0       | 0       | 0      |
|        | R  | R   | R     | R  | R        | R            | R             | R            | RW            | RW      | RW      | RW        | RW     | RW      | RW      | RW     |
|        |    |     |       |    |          |              |               |              |               |         |         |           |        |         |         |        |
| Name   | •  | Bit | Reset | t  | Dir      | Desci        | ription       |              |               |         |         |           |        |         |         |        |
| USR1   |    | 7:4 | 0     |    | RW       | 4 bits       | s for e       | each ch      | annel         | selects | s the U | SER bit   | sour   | ce.     |         |        |
|        |    |     |       |    |          | <u>Slave</u> | e mod         | e:           |               |         |         |           |        |         |         |        |
|        |    |     |       |    |          | 0xxx         | <b>c</b> = US | SER bit      | from          | Audio   | registe | r file (s | ame a  | as aud  | io data | a).    |
|        |    |     |       |    |          | 1xxx         | <b>c</b> = U  | SER bit      | set to        | 0       |         |           |        |         |         |        |
|        |    |     |       |    |          | Mast         | er mo         | de:          |               |         |         |           |        |         |         |        |
|        |    |     |       |    |          | 0nnr         | <b>1</b> = U  | SER bit      | from          | AES R   | eceiver | · chann   | el nni | n       |         |        |
|        |    |     |       |    |          | chan         | nel 7)        | (nnn =       | "000″         | ′ => R  | x chan  | nel 0, .  | , n    | nn = "  | 111″ =  | => Rx  |
|        |    |     |       |    |          | 10nr         | <b>1</b> = U  | SER bit      | from          | AVS R   | eceivei | r nn      |        |         |         |        |
|        |    |     |       |    |          |              |               | (nn = `      | 00″ =         | > AVS   | Rx 0,   | , nı      | า = "1 | 1″ =>   | AVS F   | Rx 3). |
|        |    |     |       |    |          | 11x)         | <b>c</b> = U  | 、<br>SER bit | set to        | 0       |         | ·         |        |         |         | ,      |
|        |    |     |       |    |          |              |               |              |               |         |         |           |        |         |         |        |
| USRO   | )  | 3:0 | 0     |    | RW       | 4 bits       | s for e       | each ch      | annel         | selects | s the U | SER bit   | sour   | ce.     |         |        |
|        |    |     |       |    |          | Slave        | e mod         | <u>e:</u>    |               |         |         |           |        |         |         |        |
|        |    |     |       |    |          | <b>0</b> xxx | <b>c</b> = US | SER bit      | from          | Audio   | registe | r file (s | ame a  | as aud  | io data | a).    |
|        |    |     |       |    |          | 1xxx         | <b>c</b> = U  | SER bit      | set to        | 0       |         |           |        |         |         |        |
|        |    |     |       |    |          | Mast         | er mo         | de:          |               |         |         |           |        |         |         |        |
|        |    |     |       |    |          | 0nnr         | <b>1</b> = U  | SER bit      | from          | AES R   | eceiver | · chann   | el nni | n       |         |        |
|        |    |     |       |    |          | chan         | nel 7)        | (nnn =       | "000 <i>"</i> | ′ => R  | x chan  | nel 0, .  | , n    | inn = " | 111″ =  | => Rx  |
|        |    |     |       |    |          | 10nr         | <b>1 =</b> U  | SER bit      | from          | AVS R   | eceive  | r nn      |        |         |         |        |
|        |    |     |       |    |          |              |               | (nn = `      | `00″ =        | > AVS   | Rx 0,   | , nı      | 1 = 1  | 1" =>   | AVS F   | Rx 3). |
|        |    |     |       |    |          | 11xx         | <b>c</b> = U  | SER bit      | set to        | 0       |         |           |        |         |         |        |

## 5.5.11 USR\_SEL1

Address - 0xce03 0044

|        | 15 | 14  | 13  | 12 | 11       | 10          | 9             | 8           | 7        | 6       | 5       | 4       | 3       | 2     | 1       | 0      |
|--------|----|-----|-----|----|----------|-------------|---------------|-------------|----------|---------|---------|---------|---------|-------|---------|--------|
|        |    |     |     |    | Reserved |             |               |             |          |         | USR3    |         |         | 1     | USR2    |        |
| Reset: | 0  | 0   | 0   | 0  | 0        | 0           | 0             | 0           | 0        | 0       | 0       | 0       | 0       | 0     | 0       | 0      |
|        | R  | R   | R   | R  | R        | R           | R             | R           | RW       | RW      | RW      | RW      | RW      | RW    | RW      | RW     |
|        |    |     |     |    |          |             |               |             |          |         |         |         |         |       |         |        |
| Name   | 9  | Bit | Res | et | Dir      | Des         | scriptio      | ۱           |          |         |         |         |         |       |         |        |
| USR3   | 3  | 7:4 | 0   |    | RW       | 4 b         | its for       | each c      | hanne    | l selec | ts the  | USER I  | oit sou | rce.  |         |        |
|        |    |     |     |    |          | <u>Sla</u>  | <u>ve mo</u>  | <u>de:</u>  |          |         |         |         |         |       |         |        |
|        |    |     |     |    |          | <b>0</b> x: | <b>xx</b> = l | JSER b      | it from  | Audio   | regist  | er file | (same   | as au | dio dat | ta).   |
|        |    |     |     |    |          | <b>1</b> x: | <b>xx</b> = l | JSER b      | it set t | :o 0    |         |         |         |       |         |        |
|        |    |     |     |    |          | Ma          | <u>ster m</u> | ode:        |          |         |         |         |         |       |         |        |
|        |    |     |     |    |          | 0n          | <b>nn</b> = l | JSER b      | it from  | n AES I | Receive | er char | nnel nr | n     |         |        |
|        |    |     |     |    |          | cha         | innel 7       | (nnn<br>'). | = "000   | )" =>   | Rx cha  | nnel 0, | ,,      | nnn = | "111″   | => Rx  |
|        |    |     |     |    |          | 10          | nn = 1        | JSER b      | it from  | n AVS   | Receiv  | er nn   |         |       |         |        |
|        |    |     |     |    |          |             |               | (nn =       | "00″ :   | => AV   | S Rx 0  | ,,      | nn = "  | 11" = | > AVS   | Rx 3). |
|        |    |     |     |    |          | 11:         | <b>xx</b> = l | JSER b      | it set t | :o 0    |         |         |         |       |         |        |
| USR2   | 2  | 3:0 | 0   |    | RW       | 4 b         | its for       | each c      | hanne    | l selec | ts the  | USER ł  | oit sou | rce.  |         |        |
|        |    |     |     |    |          | <u>Sla</u>  | ve mo         | de:         |          |         |         |         |         |       |         |        |
|        |    |     |     |    |          | <b>0</b> x  | <b>xx</b> = l | JSER b      | it from  | Audio   | regist  | er file | (same   | as au | dio dat | ta).   |
|        |    |     |     |    |          | <b>1</b> x  | <b>xx</b> = l | JSER b      | it set t | :o 0    |         |         |         |       |         |        |
|        |    |     |     |    |          | Ma          | ster m        | ode:        |          |         |         |         |         |       |         |        |
|        |    |     |     |    |          | 0n          | <b>nn</b> = l | JSER b      | it from  | n AES I | Receive | er char | nnel nr | n     |         |        |
|        |    |     |     |    |          | cha         | innel 7       | (nnn<br>'). | = "000   | )″ =>   | Rx cha  | nnel 0, | ,,      | nnn = | "111″   | => Rx  |
|        |    |     |     |    |          | 10          | nn = 1        | JSER b      | it from  | n AVS   | Receiv  | er nn   |         |       |         |        |
|        |    |     |     |    |          |             |               | (nn =       | "00″ :   | => AV   | S Rx 0  | ,,      | nn = "  | 11" = | > AVS   | Rx 3). |
|        |    |     |     |    |          | 11          | <b>xx</b> = ι | JSER b      | it set t | :o 0    |         |         |         |       |         |        |
|        |    |     |     |    |          |             |               |             |          |         |         |         |         |       |         |        |

## 5.5.12 USR\_SEL2

Address - 0xce03 0048

|                                                       | 15 | 14  | 13    | 12 | 11       | 10           | 9            | 8            | 7                  | 6      | 5              | 4        | 3      | 2       | 1        | 0      |
|-------------------------------------------------------|----|-----|-------|----|----------|--------------|--------------|--------------|--------------------|--------|----------------|----------|--------|---------|----------|--------|
|                                                       |    |     |       |    | Reserved |              |              |              |                    |        | USR5           |          |        |         | USR4     |        |
| Reset:                                                | 0  | 0   | 0     | 0  | 0        | 0            | 0            | 0            | 0                  | 0      | 0              | 0        | 0      | 0       | 0        | 0      |
|                                                       | R  | R   | R     | R  | R        | R            | R            | R            | RW                 | RW     | RW             | RW       | RW     | RW      | RW       | RW     |
|                                                       |    |     |       |    |          |              |              |              |                    |        |                |          |        |         |          |        |
| Name                                                  | Э  | Bit | Reset | t  | Dir      | Desc         | ription      |              |                    |        |                |          |        |         |          |        |
| USR5                                                  | 5  | 7:4 | 0     |    | RW       | 4 bit        | s for (      | each ch      | nannel             | select | s the L        | ISER bi  | t sour | ce.     |          |        |
|                                                       |    |     |       |    |          | Slave        | e moo        | <u>le:</u>   |                    |        |                |          |        |         |          |        |
|                                                       |    |     |       |    |          | <b>0</b> xxx | <b>c</b> = U | SER bit      | from               | Audio  | registe        | r file ( | same   | as aud  | lio data | a).    |
|                                                       |    |     |       |    |          | <b>1</b> xxx | <b>«</b> = U | SER bit      | t set to           | 0      |                |          |        |         |          |        |
|                                                       |    |     |       |    |          | <u>Mast</u>  | er mo        | <u>ode:</u>  |                    |        |                |          |        |         |          |        |
|                                                       |    |     |       |    |          | 0nn          | <b>n</b> = U | SER bi       | t from             | AES R  | leceive        | r chanı  | nel nn | n       |          |        |
| (nnn = "000" => Rx channel 0,, nnn = "<br>channel 7). |    |     |       |    |          |              |              |              |                    |        | <b>`111″</b> : | => Rx    |        |         |          |        |
|                                                       |    |     |       |    |          | 10n          | n = U        | SER bi       | t from             | AVS R  | Receive        | r nn     |        |         |          |        |
|                                                       |    |     |       |    |          |              |              | (nn =        | "00 <i>"</i> =     | > AVS  | 5 Rx 0,        | , n      | n = "1 | L1" =>  | AVS I    | Rx 3). |
|                                                       |    |     |       |    |          | <b>11</b> x  | <b>x =</b> U | SER bit      | t set to           | 0      |                |          |        |         |          |        |
|                                                       |    |     |       |    |          |              |              |              |                    |        |                |          |        |         |          |        |
| USR4                                                  | 1  | 3:0 | 0     |    | RW       | 4 bit        | s for (      | each ch      | nannel             | select | s the L        | ISER bi  | t sour | ce.     |          |        |
|                                                       |    |     |       |    |          | Slave        | e moo        | <u>le:</u>   |                    |        |                |          |        |         |          |        |
|                                                       |    |     |       |    |          | <b>0</b> xx) | <b>c</b> = U | SER bit      | from .             | Audio  | registe        | r file ( | same   | as aud  | lio data | a).    |
|                                                       |    |     |       |    |          | <b>1</b> xx) | <b>«</b> = U | SER bit      | t set to           | 0      |                |          |        |         |          |        |
|                                                       |    |     |       |    |          | Mast         | er mo        | <u>ode:</u>  |                    |        |                |          |        |         |          |        |
|                                                       |    |     |       |    |          | 0nn          | <b>n</b> = U | SER bi       | t from             | AES R  | leceive        | r chanı  | nel nn | n       |          |        |
|                                                       |    |     |       |    |          | chan         | nel 7        | (nnn =<br>). | = ``000 <i>'</i> ' | ′ => R | x chan         | nel 0,   | , r    | inn = ` | `111″ :  | => Rx  |
|                                                       |    |     |       |    |          | 10n          | n = ∪        | SER bi       | t from             | AVS R  | Receive        | r nn     |        |         |          |        |
|                                                       |    |     |       |    |          |              |              | (nn =        | "00 <i>"</i> =     | > AVS  | 5 Rx 0,        | , n      | n = "1 | L1" =>  | AVS I    | Rx 3). |
|                                                       |    |     |       |    |          | <b>11x</b>   | <b>k</b> = U | SER bit      | t set to           | 0      |                |          |        |         |          |        |

## 5.5.13 USR\_SEL3

Address - 0xce03 004c

|        | 15 | 14  | 13  | 12 | 11       | 10          | 9             | 8            | 7        | 6       | 5        | 4       | 3       | 2     | 1       | 0       |
|--------|----|-----|-----|----|----------|-------------|---------------|--------------|----------|---------|----------|---------|---------|-------|---------|---------|
|        |    |     |     |    | Reserved |             |               |              |          |         | USR7     |         |         | 1     | USR6    |         |
| Reset: | 0  | 0   | 0   | 0  | 0        | 0           | 0             | 0            | 0        | 0       | 0        | 0       | 0       | 0     | 0       | 0       |
|        | R  | R   | R   | R  | R        | R           | R             | R            | RW       | RW      | RW       | RW      | RW      | RW    | RW      | RW      |
|        |    |     |     |    |          |             |               |              |          |         |          |         |         |       |         |         |
| Name   | 9  | Bit | Res | et | Dir      | Des         | cription      | า            |          |         |          |         |         |       |         |         |
| USR7   | 7  | 7:4 | 0   |    | RW       | 4 b         | its for       | each c       | hanne    | l selec | ts the   | USER b  | oit sou | rce.  |         |         |
|        |    |     |     |    |          | <u>Sla</u>  | ve mo         | <u>de:</u>   |          |         |          |         |         |       |         |         |
|        |    |     |     |    |          | <b>0</b> xx | <b>xx</b> = L | JSER b       | it from  | n Audio | o regist | er file | (same   | as au | dio dat | ta).    |
|        |    |     |     |    |          | <b>1</b> x  | <b>κχ =</b> ι | JSER b       | it set t | :0 0    |          |         |         |       |         |         |
|        |    |     |     |    |          | Mas         | ster m        | ode:         |          |         |          |         |         |       |         |         |
|        |    |     |     |    |          | 0n          | nn = l        | JSER b       | it from  | n AES   | Receive  | er char | inel nr | n     |         |         |
|        |    |     |     |    |          | cha         | nnel 7        | (nnn<br>()   | = "000   | )" =>   | Rx cha   | nnel 0, | ,       | nnn = | "111″   | => Rx   |
|        |    |     |     |    |          | 10          | nn = 1        | J.<br>ISER h | it from  |         | Receiv   | or nn   |         |       |         |         |
|        |    |     |     |    |          | 10          |               | (nn =        | "00″     | => ΔV   | S Ry 0   |         | nn = "  | 11″ = | > 4\/5  | Rx 3)   |
|        |    |     |     |    |          | 11          | <b>xx</b> = 1 | ISER h       | it set t |         | 5 10. 0  | ,,      |         |       | - 110   | 10, 5). |
|        |    |     |     |    |          |             | <b>AA</b> – ( | JOLIND       | Je See ( | .0 0    |          |         |         |       |         |         |
| USR    | 6  | 3:0 | 0   |    | RW       | 4 b         | its for       | each c       | hanne    | l selec | ts the   | USER b  | oit sou | rce.  |         |         |
|        |    |     |     |    |          | <u>Sla</u>  | ve mo         | <u>de:</u>   |          |         |          |         |         |       |         |         |
|        |    |     |     |    |          | <b>0</b> xx | <b>xx</b> = L | JSER b       | it from  | n Audio | o regist | er file | (same   | as au | dio dat | ta).    |
|        |    |     |     |    |          | <b>1</b> xx | <b>κx</b> = ι | JSER b       | it set t | :0 0    |          |         |         |       |         |         |
|        |    |     |     |    |          | Mas         | ster m        | ode:         |          |         |          |         |         |       |         |         |
|        |    |     |     |    |          | 0ni         | <b>nn</b> = l | JSER b       | it from  | n AES   | Receive  | er char | inel nr | n     |         |         |
|        |    |     |     |    |          | cha         | nnel 7        | (nnn<br>').  | = "000   | )" =>   | Rx cha   | nnel 0, | ,       | nnn = | "111″   | => Rx   |
|        |    |     |     |    |          | 10          | <b>ոո =</b> է | JSER b       | it fron  | ו AVS   | Receive  | er nn   |         |       |         |         |
|        |    |     |     |    |          |             |               | (nn =        | "00″     | => AV   | 'S Rx 0  | ,,      | nn = "  | 11″ = | > AVS   | Rx 3).  |
|        |    |     |     |    |          | 11          | <b>κx</b> = ι | JSER b       | it set t | :o 0    |          |         |         |       |         |         |
|        |    |     |     |    |          |             |               |              |          |         |          |         |         |       |         |         |

## 5.5.14 CHSTAT\_n\_BYTE0-3

Address - 0xce03 0080 - 0xce03 008c

The four bytes represents the first 32 bits of channel status for channel n. BYTE0 bit 0 corresponds to CS bit 0 and BYTE3 bit 7 corresponds to CS bit 31.

### 5.5.15 CHSTAT\_FULL\_BYTE0-23

Address - 0xce03 0100 - 0xce03 015c

The 24 bytes represents the full 192 bits of channel status. In memory mapped CS mode the last 20 bytes are always used for all channels. Usage of the first 4 bytes depends on the setting of the CS\_SEL3 register. BYTE0 bit 0 corresponds to CS bit 0 and BYTE23 bit 7 corresponds to CS bit 191.

### 5.5.16 Slave Mode

In order to have full control of the extra data send in an AES sub-frame, two basic modes are provided. The Parity bit and the Left/Right sub-frame bits are always calculated by the transmitter.

### Master Mode:

In this mode the upper 8 bits of the incoming audio data are not used. The sync pattern is generated in the transmitter and transmission thereof can optionally be synced to the block sync signal from the DICE Clock Controller. The Channel Status bits are taken from the memory files. The first 4 bytes of CS can be specified individually per channel. The remaining bytes are specified in a common file.

### Slave Mode:

In this mode the upper 8 bits of the audio data are used. The bits are interpreted using the AM824 specification.

The block sync is generated from the PAC bits in the audio stream. All 4 transmitters are aligned to the block sync in the audio channel selected by the CBL\_SEL register. The User bits are sourced from the U bit in the corresponding audio frame or set to zero. The validity bits are sourced from the V bit in the corresponding audio frame. The Channel Status bits are either sourced from the C bit in the corresponding audio frame, the C bit in the audio frame selected for block sync or from the register files.

# 5.6 I<sup>n</sup>S Transmitters

### 5.6.1 System view

These are highly configurable serial audio interface transmitters that can be set to comply with a number of different formats, ensuring compatibility with most DAC's and SRC's as well as other serial audio devices. The DICE JR (TCD2220) contains two I<sup>n</sup>S transmitter modules, the DICE Mini (TCD2210) contains one, each consists of 4 Tx instances. Each module is connected to the DICE Router.

Each Tx module is capable of receiving up to 16 channels, depending on configuration & system speed. Depending on the configuration of the 4 Tx instancies all 16 channels might not be used. An example is when all 4 modules are configured for I2S. In that case only 8 channels are used.

| Audio ch | I2S | I4S | I8S |
|----------|-----|-----|-----|
| 0        | 1   |     |     |
| 1        |     | 1   |     |
| 2        | 2   | -   |     |
| 3        | -   |     | 1   |
| 4        | 3   |     | -   |
| 5        | 5   | 2   |     |
| 6        | 4   | 2   |     |
| 7        |     |     |     |
| 8        |     |     |     |
| 9        |     | 3   | 2   |
| 10       |     | 5   |     |
| 11       | N/A |     |     |
| 12       |     | 4   |     |
| 13       |     |     |     |
| 14       |     |     |     |
| 15       |     |     |     |

Table 53: InS instance to channel mapping

It is also obvious from the above that the last two instances can't be configured for I8S. It is considered an illegal configuration and in that case for the Tx module, only muted audio should be delivered and in the case of the Rx module the received data should be ignored.

In addition each of the 16 channels in Tx module could be muted by software, using the "mute" register located in each of the two Tx modules

Each Tx instance can work in 3 different modes which is 2, 4 or 8 channels per frame. In high rate mode 8 channels per frame is not possible.

| Name | Ch/frame | Bits per frame |
|------|----------|----------------|
|------|----------|----------------|

| Name | Ch/frame | Bits per frame |
|------|----------|----------------|
| I2S  | 2        | 64             |
| I4S  | 4        | 128            |
| I8S  | 8        | 256            |

Table 54: InS modes

InS communication is frame based and driven by sys\_f512br. This signal has a fixed relation to the frame clock which depends on the system rate\_mode, sys\_mode. Number of 512br clocks in each frame in different sytem modes is described Table 55

| Name        | Freq | System Clocks<br>per Frame |
|-------------|------|----------------------------|
| Low Rate    | 48   | 512                        |
| Medium Rate | 96   | 256                        |
| High Rate   | 192  | 128                        |

Table 55: InS Clocks in frame

### 5.6.2 Clock Ports

Eternal modules also receive clocks and sync signals from CLOCK port located inside Tx Modules. DICE JR has two clock ports that are located in InS Transmiter modules to utilize similar logic.

Each clock port has 3 external pins, fsync, bclk and mck. They all have edges aligned with the internal sys\_1fs positive edge and they all have an invert option before the actual pin output. Please note that wcko output is alaigned to the negative edge of internal sys\_1fs, so it causes half a clock delay between wcko and InS external clocks in case no delay was programmed.

### **Configuration options for fsync**

fsync\_length 1 bit 1 or 32 bclk's

fsync\_invert 1 bit Invert if set

### Configuration options for bclk

Bclk\_rate 2 bits 64fs, 128fs, 256fs

Bclk\_invert 1 bit Invert if set

### **Configuration options for mck**

Mck\_rate 2 bits 256xbr, 512xbr, 128xfs, 256xfs

Mck\_invert 1 bit Invert if set

The bit clock always has a fixed relation to the sys\_1fs regardless of the sys\_mode.

|           | sys_mode |     |      |
|-----------|----------|-----|------|
| bclk_rate | Low      | mid | High |

|              | sys_mode     |              |              |  |
|--------------|--------------|--------------|--------------|--|
| bclk_rate    | Low          | mid          | High         |  |
| 00 =64fs     | sys_f512br/8 | sys_f512br/4 | sys_f512br/2 |  |
| 01 =128fs    | sys_f512br/4 | sys_f512br/2 | sys_f512br/1 |  |
| 10 =256fs    | sys_f512br/2 | sys_f512br/1 | N/A          |  |
| 11 =reserved | N/A          | N/A          | N/A          |  |

 Table 56: bclk relation to sys\_f512fs

The mck relation to the sys\_1fs and base rate depends on the system configuration. Most codec's expect it to have a fixed relation to the base rate and that is handled by the two first options.

The last two options are for systems which require the mck to have a fixed relation to the actual 1fs.

|           | sys_mode     |              |              |
|-----------|--------------|--------------|--------------|
| mck_rate  | low          | mid          | High         |
| 00 =256br | sys_f512br/2 | sys_f512br/2 | sys_f512br/2 |
| 01 =512br | sys_f512br/1 | sys_f512br/1 | sys_f512br/1 |
| 10 =128fs | sys_f512br/4 | sys_f512br/2 | sys_f512br/1 |
| 11 =256fs | sys_f512br/2 | sys_f512br/1 | N/A          |

Table 57: bclk relation to sys\_f512fs

As DICE JR has only two clock ports, only two types of communication out of possible three (2channels/4channels/8channels) could be used simultaneously.

### 5.6.3 Data transmission

Each Tx instance inside Tx module can be configured to transfer 2/4/8 audio channels. Data for each chnnel is stored in RAM shared by all Tx instances inside one module. One RAM is used to utilize common logic in address generation & data storage. If several instancies require data at the same time, requests are arbitrated using fixed priority mechanism. Each Tx instance could shuffle audio channel data if programmed to do so, according to the following list of shuffle schemes:

| data_shuffle[3:0] | Order of transmission         |
|-------------------|-------------------------------|
| 0000              | data[31:0] -> b31,,b8, b7,,b0 |
| 0001              | data[31:0] -> b31,,b8, b0,,b7 |
| 0010              | data[31:0] -> b8,,b31, b7,,b0 |
| 0011              | data[31:0] -> b8,,b31, b0,,b7 |
| 0100              | data[31:0] -> b7,,b0, b31,,b8 |
| 0101              | data[31:0] -> b7,,b0, b8,,b31 |
| 0110              | data[31:0] -> b0,,b7, b31,,b8 |
| 0111              | data[31:0] -> b0,,b7, b8,,b31 |

| 1000 | data[31:0] -> b31,,b24, b23,,b0 |
|------|---------------------------------|
| 1001 | data[31:0] -> b31,,b24, b0,,b23 |
| 1010 | data[31:0] -> b24,,b31, b23,,b0 |
| 1011 | data[31:0] -> b24,,b31, b0,,b23 |
| 1100 | data[31:0] -> b23,,b0, b31,,b24 |
| 1101 | data[31:0] -> b23,,b0, b24,,b31 |
| 1110 | data[31:0] -> b0,,b23, b31,,b24 |
| 1111 | data[31:0] -> b0,,b23, b24,,b31 |

### Table 58: Data Shuffle table

Shuffled data is loaded into shift register so that first bit would be shifted out exactly on the positive edge of sys\_1fs if no delay was configured.

If some delay was configured for current TX, then it would be added so the first out bit would be late.

## 5.6.4 Signal Description

InS Tx instancies transmit data through AUDIO Ports. AUDIO Port 0 is connected to Tx Module 0 (Instances 0-3) and Audio Port1 is connected to Tx Module 1(Instances 0-3), when configured.

For AUDIO port configuration options please see 4.1.2

Sync and Clock signals have dedicated pins described in Table 59

| Signal   | TCD2220      | TCD2210      | I/O | Drive (mA) | Description                   |
|----------|--------------|--------------|-----|------------|-------------------------------|
| Mck0     | 106          | 99           | 0   | 8          | Master clock from Clock Port0 |
| Fck0     | 107          | 100          | 0   | 8          | Sync from Clock port0         |
| Bck0     | 108          | 101          | 0   | 8          | Bit clock from Clock port0    |
| Mck1_gp6 | 117 (shared) | 106 (shared) | В   | 6          | Master clock from Clock Port1 |
| fck1_gp7 | 118 (shared) | 107 (shared) | В   | 6          | Sync from Clock port1         |
| Bck1_gp8 | 119 (shared) | 108 (shared) | В   | 6          | Bit clock from Clock port1    |

 Table 59: InS Clock & sync signals

# 5.6.5 Module Configuration

| Address     | Register        |
|-------------|-----------------|
| 0xce09 0000 | INS0_TX0_SETUP  |
| 0xce09 0020 | INS0_TX1_SETUP  |
| 0xce09 0040 | INS0_TX2_SETUP  |
| 0xce09 0060 | INS0_TX3_SETUP  |
| 0xce09 0080 | INS0_CLKP_SETUP |
| 0xce09 0fe0 | INS0_MUTE       |
| 0xce0b 0000 | INS1_TX0_SETUP  |
| 0xce0b 0020 | INS1_TX1_SETUP  |
| 0xce0b 0040 | INS1_TX2_SETUP  |
| 0xce0b 0060 | INS1_TX3_SETUP  |
| 0xce0b 0080 | INS1_CLKP_SETUP |
| 0xce0b 0fe0 | INS1_MUTE       |

# Table 60: I<sup>2</sup>S Transmitter Memory Map

## 5.6.6 INSm\_CLKP\_SETUP

| Address - 0xce09 0080 - | InS0_CLKP_SETUP |
|-------------------------|-----------------|
| Address - 0xce0b 0080 - | InS1_CLKP_SETUP |

|        | 15 | 14 | 13 | 12       | 11 | 10 | 9 | 8      | 7       | 6       | 5       | 4       | 3   | 2     | 1   | 0     |
|--------|----|----|----|----------|----|----|---|--------|---------|---------|---------|---------|-----|-------|-----|-------|
|        |    |    |    | Reserved | 1  |    |   | enable | Fsy_inv | Bck_inv | Mck_inv | fsy_len | Bck | _rate | Mck | _rate |
| Reset: | 0  | 0  | 0  | 0        | 0  | 0  | 0 | 0      | 0       | 0       | 0       | 0       | 0   | 0     | 0   | 0     |
|        | R  | R  | R  | R        | R  | R  | R | RW     | RW      | RW      | RW      | RW      | RW  | RW    | RW  | RW    |

| Name     | Bit  | Reset | Dir | Description                                                                |
|----------|------|-------|-----|----------------------------------------------------------------------------|
| Reserved | 15:9 | 0     | R   | Reserved                                                                   |
| ENABLE   | 8    | 0     | RW  | Enables the clock interface. If disabled all outputs are 0.                |
| FSY_INV  | 7    | 0     | RW  | 0: pos. edge aligned with 1fs frame<br>1: neg. edge aligned with 1fs frame |
| BCK_INV  | 6    | 0     | RW  | 0: pos. edge aligned with 1fs frame<br>1: neg. edge aligned with 1fs frame |
| MCK_INV  | 5    | 0     | RW  | 0: pos. edge aligned with 1fs frame<br>1: neg. edge aligned with 1fs frame |
| FSY_LEN  | 4    | 0     | RW  | 0: 1 bclk length<br>1: 32 bclk length                                      |
| BCK_RATE | 3:2  | 0     | RW  | 0: 64fs<br>1: 128fs<br>2: 256fs<br>3: reserved                             |
| MCK_RATE | 1:0  | 0     | RW  | 0: 256br<br>1: 512br<br>2: 128fs<br>3: 256fs                               |

## 5.6.7 INSm\_TXn\_SETUP

| Address - 0xce09 000 | 0 - In | S0_Tx0 |
|----------------------|--------|--------|
| Address - 0xce09 002 | 0 - In | S0_Tx1 |
| Address - 0xce09 004 | 0 - In | S0_Tx2 |
| Address - 0xce09 006 | 0 - In | S0_Tx3 |
| Address - 0xce0b 000 | 0 - In | S1_Tx0 |
| Address - 0xce0b 002 | 0 - In | S1_Tx1 |
| Address - 0xce0b 004 | 0 - In | S1_Tx2 |
| Address - 0xce0b 006 | 0 - In | S1_Tx3 |



| Name         | Bit | Reset | Dir | Description                                                                                                                                                              |
|--------------|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENABLE       | 8   | 0     | RW  | This bit enables the Operation of particular Tx instance inside INS module.<br>0: TX instance disabled<br>1: TX instance Enabled                                         |
| DATA SHUFFLE | 7:4 | 0     | RW  | See Shuffle table Table 58                                                                                                                                               |
| Ins DELAY    | 3:2 | 0     | RW  | This bit selects the delay from posedge of sys_1fs to the beginning of<br>fsync transmission<br>00: no delay<br>01: 1 bclk delay<br>10: 2 bclk delay<br>11: 3 bclk delay |
| Ins MODE     | 1:0 | 0     | RW  | Those bits select mode for Tx instance<br>00: I2S<br>01: I4S<br>10: I8S<br>11: reserved                                                                                  |

## 5.6.8 InSn\_MUTE

| Addre                   | Address - 0xce09 0fe0 - InS0 Module |        |        |        |        |             |       |       |       |       |       |       |       |       |       |       |
|-------------------------|-------------------------------------|--------|--------|--------|--------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Address - 0xce0b 0fe0 - |                                     |        |        |        |        | InS1 Module |       |       |       |       |       |       |       |       |       |       |
|                         | 15                                  | 14     | 13     | 12     | 11     | 10          | 9     | 8     | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                         | Mute15                              | Mute14 | Mute13 | Mute12 | Mute11 | Mute10      | Mute9 | Mute8 | Mute7 | Mute6 | Mute5 | Mute4 | Mute3 | Mute2 | Mute1 | Mute0 |
| Reset:                  | 0                                   | 0      | 0      | 0      | 0      | 0           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|                         | R                                   | R      | R      | R      | R      | R           | R     | R     | R     | R     | R     | R     | R     | R     | R     | RW    |
|                         |                                     |        |        |        |        |             |       |       |       |       |       |       |       |       |       |       |

| Name  | Dit  | Reset |    | Description                                                                                          |
|-------|------|-------|----|------------------------------------------------------------------------------------------------------|
| Mutex | 15:0 | 1     | RW | This field controls the muting of individual channels in the transmitter.<br>0: Not muted<br>1: Mute |

# 5.6.9 I<sup>2</sup>S compliant operation

In order to increase system flexibility by developing standardized communication structures between different digital audio system IC's, Philips developed the Inter-IC sound bus (I<sup>2</sup>S), a serial link especially for digital audio.

The bus has three lines:

- Continuous serial clock SCK (BCK)
- Word Select WS (FSYNC)
- Serial data SD (SDATA)

The most distinguishing feature of the I<sup>2</sup>S bus is the one serial bit clock delay after a transition on the word clock. The transmitter always sends the MSB of the next word one clock period after a transition on LRCK\_OUT. This means that the MSB has a fixed position.

Our transmitter can be programmed as a fully compliant  $I^2S$  transmitter and is designed to operate as a master on the  $I^2S$  bus, which means that it must output the Word Select (through the FSY\_OUT pin) clock and the continuous serial clock (output BCK) to the  $I^2S$ transmitter operating in slave mode.

Figure 43 illustrates I<sup>2</sup>S operation with a 32 bit word length.



Figure 43: I2S compliant operation – 32 bit word length

To achieve I<sup>2</sup>S compliant operation, we must therefore make sure that the receiver operates in the correct mode by programming the input pins as follows:

- Only 2 channels are transmitted, so **InS\_MODE = 00**
- MSB transmitted one serial clock (BCK) period after transition on FSYNC i.e.
   InSDelay = 01.
- MSB should be transmitted first **Shuffle cheme = 0000**.
- BCK should correspond to 64 bits per frame (32 bits in one channel, 32 bits in another, so **BCK\_RATE = 00**
- MCK should be 256 clocks in frame, so MCK\_RATE= 00

- Inversion of the bit clock so that each bit is transmitted beginning on the falling edge of the bit clock and clocked in on the rising edge of BICK.
   i.e. BCK\_INV = 1.
- FSync should resemble LRCLK\_OUT, so we should choose 32bclk length FSY\_LEN = 1
- Inversion of FSYNC so that reception of left channel data corresponds to FSYNC=0 i.e. FSY\_INV = 1.

### 5.6.10 TDM compliant operation



### Figure 44: TDM functional diagram

To achieve TDM compliant operation the following bits need to be set:

- 8 channels are transmitted, so **InS\_MODE = 10**
- MSB transmitted one serial clock (BCK) period after transition on FSYNC i.e.
   InSDelay = 01.
- MSB should be transmitted first **Shuffle cheme = 0000**.
- BCK should correspond to 32bitx8slots = 256 bits per frame so BCK\_RATE = 10
- MCK is not used in this scheme, but for convenience **MCK\_RATE = 00**
- Inversion of the bit clock so that each bit is transmitted beginning on the falling edge of the bit clock and clocked in on the rising edge of BICK.
   i.e. BCK\_INV = 1.
- Only rising edge of FSync is meaningfull, so we could choose choose either 32bclk length or 1bclk length. In this example 1bclk length is chosen.
   FSY\_LEN = 0
- No inversion of FSYNC is needed so **FSY\_INV = 0**.

# 5.7 InS Receivers

### 5.7.1 System view

InS Receiver design is very similar to InS Transmitter. The only differences are as follows:

- No Clock port in InS RX modules
- No Mute Register in InS Rx Modules
- All Rx instancies operate using inverted version of sys\_f512br (sys\_f512br\_inv)
- All Ins0 Rx instances are connected to AUDIO IN port0, and InS1 Rx instances are connected to AUDIO IN port 1. for AUDIO Port configuration please see 4.1.1. If AES is enabled on one of the ports, InS reception on this port is corrupted. If AES is disabled, then no additional configuration is needed

External modules that work with InS receivers inside the chip are supposed to use the clock ports that were described in previous section for their clock signal supply.

## 5.7.2 Signal Description

InS Rx instancies Receive data through AUDIO Ports. AUDIO Port 0 is connected to Rx Module 0 (Instances 0-3) and Audio Port1 is connected to Rx Module 1(Instances 0-3),

Audio Ports are always connected to the InS RX modules as specified, no additional configuration is needed. Note, that input AUDIO ports are shared between AES, InS & ADAT interfaces, and only for AES input can be disabled on AUDIO port level. For further information on AUDIO Input ports please see 4.1.1. For TCD2210 product AUDIO Port1 is not available, consequently, InS1 is not available either.

| Address     | Register       |
|-------------|----------------|
| 0xce08 0000 | INS0_RX0_SETUP |
| 0xce08 0020 | INS0_RX1_SETUP |
| 0xce08 0040 | INS0_RX2_SETUP |
| 0xce08 0060 | INS0_RX3_SETUP |
| 0xce0a 0000 | INS1_RX0_SETUP |
| 0xce0a 0020 | INS1_RX1_SETUP |
| 0xce0a 0040 | INS1_RX2_SETUP |
| 0xce0a 0060 | INS1_RX3_SETUP |

## 5.7.3 Module Configuration

 Table 61: InS Receivers Memory Map

## 5.7.4 INSm\_RXn\_SETUP

| Address - 0xce08 000 | 0 - | InS0_Rx0 |
|----------------------|-----|----------|
| Address - 0xce08 002 | 0 - | InS0_Rx1 |
| Address - 0xce08 004 | 0 - | InS0_Rx2 |
| Address - 0xce08 006 | 0 - | InS0_Rx3 |
| Address - 0xce0a 000 | 0 - | InS1_Rx0 |
| Address - 0xce0a 002 | 0 - | InS1_Rx1 |
| Address - 0xce0a 004 | 0 - | InS1_Rx2 |

### Address - 0xce0a 0060 - InS1\_Rx3

|        | 15 | 14 | 13 | 12       | 11 | 10 | 9 | 8      | 7  | 6    | 5       | 4  | 3  | 2       | 1   | 0     |
|--------|----|----|----|----------|----|----|---|--------|----|------|---------|----|----|---------|-----|-------|
|        |    |    |    | Reserved |    |    |   | Enable |    | DATA | SHUFFLE |    | In | s_Delay | Ins | _Mode |
| Reset: | 0  | 0  | 0  | 0        | 0  | 0  | 0 | 0      | 0  | 0    | 0       | 0  | 0  | 0       | 0   | 0     |
|        | R  | R  | R  | R        | R  | R  | R | RW     | RW | RW   | RW      | RW | RW | RW      | RW  | RW    |

| Name         | Bit | Reset | Dir | Description                                                                                                                                                          |
|--------------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENABLE       | 8   | 0     | RW  | This bit enables the Operation of particular Tx instance inside INS<br>module.<br>0: RX instance disabled<br>1: RX instance Enabled                                  |
| DATA SHUFFLE | 7:4 | 0     | RW  | See Shuffle table Table 58                                                                                                                                           |
| Ins DELAY    | 3:2 | 0     | RW  | This bit selects the delay from posedge of sys_1fs to the beginning of<br>data reception<br>00: no delay<br>01: 1 bclk delay<br>10: 2 bclk delay<br>11: 3 bclk delay |
| Ins MODE     | 1:0 | 0     | RW  | Those bits select mode for Rx instance<br>00: I2S<br>01: I4S<br>10: I8S<br>11: reserved                                                                              |

## 5.8 ADAT Receiver

The DICE JR contains two Alesis ADAT compatible receivers. The receiver can receive 8 channels of audio at the base rates (low system rate) and 4 channels of audio at twice the base (medium system rate) rate and 2 channels at four times base rate (high system rate).

S-Mux mode is selected automatically when system mode is set to medium or high rate.

Data is demultiplexed into the system buffers from a single ADAT lightpipe as follows:

| 48KHz Channels  | 1           | 2             | 3             | 4             | 5           | 6                 | 7             | 8               |
|-----------------|-------------|---------------|---------------|---------------|-------------|-------------------|---------------|-----------------|
| 96KHz Channels  | Sample<br>n | Sample<br>n+1 | Sample n      | Sample<br>n+1 | Sample<br>n | Sample<br>n+1     | Sample<br>n   | 1 Sample<br>n+1 |
| 192KHz Channels | Sample<br>n | Sample<br>n+1 | Sample<br>n+2 | Sample<br>n+3 | Sample<br>n | Sample ,<br>n+1 2 | Sample<br>n+2 | Sample<br>n+3   |

### Figure 45 : ADAT lightpipe channel configuration

### 5.8.1 Signal Description

ADAT is connected to AUDIO port 0 bits [3:2]. For AUDIO Port operation description & programming see 4.1.1

### 5.8.2 Module Configuration

| Address     | Register |
|-------------|----------|
| 0xce04 0000 | ADATRX0  |
| 0xce04 0004 | ADATRX1  |

## 5.8.3 ADATRX0

Address - 0xce04 0000

|        | 15 | 14 | 13   | 12   | 11 | 10 | 9 | 8     | 7     | 6  | 5      | 4      | 3      | 2      | 1     | 0     |
|--------|----|----|------|------|----|----|---|-------|-------|----|--------|--------|--------|--------|-------|-------|
|        |    |    | Rese | rved |    |    |   | User_ | bits0 |    | U_run0 | O_run0 | NLock0 | Nsync0 | Lock0 | Sync0 |
| Reset: | 0  | 0  | 0    | 0    | 0  | 0  | 0 | 0     | 0     | 0  | 0      | 0      | 0      | 0      | 0     | 0     |
|        | R  | R  | R    | R    | R  | R  | R | R     | R     | RW | RW     | RW     | RW     | RW     | RW    | RW    |

| Name       | Bit   | Reset | Dir | Description                                                                                                                                                                                                                                                                                     |
|------------|-------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reserved   | 31:10 | 0     | R   | Reads back as zerroes                                                                                                                                                                                                                                                                           |
| User_bits0 | 9:6   | 0     | RW  | The 4 bits of user data received in the last frame.                                                                                                                                                                                                                                             |
| U_RUN0     | 5     | 0     | R   | Indicates resampling which typically happens when the system 1FS is<br>faster than 1FS from the master receiver. Can also be due to jitter and<br>phase differences between the router 1FS and 1FS from master<br>receiver.<br>This bit is sticky and will be cleared immediately after a read. |

| Name   | Bit | Reset | Dir | Description                                                                                                                                                                                                                 |
|--------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O_RUN0 | 4   | 0     | R   | Indicates slipped sample which typically happens when the system<br>1FS is slower than 1FS from the master receiver. Can also be due to<br>jitter and phase differences between router 1FS and 1FS from master<br>receiver. |
| NLOCK0 | 3   | 0     | R   | I his bit is sticky and will be cleared immediately after a read.<br>Indicates that ADATRX0 is not locked                                                                                                                   |
| NSYNC0 | 2   | 0     | R   | No sync was detected by ADAT RX0                                                                                                                                                                                            |
| LOCK0  | 1   | 0     | R   | Indicates that DATARX0 was locked after 4 consecutive sync patterns                                                                                                                                                         |
| SYNC0  | 0   | 0     | R   | Indicates that ADAT has syncked for 4 frames                                                                                                                                                                                |

## 5.8.4 ADATRX1

Address - 0xce04 0004

|        | 15 | 14 | 13 | 12      | 11 | 10 | 9 | 8 | 7         | 6  | 5      | 4      | 3      | 2      | 1     | 0     |
|--------|----|----|----|---------|----|----|---|---|-----------|----|--------|--------|--------|--------|-------|-------|
|        |    |    | Re | eserved |    |    |   | U | ser_bits1 |    | U_run1 | O_run1 | NLock1 | NSync1 | Lock1 | Sync1 |
| Reset: | 0  | 0  | 0  | 0       | 0  | 0  | 0 | 0 | 0         | 0  | 0      | 0      | 0      | 0      | 0     | 0     |
|        | R  | R  | R  | R       | R  | R  | R | R | R         | RW | RW     | RW     | RW     | RW     | RW    | RW    |

| Name       | Bit   | Reset | Dir | Description                                                                                                                                                                                                                                                                           |
|------------|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reserved   | 31:10 | 0     | R   | Reads back as zerroes                                                                                                                                                                                                                                                                 |
| User_bits1 | 9:6   | 0     | RW  | The 4 bits of user data received in the last frame.                                                                                                                                                                                                                                   |
| U_R1       | 5     | 0     | R   | Indicates resampling which typically happens when the system 1FS is faster than 1FS from the master receiver. Can also be due to jitter and phase differences between the router 1FS and 1FS from master receiver.<br>This bit is sticky and will be cleared immediately after a read |
| O_R1       | 4     | 0     | R   | Indicates slipped sample which typically happens when the system<br>1FS is slower than 1FS from the master receiver. Can also be due to<br>jitter and phase differences between router 1FS and 1FS from master<br>receiver.                                                           |
| NLOCK1     | 3     | 0     | R   | Indicates that ADATRX1 is not locked                                                                                                                                                                                                                                                  |
| NSYNC1     | 2     | 0     | R   | No sync was detected by ADAT RX1                                                                                                                                                                                                                                                      |
| LOCK1      | 1     | 0     | R   | Indicates that DATARX1 was locked after 4 consecutive sync patterns                                                                                                                                                                                                                   |
| SYNC1      | 0     | 0     | R   | Indicates that ADAT has syncked for 4 frames                                                                                                                                                                                                                                          |

# 5.9 ADAT Transmitter

The DICE JR chip contains two identical Alesis ADAT compatible transmitters. Each transmitter can transmit 8 channels of audio at the base rates. The transmitter can also handle 4 channels of audio at medium rate (96KHz) and 2 channels at high system rate (S-Mux mode).

S-Mux mode is selected automatically when system mode is set to medium or high rate.

When operating in S-Mux mode the router interface to the ADAT transmitter becomes a 4 channel interface, writing 4 channels of audio every 96KHz sample period. Data is multiplexed into the 48KHz transmitter buffers and transmitted on a single ADAT lightpipe with channel configuration as follows:

| 48KHz Channels  | 1           | 2             | 3             | 4             | 5           | 6                 | 7             | 8               |
|-----------------|-------------|---------------|---------------|---------------|-------------|-------------------|---------------|-----------------|
| 96KHz Channels  | Sample<br>n | Sample<br>n+1 | Sample n      | Sample<br>n+1 | Sample<br>n | 3 Sample<br>n+1   | Sample _<br>n | 1 Sample<br>n+1 |
| 192KHz Channels | Sample<br>n | Sample<br>n+1 | Sample<br>n+2 | Sample<br>n+3 | Sample<br>n | Sample ,<br>n+1 2 | Sample<br>n+2 | Sample<br>n+3   |

### Figure 46: S-Mux ADAT lightpipe channel configuration

### 5.9.1 Signal Description

ADAT is connected to AUDIO port 0 bits [3:2] if programmed so. For AUDIO Port operation description & programming see 4.1.2

## 5.9.2 Module Configuration

| Address     | Register     |
|-------------|--------------|
| 0xce05 0000 | ADATTX_CTRL1 |
| 0xce05 0004 | ADATTX0_MUTE |
| 0xce05 0008 | ADATTX1_MUTE |

 Table 63: ADAT Transmitter Memory Map

# 5.9.3 ADATTX\_CTRL1

Address - 0xce05 0000

|        | 15 | 14 | 13 | 12 | 11      | 10 | 9 | 8 | 7  | 6  | 5     | 4  | 3  | 2  | 1     | 0  |
|--------|----|----|----|----|---------|----|---|---|----|----|-------|----|----|----|-------|----|
|        |    |    |    | R  | eserved |    |   |   |    | U  | DATA1 |    |    | U  | DATAO |    |
| Reset: | 0  | 0  | 0  | 0  | 0       | 0  | 0 | 0 | 0  | 0  | 0     | 0  | 0  | 0  | 0     | 0  |
|        | R  | R  | R  | R  | R       | R  | R | R | RW | RW | RW    | RW | RW | RW | RW    | RW |

| Name     | Bit  | Reset | Dir | Description                                                 |
|----------|------|-------|-----|-------------------------------------------------------------|
| Reserved | 15:8 | 0     | R   | Reads back as zerros                                        |
| UDATA1   | 7:4  | 0     | RW  | Used in non-loop mode to specify static user data for ADAT1 |
| UDATA0   | 3:0  | 0     | RW  | Used in non-loop mode to specify static user data for ADAT0 |

# 5.9.4 ADATTXn\_MUTE

| Addre                 | Address - 0xce05 0004 - |    |    |       |              |    | ADATTX0_MUTE |   |       |       |       |       |       |       |       |       |
|-----------------------|-------------------------|----|----|-------|--------------|----|--------------|---|-------|-------|-------|-------|-------|-------|-------|-------|
| Address - 0xce05 0008 |                         |    | -  | A     | ADATTX1_MUTE |    |              |   |       |       |       |       |       |       |       |       |
|                       | 15                      | 14 | 13 | 12    | 11           | 10 | 9            | 8 | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                       |                         |    |    | Reser | ved          |    |              |   | MUTE7 | MUTE6 | MUTE5 | MUTE4 | MUTE3 | MUTE2 | MUTE1 | MUTEO |
| _                     |                         |    |    |       |              |    |              |   |       |       |       |       |       |       |       |       |
| Reset:                | 0                       | 0  | 0  | 0     | 0            | 0  | 0            | 0 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| Name    | Bit | Reset | Dir | Description                                                         |
|---------|-----|-------|-----|---------------------------------------------------------------------|
| MUTE7-0 | 7:0 | 0     | RW  | Individual mute of each of the 8 audio channels in the ADAT stream. |

## 5.10 ARM Audio Transceiver

The ARM Audio transceiver enables the ARM processor to access 8 channels of 32-bit audio from the router and to provide 8 channels of 32-bit audio to the router. The Receiver and Transmitter are synchronous to guarantee known latency.

The module consists of a 2 by 4 sample ping pong buffer system minimizing interrupt overhead. The host is interrupted every 4 samples, indicating that 4 new samples for each of the 8 channels are ready to be written/read.

### 5.10.1 Module Configuration

| Address                   | Register      |
|---------------------------|---------------|
| 0xce16 0000 - 0xce16 0080 | ARMAUDIO_BUF  |
| 0xce16 0100               | ARMAUDIO_CTRL |
|                           |               |

### Table 64: ARM Transceiver Memory Map

### 5.10.2 ARMAUDIO\_BUF

Address - 0xce16 0000 - 0xce16 0080

The buffer is arranged as 4 32-bit samples of 8 channels of audio, the first 8 positions contain the first samples and so forth.

Even though the receive and transmit buffers share an address space, there are separate buffers. Writes will always access the transmit buffer and reads will access the receive buffer.

## 5.10.3 ARMAUDIO\_CTRL

Address - 0xce16 0100



| Name | Bit | Reset | Dir | Description                                                                                                                                                                             |
|------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OVR  | 1   | 0     | RW  | This bit indicates that the ARM did not manage to clear the interrupt<br>condition before the next chunk was ready. This bit is cleared by a<br>write to the register.                  |
| INT  | 0   | 0     | RW  | This bit indicates that a new chunk is ready for processing. The host should read the received data, write the new data to transmit and clear the interrupt by writing to the register. |

## 5.11 Audio Mixer

The mixer creates 16 individual mono sub-mixes of up to 18 mono inputs. The mixer is part of the DICE audio system and any input channel can be routed to the mixer inputs and the mixer outputs can be routed to any output.

It is a full 18x16 mixing matrix with full 24 bit precision. I uses 288 16 bit coefficients to control the gains. The fixpoint system for the coefficients is 2:14 so each coefficient can provide a gain of 12dB (factor of 4). This provides for a channel gain mapping where each channel fader can reach +6dB and the output main fader can reach +6dB. At unity gain the mixer is 24 bit transparent.

In case of clipping in the mixer a full per channel saturation system will limit the signal and set a sticky overload bit which can be polled by the ARM or used for interrupt generation.

All cofficients are directly addressable from the ARM processor and can be changed from cycle to cycle. Gliding and fading can be implemented in the ARM due to the high precision of the coefficients.

At high modes (176.4k or 192k) the mixer wil only be able to do 8 channels of submixes (18x8).

| Address     | Register                                |
|-------------|-----------------------------------------|
| 0xce06 0000 | MIXER_CTRL                              |
| 0xce06 0004 | MIXER_OVL                               |
| 0xce06 0008 | MIXER_NUMOFCH                           |
| 0xce06 0800 | MIXER_COEFF RAM Coeff 0 for channel 0   |
| 0xce06 0804 | MIXER_COEFF RAM Coeff 1 for channel 0   |
| 0xce06 0808 | MIXER_COEFF RAM Coeff 2 for channel 0   |
|             |                                         |
| 0xce06 0c78 | MIXER_COEFF RAM Coeff 16 for channel 15 |
| 0xce06 0c7c | MIXER_COEFF RAM Coeff 17 for channel 15 |
|             |                                         |

## 5.11.1 Module Configuration

Table 65: Mixer Memory Map

## 5.11.2 MIXER\_CTRL

Address - 0xce06 0000

|        | 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4      | 3 | 2 | 1 | 0   |
|--------|----------|----|----|----|----|----|---|---|---|---|---|--------|---|---|---|-----|
|        | Reserved |    |    |    |    |    |   |   |   |   |   | Enable |   |   |   |     |
| Reset: | 0        | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0   |
|        | R        | R  | R  | R  | R  | R  | R | R | R | R | R | R      | R | R | R | RW* |

| Name     | Bit  | Reset | Dir | Description                                                            |
|----------|------|-------|-----|------------------------------------------------------------------------|
| Reserved | 15:1 | 0     | R   | Reserved. Read back as zerroes                                         |
| Enable   | 0    | 0     | RW  | This bit enables/disables mixer operation<br>0: Disabled<br>1: Enabled |

## 5.11.3 MIXER\_OVERFLOW

Address - 0xce06 0004

|        | 15   | 14   | 13   | 12   | 11   | 10   | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|--------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|        | CH15 | CH14 | CH13 | CH12 | CH11 | CH10 | CH9 | CH8 | CH7 | CH6 | CH5 | CH4 | CH3 | CH2 | CH1 | CH0 |
| Reset: | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|        | R    | R    | R    | R    | R    | R    | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |

| Name          | Bit | Reset | Dir | Description                                                                                                    |
|---------------|-----|-------|-----|----------------------------------------------------------------------------------------------------------------|
| Overflow CH15 | 15  | 0     | RW  | This bit shows if channel is overflowed<br>0: No overflow<br>1: Channel overflowed                             |
| Overflow CH14 | 14  | 0     | RW  | This bit shows if channel is overflowed<br>0: No overflow                                                      |
| Overflow CH13 | 13  | 0     | RW  | 1: Channel overflowed<br>This bit shows if channel is overflowed<br>0: No overflow                             |
| Overflow CH12 | 12  | 0     | RW  | 1: Channel overflowed<br>This bit shows if channel is overflowed<br>0: No overflow                             |
| Overflow CH11 | 11  | 0     | RW  | <ol> <li>Channel overflowed</li> <li>This bit shows if channel is overflowed</li> <li>No overflow</li> </ol>   |
| Overflow CH10 | 10  | 0     | RW  | <ol> <li>Channel overflowed</li> <li>This bit shows if channel is overflowed</li> <li>No overflow</li> </ol>   |
| Overflow CH9  | 9   | 0     | RW  | 1: Channel overflowed<br>This bit shows if channel is overflowed<br>0: No overflow                             |
| Overflow CH8  | 8   | 0     | RW  | 1: Channel overflowed<br>This bit shows if channel is overflowed<br>0: No overflow                             |
| Overflow CH7  | 7   | 0     | RW  | 1: Channel overflowed<br>This bit shows if channel is overflowed                                               |
| Overflow CH6  | 6   | 0     | RW  | 1: Channel overflowed<br>This bit shows if channel is overflowed                                               |
| Overflow CH5  | 5   | 0     | RW  | <ul> <li>1: Channel overflowed</li> <li>This bit shows if channel is overflowed</li> </ul>                     |
| Overflow CH4  | 4   | 0     | RW  | 0: No overflow<br>1: Channel overflowed<br>This bit shows if channel is overflowed                             |
| Overflow CH3  | 3   | 0     | RW  | <ul><li>0: No overflow</li><li>1: Channel overflowed</li><li>This bit shows if channel is overflowed</li></ul> |
| Overflow CH2  | 2   | 0     | RW  | 0: No overflow<br>1: Channel overflowed<br>This bit shows if channel is overflowed                             |
|               | -   | 0     |     | 0: No overflow<br>1: Channel overflowed<br>This bit shows if shannel is suppliered                             |
| Overnow CH1   | 1   | U     | κw  | <ul><li>11 S DIT SHOWS IT CHANNEL IS OVERTIOWED</li><li>0: No overflow</li><li>1: Channel overflowed</li></ul> |
| Overflow CH0  | 0   | 0     | RW  | This bit shows if channel is overflowed<br>0: No overflow<br>1: Channel overflowed                             |

## 5.11.4 MIXER\_NUMOFCH

Address - 0xce06 0008

Channels

|                           | 15               | 14 | 13 | 12                             | 11          | 10       | 9                                              | 8 | 7 | 6 | 5 | 4                     | 3  | 2  | 1  | 0  |  |  |  |
|---------------------------|------------------|----|----|--------------------------------|-------------|----------|------------------------------------------------|---|---|---|---|-----------------------|----|----|----|----|--|--|--|
|                           |                  |    |    |                                |             | Reserved |                                                |   |   |   |   | Number of RX channels |    |    |    |    |  |  |  |
| Reset:                    | 0                | 0  | 0  | 0                              | 0           | 0        | 0                                              | 0 | 0 | 0 | 0 | 1                     | 0  | 0  | 0  | 0  |  |  |  |
|                           | R                | R  | R  | R                              | R           | R        | R                                              | R | R | R | R | RW                    | RW | RW | RW | RW |  |  |  |
|                           |                  |    |    |                                |             |          |                                                |   |   |   |   |                       |    |    |    |    |  |  |  |
| Name                      | ne Bit Reset Dir |    |    |                                | Description |          |                                                |   |   |   |   |                       |    |    |    |    |  |  |  |
| Reserved 15:5 0           |                  |    | R  | Reserved. Read back as zerroes |             |          |                                                |   |   |   |   |                       |    |    |    |    |  |  |  |
| Number of RX 4:0 10000 RW |                  |    |    |                                | RW          | Cou      | Could be any value from 0 to 16. 16 is maximum |   |   |   |   |                       |    |    |    |    |  |  |  |

In hifh rate mode is set to 8 by hardware

## 5.11.5 MIXER COEFFICIENTS RAM

Address - 0xce06 0800 - 0xce06 0c7c

# Chapter 6 AVS

The 1394 Audio Video System (AVS) handles isochronous streaming of media. The Audio part interfaces with the DICE system described above. The Video part has access to dedicated pins on the chip.

The AVS consists of 4 1394 audio receivers and 2 1394 audio transmitters. The AVS also contains 1 1394 video receiver and 1 1394 video transmitter. Each audio receiver and transmitter can receive/send 16 channels of audio over the 1394 network. The video receiver and transmitter can receive/send 1 channel of video over the 1394 network.

The AVS contains a complex buffering system. Timestamps located in the CIP headers (for audio/video) or source packet headers (for video) of the received 1394 isochronous packets, are processed to cause each sample of each stream to be presented to the router (or the dedicated video interface) at the appropriate presentation time. Note that the appropriate presentation time is determined by the configured sample frequency.

The AVS transmitters create the timestamps which accompany the transmitted 1394 isochronous packets. As sample quadlets from audio/video streams are written to the AVS by the router/video interface, the AVS creates timestamps and associates them with the incoming sample quadlets. The AVS then organizes the sample quadlets into isochronous packets to be transmitted over the 1394 network. The associated timestamps are written to CIP/source packet headers and accompany the sample quadlets over the 1394 network.

All nodes on a 1394 network must be synchronized to one clock called the cycle timer, which is determined by the master node on the network. One cycle of the master nodes' cycle timer defines a 1394 cycle. At the beginning of each 1394 cycle the master node transmits a clock sync signal that allows all nodes on the 1394 network to be synchronized to the cycle timer. This maintains synchronicity among all the 1394 nodes. Each 1394 node receives the clock sync signal and uses it to update or correct its local timer. However, this clock correction can cause the local timer to jump forward or backward as it is updated by the clock sync signal, which can reduce the performance of the system.

The format of a quadlet of audio data passing through the AVS is configurable. The AVS can be configured to be transparent for 32-bit audio data. In this case the data will not be touched as it passes through the AVS. The AVS can also be configured to support the IEC61883-6 (AM824) steaming model. This allows the AVS to either source AM824 labels from another location, or build its own AM824 labels for the 24-bit data. The AVS can take the various label fields (block sync, user bits, channel status bits, etc) that make up each AM824 label, from different sources, and then pack them together into an AM824 label.

The AVS contains a local interrupt controller handling all the different interrupt sources and merging them before sending them on to the host system interrupt controller.

The main data buffering structure in the AVS is called the Media FIFO, and it uses 4 banks of circular buffers. Each buffer can be allocated by software configuration to a particular audio or video receiver or transmitter.
# 6.1 AVS Audio Receivers

The system contains 2 independent audio receivers each capable of extracting 16 audio channels and 8 MIDI plugs.

### 6.1.1 Module Configuration

| Address     | Register      |
|-------------|---------------|
| 0xcf00 0000 | ARX1_CFG0     |
| 0xcf00 0004 | ARX1_CFG1     |
| 0xcf00 0008 | ARX1_QSEL0    |
| 0xcf00 000c | ARX1_QSEL1    |
| 0xcf00 0010 | ARX1_QSEL2    |
| 0xcf00 0014 | ARX1_QSEL3    |
| 0xcf00 0018 | ARX1_QSEL4    |
| 0xcf00 001c | ARX1_PHDR     |
| 0xcf00 0020 | ARX1_CIP0     |
| 0xcf00 0024 | ARX1_CIP1     |
| 0xcf00 0028 | ARX1_ADO_CFG  |
| 0xcf00 002c | ARX1_ADO_MIDI |
| 0xcf00 0030 | ARX2_CFG0     |
| 0xcf00 0034 | ARX2_CFG1     |
| 0xcf00 0038 | ARX2_QSEL0    |
| 0xcf00 003c | ARX2_QSEL1    |
| 0xcf00 0040 | ARX2_QSEL2    |
| 0xcf00 0044 | ARX2_QSEL3    |
| 0xcf00 0048 | ARX2_QSEL4    |
| 0xcf00 004c | ARX1_PHDR     |
| 0xcf00 0050 | ARX1_CIP0     |
| 0xcf00 0054 | ARX1_CIP1     |
| 0xcf00 0058 | ARX2_ADO_CFG  |
| 0xcf00 005c | ARX2_ADO_MIDI |

Table 66: AVS Audio Receiver Memory Map

# 6.1.2 ARXn\_CFG0

| Addre   | ess - 02                 | xcf00                                 | 0000         | 28           | 27              | 26         | 25              | 24              | 23              | 22                                | 21                         | 20                    | 19               | 18                    | 17       | 16     |
|---------|--------------------------|---------------------------------------|--------------|--------------|-----------------|------------|-----------------|-----------------|-----------------|-----------------------------------|----------------------------|-----------------------|------------------|-----------------------|----------|--------|
|         | 31<br>RXDO<br>Enable Bit | Test_FMT_                             |              | Test_<br>FDF | Test_D<br>BS_EN | Test_FN_EN | Test_Q<br>PS_EN | Test_S<br>PH_EN | Test_T<br>AG_EN | SYT_INTERV<br>AL 32<br>"Cheating" | No Data Field<br>Selection | Specify SPH<br>Enable | Specified<br>SPH | Specify TAG<br>Enable | Specifie | ad TAG |
| Pocot   | 0                        | EN                                    |              | _EN          |                 | 0          |                 |                 |                 | Mode Enable                       | 0                          |                       |                  | 0                     |          |        |
| 110301. | RW                       |                                       | U<br>U<br>RW |              |                 |            |                 |                 |                 | RW                                | RW                         | RW                    | RW               | RW                    | R        | N      |
|         |                          |                                       |              |              |                 |            |                 |                 |                 |                                   |                            |                       |                  |                       |          |        |
|         | 15                       | 14                                    | 13           | 12           | 11              | 10         | 9               | 8               | 7               | 6                                 | 5                          | 4                     | 3                | 2                     | 1        | 0      |
|         | Enable<br>SID<br>Test    | Enable SID (Source ID)<br>SID<br>Test |              |              |                 |            |                 | Media FI        | FO Partition    |                                   |                            | Char                  | inel ID          |                       |          |        |
| Reset:  | 0                        | 0 0                                   |              |              |                 |            | 0               |                 |                 |                                   |                            | 0                     |                  |                       |          |        |
|         | RW                       |                                       |              |              |                 | RW         |                 |                 |                 | R                                 | W                          |                       |                  |                       |          |        |

| Name                                      | Bits | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RXDO Enable Bit                           | 31   | 0     | RW  | RXDO Enable Bit. Setting this bit enables operation of the RXDO block.                                                                                                                                                                                                                                                                                                                         |
| Reserved                                  | 30   | 0     | R   |                                                                                                                                                                                                                                                                                                                                                                                                |
| TEST_FMT_EN                               | 29   | 0     | RW  | Enables testing of locally set FMT against incoming FMT. In case of<br>difference CFG_FAIL interrupt is raised                                                                                                                                                                                                                                                                                 |
|                                           |      |       |     | 0: Comparison disabled                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |      |       |     | 1: Comparison Enabled                                                                                                                                                                                                                                                                                                                                                                          |
| TEST_FDF_EN                               | 28   | 0     | RW  | Enables testing of locally set FDF against incoming FDF. In case of<br>difference CFG_FAIL interrupt is raised                                                                                                                                                                                                                                                                                 |
|                                           |      |       |     | 0: Comparison disabled                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |      |       |     | 1: Comparison Enabled                                                                                                                                                                                                                                                                                                                                                                          |
| TEST_DBS_EN                               | 27   | 0     | RW  | Enables testing of locally set DBS against incoming DBS. In case of<br>difference CFG_FAIL interrupt is raised                                                                                                                                                                                                                                                                                 |
|                                           |      |       |     | 0: Comparison disabled                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |      |       |     | 1: Comparison Enabled                                                                                                                                                                                                                                                                                                                                                                          |
| TEST_FN_EN                                | 26   | 0     | RW  | Enables testing of locally set FN against incoming FN. In case of<br>difference CFG_FAIL interrupt is raised                                                                                                                                                                                                                                                                                   |
|                                           |      |       |     | 0: Comparison disabled                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |      |       |     | 1: Comparison Enabled                                                                                                                                                                                                                                                                                                                                                                          |
| TEST_QPS_EN                               | 25   | 0     | RW  | Enables testing of locally set QPS against incoming QPS. In case of<br>difference CFG_FAIL interrupt is raised                                                                                                                                                                                                                                                                                 |
|                                           |      |       |     | 0: Comparison disabled                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |      |       |     | 1: Comparison Enabled                                                                                                                                                                                                                                                                                                                                                                          |
| TEST_SPH_EN                               | 24   | 0     | RW  | Enables testing of locally set SPH against incoming SPH. In case of<br>difference CFG_FAIL interrupt is raised                                                                                                                                                                                                                                                                                 |
|                                           |      |       |     | 0: Comparison disabled                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |      |       |     | 1: Comparison Enabled                                                                                                                                                                                                                                                                                                                                                                          |
| TEST_TAG_EN                               | 23   | 0     | RW  | Enables testing of locally set TAG against incoming TAG. In case of<br>difference CFG_FAIL interrupt is raised                                                                                                                                                                                                                                                                                 |
|                                           |      |       |     | 0: Comparison disabled                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |      |       |     | 1: Comparison Enabled                                                                                                                                                                                                                                                                                                                                                                          |
| SYT_INTERVAL 32<br>"Cheating" Mode Enable | 22   | 0     | RW  | SYT_INTERVAL 32 "Cheating" Mode Enable. Setting this bit puts<br>the ARX DB counters into a cheat mode, allowing SYT_INTERVAL<br>32 streams to be output to the Router as if they were<br>SYT_INTERVAL 16 streams with Data Blocks 2 times larger than<br>shown in the CIP headers. Proper FORCED set up of the rest of the<br>ARX (DBS, FDF) for SYT_INTERVAL 16 is required for this mode to |

|                                |       |   |    | work.                                                                                                                                                                                                                        |
|--------------------------------|-------|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Data Field Selection        | 21    | 0 | RW | No Data Field Selection. Setting this bit causes a check of the FDF field to identify a NO_DATA packet; otherwise the FMT field is checked.                                                                                  |
| Specify SPH Enable             | 20    | 0 | RW | Specify SPH Enable. Forces the ARX to obey the specified SPH field rather than the SPH received in the CIP headers of its isoch stream.                                                                                      |
| Specified SPH                  | 19    | 0 | RW | Specified SPH. Forced value of the SPH field.                                                                                                                                                                                |
| Specify TAG Enable             | 18    | 0 | RW | Specify TAG Enable. Forces the ARX to obey the specified TAG field rather than the TAG received in the Packet Headers of its isoch stream.                                                                                   |
| Specified TAG                  | 17:16 | 0 | RW | Specified TAG. Forced value of the TAG field.                                                                                                                                                                                |
| Enable SID Test                | 15    | 0 | RW | Enable SID Test. Setting this bit causes the ARX to compare the Source ID (SID) field of its isoch stream against the SID value given in this CFG register. If a mismatch occurs, and interrupt to the ARM will be signaled. |
| SID (Source ID)                | 14:9  | 0 | RW | SID (Source ID). Value to optionally check the SID of an isoch stream against.                                                                                                                                               |
| Reserved                       | 8     | 0 | R  | Reserved. Read back as zerro                                                                                                                                                                                                 |
| Media FIFO Partition<br>Select | 7:6   | 0 | RW | Media FIFO Partition Select. Select which Media FIFO partition this RXDO block shall use.                                                                                                                                    |
| Channel ID                     | 5:0   | 0 | RW | Channel ID. Tell the ARX what channel ID it shall take its isoch data from.                                                                                                                                                  |

#### 6.1.3 ARXn\_CFG1

| Address - 0xcf00 0004                                                                                                                           | 28 2 | 7 26                             | 25<br>Specifie | 24     23     22     21     20     19     18     17     16       od DBS     Specified FN     Specified QPC       o     0     0       W     RW     RW |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         Specify         Specify         FOF           FMT         FDF         FDF         FDF           Reset:         0         0         0 |      | 1 10<br>Specified FMT<br>0<br>RW | 9              | 8     7     6     5     4     3     2     1     0         Specified FDF         0         RW                                                         |
| Name                                                                                                                                            | Bits | Reset                            | Dir            | Description                                                                                                                                          |
| Specify DBS Enable                                                                                                                              | 31   | 0                                | RW             | Specify DBS Enable. Forces the ARX to obey the specified DBS field rather than the DBS received in the CIP headers of its isoch stream.              |
| Specify FN Enable                                                                                                                               | 30   | 0                                | RW             | Specify FN Enable. Forces the ARX to obey the specified FN field rather than the FN received in the CIP headers of its isoch stream.                 |

| Specify QPC Enable | 29    | 0 | RW | Specify QPC Enable. Forces the ARX to obey the specified QPC field rather than the QPC received in the CIP headers of its isoch stream.  |
|--------------------|-------|---|----|------------------------------------------------------------------------------------------------------------------------------------------|
| Specified DBS      | 28:21 | 0 | RW | Specified DBS. Forced value of DBS for the ARX. This sets how many data quadlets per Data Block will be expected in the isoch stream.    |
| Specified FN       | 20:19 | 0 | RW | Specified FN. Forced value of the FN field.                                                                                              |
| Specified QPC      | 18:16 | 0 | RW | Specified QPC. Forced value of the QPC field. Any quadlets considered as padding will be discarded rather than stored in the Media FIFO. |
| Specify FMT Enable | 15    | 0 | RW | Specify FMT Enable. Forces the ARX to obey the specified FMT field rather than the FMT received in the CIP headers of its isoch stream.  |
| Specify FDF Enable | 14    | 0 | RW | Specify FDF Enable. Forces the ARX to obey the specified FDF field rather than the FDF received in the CIP headers of its isoch stream.  |
| Specified FMT      | 13:8  | 0 | RW | Specified FMT. Forced value of the FMT field.                                                                                            |
| Specified FDF      | 7:0   | 0 | RW | Specified FDF. Forced value of the FDF field.                                                                                            |

## 6.1.4 ARXn\_QSEL0



Isochronous data channels received by the ARX can include up to 64 different audio and MIDI sequences. The AVS handles a maximum of 16 audio sequences and one MIDI sequence per Isochronous data channel. The QSEL registers select which of the incoming audio and MIDI sequences for a given isochronous channel, are to be sent through the AVS to the Router. For example, if

Each data block received by the ARX inside an isoch packet, can contain a maximum of 256 quadlets of data, where each quadlet is one sample of one of 256 audio sequences (or MIDI sequence).

The AVS can handle a maximum of 17 audio sequences from each isoch channel (16 audio sequences maximum and 1 MIDI sequence maximum). The QSEL registers specify which of the 256 sequences the AVS is to receive.

Each QSEL register slot can hold a value of 0-255. These slots identify which quadlets of a data block to pull out and store in the Media FIFO, and which to ignore. Each quadlet in an incoming data block is assigned a number starting with 1 as the first quadlet. Setting a QSEL to 0 causes the all further quadlets to be ignored. This numbering

scheme is then used to specify which quadlets should be stored in the Media FIFO. For example, let's say that the Data Block Size (DBS) of the received stream is 150, and you only want to store quadlets 2, 3, 19, 101, 133. You would assign the following values to the QSEL slots:

QSEL Slots 1-17:

0x02, 0x03, 0x13, 0x65, 0x85, 0x00, 0x00,

Setting a QSEL Slot to 0x00 causes all further quadlets in the data block to be ignored. Slots must contain numbers in ascending order...further manipulation of data quadlet ordering must be done by the DICE JR/Mini Router. At most, 17 quadlets can be pulled out of a data block.

Note that the ARX does not care about MIDI quadlets. It does not matter whether MIDI is enabled or not, the ARX will still just pass through whatever quadlets are referenced to in the QSEL registers.

In the ADO, if MIDI is enabled, the *last* quadlet of each "QSEL defined" data block will always be stripped off and sent to the MIDI interface. All other quadlets will then be sent to the DICE JR/Mini Router. If MIDI is not enabled the ADO will assume that all quadlets in the "QSEL defined" data block are audio and will send them all to the DICE JR/Mini router.

The reason for having 17 QSEL entries is to be able to handle 16 audio and 1 MIDI. Note that this does not mean that QSEL 17 is reserved for MIDI. Rather, MIDI must be referenced by the last valid QSEL entry. Note that this could even be the first QSEL, in the case of having 1 MIDI sequence and NO audio sequences. Also note, even though there are 17 QSEL entries, the ADO can only send out a maximum of 16 audio sequences to the router.

If a data block were to arrive with 256 entries, only quadlets in the first 255 can be pulled out. This is a limitation of the numbering scheme, but not one to likely cause problems since no accepted audio format has data block sizes anywhere near 256.

| Name   | Bits  | Reset | Dir | Description                                                         |
|--------|-------|-------|-----|---------------------------------------------------------------------|
| QSEL 3 | 31:24 | 0     | RW  | 4 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 2 | 23:16 | 0     | RW  | 3 <sup>rd</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 1 | 15:8  | 0     | RW  | 2 <sup>nd</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 0 | 7:0   | 0     | RW  | 1 <sup>st</sup> Slot in each DB to allow through to the Media FIFO. |

#### 6.1.5 ARXn\_QSEL1



| Reset: | 0  | 0  |
|--------|----|----|
|        |    |    |
|        | RW | RW |

| Name   | Bits  | Reset | Dir | Description                                                         |
|--------|-------|-------|-----|---------------------------------------------------------------------|
| QSEL 7 | 31:24 | 0     | RW  | 8 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 6 | 23:16 | 0     | RW  | 7 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 5 | 15:8  | 0     | RW  | 6 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 4 | 7:0   | 0     | RW  | 5 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |

#### 6.1.6 ARXn\_QSEL2

|        | 30         29         28         27         26         25         24           31         12 <sup>th</sup> Slot in each DB to allow through to the Media FIFO         12 <sup>th</sup> Slot in each DB to allow through to the Media FIFO | 23         22         21         20         19         18         17         16           11 <sup>th</sup> Slot in each DB to allow through to the Media FIFO         11         11         16 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset: | 0                                                                                                                                                                                                                                         | 0                                                                                                                                                                                              |
|        | RW                                                                                                                                                                                                                                        | RW                                                                                                                                                                                             |
|        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |
|        | 14 13 12 11 10 9 8                                                                                                                                                                                                                        | 7 6 5 4 3 2 1 0                                                                                                                                                                                |
|        | 10 <sup>th</sup> Slot in each DB to allow through to the Media FIFO                                                                                                                                                                       | 9 <sup>th</sup> Slot in each DB to allow through to the Media FIFO                                                                                                                             |
| Reset: | 0                                                                                                                                                                                                                                         | 0                                                                                                                                                                                              |
|        | RW                                                                                                                                                                                                                                        | RW                                                                                                                                                                                             |

| Name    | Bits  | Reset | Dir | Description                                                          |
|---------|-------|-------|-----|----------------------------------------------------------------------|
| QSEL 11 | 31:24 | 0     | RW  | 12 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 10 | 23:16 | 0     | RW  | 11 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 9  | 15:8  | 0     | RW  | 10 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
| QSEL 8  | 7:0   | 0     | RW  | 9 <sup>th</sup> Slot in each DB to allow through to the Media FIFO.  |

## 6.1.7 ARXn\_QSEL3



|        | 14 <sup>th</sup> Slot in each DB to allow through to the Media FIFO | 13 <sup>a</sup> Slot in each DB to allow through to the Media FIFO |
|--------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| Reset: | 0                                                                   | 0                                                                  |
|        | RW                                                                  | RW                                                                 |

| Name    | Bits  | Reset | Dir | Description                                                          |  |  |
|---------|-------|-------|-----|----------------------------------------------------------------------|--|--|
| QSEL 15 | 31:24 | 0     | RW  | 16 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |  |  |
| QSEL 14 | 23:16 | 0     | RW  | 15 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |  |  |

| QSEL 13 | 15:8 | 0 | RW | 14 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |
|---------|------|---|----|----------------------------------------------------------------------|
| QSEL 12 | 7:0  | 0 | RW | 13 <sup>th</sup> Slot in each DB to allow through to the Media FIFO. |

#### 6.1.8 ARXn\_QSEL4

| Address - 0xcf00 0018                                                                                                                                                      | ddress - 0xcf00 0018         30       29       28       27       26       25       24       23       22       21       20       19       18       17       16         31       Timestamp Adjust Value         Timestamp Adjust Value         RW |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 16         13           Reset                                                                                                                                              | 12 1<br>Reserved<br>0<br>RW                                                                                                                                                                                                                     | 1 10  | 9   | 8       7       6       5       4       3       2       1       0         In the second of the seco |  |  |  |  |  |  |
| Name                                                                                                                                                                       | Bits                                                                                                                                                                                                                                            | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Timestamp Adjust Value         31:16         0         RW         Allows skew of presentation time, both forwards and MSB is a sign bit, positive causes forward skew, and |                                                                                                                                                                                                                                                 |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| QSEL 16                                                                                                                                                                    | 7:0                                                                                                                                                                                                                                             | 0     | RW  | 17 <sup>th</sup> Slot in each DB to allow through to the Media FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |

NOTE: How to use the QSEL fields to receive data quadlets

There are 17 "slots" you can specify in the QSEL registers. Each QSEL register slot can hold a value of 0-255. Since Data Blocks in the received stream can have up to 256 quadlets, these slots identify which quadlets of a data block to pull out and store in the Media FIFO, and which to ignore. If you assign numbers to the quadlets in a data block (starting with 1 as the first quadlet) then use this numbering scheme to specify which quadlets should be stored in the Media FIFO. For example, let's say that the Data Block Size (DBS) of the received stream is 16, and you only want to store quadlets 2, 4, 6, ..., 16. You would assign the following values to the QSEL slots:

QSEL Slots 1-8: 8'h02, 8'h04, 8'h06, 8'h08, 8'h0A, 8'h0C, 8'h0E, 8'h10 (respectively).

QSEL Slots 9-17: 8'h00.

Setting a QSEL Slot to 8'h00 causes all further quadlets in the data block to be ignored. Slots must contain numbers in ascending order... further manipulation of data quadlet ordering must be done by the DICE2 Router. At most, 17 quadlets can be pulled out of a data block, but only the first 16 of these can be passed through to the DICE2 Router the last quadlet is for MIDI only. Also, if a data block were to arrive with 256 entries, only quadlets in the first 255 can be pulled out (this is a limitation of the numbering scheme, but not one to likely cause problems since no accepted audio format has data block sizes anywhere near 256).

#### 6.1.9 ARXn\_PHDR

Address - 0xcf00 001c

 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16

|        | Reserved | TX speed field |
|--------|----------|----------------|
| Reset: | 0        | 0              |
|        | R        | R              |
|        |          |                |

|        | 14             | 13 12 11 10 9 8    | 7 6 5 4          | 3 2 1 0         |
|--------|----------------|--------------------|------------------|-----------------|
|        | PHDR TAG field | PHDR Channel field | PHDR TCODE field | PHDR SYNC field |
| Reset: | 0              | 0                  | 0                | 0               |
|        | R              | R                  | R                | R               |

| Name               | Bits  | Reset | Dir | Description                                                                                        |
|--------------------|-------|-------|-----|----------------------------------------------------------------------------------------------------|
| TX speed field     | 18:16 | 0     | R   | Set to 3'h0 for S100, 3'h1 for S200, and any other value indicates S400 isochronous transmit speed |
| PHDR TAG field     | 15:14 | 0     | R   |                                                                                                    |
| PHDR Channel field | 13:8  | 0     | R   |                                                                                                    |
| PHDR TCODE field   | 7:4   | 0     | R   |                                                                                                    |
| PHDR SYNC field    | 3:0   | 0     | R   |                                                                                                    |

This register is read only. It contains the last received PHDR quadlet.

### 6.1.10 ARXn\_CIP0





| Name                                | Bits  | Reset | Dir | Description                      |
|-------------------------------------|-------|-------|-----|----------------------------------|
| Reserved                            | 31:30 | 0     | R   |                                  |
| CIP0 SID (Source ID) field          | 29:24 | 0     | R   | CIP0 SID (Source ID) field       |
| CIP0 DBS (Data Block<br>Size) field | 23:16 | 0     | R   | CIP0 DBS (Data Block Size) field |

| CIP0 FN field  | 15:14 | 0 | R | CIP0 FN field  |
|----------------|-------|---|---|----------------|
| CIP0 QPC field | 13:11 | 0 | R | CIP0 QPC field |
| CIP0 SPH bit   | 10    | 0 | R | CIP0 SPH bit   |
| Reserved       | 9:8   | 0 | R |                |
| CIP0 DBC field | 7:0   | 0 | R | CIP0 DBC field |

This register is read only. It contains the last received CIP0 quadlet.

### 6.1.11 ARXn\_CIP1

| Address - 0xcf00 0024                    | 28 27 | 7 26<br>CIP1 FMT field<br>0<br>R | 25  | 24     23     22     21     20     19     18     17     16       CIP1 FDF field       0       R                      |
|------------------------------------------|-------|----------------------------------|-----|----------------------------------------------------------------------------------------------------------------------|
| 15         13           Resot:         1 | 12 1  | 1 10                             | 9   | 8         7         6         5         4         3         2         1         0           CIP1 SYT Timestamp field |
| Name                                     | Bits  | Reset                            | Dir | Description                                                                                                          |
| Set to 2'b10                             | 31:30 | 0                                | R   |                                                                                                                      |
| CIP1 FMT field                           | 29:24 | 0                                | R   |                                                                                                                      |
| CIP1 FDF field                           | 23:16 | 0                                | R   |                                                                                                                      |
| CIP1 SYT Timestamp field                 | 15:0  | 0                                | R   |                                                                                                                      |

This register is read only. It contains the last received CIP1 quadlet.

#### 6.1.12 ARXn\_ADO\_CFG

| Addre  | ess - (       | 0x <u>cf00</u>        | 0028                              |      |              |    |    |         |            |    |          |    |    |    |    |    |
|--------|---------------|-----------------------|-----------------------------------|------|--------------|----|----|---------|------------|----|----------|----|----|----|----|----|
|        | 31            | 30                    | 29                                | 28   | 27           | 26 | 25 | 24      | 23         | 22 | 21       | 20 | 19 | 18 | 17 | 16 |
|        | Mute_n<br>Bit | MIDI<br>Enable<br>Bit | Automa<br>tic<br>Muting<br>Enable | LOCK | DUAL<br>Wire |    |    |         |            |    | Reserved |    |    |    |    |    |
| Reset: | 0             | 0                     | 0                                 |      |              |    |    |         |            | 0  |          |    |    |    |    |    |
|        | RW            | RW                    | RW                                |      |              |    |    |         |            | RW |          |    |    |    |    |    |
|        | 15            | 14                    | 13                                | 12   | 11           | 10 | 9  | 8       | 7          | 6  | 5        | 4  | 3  | 2  | 1  | 0  |
|        |               |                       |                                   |      |              |    |    | LOCK CC | ount Field |    |          |    |    |    |    |    |
| Reset: |               |                       |                                   |      |              |    |    |         | 0          |    |          |    |    |    |    |    |
|        |               |                       |                                   |      |              |    |    | R       | W          |    |          |    |    |    |    |    |

| Name                                                      | Bits  | Reset | Dir                                                                                                                                                                                                                                                  | Description                                                                                                                                    |
|-----------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Mute_n Bit                                                | 31    | 0     | RW                                                                                                                                                                                                                                                   | Mute_n Bit (Active Low). When low, all data output from the ADO will be muted. This bit must be set active to get data values through the ADO. |
| MIDI Enable Bit                                           | 30    | 0     | RW                                                                                                                                                                                                                                                   | MIDI Enable Bit. This bit tells the ADO whether the last quadlet in every DB is MIDI, or if there is no MIDI in the stream to deal with.       |
| Automatic Muting Enable                                   | 29    | 0     | RW                                                                                                                                                                                                                                                   | Automatic Muting Enable. Setting this bit causes an automatic mute of the ADO data stream when the ADO is not locked.                          |
| Transmission is LOCKED                                    | 28    | 0     | R                                                                                                                                                                                                                                                    | SM is in the "LOCKED" state                                                                                                                    |
| Dual Wire mode                                            | 27    | 0     | RW                                                                                                                                                                                                                                                   | Dual wire mode set (as in standard)                                                                                                            |
|                                                           |       |       |                                                                                                                                                                                                                                                      | 0: Mode disabled                                                                                                                               |
|                                                           |       |       |                                                                                                                                                                                                                                                      | 1: Mode enabled                                                                                                                                |
| Reserved                                                  | 26:16 | 0     | R                                                                                                                                                                                                                                                    | Reads back as zerro                                                                                                                            |
| Lock Count Field 15:0 0 RW Lock<br>pass<br>signa<br>count |       | RW    | Lock Count Field. This sets the number of 1934 clocks that must<br>pass without ADO slipping or repeating sample before the ADO will<br>signal it is locked. If a slip or repeat occurs, the lock is lost and this<br>count must again be satisfied. |                                                                                                                                                |

#### 6.1.13 ARXn\_ADO\_MIDI

| Address - 0xcf00 002c                                     |                                 |                     |                      |                                                                                                                                                             |
|-----------------------------------------------------------|---------------------------------|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 29                                                     | 28 27                           | 26                  | 25                   | 24 23 22 21 20 19 18 17 16                                                                                                                                  |
| Enable Plug to Port mapping for MIDI<br>MIDI<br>Port 7    | Port 7 Enable<br>MIDI<br>Port 6 | Plug to Por         | t mapping for M      | IDI Port 6<br>MIDI<br>Port 5         Plug to Port mapping for MIDI Port<br>5.         Enable<br>MIDI<br>Port 4         Plug to Port mapping for MIDI Port 4 |
| Reset: 0 0                                                | 0                               |                     | 0                    |                                                                                                                                                             |
| RW RW                                                     | RW                              |                     | RW                   | RW RW RW                                                                                                                                                    |
| 14 13 14 13 15 16 Enable 11 Plug to Port mapping for MIDI | 12 11<br>Port 3 Enabl           | 10<br>e Plug to Poi | 9<br>t mapping for M | 8 7 6 5 4 3 2 1 0                                                                                                                                           |
| MIDI<br>Port 3                                            | MIDI<br>Port 2                  | 2                   |                      | MIDI<br>Port 1 Port 0                                                                                                                                       |
| Reset: 0 0                                                | 0                               |                     | 0                    |                                                                                                                                                             |
| RW RW                                                     | RW                              |                     | RW                   | RW RW RW                                                                                                                                                    |
|                                                           |                                 |                     |                      |                                                                                                                                                             |
| Name                                                      | Bits                            | Reset               | Dir                  | Description                                                                                                                                                 |
| Enable MIDI Port 7                                        | 31                              | 0                   | RW                   | Enable MIDI Port 7.                                                                                                                                         |

| Plug to Port mapping for<br>MIDI Port 7 | 30:28 | 0 | RW | Plug to Port mapping for MIDI Port 7. |
|-----------------------------------------|-------|---|----|---------------------------------------|
| Enable MIDI Port 6                      | 27    | 0 | RW | Enable MIDI Port 6.                   |
| Plug to Port mapping for<br>MIDI Port 6 | 26:24 | 0 | RW | Plug to Port mapping for MIDI Port 6. |
| Enable MIDI Port 5                      | 23    | 0 | RW | Enable MIDI Port 5.                   |
| Plug to Port mapping for<br>MIDI Port 5 | 22:20 | 0 | RW | Plug to Port mapping for MIDI Port 5. |
| Enable MIDI Port 4                      | 19    | 0 | RW | Enable MIDI Port 4.                   |
| Plug to Port mapping for<br>MIDI Port 4 | 18:16 | 0 | RW | Plug to Port mapping for MIDI Port 4. |
| Enable MIDI Port 3                      | 15    | 0 | RW | Enable MIDI Port 3.                   |
| Plug to Port mapping for<br>MIDI Port 3 | 14:12 | 0 | RW | Plug to Port mapping for MIDI Port 3. |
| Enable MIDI Port 2                      | 11    | 0 | RW | Enable MIDI Port 2.                   |
| Plug to Port mapping for<br>MIDI Port 2 | 10:8  | 0 | RW | Plug to Port mapping for MIDI Port 2. |
| Enable MIDI Port 1                      | 7     | 0 | RW | Enable MIDI Port 1.                   |
| Plug to Port mapping for<br>MIDI Port 1 | 6:4   | 0 | RW | Plug to Port mapping for MIDI Port 1. |
| Enable MIDI Port 0                      | 3     | 0 | RW | Enable MIDI Port 0.                   |
| Plug to Port mapping for<br>MIDI Port 0 | 2:0   | 0 | RW | Plug to Port mapping for MIDI Port 0. |

# 6.2 AVS Audio Transmitters

The system contains 2 independent audio transmitters each capable of sending 16 audio channels and 8 MIDI plugs.

## 6.2.1 Module Configuration

| Address     | Register      |
|-------------|---------------|
| 0xcf00 00c0 | ATX1_CFG      |
| 0xcf00 00c4 | ATX1_TSTAMP   |
| 0xcf00 00c8 | ATX1_PHDR     |
| 0xcf00 00cc | ATX1_CIP0     |
| 0xcf00 00d0 | ATX1_CIP1     |
| 0xcf00 00d4 | ATX1_ADI_CFG  |
| 0xcf00 00d8 | ATX1_ADI_MIDI |
| 0xcf00 00dc | ATX2_CFG      |
| 0xcf00 00e0 | ATX2_TSTAMP   |
| 0xcf00 00e4 | ATX2_PHDR     |
| 0xcf00 00e8 | ATX2_CIP0     |
| 0xcf00 00ec | ATX2_CIP1     |
| 0xcf00 00f0 | ATX2_ADI_CFG  |
| 0xcf00 00f4 | ATX2_ADI_MIDI |

Table 67: AVS Audio Transmitter Memory Map

# 6.2.2 ATXn\_CFG

| Addre  | ess - 0)    | (cf00 (    | 00c0      |         |            |            |            |            |            |            |         |        |    |        |     |    |
|--------|-------------|------------|-----------|---------|------------|------------|------------|------------|------------|------------|---------|--------|----|--------|-----|----|
|        | 31          | 30         | 29        | 28      | 27         | 26         | 25         | 24         | 23         | 22         | 21      | 20     | 19 | 18     | 17  | 16 |
|        | TXDI Enable | NO_DATA    | FMT       | FDF     | SPH Enable | Multiple   | SPH        | CIP        | 23b        | 25b        | CFG_SYS | S_MODE |    | Reserv | /ed |    |
|        | Bit         | Enable Bit | NO_DATA   | NO_DATA | Bit        | Source     | Timestamp  | Timestamp  | Timestamp  | Timestamp  |         |        |    |        |     |    |
|        |             |            | Enable    | Enable  |            | Packet     | Enable Bit | Enable Bit | Enable Bit | Enable Bit |         |        |    |        |     |    |
|        |             |            |           |         |            | Enable Bit |            |            |            |            |         |        |    |        |     |    |
| Reset: | 0           | 0          | 0         | 0       | 0          | 0          | 0          | 0          | 0          | 0          | 0       | 0      |    | 0      |     |    |
|        |             |            |           |         |            |            |            |            |            |            |         |        |    |        |     |    |
|        | RW          | RW         | RW        | RW      | RW         | RW         | RW         | RW         | RW         | RW         | RW      | RW     |    | RW     |     |    |
|        | · · · · ·   |            | · · · · · |         |            | · · · · ·  |            |            | · · · · ·  |            |         |        |    |        |     |    |
|        |             |            |           |         |            |            |            |            |            |            |         |        |    |        |     |    |

|        | 15 | 14 13 12 11 10 | 9 | 8 7 6 5 4       | 3        | 2 1 0                          |
|--------|----|----------------|---|-----------------|----------|--------------------------------|
|        |    | Reserved       |   | Data Block Size | Reserved | Media FIFO Partition<br>Select |
| Reset: |    | 0              |   | 0               | 0        | 0                              |
|        |    | RW             |   | RW              | RW       | RW                             |

| Name                                 | Bits  | Reset | Dir | Description                                                                                                                                               |
|--------------------------------------|-------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| TXDI Enable Bit                      | 31    | 0     | RW  | Setting this bit enables operation of the TXDI block.                                                                                                     |
| NO_DATA Enable Bit                   | 30    | 0     | RW  | Setting this bit will cause the ATX to send no-data packets when there isn't sufficient data to send a real packet. Otherwise empty packets will be sent. |
| FMT NO_DATA Enable                   | 29    | 0     | RW  | Setting this bit will cause the FMT field of NO_DATA packets to be 6'h3F (all 1's).                                                                       |
| FDF NO_DATA Enable                   | 28    | 0     | RW  | Setting this bit will cause the FDF field of NO_DATA packets to be 8'hFF (all 1's).                                                                       |
| SPH Enable Bit                       | 27    | 0     | RW  | Enables Source Packet Headers in the isoch stream (not meant for standard audio streams).                                                                 |
| Multiple Source Packet<br>Enable Bit | 26    | 0     | RW  | Setting this bit enables multiple Source Packets (SYT_INTERVAL Data Blocks) to be sent per isoch period (not meant for standard audio streams).           |
| SPH Timestamp Enable Bit             | 25    | 0     | RW  | Tells the ATX to put timestamps in the Source Packet Header (SPH) instead of the CIP header (not meant for standard audio streams).                       |
| CIP Timestamp Enable Bit             | 24    | 0     | RW  | Tells the ATX to put timestamps in the CIP header (standard audio stream format).                                                                         |
| 23b Timestamp Enable Bit             | 23    | 0     | RW  | Sets timestamp width at 23 bits.                                                                                                                          |
|                                      |       |       |     | NOTE: leaving bits 22 and 23 low will cause timestamp width of 16, which is standard for audio streaming.                                                 |
| 25b Timestamp Enable Bit             | 22    | 0     | RW  | Sets timestamp width at 25 bits.                                                                                                                          |
|                                      |       |       |     | NOTE: leaving bits 22 and 23 low will cause timestamp width of 16, which is standard for audio streaming.                                                 |
| CFG_SYS_MODE                         | 21:20 | 0     | RW  | System rate configuration                                                                                                                                 |
|                                      |       |       |     | 00: Low rate (48KHz)                                                                                                                                      |
|                                      |       |       |     | 01: Medium Rate (96KHz)                                                                                                                                   |
|                                      |       |       |     | 10: High Rate (192KHz)                                                                                                                                    |
|                                      | 0.4   | 0     |     | 11: Reserved                                                                                                                                              |
| Data Block Size                      | 8:4   | U     | RW  | drives all counters in the ATX just in case there are logical errors in<br>the final DICE2 chip.                                                          |
| Reserved                             | 2     | 0     | R   | Reserved.                                                                                                                                                 |
| Media FIFO Partition                 | 1:0   | 0     | RW  | Select which Media FIFO partition this TXDI block shall use.                                                                                              |

Select

# 6.2.3 ATXn\_TSTAMP

| Address - 0xcf00 00c4  | ess - Oxcf00 00c4         |       |     |                                                                                                                                                                                  |  |  |  |  |  |
|------------------------|---------------------------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Keset:                 |                           |       |     |                                                                                                                                                                                  |  |  |  |  |  |
|                        |                           |       |     |                                                                                                                                                                                  |  |  |  |  |  |
| 15                     | 15 Timestamp Adjust Value |       |     |                                                                                                                                                                                  |  |  |  |  |  |
| Reset:                 |                           |       |     | 0                                                                                                                                                                                |  |  |  |  |  |
|                        |                           |       |     | RW                                                                                                                                                                               |  |  |  |  |  |
|                        |                           |       |     |                                                                                                                                                                                  |  |  |  |  |  |
| Name                   | Bits                      | Reset | Dir | Description                                                                                                                                                                      |  |  |  |  |  |
| Timestamp Adjust Value | 15:0                      | 0     | RW  | Value is added to the timestamp value for every isoch packet to account for network transmission time. This value also controls the amount of buffering in the destination node. |  |  |  |  |  |

# 6.2.4 ATXn\_PHDR

Address - 0xcf00 00c8

| 30         29         C           31                                                     | 28 27        | 26     | 25<br>Reserved<br>0<br>W | 24     23     22     21     20     19     18     17     16       TX speed field       0     W                                            |
|------------------------------------------------------------------------------------------|--------------|--------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 14         13           15         PHDR TAG field           Reset:         0           W | 12 11<br>PHC | 0<br>W | 9                        | 8     7     6     5     4     3     2     1     0       PHDR TCODE field     PHDR SYNC field     0     0     0       W     W     W     W |
| Name                                                                                     | Bits         | Reset  | Dir                      | Description                                                                                                                              |
| TX speed field                                                                           | 18:16        | 0      | W                        | Set to 3'h0 for S100, 3'h1 for S200, and any other value will set S400 isochronous transmit speed                                        |
| PHDR TAG field                                                                           | 15:14        | 0      | W                        | Used when constructing PHDR quadlet to send                                                                                              |
| PHDR Channel field                                                                       | 13:8         | 0      | W                        | Used when constructing PHDR quadlet to send                                                                                              |
| PHDR TCODE field                                                                         | 7:4          | 0      | W                        | Used when constructing PHDR quadlet to send                                                                                              |
| PHDR SYNC field                                                                          | 3:0          | 0      | W                        | Used when constructing PHDR quadlet to send                                                                                              |

This register is Write Only.

## 6.2.5 ATXn\_CIP0

| Address - 0xcf00 00 | <b>DCC</b><br>29 28 27 26 | 25 24           | 23 22 21 20 19 18 17 16          |  |  |  |
|---------------------|---------------------------|-----------------|----------------------------------|--|--|--|
| Set to 2'b00        | CIP0 SID (Source ID) fie  | eld             | CIP0 DBS (Data Block Size) field |  |  |  |
| Reset: 0            | 0                         |                 | 0                                |  |  |  |
| W                   | W                         |                 | W                                |  |  |  |
|                     |                           |                 |                                  |  |  |  |
| 15<br>CIPD EN field | CIPO OPC field CIPO       | Reserved Set to |                                  |  |  |  |
|                     | SPH bit                   | it 2'b00        |                                  |  |  |  |
| Reset: 0            | 0 0                       | 0               | 0                                |  |  |  |
| W                   | W                         | W               | W                                |  |  |  |

| Name                                | Bits  | Reset | Dir | Description                                                                          |
|-------------------------------------|-------|-------|-----|--------------------------------------------------------------------------------------|
| Set to 2'b00                        | 31:30 | 0     | W   | Set to 2'b00                                                                         |
| CIP0 SID (Source ID) field          | 29:24 | 0     | W   | CIP0 SID (Source ID) field. (used when constructing CIP0 quadlet to send)            |
| CIP0 DBS (Data Block<br>Size) field | 23:16 | 0     | W   | CIP0 DBS (Data Block Size) field. (only used when constructing CIP0 quadlet to send) |
| CIP0 FN field                       | 15:14 | 0     | W   | CIP0 FN field. (used when constructing CIP0 quadlet to send)                         |
| CIP0 QPC field                      | 13:11 | 0     | W   | CIP0 QPC field. (used when constructing CIP0 quadlet to send)                        |
| CIP0 SPH bit                        | 10    | 0     | W   | CIP0 SPH bit. (used when constructing CIP0 quadlet to send)                          |
| Reserved. Set to 2'b00              | 9:8   | 0     | W   | Reserved. Set to 2'b00                                                               |
| CIP0 DBC field                      | 7:0   | 0     | W   | CIP0 DBC field. This will be filled in by the ATX when sending the CIP0 quadlet.     |

This register is Write Only.

# 6.2.6 ATXn\_CIP1

| Addre  | ess - 0xcf00 ( | 00d0<br>29 28 | 27 26          | 25 24      | 23             | 22 21 | 20 19          | 18 | 17 16 |
|--------|----------------|---------------|----------------|------------|----------------|-------|----------------|----|-------|
|        | Set to 2'b10   |               | CIP1 FMT field |            |                |       | CIP1 FDF field |    |       |
| Reset: | 0              |               | 0              |            |                |       | 0              |    |       |
|        | W              |               | W              |            |                |       | W              |    |       |
|        |                | 12 12         | 11 10          |            | 7              |       |                |    |       |
|        | 15             | 13 12         | 11 10          | 3 0        |                | 6 5   | 4 3            | 2  |       |
|        |                |               |                | CIP1 SYT T | imestamp field |       |                |    |       |
| Reset: |                |               |                |            | 0              |       |                |    |       |
|        |                |               |                |            | W              |       |                |    |       |
|        |                |               |                |            |                |       |                |    |       |

| Name                     | Bits  | Reset | Dir | Description                                                      |
|--------------------------|-------|-------|-----|------------------------------------------------------------------|
| Set to 2'b10             | 31:30 | 0     | W   | Set to 2'b10                                                     |
| CIP1 FMT field           | 29:24 | 0     | W   | (used when constructing CIP1 quadlet to send)                    |
| CIP1 FDF field           | 23:16 | 0     | W   | (used when constructing CIP1 quadlet to send)                    |
| CIP1 SYT Timestamp field | 15:0  | 0     | W   | This will be filled in by the ATX when sending the CIP1 quadlet. |

This register is Write Only.

# 6.2.7 ATXn\_ADI\_CFG

| Address - 0xcf00 00d4                                                   | 28 27 | 26    | 25  | 24     23     22     21     20     19     18     17     16       Reserved       0       RW                                                      |
|-------------------------------------------------------------------------|-------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         14         13           Reset:         1         1         1 | 12 11 | 10    | 9   | 8     7     6     5     4     3     2     1     0       Riw                                                                                     |
| Name                                                                    | Bits  | Reset | Dir | Description                                                                                                                                     |
| Mute_n Bit                                                              | 31    | 0     | RW  | (Active Low). When low, all data output from the ADI will be muted.<br>This bit must be set active to get data values through the ADI.          |
| MIDI Enable Bit                                                         | 30    | 0     | RW  | This bit tells the ADI whether the last quadlet in every DB should be filled with MIDI data, or if there is no MIDI in the stream to deal with. |

## 6.2.8 ATXn\_ADI\_MIDI

| Address - 0xcf00 00d8                                         |                                                               |                                                               |                                                      |
|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|
| 30 29 28                                                      | 27 26 25 24                                                   | 23 22 21 20                                                   | 19 18 17 16                                          |
| Enable Plug to Port mapping for MIDI Port 7<br>MIDI<br>Port 7 | Enable Plug to Port mapping for MIDI Port 6<br>MIDI<br>Port 6 | Enable Plug to Port mapping for MIDI Port 5<br>MIDI<br>Port 5 | Enable Plug to Port mapping for MIDI Port<br>MIDI 4. |
| Reset: 0 0                                                    | 0 0                                                           | 0 0                                                           | 0 0                                                  |
| RW RW                                                         | RW RW                                                         | RW                                                            | RW RW                                                |

|        | 15                        | 14 13 12                             | 11                       | 10      | 9 8                          | 7                        | 6 5 4                                | 3                        | 2 1 0                                |
|--------|---------------------------|--------------------------------------|--------------------------|---------|------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------------------|
|        | Enable<br>MIDI<br>Port 3. | Plug to Port mapping for MIDI Port 3 | Enable<br>MIDI<br>Port 2 | Plug to | Port mapping for MIDI Port 2 | Enable<br>MIDI<br>Port 1 | Plug to Port mapping for MIDI Port 1 | Enable<br>MIDI<br>Port 0 | Plug to Port mapping for MIDI Port 0 |
| Reset: | 0                         | 0                                    | 0                        |         | 0                            | 0                        | 0                                    | 0                        | 0                                    |
|        | RW                        | RW                                   | RW                       |         | RW                           | RW                       | RW                                   | RW                       | RW                                   |

| Name           | Bits  | Reset | Dir | Description                           |
|----------------|-------|-------|-----|---------------------------------------|
| MIDI Enable 7  | 31    | 0     | RW  | Enable MIDI Port 7.                   |
| MIDI Mapping 7 | 30:28 | 0     | RW  | Plug to Port mapping for MIDI Port 7. |
| MIDI Enable 6  | 27    | 0     | RW  | Enable MIDI Port 6.                   |
| MIDI Mapping 6 | 26:24 | 0     | RW  | Plug to Port mapping for MIDI Port 6. |
| MIDI Enable 5  | 23    | 0     | RW  | Enable MIDI Port 5.                   |
| MIDI Mapping 5 | 22:20 | 0     | RW  | Plug to Port mapping for MIDI Port 5. |
| MIDI Enable 4  | 19    | 0     | RW  | Enable MIDI Port 4.                   |
| MIDI Mapping 4 | 18:16 | 0     | RW  | Plug to Port mapping for MIDI Port 4. |
| MIDI Enable 3  | 15    | 0     | RW  | Enable MIDI Port 3.                   |
| MIDI Mapping 3 | 14:12 | 0     | RW  | Plug to Port mapping for MIDI Port 3. |
| MIDI Enable 2  | 11    | 0     | RW  | Enable MIDI Port 2.                   |
| MIDI Mapping 2 | 10:8  | 0     | RW  | Plug to Port mapping for MIDI Port 2. |
| MIDI Enable 1  | 7     | 0     | RW  | Enable MIDI Port 1.                   |
| MIDI Mapping 1 | 6:4   | 0     | RW  | Plug to Port mapping for MIDI Port 1. |
| MIDI Enable 0  | 3     | 0     | RW  | Enable MIDI Port 0.                   |
| MIDI Mapping 0 | 2:0   | 0     | RW  | Plug to Port mapping for MIDI Port 0. |

# 6.3 AVS ITP (Internal Time Processor)

The ITP maintains an internal representation of the cycle timer and keeps track of time base changes. This enables isoc. streams to be immune to change of cycle master node and short arbitrated bus resets.

### 6.3.1 Module Configuration

| Address     | Register |
|-------------|----------|
| 0xcf00 01f8 | ITP_CFG  |



#### 6.3.2 ITP\_CFG

| Address - 0xcf00 01f8                                                  | - Oxcf00 01f8<br>30 29 28 27 26 25 24 23 22 21 20 19 18 17 16<br>TP<br>Clear<br>Bit<br>Bit<br>0 0 0 0<br>RW RW RW |       |     |                                                                                                                                                                                                                                                                 |  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 15         14         13           Reset         1         1         1 | 12 1                                                                                                              | 1 10  | 9   | 8     7     6     5     4     3     2     1     0       Reserved       0     RW                                                                                                                                                                                 |  |  |
| Name                                                                   | Bits                                                                                                              | Reset | Dir | Description                                                                                                                                                                                                                                                     |  |  |
| ITP Enable Bit                                                         | 31                                                                                                                | 0     | RW  | Setting this bit enables operation of the ITP block. Once the ITP is<br>enabled, it must not be disabled without clearing the broadcast<br>offset values that it generates. To clear these values, use the Clear<br>Offsets Bit in this configuration register. |  |  |
| Clear Offsets Bit                                                      | 30                                                                                                                | 0     | RW  | Setting this bit will cause the ITP to clear all broadcasted offset values immediately after APB writes which set this bit. This must be done when disabling the ITP after it has been enabled. The ITP does not need to be enabled to perform the clearing.    |  |  |

# 6.4 AVS Audio Transmitter Format Handler

Handles the transmission of IEC 60958 conformant data, which is compatible with AES/SPDIF and is the most important format. The DICE JR should handle Channel Status, User Bits, Validity and Block Sync in a similar way as is done by the DICE AES transceivers.

#### 6.4.1 Module Configuration

| Address     | Register                    |
|-------------|-----------------------------|
| 0xcf00 02c0 | FMT_TXDI1_CFG0              |
| 0xcf00 02c4 | FMT_TXDI1_CFG1              |
| 0xcf00 02c8 | FMT_TXDI1_CFG2              |
| 0xcf00 02cc | FMT_TXDI1_CFG3              |
| 0xcf00 02d0 | FMT_TXDI1_CFG4              |
| 0xcf00 02d4 | FMT_TXDI1_CFG5              |
| 0xcf00 02d8 | FMT_TXDI1_CFG6              |
| 0xcf00 02dc | FMT_TXDI1_CSBLOCK_BYTEn     |
| 0xcf00 02f4 | FMT_TXDI1_CHANNELn_CS/LABEL |
| 0xcf00 0340 | FMT_TXDI2_CFG0              |
| 0xcf00 0344 | FMT_TXDI2_CFG1              |
| 0xcf00 0348 | FMT_TXDI2_CFG2              |
| 0xcf00 034c | FMT_TXDI2_CFG3              |
| 0xcf00 0350 | FMT_TXDI2_CFG4              |
| 0xcf00 0344 | FMT_TXDI2_CFG5              |
| 0xcf00 0348 | FMT_TXDI2_CFG6              |
| 0xcf00 034c | FMT_TXDI2_CSBLOCK_BYTEn     |
| 0xcf00 0374 | FMT_TXDI2_CHANNELn_CS/LABEL |

Table 69: AVS Audio Transmitter Format Handler Memory Map

#### 6.4.2 FMT\_TXDIn\_CFG0

| Addre  | ss - 0xcf00 (   | )2c0            |                 |                 |                 |                 |                 |                |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|
|        | 30              | 29 28           | 27 26           | 25 24           | 23 22           | 21 20           | 19 18           | 17 16          |
|        | Ch 16 Label Cfg | Ch 15 Label Cfg | Ch 14 Label Cfg | Ch 13 Label Cfg | Ch 12 Label Cfg | Ch 11 Label Cfg | Ch 10 Label Cfg | Ch 9 Label Cfg |
| Reset: | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 0              |
|        | RW              | RW             |
|        |                 |                 |                 |                 |                 |                 |                 |                |
|        |                 |                 |                 |                 |                 |                 |                 |                |
|        | 14              | 13 12           | 11 10           | 9 8             | 7 6             | 5 4             | 3 2             | 1 0            |
|        | Ch 8 Label Cfg  | Ch 7 Label Cfg  | Ch 6 Label Cfg  | Ch 5 Label Cfg  | Ch 4 Label Cfg  | Ch 3 Label Cfg  | Ch 2 Label Cfg  | Ch 1 Label Cfg |
| Reset: | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 0              |
|        | RW              | RW             |

| Name                              | Bits  | Reset | Dir | Description                                                    |
|-----------------------------------|-------|-------|-----|----------------------------------------------------------------|
| Channel 16 Label<br>Configuration | 31:30 | 0     | RW  | Channel 16 Label Configuration. (see below for detail of bits) |
| Channel 15 Label<br>Configuration | 29:28 | 0     | RW  | Channel 15 Label Configuration. (see below for detail of bits) |
| Channel 14 Label<br>Configuration | 27:26 | 0     | RW  | Channel 14 Label Configuration. (see below for detail of bits) |
| Channel 13 Label<br>Configuration | 25:24 | 0     | RW  | Channel 13 Label Configuration. (see below for detail of bits) |
| Channel 12 Label<br>Configuration | 23:22 | 0     | RW  | Channel 12 Label Configuration. (see below for detail of bits) |
| Channel 11 Label<br>Configuration | 21:20 | 0     | RW  | Channel 11 Label Configuration. (see below for detail of bits) |
| Channel 10 Label<br>Configuration | 19:18 | 0     | RW  | Channel 10 Label Configuration. (see below for detail of bits) |
| Channel 9 Label<br>Configuration  | 17:16 | 0     | RW  | Channel 9 Label Configuration. (see below for detail of bits)  |
| Channel 8 Label<br>Configuration  | 15:14 | 0     | RW  | Channel 8 Label Configuration. (see below for detail of bits)  |
| Channel 7 Label<br>Configuration  | 13:12 | 0     | RW  | Channel 7 Label Configuration. (see below for detail of bits)  |
| Channel 6 Label<br>Configuration  | 11:10 | 0     | RW  | Channel 6 Label Configuration. (see below for detail of bits)  |
| Channel 5 Label<br>Configuration  | 9:8   | 0     | RW  | Channel 5 Label Configuration. (see below for detail of bits)  |
| Channel 4 Label<br>Configuration  | 7:6   | 0     | RW  | Channel 4 Label Configuration. (see below for detail of bits)  |
| Channel 3 Label<br>Configuration  | 5:4   | 0     | RW  | Channel 3 Label Configuration. (see below for detail of bits)  |
| Channel 2 Label<br>Configuration  | 3:2   | 0     | RW  | Channel 2 Label Configuration. (see below for detail of bits)  |
| Channel 1 Label<br>Configuration  | 1:0   | 0     | RW  | Channel 1 Label Configuration. (see below for detail of bits)  |

2'b00: Transparent Mode—label byte is allowed through untouched.

2'b01: Mask Mode—label byte is replaced by constant configurable value.

2'b10: IEC 60958 Conformant Mode—label byte shall be 60958 conformant.

2'b11: Reserved. (will cause label byte to be always 0)

#### 6.4.3 FMT\_TXDIn\_CFG1



|        | 15 |                                                                         | 1 0 |
|--------|----|-------------------------------------------------------------------------|-----|
|        |    | Auto Channel Status CRC Disable Bits for channels 16 to 1, respectively |     |
|        |    |                                                                         |     |
| Reset: |    | 0                                                                       |     |
|        |    |                                                                         |     |
|        |    | RW                                                                      |     |

| Name                                                  | Bits  | Reset | Dir | Description                                                                                                        |
|-------------------------------------------------------|-------|-------|-----|--------------------------------------------------------------------------------------------------------------------|
| Block Sync Master/Slave<br>Mode Enable                | 31    | 0     | RW  | 0 = Master; 1 = Slave.                                                                                             |
| Master Sync Select Bit                                | 30    | 0     | RW  | 0 = Free running Block Sync Counter; $1 =$ Sync to input.                                                          |
| Collect Channel Status on<br>Slave Channel Enable Bit | 29    | 0     | RW  | Enables collection of the 192 bit Channel Status information on the channel that Block Sync is slaved to.          |
| Block Sync Slave Channel<br>Select                    | 27:24 | 0     | RW  | Selects the channel to sync the Block Sync to when in Slave mode.                                                  |
| Block Sync Preset Value                               | 23:16 | 0     | RW  | Value to set the Block Sync Counter to when in Master mode, synced to input, and the input Block Sync goes active. |
| Auto Channel Status CRC<br>Disable Bits               | 15:0  | 0     | RW  | For channels 16 to 1, respectively.<br>(bit 15 -> channel 16; bit 14 -> channel 15; etc.)                          |

# 6.4.4 FMT\_TXDI\_CFG2

| Address - 0xcf00 02c8                                                              |                                                                                  |                                                                                    |                                                                                   |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 30 29 28                                                                           | 27 26 25 24                                                                      | 23 22 21 20                                                                        | 19 18 17 16                                                                       |
| Channel 16 Channel Channel 15 Channel<br>Status Configuration Status Configuration | Channel 14 Channel<br>Status Configuration Status Configuration                  | Channel 12 Channel Channel 11 Channel<br>Status Configuration Status Configuration | Channel 10 Channel Channel 9 Channel<br>Status Configuration Status Configuration |
| Reset: 0 0                                                                         | 0 0                                                                              | 0 0                                                                                | 0 0                                                                               |
| RW RW                                                                              | RW RW                                                                            | RW RW                                                                              | RW RW                                                                             |
|                                                                                    |                                                                                  |                                                                                    |                                                                                   |
|                                                                                    |                                                                                  |                                                                                    |                                                                                   |
| 14 13 12                                                                           | 11 10 9 8                                                                        | 7 6 5 4                                                                            | 3 2 1 0                                                                           |
| Channel 8 Channel Channel 7 Channel<br>Status Configuration Status Configuration   | Channel 6 Channel Channel 5 Channel<br>Status Configuration Status Configuration | Channel 4 Channel<br>Status Configuration Status Configuration                     | Channel 2 Channel Channel 1 Channel<br>Status Configuration Status Configuration  |
| Reset: 0 0                                                                         | 0 0                                                                              | 0 0                                                                                | 0 0                                                                               |
| RW RW                                                                              | RW RW                                                                            | RW RW                                                                              | RW RW                                                                             |

| Name                                       | Bits  | Reset | Dir | Description                                                             |
|--------------------------------------------|-------|-------|-----|-------------------------------------------------------------------------|
| Channel 16 Channel Status<br>Configuration | 31:30 | 0     | RW  | Channel 16 Channel Status Configuration. (see below for detail of bits) |
| Channel 15 Channel Status<br>Configuration | 29:28 | 0     | RW  | Channel 15 Channel Status Configuration. (see below for detail of bits) |
| Channel 14 Channel Status<br>Configuration | 27:26 | 0     | RW  | Channel 14 Channel Status Configuration. (see below for detail of bits) |
| Channel 13 Channel Status<br>Configuration | 25:24 | 0     | RW  | Channel 13 Channel Status Configuration. (see below for detail of bits) |
| Channel 12 Channel Status<br>Configuration | 23:22 | 0     | RW  | Channel 12 Channel Status Configuration. (see below for detail of bits) |
| Channel 11 Channel Status<br>Configuration | 21:20 | 0     | RW  | Channel 11 Channel Status Configuration. (see below for detail of bits) |
| Channel 10 Channel Status<br>Configuration | 19:18 | 0     | RW  | Channel 10 Channel Status Configuration. (see below for detail of bits) |
| Channel 9 Channel Status<br>Configuration  | 17:16 | 0     | RW  | Channel 9 Channel Status Configuration. (see below for detail of bits)  |
| Channel 8 Channel Status<br>Configuration  | 15:14 | 0     | RW  | Channel 8 Channel Status Configuration. (see below for detail of bits)  |
| Channel 7 Channel Status<br>Configuration  | 13:12 | 0     | RW  | Channel 7 Channel Status Configuration. (see below for detail of bits)  |
| Channel 6 Channel Status<br>Configuration  | 11:10 | 0     | RW  | Channel 6 Channel Status Configuration. (see below for detail of bits)  |
| Channel 5 Channel Status<br>Configuration  | 9:8   | 0     | RW  | Channel 5 Channel Status Configuration. (see below for detail of bits)  |
| Channel 4 Channel Status<br>Configuration  | 7:6   | 0     | RW  | Channel 4 Channel Status Configuration. (see below for detail of bits)  |
| Channel 3 Channel Status<br>Configuration  | 5:4   | 0     | RW  | Channel 3 Channel Status Configuration. (see below for detail of bits)  |
| Channel 2 Channel Status<br>Configuration  | 3:2   | 0     | RW  | Channel 2 Channel Status Configuration. (see below for detail of bits)  |
| Channel 1 Channel Status<br>Configuration  | 1:0   | 0     | RW  | Channel 1 Channel Status Configuration. (see below for detail of bits)  |

2'b0x: Channel Status bit allowed through from Router untouched.

- 2'b10: Channel Status bit taken from common APB Channel Status data.
- 2'b11: Channel Status bit taken from channel-specific APB Channel Status data.

#### 6.4.5 FMT\_TXDI\_CFG3



| Name              | Bits  | Reset | Dir                                                                                                       | Description                                                                                                                          |
|-------------------|-------|-------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| PAC SB Enable Bit | 31:16 | 0     | RW For Channels 16 to 1, respectively. When enabled, the SB bit of PAC bits will indicate start of block. |                                                                                                                                      |
|                   |       |       |                                                                                                           | (bit 31 -> channel 16; bit 30 -> channel 15; etc.)                                                                                   |
| PAC SF Enable Bit | 15:0  | 0     | RW                                                                                                        | For Channels 16 to 1, respectively. When set, the SF bit of the PAC bits will always be set indicating the second sub-frame of data. |
|                   |       |       |                                                                                                           | (bit 15 -> channel 16; bit 14 -> channel 15; etc.)                                                                                   |

# 6.4.6 FMT\_TXDI\_CFG4

| Addre  | ess - Oxcf00 02d0<br>30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 | ] |
|--------|-------------------------------------------------------------------|---|
|        | V Bit Replacement Enable Bits for Channels 16 to 1, respectively  | J |
| Reset: | 0                                                                 | 7 |
|        | RW                                                                |   |
|        |                                                                   |   |
|        | V Bits for Channels 16 to 1, respectively                         | Π |
| Reset: | 0                                                                 | 귀 |
|        | RW                                                                |   |

| Name                                    | Bits  | Reset | Dir | Description                                                                                                                                                                                   |
|-----------------------------------------|-------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validity Bit Replacement<br>Enable Bits | 31:16 | 0     | RW  | For Channels 16 to 1, respectively. When enabled, the V bit will be replaced by the provided value below, otherwise the V bit already present in the label will be allowed through untouched. |
|                                         |       |       |     | (bit 31 -> channel 16; bit 30 -> channel 15; etc.)                                                                                                                                            |
| Validity Bits                           | 15:0  | 0     | RW  | For Channels 16 to 1, respectively. When enabled by the above bit of the corresponding channel, this configuration bit will be inserted into the 60958 label as the V bit.                    |
|                                         |       |       |     | (bit 15 -> channel 16; bit 14 -> channel 15; etc.)                                                                                                                                            |

#### 6.4.7 FMT\_TXDI\_CFG5

| Addre  | ess - 0xcf00 02d4                   | 27 26 25 24                   | 23 22 21 20                   | 19 18 17 16                   |
|--------|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|
|        | U Bit Selection for Channel 8       | U Bit Selection for Channel 7 | U Bit Selection for Channel 6 | U Bit Selection for Channel 5 |
| Reset: | 0                                   | 0                             | 0                             | 0                             |
|        | RW                                  | RW                            | RW                            | RW                            |
|        | 14 13 12                            | 11 10 9 8                     | 7 6 5 4                       | 3 2 1 0                       |
|        | 15<br>U Bit Selection for Channel 4 | U Bit Selection for Channel 3 | U Bit Selection for Channel 2 | U Bit Selection for Channel 1 |
|        |                                     |                               |                               |                               |
| Keset: | 0                                   | 0                             | Ů                             | 0                             |
|        | RW                                  | RW                            | RW                            | RW                            |

| Name                   | Bits  | Reset | Dir | Description                                               |
|------------------------|-------|-------|-----|-----------------------------------------------------------|
| User Bit for Channel 8 | 31:28 | 0     | RW  | U Bit Selection for Channel 8. (see detail of bits below) |
| User Bit for Channel 7 | 27:24 | 0     | RW  | U Bit Selection for Channel 7. (see detail of bits below) |
| User Bit for Channel 6 | 23:20 | 0     | RW  | U Bit Selection for Channel 6. (see detail of bits below) |
| User Bit for Channel 5 | 19:16 | 0     | RW  | U Bit Selection for Channel 5. (see detail of bits below) |
| User Bit for Channel 4 | 15:12 | 0     | RW  | U Bit Selection for Channel 4. (see detail of bits below) |
| User Bit for Channel 3 | 11:8  | 0     | RW  | U Bit Selection for Channel 3. (see detail of bits below) |
| User Bit for Channel 2 | 7:4   | 0     | RW  | U Bit Selection for Channel 2. (see detail of bits below) |
| User Bit for Channel 1 | 3:0   | 0     | RW  | U Bit Selection for Channel 1. (see detail of bits below) |

4'b0000: Allow U bit already present in label byte from Router through as is.

4'b0001: Take U bit input from AVS RX 1.

4'b0010: Take U bit input from AVS RX 2.

4'b0011: Take U bit input from AVS RX 3.

4'b0100: Take U bit input from AVS RX 4.

4'b0101 – 4'b0111: Set U bit to 1'b0 always.

4'b1xxx: Take U bit from input U bit bus from AES[3'bxxx].

### 6.4.8 FMT\_TXDI\_CFG6

| Address - 0xcf00 02d8          |                                |                                |                                |  |
|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|
| 30 29 28                       | 27 26 25 24                    | 23 22 21 20                    | 19 18 17 16                    |  |
| U Bit Selection for Channel 16 | U Bit Selection for Channel 15 | U Bit Selection for Channel 14 | U Bit Selection for Channel 13 |  |
| Reset: 0                       | 0                              | 0                              | 0                              |  |
| RW                             | RW                             | RW                             | RW                             |  |
|                                |                                |                                |                                |  |
| 14 13 12                       | 11 10 9 8                      | 7 6 5 4                        | 3 2 1 0                        |  |
| U Bit Selection for Channel 12 | U Bit Selection for Channel 11 | U Bit Selection for Channel 10 | U Bit Selection for Channel 9  |  |
| Reset: 0                       | 0                              | 0                              | 0                              |  |
| RW                             | BW                             | RW                             | RW                             |  |

| Name                    | Bits  | Reset | Dir | Description                                                |
|-------------------------|-------|-------|-----|------------------------------------------------------------|
| User Bit for Channel 16 | 31:28 | 0     | RW  | U Bit Selection for Channel 16. (see detail of bits below) |
| User Bit for Channel 15 | 27:24 | 0     | RW  | U Bit Selection for Channel 15. (see detail of bits below) |
| User Bit for Channel 14 | 23:20 | 0     | RW  | U Bit Selection for Channel 14. (see detail of bits below) |
| User Bit for Channel 13 | 19:16 | 0     | RW  | U Bit Selection for Channel 13. (see detail of bits below) |
| User Bit for Channel 12 | 15:12 | 0     | RW  | U Bit Selection for Channel 12. (see detail of bits below) |
| User Bit for Channel 11 | 11:8  | 0     | RW  | U Bit Selection for Channel 11. (see detail of bits below) |
| User Bit for Channel 10 | 7:4   | 0     | RW  | U Bit Selection for Channel 10. (see detail of bits below) |
| User Bit for Channel 9  | 3:0   | 0     | RW  | U Bit Selection for Channel 9. (see detail of bits below)  |

4'b0000: Allow U bit already present in label byte from Router through as is.

4'b0001: Take U bit input from AVS RX 1.

4'b0010: Take U bit input from AVS RX 2.

4'b0011: Take U bit input from AVS RX 3.

4'b0100: Take U bit input from AVS RX 4.

4'b0101 – 4'b0111: Set U bit to 1'b0 always.

4'b1xxx: Take U bit from input U bit bus from AES[3'bxxx].

RW

## 6.4.9 FMT\_TXDIN\_CSBLOCK\_BYTEn

RW

Address - 0xcf00 02dc

These registers are used to write the entire channel status block (192 bits) for one selected channel.

| 17 16 |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
| 1 0   |
|       |
|       |
|       |
| [     |

| Name       | Bits  | Reset | Dir | Description                                      |
|------------|-------|-------|-----|--------------------------------------------------|
| CS Byte 3n | 31:24 | 0     | RW  | Channel Status byte 3n for the selected channel. |
| CS Byte 2n | 23:16 | 0     | RW  | Channel Status byte 2n for the selected channel. |
| CS Byte 1n | 15:8  | 0     | RW  | Channel Status byte 1n for the selected channel. |
| CS Byte 0n | 7:0   | 0     | RW  | Channel Status byte 0n for the selected channel. |

#### 6.4.10 FMT\_TXDIn\_CHANNELn\_CS/LABEL

Address - 0xcf00 02f4

Note that the format handler can be configured to write the AM824 label bytes for channels 1 through 16 to these 16 registers, or it can be configured to write the first 4 Channel Status bytes for each of channels 1 through 16.

|        | 31 | 30 29 28 27 26 25 24                           | 1 | 23 22 21 20 19 18 17 16         |
|--------|----|------------------------------------------------|---|---------------------------------|
|        |    | Channel n Channel Status byte 3 OR AM824 Label |   | Channel n Channel Status byte 2 |
|        |    |                                                | - |                                 |
| Reset: |    | 0                                              |   | 0                               |
|        |    |                                                |   |                                 |
|        |    | RW                                             |   | RW                              |
|        |    |                                                |   |                                 |

|        | 14     13     12     11     10     9     8 |                                 |
|--------|--------------------------------------------|---------------------------------|
|        | Channel n Channel Status byte 1            | Channel n Channel Status byte 0 |
| Reset: | 0                                          | 0                               |
|        | RW                                         | RW                              |

| Name                    | Bits  | Reset | Dir | Description                                                              |
|-------------------------|-------|-------|-----|--------------------------------------------------------------------------|
| CS Byte 3 or Label Byte | 31:24 | 0     | RW  | Channel Status byte 3 for Channel n OR AM824 Label byte for<br>Channel n |
| CS Byte 2               | 23:16 | 0     | RW  | Channel Status byte 2 for Channel n                                      |
| CS Byte 1               | 15:8  | 0     | RW  | Channel Status byte 1 for Channel n                                      |
| CS Byte 0               | 7:0   | 0     | RW  | Channel Status byte 0 for Channel n                                      |

## 6.5 AVS Audio Receiver Format Handler

Handles the reception of IEC 60958 conformant data, which is compatible with AES/SPDIF and is the most important format. The DICE JR should handle Channel Status, User Bits, Validity and Block Sync in a similar way as is done by the DICE AES transceivers.

#### 6.5.1 Module Configuration

| Address     | Register              |
|-------------|-----------------------|
| 0xcf00 0200 | FORMAT_RXDI1_CFG      |
| 0xcf00 0204 | FORMAT_RXDI1_LABELn   |
| 0xcf00 0214 | FORMAT_RXDI1_CSBLOCKn |
| 0xcf00 0230 | FORMAT_RXDI2_CFG      |
| 0xcf00 0234 | FORMAT_RXDI2_LABELn   |
| 0xcf00 0244 | FORMAT_RXDI2_CSBLOCKn |

Table 70: AVS Audio Receiver Format Handler Memory Map

#### 6.5.2 FORMAT\_RXDIn\_CFG

Address - 0xcf00 0200

|        | 31 | 30 29 28 | 27       | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17 | 16 |
|--------|----|----------|----------|----|----|----|----|----|----|------|-------|----|----|----|
|        |    |          | Reserved |    |    |    |    |    |    | BS_P | RESET |    |    |    |
| Reset: |    |          | 0        |    |    |    |    |    |    |      | 0     |    |    |    |
|        |    |          | RW       |    |    |    |    |    |    | R    | RM    |    |    |    |

|        | 14 13 12  | 11 10 9 8 | 7 6 5 4 | 3 2 1 0 |
|--------|-----------|-----------|---------|---------|
|        | CSBLKSYNC | USRC      | BLKSRC  | CSCH    |
| Reset: | 0         | 0         | 0       | 0       |
|        | RW        | RW        | RW      | RW      |

| Name      | Bit   | Reset | Dir | Description                                                                              |
|-----------|-------|-------|-----|------------------------------------------------------------------------------------------|
| BS_PRESET | 23:16 | 0     | RW  | Block Sync Preset value, loaded to Block Sync counter on external block sync.            |
| CSBLKSYNC | 15:12 | 0     | RW  | Selects the channel to take Block Sync from for collecting Channel Status - Channel 0-15 |
| USRC      | 11:8  | 0     | RW  | Selects the channel to take User data from - Channel 0-15                                |
| BLKSRC    | 7:4   | 0     | RW  | Selects the channel to take Block Sync from - Channel 0-15                               |
| CSCH      | 3:0   | 0     | RW  | Selects the channel to receive full Channel Status from - Channel 0-<br>15               |

#### 6.5.3 FORMAT\_RXDIn\_LABELn

Address - 0xcf00 0204

| 31 | 30 | 29 | 28        | 27           | 26 | 25 | 24 | 23 | 22 | 21 | 20        | 19           | 18 | 17 | 16 | I |
|----|----|----|-----------|--------------|----|----|----|----|----|----|-----------|--------------|----|----|----|---|
|    |    |    | Channel 3 | Label Byte n |    |    |    |    |    |    | Channel 2 | Label Byte n |    |    |    | Г |
|    |    |    |           |              |    |    |    |    |    |    |           |              |    |    |    |   |

| Reset: | U | U |  |
|--------|---|---|--|
|        | R | R |  |
|        |   |   |  |

|        | 14 | 13 12 11               | 10 9 8 | 7 | 7 6 5 4 3 2 1 0        |
|--------|----|------------------------|--------|---|------------------------|
|        |    | Channel 1 Label Byte n |        |   | Channel 0 Label Byte n |
| Reset: |    | 0                      |        |   | 0                      |
|        |    | R                      |        |   | R                      |

| Name                      | Bit   | Reset | Dir | Description                                                     |
|---------------------------|-------|-------|-----|-----------------------------------------------------------------|
| Channel 0 Label<br>Byte n | 7:0   | 0     | R   | Allows reading the latest AM824 label byte of the given channel |
| Channel 1 Label<br>Byte n | 15:8  | 0     | R   | Allows reading the latest AM824 label byte of the given channel |
| Channel 2 Label<br>Byte n | 23:16 | 0     | R   | Allows reading the latest AM824 label byte of the given channel |
| Channel 3 Label<br>Byte n | 31:24 | 0     | R   | Allows reading the latest AM824 label byte of the given channel |

# 6.5.4 FORMAT\_RXDIn\_CSBLOCKn

Address - 0xcf00 0214

|        | 31 | 30 | 29 | 28<br>Channel St | 27<br>atus Byte 3 n | 26 | 25 | 24 | 23 | 22 | 2 | 21 | 20<br>Channel \$ | 19<br>Status Byte 2 n | 18 | 17 | 16 |
|--------|----|----|----|------------------|---------------------|----|----|----|----|----|---|----|------------------|-----------------------|----|----|----|
| Reset: |    |    |    |                  | 0<br>R              |    |    |    |    |    |   |    |                  | 0<br>R                |    |    |    |
|        |    |    |    |                  |                     |    |    |    |    |    |   |    |                  |                       | _  | _  |    |
|        | 15 | 14 | 13 | 12<br>Channel St | 11<br>atus Byte 1 n | 10 | 9  | 8  | 7  | 6  |   | 5  | 4<br>Channel S   | 3<br>Status Byte 0 n  | 2  | 1  | 0  |
| Reset. |    |    |    |                  | R                   |    |    |    |    |    |   |    |                  | R                     |    |    |    |

| Name                       | Bit | Reset | Dir | Description                                            |
|----------------------------|-----|-------|-----|--------------------------------------------------------|
| Channel Status<br>Byte 0 n | 3   | 0     | R   | Allows reading the latest block of channel status bits |
| Channel Status<br>Byte 1 n | 2   | 0     | R   | Allows reading the latest block of channel status bits |
| Channel Status<br>Byte 2 n | 1   | 0     | R   | Allows reading the latest block of channel status bits |
| Channel Status<br>Byte 3 n | 0   | 0     | R   | Allows reading the latest block of channel status bits |

# 6.6 AVS Interrupt Controller

The AVS Interrupt controller gathers all interrupts from the AVS, handles masking and clearing and hands of two interrupts to the host interrupt controller.

### 6.6.1 Module Configuration

| Address     | Register         |
|-------------|------------------|
| 0xcf00 013c | AVSI_INT0_STATUS |
| 0xcf00 0140 | AVSI_INT0_MASK   |
| 0xcf00 0144 | AVSI_INT1_STATUS |
| 0xcf00 0148 | AVSI_INT1_MASK   |
|             |                  |

Table 71: AVS INT CTRL Memory Map

## 6.6.2 APBA\_INT0\_STATUS

Address - 0xcf00 013c

|        | 31              | 30      | 29     | 28    | 27       | 26        | 25       | 24         | 23      | 22        | 21      | 20       | 19          | 18          | 17         | 16        |
|--------|-----------------|---------|--------|-------|----------|-----------|----------|------------|---------|-----------|---------|----------|-------------|-------------|------------|-----------|
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        | ADO2            | ADO2    |        |       | ARXDO2   |           |          |            | ARX2    |           | ADO2    |          |             |             |            | ARXDO2    |
|        | NDOL_           | 1002_   | ADO2   | ADO2  |          | ADO2 SYT  | ARX2     | ARX2 PKT   | /uou_   | ADO2 NOT  | 1002_   |          | ARX2 CEG    | ARX2 CIP    | ARX2 DBC   | 100002_   |
|        | STREAM          | STREAM  | ADOZ_  | ADO2_ | evt      | AD02_011_ | AIGA2_   | ANA2_I NI_ | STATUS  | AD02_N01_ | MIRRED  | record   | AIXA2_01 0_ | AIXA2_011 _ | AIXX2_000_ | evt.      |
|        | STREAM_         | STREAM_ |        | 01.10 | 311_     | 1050115   |          |            | 31A103_ | 0.01101   | WISSED_ | Teserveu |             |             |            | 311_      |
|        |                 |         | REPEAT | SLIP  | •        | AGEOUT    | LONG_PKI | ABORT      |         | COMPL     |         |          | FAIL        | FAIL        | FAIL       |           |
|        | UNLOCK          | LOCK    |        |       | OVERFLOW |           |          |            | ERR     |           | SYNC    |          |             |             |            | UNDERFLOW |
|        | ·               |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
| Reset: | 0               | 0       | 0      | 0     | 0        | 0         | 0        | 0          | 0       | 0         | 0       | 0        | 0           | 0           | 0          | 0         |
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        | RW              | RW      | RW     | RW    | RW       | RW        | RW       | RW         | RW      | RW        | RW      | RW       | RW          | RW          | RW         | RW        |
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        | 15              | 14      | 13     | 12    | 11       | 10        | 9        | 8          | 7       | 6         | 5       | 4        | 3           | 2           | 1          | 0         |
|        |                 |         |        |       |          | -         |          |            |         |           |         |          |             |             |            |           |
|        | ADO1            | ADO1    |        |       | ARXDO1   | -         |          |            | ARX1    |           | ADO1    |          |             |             |            | ARXDO1    |
|        |                 |         | 4001   | 4001  |          | ADO1 SVT  | APY1     | ADV1 DKT   |         | ADO1 NOT  |         |          | ARX1 CEG    | ARX1 CIR    | ARX1 DBC   |           |
|        | STREAM          | STREAM  | ADOI_  | ADO1_ | evt.     | AD01_011_ | ARAT_    | AKAI_I KI_ | STATUS  | ADO1_NO1_ | MICCED  |          | AILAT_OF O_ | ARXI_OII _  | ARX1_DDC_  | OVT       |
|        | STREAM_         | STREAM_ |        |       | 511_     |           |          |            | STATUS_ |           | MISSED_ | reserved |             |             |            | 511_      |
|        |                 |         | REPEAT | SLIP  |          | AGEOUT    | LONG_PKT | ABORT      |         | COMPL     |         |          | FAIL        | FAIL        | FAIL       | -         |
|        | UNLOCK          | LOCK    |        |       | OVERFLOW | •         |          |            | ERR     | -         | SYNC    |          |             |             |            | UNDERFLOW |
|        | <u>ا</u> ــــــ | 1       |        | 1     | 1        |           |          | 1          | 1       |           | 1       | 1        |             | 1           | 1          |           |
| Reset: | 0               | 0       | 0      | 0     | 0        | 0         | 0        | 0          | 0       | 0         | 0       | 0        | 0           | 0           | 0          | 0         |
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        |                 |         |        |       |          |           |          |            |         |           |         |          |             |             |            |           |
|        | RW              | RW      | RW     | RW    | RW       | RW        | RW       | RW         | RW      | RW        | RW      | RW       | RW          | RW          | RW         | RW        |

| Name                | Bits | Reset | Dir | Description                                                                                                             |
|---------------------|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------|
| ADO2_STREAM_UNLOCK  | 31   | 0     | RW  | The lock status status in ARX2_ADO_CFG reg has changed from "lock" to "unlock"                                          |
| ADO2_STREAM_LOCK    | 30   | 0     | RW  | The lock status in ARX2_ADO_CFG reg has changed from<br>"unlocked" to "locked"                                          |
| ADO2_REPEAT         | 29   | 0     | RW  | The ADO 2 had to repeat a sample of data.                                                                               |
| ADO2_SLIP           | 28   | 0     | RW  | The ADO 2 had to slip a sample of data.                                                                                 |
| ARXDO2_SYT_OVERFLOW | 27   | 0     | RW  | The timestamp FIFO of ARXDO 2 has overflowed.                                                                           |
| ADO2_SYT_AGEOUT     | 26   | 0     | RW  | The ADO 2 had to age-out a stale frame of data.                                                                         |
| ARX2_LONG_PKT       | 25   | 0     | RW  | The ARX 2 module received an isoch packet that was too long to store in its local memory.                               |
| ARX2_PKT_ABORT      | 24   | 0     | RW  | The ARX 2 was forced to abort an isoch packet due to an error.                                                          |
| ARX2_STATUS_ERR     | 23   | 0     | RW  | The ARX 2 received a status quadlet (signaling the end of an isoch packet) before or after it was expected.             |
| ADO2_NOT_COMPL      | 22   | 0     | RW  | The package transfer didn't complete before the end of the cycle                                                        |
| ADO2_MISSED_SYNC    | 21   | 0     | RW  | The missing time stamp was detected                                                                                     |
| reserved            | 20   | 0     | R   | Reads back as zerro                                                                                                     |
| ARX2_CFG_FAIL       | 19   | 0     | RW  | The ARX 2 module detected that a "forced" value in the CFG registers did not match what the stream is actually sending. |
| ARX2_CIP_FAIL       | 18   | 0     | RW  | The ARX 2 module detected an error in the CIP format of the                                                             |
|                      |    |   |    | received stream.                                                                                                                   |
|----------------------|----|---|----|------------------------------------------------------------------------------------------------------------------------------------|
| ARX2_DBC_FAIL        | 17 | 0 | RW | The ARX 2 module detected a discontinuity in the DBC of the received stream. This will always fire once when the stream starts up. |
| ARXDO2_SYT_UNDERFLOW | 16 | 0 | RW | The timestamp FIFO of ARXDO 2 has underflowed.                                                                                     |
| ADO1_STREAM_UNLOCK   | 15 | 0 | RW | The lock status status in ARX1_ADO_CFG reg has changed from "lock" to "unlock"                                                     |
| ADO1_STREAM_LOCK     | 14 | 0 | RW | The lock status in ARX1_ADO_CFG reg has changed from<br>"unlocked" to "locked"                                                     |
| ADO1_REPEAT          | 13 | 0 | RW | The ADO 1 had to repeat a sample of data.                                                                                          |
| ADO1_SLIP            | 12 | 0 | RW | The ADO 1 had to slip a sample of data.                                                                                            |
| ARXDO1_SYT_OVERFLOW  | 11 | 0 | RW | The timestamp FIFO of ARXDO 1 has overflowed.                                                                                      |
| ADO1_SYT_AGEOUT      | 10 | 0 | RW | The ADO 1 had to age-out a stale frame of data.                                                                                    |
| ARX1_LONG_PKT        | 9  | 0 | RW | The ARX 1 module received an isoch packet that was too long to store in its local memory.                                          |
| ARX1_PKT_ABORT       | 8  | 0 | RW | The ARX 1 was forced to abort an isoch packet due to an error.                                                                     |
| ARX1_STATUS_ERR      | 7  | 0 | RW | The ARX 1 received a status quadlet (signaling the end of an isoch packet) before or after it was expected.                        |
| ADO1_NOT_COMPL       | 6  | 0 | RW | The package transfer didn't complete before the end of the cycle                                                                   |
| ADO1_MISSED_SYNC     | 5  | 0 | RW | The missing time stamp was detected                                                                                                |
| reserved             | 4  | 0 | R  | Reads back as zerro                                                                                                                |
| ARX1_CFG_FAIL        | 3  | 0 | RW | The ARX 1 module detected that a "forced" value in the CFG registers did not match what the stream is actually sending.            |
| ARX1_CIP_FAIL        | 2  | 0 | RW | The ARX 1 module detected an error in the CIP format of the received stream.                                                       |
| ARX1_DBC_FAIL        | 1  | 0 | RW | The ARX 1 module detected a discontinuity in the DBC of the received stream. This will always fire once when the stream starts up. |
| ARXDO1_SYT_UNDERFLOW | 0  | 0 | RW | The timestamp FIFO of ARXDO 1 has underflowed.                                                                                     |

This register is both readable and writeable, though write data isn't stored in the register. Rather, set bits in the status register matching set bits in the write data are cleared.

### 6.6.3 APBA\_INTO\_MASK

| Address - 0xcf00 0140 |       |       |     |                                                                                            |
|-----------------------|-------|-------|-----|--------------------------------------------------------------------------------------------|
| 30 29                 | 28 27 | 26    | 25  | 24         23         22         21         20         19         18         17         16 |
|                       |       |       |     | INTERRUPT MASK BITS                                                                        |
| Reset:                |       |       |     | 0                                                                                          |
|                       |       |       |     | RW                                                                                         |
|                       |       |       |     |                                                                                            |
|                       | 12 11 | 10    | 9   | 8 7 6 5 4 3 2 1 0                                                                          |
|                       |       |       |     | INTERRUPT MASK BITS                                                                        |
| Reset:                |       |       |     | 0                                                                                          |
|                       |       |       |     | RW                                                                                         |
|                       |       |       |     |                                                                                            |
| Name                  | Bits  | Reset | Dir | Description                                                                                |
| Interrupt Mask        | 31:0  | 0     | RW  | Interrupt mask bits                                                                        |
|                       |       |       |     | 0: Ignore interrupt                                                                        |
|                       |       |       |     | 1: Allow interrupt                                                                         |

This register is both readable and writeable, though write data isn't stored in the register. Rather, set bits in the status register matching set bits in the write data are cleared.

### 6.6.4 APBA\_INT1\_STATUS

Address - 0xcf00 0144

RW

RW

RW

RW

RW

RW

RW



RW

RW

RW

RW

RW

| Name                 | Bits  | Reset | Dir | Description                                                                                                                      |
|----------------------|-------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------|
| reserved             | 31:16 | 0     | RW  | Reads back as zerroes                                                                                                            |
| ATX2_STREAM_END      | 15    | 0     | RW  | The data stream transmitted by ATX 2 has ended.                                                                                  |
| ATX2_STREAM_START    | 14    | 0     | RW  | The data stream transmitted by ATX 2 has started.                                                                                |
| ATXDI2_SYT_OVERFLOW  | 13    | 0     | RW  | The timestamp FIFO of ATXDI 2 has overflowed.                                                                                    |
| ATXDI2_SYT_UNDERFLOW | 12    | 0     | RW  | The timestamp FIFO of ATXDI 2 has underflowed.                                                                                   |
| ATX2_BOUNDRY_ERR     | 11    | 0     | RW  | The ATX 2 encountered a problem with the isoch packet boundary as it was sending a packet.                                       |
| ATX2_FRAME_AGEOUT    | 10    | 0     | RW  | The ATX 2 had to age-out a frame of data that was waiting to be<br>sent because it became stale and was not transmitted in time. |
| ATX2_PKT_ABORT       | 9     | 0     | RW  | The ATX 2 encountered a problem and had to abort transmission of an isoch packet.                                                |
| Reserved             | 8     | 0     | R   | Reads back as zerro                                                                                                              |
| ATX1_STREAM_END      | 7     | 0     | RW  | The data stream transmitted by ATX 1 has ended.                                                                                  |
| ATX1_STREAM_START    | 6     | 0     | RW  | The data stream transmitted by ATX 1 has started.                                                                                |
| ATXDI1_SYT_OVERFLOW  | 5     | 0     | RW  | The timestamp FIFO of ATXDI 1 has overflowed.                                                                                    |
| ATXDI1_SYT_UNDERFLOW | 4     | 0     | RW  | The timestamp FIFO of ATXDI 1 has underflowed.                                                                                   |
| ATX1_BOUNDRY_ERR     | 3     | 0     | RW  | The ATX 1 encountered a problem with the isoch packet boundary as it was sending a packet.                                       |
| ATX1_FRAME_AGEOUT    | 2     | 0     | RW  | The ATX 1 had to age-out a frame of data that was waiting to be sent because it became stale and was not transmitted in time.    |

| ATX1_PKT_ABORT | 1 | 0 | RW | The ATX 1 encountered a problem and had to abort transmission of an isoch packet. |
|----------------|---|---|----|-----------------------------------------------------------------------------------|
| Reserved       | 0 | 0 | R  | Reads back as zerro                                                               |

This register is both readable and writeable, though write data isn't stored in the register. Rather, set bits in the status register matching set bits in the write data are cleared.

#### 6.6.5 APBA\_INT1\_MASK

| Address - 0xcf00 0148 |      |       |     |                            |
|-----------------------|------|-------|-----|----------------------------|
| 31 30 29              | 28 2 | 7 26  | 25  | 24 23 22 21 20 19 18 17 16 |
|                       |      |       |     | INTERRUPT MASK BITS        |
| Reset:                |      |       |     | 0                          |
|                       |      |       |     | RW                         |
|                       |      |       |     |                            |
|                       |      |       |     |                            |
| 14 13                 | 12 1 | 1 10  | 9   | 8 7 6 5 4 3 2 1 0          |
| 15                    |      |       |     |                            |
|                       |      |       |     |                            |
| Reset:                |      |       |     | 0                          |
|                       |      |       |     | RW                         |
|                       |      |       |     |                            |
|                       |      |       |     |                            |
| Name                  | Bits | Reset | Dir | Description                |
|                       |      |       |     |                            |
| Interrupt Mask        | 31:0 | 0     | RW  | Interrupt mask bits        |
|                       |      |       |     | 0. Japore interrupt        |
|                       |      |       |     |                            |
|                       |      |       |     | 1: Allow interrupt         |
|                       |      |       |     | -                          |

This register is both readable and writeable, though write data isn't stored in the register. Rather, set bits in the status register matching set bits in the write data are cleared.

# 6.7 AVS Media FIFO

The AVS Media FIFO handles all buffering of Isoc. Stream data. The FIFO contains 4 partitions which can be allocated freely from the memory pool.

## 6.7.1 Module Configuration

| Address     | Register            |
|-------------|---------------------|
| 0xcf00 0184 | AVSFIFO_PART0_BASE  |
| 0xcf00 0188 | AVSFIFO_PART0_LIMIT |
| 0xcf00 018c | AVSFIFO_PART0_FLUSH |
| 0xcf00 0190 | AVSFIFO_PART1_BASE  |
| 0xcf00 0194 | AVSFIFO_PART1_LIMIT |
| 0xcf00 0198 | AVSFIFO_PART1_FLUSH |
| 0xcf00 019c | AVSFIFO_PART2_BASE  |
| 0xcf00 01a0 | AVSFIFO_PART2_LIMIT |
| 0xcf00 01a4 | AVSFIFO_PART2_FLUSH |
| 0xcf00 01a8 | AVSFIFO_PART3_BASE  |
| 0xcf00 01ac | AVSFIFO_PART3_LIMIT |
| 0xcf00 01b0 | AVSFIFO_PART3_FLUSH |
| 0xcf00 01fc | AVSFIFO_STAT        |

 Table 72: AVS Media FIFO Memory Map

# 6.7.2 AVSFIFO\_PARTn\_BASE

Address - 0xcf00 0184

|        | 31 | 30   | 29   | 28   | 27 26 | 25  | 24       | 23      | 22    | 21      | 20       | 19        | 18      | 17      | 16       |
|--------|----|------|------|------|-------|-----|----------|---------|-------|---------|----------|-----------|---------|---------|----------|
|        |    |      |      |      |       |     |          |         |       |         |          |           |         |         |          |
|        |    |      |      |      |       |     | RESER    | RVED    |       |         |          |           |         |         |          |
|        |    |      |      |      |       |     | -        |         |       |         |          |           |         |         |          |
| Reset: |    |      |      |      |       |     | 0        |         |       |         |          |           |         |         |          |
|        |    |      |      |      |       |     | P        | N       |       |         |          |           |         |         | <u> </u> |
|        |    |      |      |      |       |     | N        | v       |       |         |          |           |         |         |          |
|        |    |      |      |      |       |     |          |         |       |         |          |           |         |         |          |
|        |    |      |      |      |       |     |          |         |       |         |          |           |         |         |          |
|        | 15 | 14   | 13   | 12   | 11 10 | 9   | 8        | 7       | 6     | 5       | 4        | 3         | 2       | 1       | 0        |
| ĺ      |    |      |      |      |       |     |          |         |       |         |          |           |         |         |          |
| -      |    | RESE | RVED |      |       |     |          |         | B     | ASE     |          |           |         |         |          |
|        |    |      |      |      |       |     |          |         |       |         |          |           |         |         |          |
| Reset: |    | (    | )    |      |       |     |          |         |       | 0       |          |           |         |         |          |
|        |    |      |      |      |       |     |          |         |       |         |          |           |         |         |          |
|        |    | K    | N    |      |       |     |          |         | ,     | KVV     |          |           |         |         |          |
|        |    |      |      |      |       |     |          |         |       |         |          |           |         |         |          |
| N      |    |      |      | Dite | Deset | D'- | Deservit | C       |       |         |          |           |         |         |          |
| Name   |    |      |      | BItS | Reset | Dir | Descrip  | Duon    |       |         |          |           |         |         |          |
| Base   |    |      |      | 11:0 | 0     | RW  | The lov  | vest RA | M add | ress at | which tl | his parti | tion ca | n store | data.    |

The BASE register is both readable and writeable.

## 6.7.3 AVSFIFO\_PART0\_LIMIT

Address - 0xcf00 0188

|         | 31 | 30   | 29   | 28   | 27 26 | 25  | 24      | 23      | 22     | 21       | 20    | 19       | 18        | 17       | 16   |
|---------|----|------|------|------|-------|-----|---------|---------|--------|----------|-------|----------|-----------|----------|------|
|         |    |      |      |      |       |     | RESE    | RVED    |        |          |       |          |           |          |      |
|         |    |      |      |      |       |     |         |         |        |          |       |          |           |          |      |
| Reset:  |    |      |      |      |       |     | (       | )       |        |          |       |          |           |          |      |
|         |    |      |      |      |       |     | R       | W       |        |          |       |          |           |          |      |
|         |    |      |      |      |       |     |         |         |        |          |       |          |           |          |      |
|         |    |      |      |      |       |     |         |         |        |          |       |          |           |          |      |
|         | 15 | 14   | 13   | 12   | 11 10 | 9   | 8       | 7       | 6      | 5        | 4     | 3        | 2         | 1        | 0    |
|         |    | RESE | RVED |      |       |     |         |         | LI     | MIT      |       |          |           |          |      |
| Read    |    |      |      |      |       |     |         |         |        | 0        |       |          |           |          |      |
| 116361. |    |      |      |      |       |     |         |         |        | 0        |       |          |           |          |      |
|         |    | R    | N    |      |       |     |         |         | F      | RW       |       |          |           |          |      |
|         |    |      |      |      |       |     |         |         |        |          |       |          |           |          |      |
| Name    |    |      |      | Bits | Reset | Dir | Descrip | otion   |        |          |       |          |           |          |      |
| Limit   |    |      |      | 11:0 | 0     | RW  | The hig | ghest R | AM add | dress at | which | this par | tition ca | an store | data |

The LIMIT register is both readable and writeable.

# 6.7.4 AVSFIFO\_PART0\_FLUSH

Address - 0xcf00 018c

|        | 31 | 30 | 29 | 28   | 27 26 | 25  | 24      | 23       | 22        | 21        | 20    | 19 | 18 | 17 | 16 |
|--------|----|----|----|------|-------|-----|---------|----------|-----------|-----------|-------|----|----|----|----|
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     | RESE    | RVED     |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
| Reset: |    |    |    |      |       |     |         | )        |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         | V        |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     | -       |          |           |           |       |    |    |    |    |
|        | 15 | 14 | 13 | 12   | 11 10 | ) 9 | 8       | /        | 6         | 5         | 4     | 3  | 2  | 1  | 0  |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     | RESI    | RVED     |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
| Reset: |    |    |    |      |       |     |         | 0        |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         | N        |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
|        |    |    |    |      | -     |     | -       |          |           |           |       |    |    |    |    |
| Name   |    |    |    | Bits | Reset | Dir | Descri  | otion    |           |           |       |    |    |    |    |
|        |    |    |    |      |       |     |         |          |           |           |       |    |    |    |    |
| lush   |    |    |    | 31.0 | 0     | W   | This re | aister a | loes no   | t store ( | data  |    |    |    |    |
| aon    |    |    |    | 01.0 | 0     | * * | 111310  | giotor c | 10003 110 |           | uuiu. |    |    |    |    |

The FLUSH register is write-only.

### 6.7.5 AVSFIFO\_STAT

Address - 0xcf00 01fc



| Name                  | Bits | Reset | Dir | Description           |
|-----------------------|------|-------|-----|-----------------------|
| Partition 7 overflow  | 15   | 0     | R   | Partition 7 overflow  |
| Partition 7 underflow | 14   | 0     | R   | Partition 7 underflow |
| Partition 6 overflow  | 13   | 0     | R   | Partition 6 overflow  |
| Partition 6 underflow | 12   | 0     | R   | Partition 6 underflow |
| Partition 5 overflow  | 11   | 0     | R   | Partition 5 overflow  |
| Partition 5 underflow | 10   | 0     | R   | Partition 5 underflow |
| Partition 4 overflow  | 9    | 0     | R   | Partition 4 overflow  |
| Partition 4 underflow | 8    | 0     | R   | Partition 4 underflow |
| Partition 3 overflow  | 7    | 0     | R   | Partition 3 overflow  |
| Partition 3 underflow | 6    | 0     | R   | Partition 3 underflow |
| Partition 2 overflow  | 5    | 0     | R   | Partition 2 overflow  |
| Partition 2 underflow | 4    | 0     | R   | Partition 2 underflow |
| Partition 1 overflow  | 3    | 0     | R   | Partition 1 overflow  |
| Partition 1 underflow | 2    | 0     | R   | Partition 1 underflow |
| Partition 0 overflow  | 1    | 0     | R   | Partition 0 overflow  |
| Partition 0 underflow | 0    | 0     | R   | Partition 0 underflow |

The MFIFO\_STATUS register is read-only and cleared on read.

# 6.8 AVS MIDI Interface

The AVS MIDI interface consist of one receive buffer handling MIDI data from all 4 Isoc. Receivers, and two transmit buffers, one for each Isoc. Transmitter.

## 6.8.1 Module Configuration

| Address     | Register     |
|-------------|--------------|
| 0xcf00 01e4 | AVSMIDI_STAT |
| 0xcf00 01e8 | AVSMIDI_CTRL |
| 0xcf00 01ec | AVSMIDI_RX   |
| 0xcf00 01f0 | AVSMIDI_TX0  |
| 0xcf00 01f4 | AVSMIDI_TX1  |

#### Table 73: AVS MIDI Memory Map

## 6.8.2 AVSMIDI\_STAT

Address - 0xcf00 01e4

| 31           | 30    | 29       | 28   | 27 26  | 25  | 24           | 23         | 22       | 21              | 20               | 19               | 18                | 17               | 16               |
|--------------|-------|----------|------|--------|-----|--------------|------------|----------|-----------------|------------------|------------------|-------------------|------------------|------------------|
|              |       |          |      |        |     | DEOL         |            |          |                 |                  |                  |                   |                  |                  |
|              |       |          |      |        |     | RESI         | ERVED      |          |                 |                  |                  |                   |                  |                  |
| Reset:       |       |          |      |        |     |              | 0          |          |                 |                  |                  |                   |                  |                  |
|              |       |          |      |        |     |              |            |          |                 |                  |                  |                   |                  |                  |
|              |       |          |      |        |     | F            | RW         |          |                 |                  |                  |                   |                  |                  |
|              |       |          |      |        |     |              |            |          |                 |                  |                  |                   |                  |                  |
|              |       |          |      |        |     |              |            |          |                 |                  |                  |                   |                  |                  |
| 15           | 5 14  | 13       | 12   | 11 10  | 9   | 8            | 7          | 6        | 5               | 4                | 3                | 2                 | 1                | 0                |
|              |       |          |      |        |     |              |            |          | <u> </u>        |                  |                  |                   |                  |                  |
|              |       | RESERVED |      |        |     | RX_QUADS_IN  | BUF        |          | BUF_FULL_<br>RX | BUF_EMPTY<br>_RX | BUF_FULL_T<br>X1 | BUF_EMPTY<br>_TX1 | BUF_FULL_T<br>X0 | BUF_EMPT<br>_TX0 |
|              |       |          |      |        |     |              |            |          |                 |                  |                  |                   |                  |                  |
| Reset:       |       | 0        |      |        |     | 0            |            |          | 0               | 0                | 0                | 0                 | 0                | 0                |
|              |       | DW       |      |        |     | DW           |            |          | 014/            | DW               | DIM              | 014/              | DIM              | D14/             |
|              |       | NW       |      |        |     | NW           |            |          | NV              | NW               | NW               | NW                | NW               | NW               |
|              |       |          |      |        |     |              |            |          |                 |                  |                  |                   |                  |                  |
| Name         |       |          | Rits | Reset  | Dir | Descri       | ntion      |          |                 |                  |                  |                   |                  |                  |
| lane         |       |          | Bito | 110001 |     | Desen        | puon       |          |                 |                  |                  |                   |                  |                  |
| rx_quads_i   | n_buf |          | 10:6 | 0      | RW  | curren       | t numbe    | er of qu | adlets i        | n the R          | x buffer         |                   |                  |                  |
| buf full rx  |       |          | 5    | 0      | RW  | Rx buf       | fer is fu  | 1        |                 |                  |                  |                   |                  |                  |
|              |       |          | •    | •      |     | 10100        |            |          |                 |                  |                  |                   |                  |                  |
| buf_empty_   | _rx   |          | 4    | 0      | RW  | Rx buf       | fer is er  | npty     |                 |                  |                  |                   |                  |                  |
| buf_full_tx1 |       |          | 3    | 0      | RW  | Tx1 bu       | iffer is f | ull      |                 |                  |                  |                   |                  |                  |
|              |       |          |      | _      |     |              |            |          |                 |                  |                  |                   |                  |                  |
| ouf_empty_   | _tx1  |          | 2    | 0      | RW  | Tx1 bu       | iffer is e | mpty     |                 |                  |                  |                   |                  |                  |
| ouf_full_tx0 | )     |          | 1    | 0      | RW  | Tx0 bu       | iffer is f | ll       |                 |                  |                  |                   |                  |                  |
|              |       |          |      |        | DW  | <b>T</b> 0 · |            |          |                 |                  |                  |                   |                  |                  |
| out_empty_   | _tx0  |          | 0    | 0      | RW  | Tx0 bu       | itter is e | mpty     |                 |                  |                  |                   |                  |                  |

# 6.8.3 AVSMIDI\_CTRL

| Address - 0xcf00 01e8 | 28   | 27 26 | 25<br>9<br>RESERVED<br>0<br>RW | 24       23       22       21       20       19       18       17       16         RESERVED         0       0       0       0         RW         8       7       6       5       4       3       2       1       0         RX IRG EN TX1 JRG EN TX1 JRG EN TX0 JRG EN         0       0       0       0         RW |
|-----------------------|------|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                  | Bits | Reset | Dir                            | Description                                                                                                                                                                                                                                                                                                        |
| rx_irq_en             | 2    | 0     | RW                             | Rx interrupt enable                                                                                                                                                                                                                                                                                                |
| tx1_irq_en            | 1    | 0     | RW                             | Tx1 interrupt enable                                                                                                                                                                                                                                                                                               |
| tx0_irq_en            | 0    | 0     | RW                             | Tx0 interrupt enable                                                                                                                                                                                                                                                                                               |

The CTRL register is both readable and writable.

### 6.8.4 AVSMIDI\_RX

| Address - 0xcf00 01e | C<br>28 27 26 25 24 23 22 21 20 19 18 17 16 |
|----------------------|---------------------------------------------|
|                      | MDI_QUADLET_RX                              |
| Reset:               | 0                                           |
|                      | R                                           |
|                      |                                             |
| 15                   |                                             |
|                      | MIDI_QUADLET_RX                             |
| Reset:               | 0                                           |
|                      | R                                           |
|                      |                                             |
| Name                 | Bits Reset Dir Description                  |

| Name              | Bits | Reset | Dir | Description                                               |
|-------------------|------|-------|-----|-----------------------------------------------------------|
| MIDI quadlet data | 31:0 | 0     | R   | MIDI quadlet data with the following format:              |
|                   |      |       |     |                                                           |
|                   |      |       |     | [31:29] MIDI port mapping                                 |
|                   |      |       |     | [28:27] source MIDI machine number (AVS Rx0-3)            |
|                   |      |       |     | [26] '0'                                                  |
|                   |      |       |     | [25:24] counter (number of valid bytes)                   |
|                   |      |       |     | [23:16] MIDI byte 1                                       |
|                   |      |       |     | [15:8] MIDI byte 2                                        |
|                   |      |       |     | [7:0] MIDI byte 3                                         |
|                   |      |       |     |                                                           |
|                   |      |       |     | This format is similar to the one defined in IEC 61883-6. |
|                   |      |       |     |                                                           |

The RX register is read-only.

## 6.8.5 AVSMIDI\_TXn

| Address - 0xcf00 01f0 | 28 27 | 26    | 25  | 24 23 22 21 20 19 18 17 16                   |
|-----------------------|-------|-------|-----|----------------------------------------------|
|                       |       |       |     | MIDI_QUADLET_TX                              |
| Reset:                |       |       |     | 0                                            |
|                       |       |       |     | W                                            |
|                       |       |       |     |                                              |
|                       |       |       |     |                                              |
|                       | 12 11 | 10    | 9   | 8 7 6 5 4 3 2 1 0                            |
|                       |       |       |     | MIDI_QUADLET_TX                              |
| Reset                 |       |       |     | 0                                            |
|                       |       |       |     | •                                            |
|                       |       |       |     | W                                            |
|                       |       |       |     |                                              |
|                       |       |       |     |                                              |
| Name                  | Bits  | Reset | Dir | Description                                  |
| MIDI quadlet data     | 31.0  | 0     | W   | MIDI quadlet data with the following format: |
|                       | 01.0  | ·     | ••  | mer quadiot data mar the following format.   |
|                       |       |       |     |                                              |
|                       |       |       |     |                                              |

| [31:29] MIDI port mapping                                 |
|-----------------------------------------------------------|
| [28:26] '000'                                             |
| [25:24] counter                                           |
| [23:16] MIDI byte 1                                       |
| [15:8] MIDI byte 2                                        |
| [7:0] MIDI byte 3                                         |
|                                                           |
| This format is similar to the one defined in IEC 61883-6. |

The TXn register is write-only.

# 6.9 AVS General

# 6.9.1 Module Configuration

| Address     | Register           |
|-------------|--------------------|
| 0xc800 0000 | PDB_INT (AVC_CTRL) |

Table 74: AVS General Memory Map

## 6.9.2 PDB\_INT (AVC\_CTRL)

| Address - 0xc800 0000                                             | 28 27 | 26    | 25                       | 24     23     22     21     20     19     18     17     16       Reserved       0       RW                                                                                                                                |
|-------------------------------------------------------------------|-------|-------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14         13           15         14           Reset:         11 | 12 11 | 1 10  | 9<br>Reserved<br>0<br>RW | 8       7       6       5       4       3       2       1       0         IRX_RUN       IIX_RUN       IIX_RUN       IIX_RUN       AVS_RUN         0       0       0       0       0         RW       RW       RW       RW |
| Name                                                              | Bits  | Reset | Dir                      | Description                                                                                                                                                                                                               |
| irx_run                                                           | 2     | 0     | RW                       | Activate the AVS isochronous receive interface.                                                                                                                                                                           |
| itx_run                                                           | 1     | 0     | RW                       | Activate the AVS isochronous transmit interface.                                                                                                                                                                          |
| avs_run                                                           | 0     | 0     | RW                       | Activate the AVS.                                                                                                                                                                                                         |

# Chapter 7 Crystal Oscillator

TCD22XX, like most digital chips, contains an on-board oscillator. The ARM7 RISC is clocked by this oscillator, as well as the other internal functions (DICE Router, start up state machines, etc.). The on-chip oscillator itself is not really an oscillator, but is an amplifier suitable for being used as the feedback amplifier in an oscillator circuit with off-chip components (crystal or ceramic resonator, resistors and capacitors). The figure below shows the typical connections to TCD22XX.



Figure 47: On-Chip oscillator typical connections

The external components commonly used for the oscillator circuit are a positive reactance (normal crystal oscillator), two capacitors, C1 and C2, and two resistors, Rf and Rx.

### 7.1.1 Crystal Specifications

Specifications for an appropriate crystal are not very critical. Any fundamental mode crystal of medium or better quality can be used. Crystal resistance affects start-up time and steady state amplitude but can be compensated by the choice of C1 and C2, however, the lower the crystal resistance, the better. A discussion of external R and C components follows below.

#### 7.1.1.1 Oscillation Frequency

The oscillation frequency is mainly determined by the crystal. The on-chip oscillator has little effect on the frequency. The influence of the on-chip oscillator on frequency results from its input and output (pin-to-ground) capacitances which parallel C1 and C2, and the PADA-to- PADY (pin-to-pin) capacitance which parallels the crystal. The input and pin-topin capacitances are about 7pF each.

### 7.1.1.2 C1 and C2 Selection

Optimal values for C1 and C2 depend on whether a quartz crystal or ceramic resonator is used, and on application-specific requirements for start-up time and frequency tolerance. Start-up time is sometimes more critical in microcontroller systems than frequency stability because of various reset and initialization requirements. Accuracy of the oscillator frequency is less commonly critical, as when the oscillator is being used as a time base. As a general rule, fast start-up and stable frequency tend to pull the oscillator design in opposite directions. Considerations of both start-up time and frequency stability over temperature suggest that C1 and C2 should be about equal and at least 15pF (but they don't have to be either). Increasing the value of these capacitors above 40pF or 50pF improves frequency stability, but also increases the start-up time. If the capacitors are too large (several hundred pF), the oscillator won't start up at all.

### 7.1.1.3 Rf and Rx Selection

A large Rf (1M&) holds the on-chip oscillator (a CMOS inverter) in its linear region allowing it to oscillate. The inverter has a fairly low output resistance which destabilizes the oscillator circuit. Rx of several k& is added to the feedback network, as shown in the Figure, to stabilize the oscillator circuit. At higher oscillator frequencies, a 20pF or 30pF capacitor is sometimes used in place of Rx to compensate for the internal propagation delay.

#### 7.1.1.4 PCB CONSIDERATIONS

Noise glitches arising at PADA or PADY pins at the wrong time can cause a miscount in the internal clock-generating circuitry. These kinds of glitches can be produced through capacitive coupling between the oscillator components and PCB traces carrying digital signals with fast rise and fall times. For this reason, the oscillator components should be mounted close to the chip and have short, direct traces to the PADA, PADY, and Vss pins. If possible, use dedicated VDD and Vss pins for the on-chip oscillator. In addition, surrounding oscillator components with "quiet" traces (VDD and Vss) will alleviate capacitive coupling to signals having fast edges. To minimize inductive coupling, the PCB layout should minimize lead, wire, and trace lengths for oscillator components.

# Chapter 8 Electrical Characteristics

# 8.1 DC Characteristics

#### 1.8v Core supply measured at 1.8v and ambient temperature of 20 deg.

| Condition     | min | typ    | Max   | Comment         |
|---------------|-----|--------|-------|-----------------|
| nReset = 0v   |     | 20 mA  |       | System Reset    |
| Power Down    |     | 2 mA   |       | Prepared to     |
|               |     |        |       | wake on LinkOn  |
| ARM, no audio |     | 97 mA  |       | Audio subsystem |
|               |     |        |       | not started     |
| Normal        |     | 100 mA | 180mA | 96KHz AES and   |
| Operation     |     |        |       | 1394 Audio      |

#### 3.3v Core supply measured at 3.3v and ambient temperature of 20 deg.

| Condition     | Min | typ    | Max    | Comment         |
|---------------|-----|--------|--------|-----------------|
| nReset = 0v   |     | -      |        | System Reset    |
| Power Down    |     | -      |        | Prepared to     |
|               |     |        |        | wake on LinkOn  |
| ARM, no audio |     | -      |        | Audio subsystem |
|               |     |        |        | not started     |
| Normal        |     | 115 mA | 200 mA | 96KHz AES and   |
| Operation     |     |        |        | 1394 Audio      |

The 3.3v supply consumption will depend on the actual loading of the outputs of the chip, these numbers are for a typical application such as the evaluation board with code executing from SDRAM.

| 8.1.1 | 3.3V | DC | <b>Characteristics</b> |
|-------|------|----|------------------------|
|-------|------|----|------------------------|

| Symbol          | Paran                                        | neter                         | Condition               | Min                       | Тур. | Max  | Unit |
|-----------------|----------------------------------------------|-------------------------------|-------------------------|---------------------------|------|------|------|
| V <sub>IH</sub> | High level in<br>LVCMOS                      | put voltage<br>interface      |                         | 2.0                       |      |      |      |
| V <sub>IL</sub> | Low level input voltage<br>LVCMOS interface  |                               |                         |                           |      | 0.8  |      |
| V <sub>T</sub>  | Switching                                    |                               |                         | 1.4                       |      | V    |      |
| V <sub>T+</sub> | Schmitt trigger, positive-going<br>threshold |                               | CMOS                    |                           |      | 2.0  |      |
| V <sub>T-</sub> | Schmitt trigger,<br>thres                    | negative-going<br>hold        | CMOS                    | 0.8                       |      |      |      |
|                 | High level input                             | Input buffer                  |                         | -10                       |      | 10   |      |
| I <sub>IH</sub> | High level input<br>current                  | Input buffer with pull-down   | $V_{IN} = V_{DD}$       | 10                        | 33   | 60   | μA   |
|                 | Low level input<br>current                   | Input buffer                  | $V_{IN} = V_{SS}$       | -10                       |      | 10   |      |
| I <sub>IL</sub> |                                              | Input buffer with pull-down   |                         | -60                       | -33  | -10  |      |
|                 |                                              | Type B1 to B24                | $I_{OH} = -1\mu A$      | V <sub>DD</sub> –<br>0.05 |      |      |      |
|                 |                                              | Type B1                       | $I_{OH} = -1mA$         |                           |      |      |      |
|                 |                                              | Туре B2 I <sub>OH</sub> = -2r | $I_{OH} = -2mA$         |                           |      |      |      |
|                 | High lovel output                            | Type B4                       | $I_{OH} = -4mA$         |                           |      |      |      |
| V <sub>он</sub> | voltage                                      | Type B8                       | $I_{OH} = -8mA$         | 24                        |      |      |      |
|                 |                                              | Type B12                      | I <sub>OH</sub> = -12mA | 2.4                       |      |      |      |
|                 |                                              | Type B16                      | I <sub>он</sub> = -16mA |                           |      |      |      |
|                 |                                              | Type B20                      | I <sub>он</sub> = -20mA |                           |      |      | v    |
|                 |                                              | Type B24                      | I <sub>он</sub> = -24mA |                           |      |      |      |
|                 |                                              | Type B1 to B24                | $I_{OH} = 1 \mu A$      |                           |      | 0.05 |      |
|                 |                                              | Type B1                       | $I_{OH} = 1mA$          |                           |      |      |      |
|                 |                                              | Type B2                       | $I_{OH} = 2mA$          |                           |      |      |      |
| V <sub>OL</sub> | Low level output<br>voltage                  | Type B4                       | $I_{OH} = 4mA$          |                           |      | 0.4  |      |
|                 |                                              | Type B8                       | I <sub>OH</sub> = 8mA   |                           |      | 0.4  |      |
|                 |                                              | Type B12                      | $I_{OH} = 12mA$         |                           |      |      |      |
|                 |                                              | Type B16                      | $I_{OH} = 16mA$         |                           |      |      |      |

| Symbol            | Param                            | Condition    | Min                                      | Тур. | Max | Unit |    |
|-------------------|----------------------------------|--------------|------------------------------------------|------|-----|------|----|
|                   | Type B20                         |              | $I_{OH} = 20 mA$                         |      |     |      |    |
|                   |                                  | Type B24     | $I_{OH} = 24mA$                          |      |     |      |    |
| I <sub>oz</sub>   | Tri-state output leakage current |              | $V_{OUT} = V_{DD} \text{ or } V_{SS}$    | -10  |     | 10   |    |
| $\mathbf{I}_{DD}$ | Quiescent su                     | oply current |                                          |      |     | 100  | μΑ |
| C <sub>IN</sub>   | Input capacitance                |              | Any input and bi-<br>directional buffers |      |     | 4    | pF |
| C <sub>OUT</sub>  | Output cap                       | pacitance    | Any output buffer                        |      |     |      |    |

# 8.1.2 Absolute Maximum Ratings

| Symbol                                | Parameter                           |                                                 | Unit       |     |      |  |
|---------------------------------------|-------------------------------------|-------------------------------------------------|------------|-----|------|--|
| Symbol                                | rarameter                           |                                                 | Min        | Max | Onic |  |
| Vas                                   | DC supply                           | $1.8V V_{DD}$                                   | -0.5       | 2.7 |      |  |
| • 00                                  | voltage                             | $3.3V V_{DD}$                                   | -0.5       | 4.8 |      |  |
|                                       | V <sub>IN</sub> DC input<br>voltage | 3.3V input<br>buffer                            | -0.5       | 4.8 |      |  |
| V <sub>IN</sub>                       |                                     | 3.3V interface/<br>5V tolerant<br>input buffer  | -0.5       | 6.5 | V    |  |
| V <sub>OUT</sub> DC output<br>voltage |                                     | 3.3V output<br>buffer                           | -0.5       | 4.8 |      |  |
|                                       | voltage                             | 3.3V interface/<br>5V tolerant<br>output buffer | -0.5       | 6.5 |      |  |
| I <sub>IO</sub>                       | Input/Output<br>current             | ± 20                                            |            |     |      |  |
| T <sub>A</sub>                        | Storage<br>temperature              |                                                 | -65 to 150 |     |      |  |

# 8.1.3 Recommended Operating Conditions

| Symbol           | Parameter                                                     |                                                | Unit     |                         |      |  |
|------------------|---------------------------------------------------------------|------------------------------------------------|----------|-------------------------|------|--|
| eyniser          | rarameter                                                     |                                                | Min      | Max                     | onic |  |
|                  | DC supply<br>voltage for<br>internal<br>(=V <sub>DDIN</sub> ) | $1.8V V_{DD}$                                  | 1.65     | 1.95                    |      |  |
| V <sub>DD</sub>  | DC supply<br>voltage for I/O<br>block (=V <sub>DDIO</sub> )   | $3.3V V_{DD}$                                  | 3.0      | 3.6                     |      |  |
|                  | DC supply<br>voltage for<br>analog core<br>$(=V_{DDA})$       | $1.8V V_{DD}$                                  | 1.8 - 5% | 1.8 + 5%                | V    |  |
| VIN              | DC input<br>voltage                                           | 3.3V input<br>buffer                           | -0.3     | V <sub>DCIO</sub> + 0.3 |      |  |
|                  |                                                               | 3.3V interface/<br>5V tolerant<br>input buffer | -0.3     | 5.5                     |      |  |
|                  |                                                               | 3.3V output<br>buffer                          | -0.3     | V <sub>DCI0</sub> + 0.3 |      |  |
| V <sub>OUT</sub> | voltage 3.3V interface/<br>5V tolerant<br>output buffer       | -0.3                                           | 5.5      |                         |      |  |
| т.               | Comm                                                          | ercial temperature                             | e range  | 0 to 70                 | ంగ   |  |
| IA               | Indus                                                         | strial temperature range                       |          | -40 to 85               | ٽر   |  |

# 8.2 PLL Characteristics

#### 8.2.1 Recommended Operating Conditions

| Characteristics                | Symbol              | Min  | Тур | Max   | Unit |
|--------------------------------|---------------------|------|-----|-------|------|
| Supply voltage<br>differential | AVDD18D/<br>AVDD18A | -0.1 | -   | 0.1 V | V    |
| Operating<br>temperature       | Topr                | -40  | -   | 85    | °C   |

#### 8.2.2 DC Electrical Characteristics

| Characteristics               | Symbol              | Min    | Тур | Max    | Unit |
|-------------------------------|---------------------|--------|-----|--------|------|
| Operating voltage             | AVDD18D/<br>AVDD18A | 1.65   | 1.8 | 1.95   | V    |
| Digital input<br>voltage high | IIH                 | 0.7VDD | -   | -      | V    |
| Digital input<br>voltage low  | IIL                 | -      | -   | 0.3VDD | V    |
| Dynamic current               | IDD                 | -      | _   | 3      | mA   |
| Power down<br>current         | IPD                 | -      | -   | 220    | uA   |

## 8.2.3 AC Electrical Characteristics

| Characteristics          |                  | Symbol | Min  | Тур | Max | Unit |
|--------------------------|------------------|--------|------|-----|-----|------|
| Input                    | frequency        | FIN    | 4    | -   | 50  | MHz  |
| Output clo               | ock frequency    | FOUT   | 20   | -   | 300 | MHz  |
| VCO outp                 | out frequency    | FVCO   | 160  | -   | 400 | MHz  |
| Input clock duty cycle   |                  | TID    | 40   | -   | 60  | %    |
| Output clock duty cycle  |                  | TOD    | 45   | -   | 55  | %    |
| Locking time             |                  | TLT    | _    | _   | 150 | us   |
|                          | 20M ~100MHz      | ТЈСС   | -300 | -   | 300 | ps   |
| Cycle to<br>cycle jitter | 100M ~<br>200MHz | ТЈСС   | -200 | -   | 200 | ps   |
|                          | 200M ~<br>300MHz | ТЈСС   | -120 | -   | 120 | ps   |

# Chapter 9 Thermal Ratings

#### **Operating Temperature**

|                                          | MIN | TYP | MAX | UNIT |
|------------------------------------------|-----|-----|-----|------|
| Operating ambient temperature, TCD22xx   | 0   |     | 70  | Ĵ    |
| Operating ambient temperature, TCD22xx-E | -40 |     | 85  | Ĵ    |

#### **Thermal Characteristics**

| PARAMETER | TEST CONDITIONS            | MIN | TYP  | MAX | UNIT          |
|-----------|----------------------------|-----|------|-----|---------------|
| 128 QFP   | Board mounted, no air flow |     | 46.4 |     | ° <b>C</b> /W |
| 144 LQFP  | Board mounted, no air flow |     | 45.3 |     | ° <b>C</b> /W |

#### Absolute Maximum Ratings over Operating Temperature Ranges

| Supply voltage range AVdd (1.8V)                   | -0.5 V to 2.7 V                  |
|----------------------------------------------------|----------------------------------|
| Vdd (3.3V)                                         | -0.5 V to 4.8 V                  |
| PLL_Vdd (1.8V)                                     | -0.5 V to 2.7 V                  |
| Continuous total power dissipation                 | See Dissipation Rating Table     |
| Operating free–air temperature $T_A$ – (TCD22xx)   | 0 ° <b>C</b> to 70 ° <b>C</b>    |
| Operating free–air temperature $T_A$ – (TCD22xx-E) | -40 ° <b>C</b> to 85 ° <b>C</b>  |
| Storage temperature range Tstg -                   | -65 ° <b>C</b> to 150 ° <b>C</b> |

Exposure to absolute–maximum–rated conditions for extended periods affects device reliability. Stresses beyond those listed under absolute maximum ratings cause permanent damage to the device.

Appendix 1. Memory Map and Register summary

16MB

928MB

16MB

16MB

16MB

2032MB

16MB

# A.1 Memory map

| 0xffff_ffff      | Boot Mode<br>(Remap active)          | 0xffff_ffff | Normal mode<br>(Remap inactive)      |
|------------------|--------------------------------------|-------------|--------------------------------------|
|                  | Reserved<br>AHB Space                |             | Reserved<br>AHB Space                |
| 0xD100_0000      | PWRMGR                               | 0xD100_0000 | PWRMGR                               |
| 0xD000_0000      |                                      | 0xD000_0000 |                                      |
| 0xCF00_0000      | AVS                                  | 0xCF00_0000 | AVS                                  |
| 0xce00_0000      | DICE                                 | 0xCE00_0000 | DICE                                 |
| 0xCD00_0000      | Reserved<br>APB Space                | 0xCD00_0000 | Reserved<br>APB Space                |
| 0xCC00 0000      | HPLL                                 | 0xCC00 0000 | HPLL                                 |
| _                | Reserved<br>APB Space                |             | Reserved<br>APB Space                |
| 0xC600_0000      | PDBINT                               | 0xC600_0000 | PDBINT                               |
| 0xC700_0000      | GPCSR                                | 0xC700_0000 | GPCSR                                |
| 0xC600_0000      | GRAY                                 | 0xC600_0000 | GRAY                                 |
| 0xc500_0000      | SPI                                  | 0xC500_0000 | SPI                                  |
| 0xC400_0000      | 2 Wire IF<br>Master/Slave            | 0xC400_0000 | 2 Wire IF<br>Master/Slave            |
| 0xC300_0000      | GPIO                                 | 0xC300_0000 | GPIO                                 |
| 0xC200_0000      | Timer                                | 0xC200_0000 | Timer                                |
| 0xC100_0000      | Interrupt Controller                 | 0xC100_0000 | Interrupt Controller                 |
| 0xc000_0000      | Address Remap                        | 0xC000_0000 | Address Remap                        |
| 0xBF00_0000      | Watchdog                             | 0xBF00_0000 | Watchdog                             |
| 0xBE00_0000      | UART #0                              | 0xBE00_0000 | UART #0                              |
| 0xBD00_0000      | UART #1                              | 0xBD00_0000 | UART #1                              |
| 0x8300_0000      | Reserved<br>AHB Space                | 0x8300_0000 | Reserved<br>AHB Space                |
| 0x8200 0000      | 1394LLC Memory<br>Space              | 0x8200 0000 | 1394LLC Memory<br>Space              |
| _<br>0x8100_0000 | Memory Controller<br>Setup Registers | 0x8100_0000 | Memory Controller<br>Setup Registers |
| 0x8000_0000      | Internal SRAM<br>Mirror Address      | 0x8000_0000 | Internal SRAM<br>Mirror Address      |
|                  | Memory Controller                    | 0x0100_0000 | Memory Controller                    |
| 0x0000_0000      | Memory Controller                    | 0x0000_0000 | Internal SRAM                        |

Figure 48. Global Memory Map (allocated Address Space)

# A.2 DICE JR Register Summary

# A.2.1 ARM Peripherals

| EBI (External Bus Interface) Memory Map | See Chapter 4 ARM Peripherals |
|-----------------------------------------|-------------------------------|
| Address                                 | Register                      |
| 0x8100 0000                             | EBI_SCONR                     |
| 0x8100 0004                             | EBI_STMG0R                    |
| 0x8100 0008                             | EBI_STMG1R                    |
| 0x8100 000c                             | EBI_SCTLR                     |
| 0x8100 0010                             | EBI_SREFR                     |
| 0x8100 0014                             | EBI_SCSLR0                    |
| 0x8100 0018                             | EBI_SCSLR1                    |
| 0x8100 001c                             | EBI_SCSLR2                    |
| 0x8100 0020                             | EBI_SCSLR3                    |
| 0x8100 0024                             | EBI_SCSLR4                    |
| 0x8100 0028                             | EBI_SCSLR5                    |
| 0x8100 002c                             | EBI_SCSLR6                    |
| 0x8100 0030                             | EBI_SCSLR7                    |
| 0x8100 0054                             | EBI_SMSKR0                    |
| 0x8100 0058                             | EBI_SMSKR1                    |
| 0x8100 005c                             | EBI_SMSKR2                    |
| 0x8100 0060                             | EBI_SMSKR3                    |
| 0x8100 0064                             | EBI_SMSKR4                    |
| 0x8100 0068                             | EBI_SMSKR5                    |
| 0x8100 006c                             | EBI_SMSKR6                    |
| 0x8100 0070                             | EBI_SMSKR7                    |
| 0x8100 0074                             | EBI_CSALIAS0                  |
| 0x8100 0078                             | EBI_CSALIAS1                  |
| 0x8100 0084                             | EBI_CSREMAP0                  |
| 0x8100 0088                             | EBI_CSREMAP1                  |
| 0x8100 0094                             | EBI_SMTMGR_SET0               |
| 0x8100 0098                             | EBI_SMTMGR_SET1               |
| 0x8100 009c                             | EBI_SMTMGR_SET2               |
| 0x8100 00a0                             | EBI_FLASH_TRPDR               |
| 0x8100 00a4                             | EBI_SMCTLR                    |

| 1394 LLC Memory Map | See Chapter 4 – ARM Peripherals |
|---------------------|---------------------------------|
| Address             | Register                        |
| 0x8200 0000         | VERSION_REG_DP                  |
| 0x8200 0004         | ND_ID_REG_DP                    |
| 0x8200 0008         | LNK_CTRL_REG_DP                 |
| 0x8200 000c         | LCSR_REG_DP                     |
| 0x8200 0010         | CY_TMR_REG_DP                   |
| 0x8200 0014         | ATFIFO_STAT_REG_DP              |
| 0x8200 0018         | ITFIFO_STAT_REG_DP              |
| 0x8200 001c         | ARFIFO_STAT_REG_DP              |
| 0x8200 0020         | IRFIFO_STAT_REG_DP              |
| 0x8200 0024         | ISOC_RX_ENB_REG_1_DP            |
| 0x8200 0028         | ISOC_RX_ENB_REG_2_DP            |
| 0x8200 002c         | ISO_TX_STAT_REG_DP              |
| 0x8200 0030         | ASY_TX_STAT_REG_DP              |
| 0x8200 0044         | PHY_CTRL_REG_DP                 |
| 0x8200 0048         | INTERRUPT_REG_SET_DP            |
| 0x8200 004c         | INTERRUPT_REG_CLEAR_DP          |
| 0x8200 0050         | INTR_MASK_REG_SET_DP            |
| 0x8200 0054         | INTR_MASK_REG_CLEAR_DP          |
| 0x8200 0058         | DIAG_REG_DP                     |
| 0x8200 005c         | BUS_STAT_REG_DP                 |
| 0x8200 0060         | ASY_TX_FIFO_SPACE_REG_DP        |
| 0x8200 0064         | ASY_RX_FIFO_QLETS_REG_DP        |
| 0x8200 0068         | ISO_TX_FIFO_SPACE_REG_DP        |
| 0x8200 006c         | ISO_RX_FIFO_QLETS_REG_DP        |
| 0x8200 0070         | ISO_DATA_PATH_REG_DP            |
| 0x8200 0074         | ASY_TX_FIRST_REG_DP             |
| 0x8200 0078         | ASY_CONTINUE_REG_DP             |
| 0x8200 007c         | ASY_CONTINUE_UPDATE_REG_DP      |
| 0x8200 0080         | ASY_TX_FIFO_DEPTH_REG_DP        |
| 0x8200 0084         | ASY_RX_FIFO_REG_DP              |
| 0x8200 0088         | ASY_RX_FIFO_DEPTH_REG_DP        |
| 0x8200 008c         | ISO_TX_FIRST_REG_DP             |
| 0x8200 0090         | ISO_CONTINUE_REG_DP             |
| 0x8200 0094         | ISO_CONTINUE_UPDATE_REG_DP      |
| 0x8200 0098         | ISO_TX_FIFO_DEPTH_REG_DP        |
| 0x8200 009c         | ISO_RX_FIFO_REG_DP              |
| 0x8200 00a0         | ISO_RX_FIFO_DEPTH_REG_DP        |
| 0x8200 00a4         | HST_ACC_ERR_REG_DP              |
| 0x8200 00a8         | RET_CT_REG_DP                   |

| 1394 LLC Memory Map | See Chapter 4 – ARM Peripherals |
|---------------------|---------------------------------|
| Address             | Register                        |
| 0x8200 00ac         | DIG_FSM_STAT_REG                |
| 0x8200 00b0         | ISO_TX_ENB_REG_1_DP             |
| 0x8200 00b4         | ISO_TX_ENB_REG_2_DP             |
| 0x8200 00b8         | ISO_HDR_REG_DP                  |
| 0x8200 00bc         | LPS_REG_DP                      |
| 0x8200 00c0         | PING_REG_DP                     |
| 0x8200 00c4         | ISOC_EXPC_CHAN_REG1             |
| 0x8200 00c8         | ISOC_EXPC_CHAN_REG2             |
| 0x8200 00cc         | DUP_EXPC_STAT_REG               |
| 0x8200 00d0         | ASYN_RX_ENB_REG_1_DP            |
| 0x8200 00d4         | ASYN_RX_ENB_REG_2_DP            |

| UART #1 Memory map | See Chapter 4 – Arm Peripherals   |
|--------------------|-----------------------------------|
| Address            | Register                          |
| 0xbd00 0000        | UART#1 RBR, THR, DLL <sup>a</sup> |
| 0xbd00 0004        | UART#1 IER, DLH <sup>a</sup>      |
| 0xbd00 0008        | UART#1 IIR, FCR                   |
| 0xbd00 000c        | UART#1 LCR                        |
| 0xbd00 0010        | UART#1 MCR                        |
| 0xbd00 0014        | UART#1 LSR                        |
| 0xbd00 0018        | UART#1 MSR                        |
| 0xbd00 001c        | UART#1 SCR                        |

| UART #0 Memory map | See Chapter 4 – Arm Peripherals |
|--------------------|---------------------------------|
| Address            | Register                        |
| 0xbe00 0000        | UART#0 RBR, THR, DLL            |
| 0xbe00 0004        | UART#0 IER, DLH                 |
| 0xbe00 0008        | UART#0 IIR, FCR                 |
| 0xbe00 000c        | UART#0 LCR                      |
| 0xbe00 0010        | UART#0 MCR                      |
| 0xbe00 0014        | UART#0 LSR                      |
| 0xbe00 0018        | UART#0 MSR                      |
| 0xbe00 001c        | UART#0 SCR                      |

| Watchdog Memory Map | See Chapter 4 – Arm Peripherals |
|---------------------|---------------------------------|
| Address             | Register                        |
| 0xbf00 0000         | WD_RESET_EN                     |
| 0xbf00 0004         | WD_INT                          |

| Watchdog Memory Map | See Chapter 4 – Arm Peripherals |
|---------------------|---------------------------------|
| Address             | Register                        |
| 0xbf00 0008         | WD_PRESCALE_LOAD                |
| 0xbf00 000c         | WD_PRESCALE_CNT                 |
| 0xbf00 0010         | WD_COUNT                        |

| Address remap memory Map | See Chapter 4 – Arm Peripherals |
|--------------------------|---------------------------------|
| Address                  | Register                        |
| 0xc000 0004              | DICE Family ID Register         |
| 0xc000 0008              | Remap Register                  |

| Interrupt Controller Memory Map | See Chapter 4 – Arm Peripherals |
|---------------------------------|---------------------------------|
| Address                         | Register                        |
| 0xc100 0000                     | INTCTRL_ENABLE                  |
| 0xc100 0008                     | INTCTRL_MASK                    |
| 0xc100 0010                     | INTCTRL_FORCE                   |
| 0xc100 0018                     | INTCTRL_RAW                     |
| 0xc100 0020                     | INTCTRL_STAT                    |
| 0xc100 0028                     | INTCTRL_MASKSTAT                |
| 0xc100 0030                     | INTCTRL_FINALSTAT               |
| 0xc100 0038                     | INTCTRL_INTVECTOR               |
| 0xc100 0040                     | INTCTRL_VECTOR0                 |
| 0xc100 0048                     | INTCTRL_VECTOR1                 |
| 0xc100 0050                     | INTCTRL_VECTOR2                 |
| 0xc100 0058                     | INTCTRL_VECTOR3                 |
| 0xc100 0060                     | INTCTRL_VECTOR4                 |
| 0xc100 0068                     | INTCTRL_VECTOR5                 |
| 0xc100 0070                     | INTCTRL_VECTOR6                 |
| 0xc100 0078                     | INTCTRL_VECTOR7                 |
| 0xc100 0080                     | INTCTRL_VECTOR8                 |
| 0xc100 0088                     | INTCTRL_VECTOR9                 |
| 0xc100 0090                     | INTCTRL_VECTOR10                |
| 0xc100 0098                     | INTCTRL_VECTOR11                |
| 0xc100 00a0                     | INTCTRL_VECTOR12                |
| 0xc100 00a8                     | INTCTRL_VECTOR13                |
| 0xc100 00b0                     | INTCTRL_VECTOR14                |
| 0xc100 00b8                     | INTCTRL_VECTOR15                |
| 0xc100 00c0                     | INTCTRL_FIQ_ENABLE              |
| 0xc100 00c4                     | INTCTRL_FIQ_MASK                |
| 0xc100 00c8                     | INTCTRL_FIQ_FORCE               |

| Interrupt Controller Memory Map | See Chapter 4 – Arm Peripherals |
|---------------------------------|---------------------------------|
| Address                         | Register                        |
| 0xc100 00cc                     | INTCTRL_FIQ_RAW                 |
| 0xc100 00d0                     | INTCTRL_FIQ_STAT                |
| 0xc100 00d4                     | INTCTRL_FIQ_FINALSTAT           |
| 0xc100 00d8                     | INTCTRL_SYSTEM_PRIORITY_LEVEL   |

| Dual Timer Memory Map      | See Chapter 4 – Arm Peripherals |
|----------------------------|---------------------------------|
| Address Range              | Register                        |
| 0xc200 0000 to 0xc200 0010 | Timer 1 Registers               |
| 0xc200 0014 to 0xc200 0024 | Timer 2 Registers               |
| 0xc200 00a0 to 0xc200 00a4 | Timer System Registers          |

| GPIO Memory Map | See Chapter 4 – Arm Peripherals |
|-----------------|---------------------------------|
| Address         | Register                        |
| 0xc300 0000     | GPIO_DR                         |
| 0xc300 0004     | GPIO_DDR                        |
| 0xc300 0030     | GPIO_INTEN                      |
| 0xc300 0034     | GPIO_INTMSK                     |
| 0xc300 0038     | GPIO_INTSENSE                   |
| 0xc300 003c     | GPIO_INTPOL                     |
| 0xc300 0040     | GPIO_INTSTAT                    |
| 0xc300 0044     | GPIO_RAWINTSTAT                 |
| 0xc300 0048     | GPIO_DEBOUNCE                   |
| 0xc300 004c     | GPIO_EOI                        |
| 0xc300 0050     | GPIO_EXT                        |
| 0x3c00 0060     | GPIO_SYNC                       |

| I2C Memory Map | See Chapter 4 – Arm Peripherals |
|----------------|---------------------------------|
| Address        | Register                        |
| 0xc400 0000    | IC_CON                          |
| 0xc400 0004    | IC_TAR                          |
| 0xc400 0008    | IC_SAR                          |
| 0xc400 000c    | IC_HS_MAR                       |
| 0xc400 0010    | IC_DATA_COMMAND                 |
| 0xc400 0014    | IC_SS_HCNT                      |
| 0xc400 0018    | IC_SS_LCNT                      |
| 0xc400 001c    | IC_FS_HCNT                      |
| 0xc400 0020    | IC_FS_LCNT                      |
| 0xc400 0024    | IC_HS_HCNT                      |

| I2C Memory Map | See Chapter 4 – Arm Peripherals |
|----------------|---------------------------------|
| Address        | Register                        |
| 0xc400 0028    | IC_HS_LCNT                      |
| 0xc400 002c    | IC_INTR_STAT                    |
| 0xc400 0030    | IC_INTR_MASK                    |
| 0xc400 0034    | IC_RAW_INTR_STAT                |
| 0xc400 0038    | IC_RX_TL                        |
| 0xc400 003c    | IC_TX_TL                        |
| 0xc400 0040    | IC_CLR_INTR                     |
| 0xc400 0044    | IC_CLR_RX_UNDER                 |
| 0xc400 0048    | IC_CLR_RX_OVER                  |
| 0xc400 004c    | IC_CLR_TX_OVER                  |
| 0xc400 0050    | IC_CLR_RD_REQ                   |
| 0xc400 0054    | IC_CLR_TX_ABRT                  |
| 0xc400 0058    | IC_CLR_RX_DONE                  |
| 0xc400 005c    | IC_CLR_ACTIVITY                 |
| 0xc400 0060    | IC_CLR_STOP_DET                 |
| 0xc400 0064    | IC_CLR_START_DET                |
| 0xc400 0068    | IC_CLR_GEN_CALL                 |
| 0xc400 006c    | IC_ENABLE                       |
| 0xc400 0070    | IC_STATUS                       |
| 0xc400 0074    | IC_TXFLR                        |
| 0xc400 0078    | IC_RXFLR                        |
| 0xc400 007c    | IC_SRESET                       |
| 0xc400 0080    | IC_TX_ABRT_SOURCE               |

| SPI Memory Map | See Chapter 4 – Arm Peripherals |
|----------------|---------------------------------|
| Address        | Register                        |
| 0xc500 0000    | SPI Control register            |
| 0xC500 0004    | SPI Status Register             |
| 0xC500 0008    | SPI Interrupt Mask Register     |
| 0xC500 0010    | SPI Data Register               |
| 0xC500 0014    | SPI Baud Rate Register          |

| GRAY Encoder Memory Map | See Chapter 4 – Arm Peripherals |
|-------------------------|---------------------------------|
| Address                 | Register                        |
| 0xc600 0000             | GRAY_STAT                       |
| 0xc600 0004             | GRAY_CTRL                       |
| 0xc600 0008             | GRAY_CNT                        |

| GPCSR (General Purpose CSR) Memory Map | See Chapter 4 ARM Peripherals |
|----------------------------------------|-------------------------------|
| Address                                | Register                      |
| 0xc700 0000                            | GPCSR_SYSTEM                  |
| 0xC700 0004                            | GPCSR_AUDIO_SELECT            |
| 0xC700 0008                            | GPCSR_GPIO_SELECT             |
| 0xC700 0014                            | GPCSR_CHIP_ID                 |
| 0xC700 0024                            | GPCSR_IRQ_SEL0_5              |
| 0xC700 0028                            | GPCSR_IRQ_SEL6_11             |
| 0xC700 002c                            | GPCSR_IRQ_SEL12_17            |
| 0xC700 0030                            | GPCSR_IRQ_SEL18               |
| 0xC700 0034                            | GPCSR_FIQ_SEL0_5              |
| 0xC700 0038                            | GPCSR_FIQ_SEL6_7              |

# A.2.2 DICE

| Jet <sup>TM</sup> PLL Memory map | See Chapter 5 - DICE |
|----------------------------------|----------------------|
| Address                          | Register             |
| 0xcc00 0000                      | PLL1_CAF_ENABLE      |
| 0xcc00 0004                      | PLL1_CAF_SELECT      |
| 0xcc00 0008                      | PLL1_COAST           |
| 0xcc00 0018                      | PLL1_REF_SEL         |
| 0xcc00 001c                      | PLL1_REF_EDG         |
| 0xcc00 0028                      | PLL1_RDIV            |
| 0xcc00 002c                      | PLL1_THROTTLE        |
| 0xcc00 0058                      | PLL1_U_THRESHOLD     |
| 0xcc00 0060                      | PLL1_BW_FLOOR        |
| 0xcc00 0064                      | PLL1_BW_CEILING      |
| 0xcc00 0068                      | PLL1_SHP_FIX         |
| 0хсс00 006с                      | PLL1_SHP_VAR         |
| 0xcc00 0070                      | PLL1_MAX_SLW_FIX     |
| 0xcc00 0074                      | PLL1_MAX_SLW_VAR     |
| 0xcc00 0078                      | PLL1_DCNT_LIN        |
| 0хсс00 007с                      | PLL1_DCNT_EXP        |
| 0xcc00 0088                      | PLL1_LOOSE_THR       |
| 0xcc00 0098                      | PLL1_MIN_PER         |
| 0хсс00 009с                      | PLL1_MAX_PER         |
| 0xcc00 00b0                      | PLL1_NDIV_F          |
| 0xcc00 00b4                      | PLL1_NDIV_E          |

| $Jet^{TM}$ PLL Memory map | See Chapter 5 - DICE |
|---------------------------|----------------------|
| Address                   | Register             |
| 0xcc00 00b8               | PLL1_NDIV_B          |
| 0xcc00 00bc               | PLL1_BYP_F           |
| 0xcc00 00c0               | PLL1_PHASE_LAG       |
| 0xcc00 00c8               | PLL1_FRACT_RES       |
| 0xcc00 00d0               | PLL1_BURST_LEN       |
| 0xcc00 00d8               | PLL1_GPO_EN          |
| 0xcc00 00dc               | PLL1_GPO_1           |
| 0xcc00 00e0               | PLL1_GPO_2           |
| 0xcc00 00e4               | PLL1_GPO_3           |
| 0xcc00 00f0               | PLL1_X1X2_MODE       |
| 0xcc000100                | PLL1_CHAIN_I         |
| 0xcc000104                | PLL1_SINK_I          |
| 0xcc000108                | PLL1_ANCHOR_I        |
| 0xcc00010c                | PLL1_IANCHOR_VAL     |
| 0xcc000110                | PLL1_UNBND_I         |
| 0xcc000118                | PLL1_IDET            |
| 0xcc000120                | PLL1_IDIV_C          |
| 0xcc000124                | PLL1_IDIV_F          |
| 0xcc000128                | PLL1_IDIV_S          |
| 0xcc000130                | PLL1_INV_CDI         |
| 0xcc000134                | PLL1_HBL_CDI         |
| 0xcc000144                | PLL1_SINK_E          |
| 0xcc000148                | PLL1_ANCHOR_E        |
| 0xcc00014c                | PLL1_E_ANC_VAL       |
| 0xcc000150                | PLL1_UNBIND_E        |
| 0xcc000158                | PLL1_EDET_X1         |
| 0xcc00015c                | PLL1_EDET_X2         |
| 0xcc000160                | PLL1_EDIV_C          |
| 0xcc000164                | PLL1_EDIV_F          |
| 0xcc000168                | PLL1_EDIV_S          |
| 0xcc000170                | PLL1_INV_CDE         |
| 0xcc000174                | PLL1_HBL_CDE         |
| 0xcc000180                | PLL1_DIVIDE_CJ       |
| 0xcc000184                | PLL1_INVERT_CJ       |
| 0xcc000280                | PLL1_FAMILY_ID       |
| 0xcc000284                | PLL1_FORM_ID         |
| 0xcc000288                | PLL1_REVISION_ID     |
| Jet <sup>TM</sup> PLL Memory map | See Chapter 5 - DICE |
|----------------------------------|----------------------|
| Address                          | Register             |
| 0xcc00028c                       | PLL1_INSTANCE_ID     |
| 0xcc0002b8                       | PLL1_MTR_SELECT      |
| 0xcc0002bc                       | PLL1_MTR_EDGES       |
| 0xcc0002c0                       | PLL1_RES_EX          |
| 0xcc0002c4                       | PLL1_PUNC_MP         |
| 0xcc0002cc                       | PLL1_MTR_PERIOD      |
| 0xcc0002d0                       | PLL1_GREATEST_MP     |
| 0xcc0002d4                       | PLL1_GREATEST_MP_\$  |
| 0xcc0002d8                       | PLL1_SMALLEST_MP     |
| 0xcc0002dc                       | PLL1_SMALLEST_MP_\$  |
| 0xcc000300                       | PLL1_TICK_RATE       |
| 0xcc000304                       | PLL1_TURN_RATE       |
| 0xcc000308                       | PLL1_MAIN_STATUS     |
| 0xcc00030c                       | PLL1_MAIN_STATUS_\$  |
| 0xcc000320                       | PLL1_DETECT_R        |
| 0xcc000324                       | PLL1_DETECT_F        |
| 0xcc000328                       | PLL1_STICKY_BITS     |
| 0xcc00032c                       | PLL1_STICKY_BITS_\$  |
| 0xcc000350                       | PLL1_IRQ_ENABLES     |
| 0xcc00038c                       | PLL1_NCO_PERIOD      |
| 0xcc000390                       | PLL1_GREATEST_NP     |
| 0xcc000394                       | PLL1_GREATEST_NP_\$  |
| 0xcc000398                       | PLL1_SMALLEST_NP     |
| 0xcc00039c                       | PLL1_SMALLEST_NP_\$  |
| 0xcc0003d8                       | PLL1_GPI             |
| 0xcc0003e0                       | PLL1_CONFIG_AC       |
| 0xcc0003f0                       | PLL1_SHUTDOWN_M      |
| 0xcc0003f4                       | PLL1_SHUTDOWN_I      |
| 0xcc0001f8                       | PLL1_SHUTDOWN_E      |

| Router Memory Map | See Chapter 5 - DICE |
|-------------------|----------------------|
| Address           | Register             |
| 0xce00 0000       | ROUTER_CTRL          |
| 0xce00 0400       | ROUTER_ENTRY0        |
| 0xce00 0404       | ROUTER_ENTRY1        |
| :                 | :                    |

| Router Memory Map | See Chapter 5 - DICE |
|-------------------|----------------------|
| Address           | Register             |
| 0xce00 07fc       | ROUTER_ENTRY127      |

| Clock Controller Memory Map | See Chapter 5 - DICE |
|-----------------------------|----------------------|
| Address                     | Register             |
| 0xce01 0000                 | SYNC_CTRL            |
| 0xce01 0004                 | DOMAIN_CTRL          |
| 0xce01 0008                 | EXTCLK_CTRL          |
| 0xce01 000c                 | BLK_CTRL             |
| 0xce01 0010                 | REFEVENT_CTRL        |
| 0xce01 0014                 | SRCNT_CTRL           |
| 0xce01 0018                 | SRCNT_MODE           |
| 0xce01 001c                 | Reserved             |
| 0xce01 0020                 | Reserved             |
| 0xce01 0024                 | AES_VCO_SETUP        |
| 0xce01 0028                 | Reserved             |
| 0xce01 002c                 | Reserved             |
| 0xce01 0030                 | Reserved             |
| 0xce01 0034                 | PRESCALER            |
| 0xce01 0038                 | Reserved             |
| 0xce01 003c                 | HPLL_REF             |
| 0xce01 0040                 | SRCNT1               |
| 0xce01 0044                 | SRCNT2               |
| 0xce01 0048                 | SR_MAX_CNT1          |
| 0xce01 004c                 | SR_MAX_CNT2          |

| AES Receiver Memory Map | See Chapter 5 - DICE |
|-------------------------|----------------------|
| Address                 | Register             |
| 0xce02 0000             | CTRL                 |
| 0xce02 0004             | STAT_ALL             |
| 0xce02 0008             | STAT_RX0             |
| 0xce02 000c             | STAT_RX1             |
| 0xce02 0010             | STAT_RX2             |
| 0xce02 0014             | STAT_RX3             |
| 0xce02 0018             | V_BIT                |
| 0xce02 0040             | PLL_PULSE_WIDTH      |
| 0xce02 0044             | FORCE_VCO            |
| 0xce02 0048             | VCO_MIN_LSB          |
| 0xce02 004c             | VCO_MIN_MSB          |

| AES Receiver Memory Map   | See Chapter 5 - DICE |
|---------------------------|----------------------|
| Address                   | Register             |
| 0xce02 0080               | CHSTAT_0_BYTE0       |
| 0xce02 0084               | CHSTAT_0_BYTE1       |
| 0xce02 0088               | CHSTAT_0_BYTE2       |
| 0xce02 008c               | CHSTAT_0_BYTE3       |
| 0xce02 0090 - 0xce02 009c | CHSTAT_1_BYTE0-3     |
| 0xce02 00a0 - 0xce02 00ac | CHSTAT_2_BYTE0-3     |
| 0xce02 00b0 - 0xce02 00bc | CHSTAT_3_BYTE0-3     |
| 0xce02 00c0 - 0xce02 00cc | CHSTAT_4_BYTE0-3     |
| 0xce02 00d0 - 0xce02 00dc | CHSTAT_5_BYTE0-3     |
| 0xce02 00e0 - 0xce02 00ec | CHSTAT_6_BYTE0-3     |
| 0xce02 00f0 - 0xce02 00fc | CHSTAT_7_BYTE0-3     |
| 0xce02 0100 – 0xce02 015c | CHSTAT_FULL_BYTE0-23 |

| AES Transmitter Memory map | See Chapter 5 - DICE |
|----------------------------|----------------------|
| Address                    | Register             |
| 0xce03 0000                | MODE_SEL             |
| 0xce03 0004                | CBL_SEL              |
| 0xce03 0008                | CS_SEL0              |
| 0xce03 000c                | CS_SEL1              |
| 0xce03 0010                | CS_SEL2              |
| 0xce03 0014                | MUTE                 |
| 0xce03 0018                | V_BIT                |
| 0xce03 0040                | USR_SEL0             |
| 0xce03 0044                | USR_SEL1             |
| 0xce03 0048                | USR_SEL2             |
| 0xce03 004c                | USR_SEL3             |
| 0xce03 0080                | CHSTAT_0_BYTE0       |
| 0xce03 0084                | CHSTAT_0_BYTE1       |
| 0xce03 0088                | CHSTAT_0_BYTE2       |
| 0xce03 008c                | CHSTAT_0_BYTE3       |
| 0xce03 0090 - 0xce03 009c  | CHSTAT_1_BYTE0-3     |
| 0xce03 00a0 - 0xce03 00ac  | CHSTAT_2_BYTE0-3     |
| 0xce03 00b0 - 0xce03 00bc  | CHSTAT_3_BYTE0-3     |
| 0xce03 00c0 - 0xce03 00cc  | CHSTAT_4_BYTE0-3     |
| 0xce03 00d0 - 0xce03 00dc  | CHSTAT_5_BYTE0-3     |
| 0xce03 00e0 - 0xce03 00ec  | CHSTAT_6_BYTE0-3     |
| 0xce03 00f0 - 0xce03 00fc  | CHSTAT_7_BYTE0-3     |
| 0xce03 0100 – 0xce03 015c  | CHSTAT_FULL_BYTE0-23 |

| ADAT Receiver Memory Map | See Chapter 5 - DICE |
|--------------------------|----------------------|
| Address                  | Register             |
| 0xce04 0000              | ADATRX0              |
| 0xce04 0004              | ADATRX1              |

| ADAT Transmitter | See Chapter 5 - DICE |
|------------------|----------------------|
| Address          | Register             |
| 0xce05 0000      | ADATTX_CTRL1         |
| 0xce05 0004      | ADATTX0_MUTE         |
| 0xce05 0008      | ADATTX1_MUTE         |

| Audio Mixer Memory Map | See Chapter 5 - DICE                    |
|------------------------|-----------------------------------------|
| Address                | Register                                |
| 0xce06 0000            | MIXER_CTRL                              |
| 0xce06 0004            | MIXER_OVL                               |
| 0xce06 0008            | MIXER_NUMOFCH                           |
| 0xce06 0800            | MIXER_COEFF RAM Coeff 0 for channel 0   |
| 0xce06 0804            | MIXER_COEFF RAM Coeff 1 for channel 0   |
| 0xce06 0808            | MIXER_COEFF RAM Coeff 2 for channel 0   |
|                        |                                         |
| 0xce06 0c78            | MIXER_COEFF RAM Coeff 16 for channel 15 |
| 0xce06 0c7c            | MIXER_COEFF RAM Coeff 17 for channel 15 |

| I <sup>N</sup> S Receivers Memory Map | See Chapter 5 - DICE |
|---------------------------------------|----------------------|
| Address                               | Register             |
| 0xce08 0000                           | INS0_RX0_SETUP       |
| 0xce08 0020                           | INS0_RX1_SETUP       |
| 0xce08 0040                           | INS0_RX2_SETUP       |
| 0xce08 0060                           | INS0_RX3_SETUP       |
| 0xce0a 0000                           | INS1_RX0_SETUP       |
| 0xce0a 0020                           | INS1_RX1_SETUP       |
| 0xce0a 0040                           | INS1_RX2_SETUP       |
| 0xce0a 0060                           | INS1_RX3_SETUP       |

| I <sup>N</sup> S Transmitters Memory Map | See Chapter 5 - DICE |
|------------------------------------------|----------------------|
| Address                                  | Register             |
| 0xce09 0000                              | INS0_TX0_SETUP       |
| 0xce09 0020                              | INS0_TX1_SETUP       |
| 0xce09 0040                              | INS0_TX2_SETUP       |
| 0xce09 0060                              | INS0_TX3_SETUP       |

| I <sup>N</sup> S Transmitters Memory Map | See Chapter 5 - DICE |
|------------------------------------------|----------------------|
| Address                                  | Register             |
| 0xce09 0080                              | INS0_CLKP_SETUP      |
| 0xce09 0fe0                              | INS0_MUTE            |
| 0xce0b 0000                              | INS1_TX0_SETUP       |
| 0xce0b 0020                              | INS1_TX1_SETUP       |
| 0xce0b 0040                              | INS1_TX2_SETUP       |
| 0xce0b 0060                              | INS1_TX3_SETUP       |
| 0xce0b 0080                              | INS1_CLKP_SETUP      |
| 0xce0b 0fe0                              | INS1_MUTE            |

| ARM Audio Transeiver Memory Map | See Chapter 5 - DICE |
|---------------------------------|----------------------|
| Address                         | Register             |
| 0xce16 0000 – 0xce16 0080       | ARMAUDIO_BUF         |
| 0xce16 0100                     | ARMAUDIO_CTRL        |

## A.2.3 AVS

| AVS Audio Receivers Memory Map | See Chapter 6 - AVS |
|--------------------------------|---------------------|
| Address                        | Register            |
| 0xcf00 0000                    | ARX1_CFG0           |
| 0xcf00 0004                    | ARX1_CFG1           |
| 0xcf00 0008                    | ARX1_QSEL0          |
| 0xcf00 000c                    | ARX1_QSEL1          |
| 0xcf00 0010                    | ARX1_QSEL2          |
| 0xcf00 0014                    | ARX1_QSEL3          |
| 0xcf00 0018                    | ARX1_QSEL4          |
| 0xcf00 001c                    | ARX1_PHDR           |
| 0xcf00 0020                    | ARX1_CIP0           |
| 0xcf00 0024                    | ARX1_CIP1           |
| 0xcf00 0028                    | ARX1_ADO_CFG        |
| 0xcf00 002c                    | ARX1_ADO_MIDI       |
| 0xcf00 0030                    | ARX2_CFG0           |
| 0xcf00 0034                    | ARX2_CFG1           |
| 0xcf00 0038                    | ARX2_QSEL0          |
| 0xcf00 003c                    | ARX2_QSEL1          |
| 0xcf00 0040                    | ARX2_QSEL2          |
| 0xcf00 0044                    | ARX2_QSEL3          |
| 0xcf00 0048                    | ARX2_QSEL4          |
| 0xcf00 004c                    | ARX1_PHDR           |

| 0xcf00 0050 | ARX1_CIP0     |
|-------------|---------------|
| 0xcf00 0054 | ARX1_CIP1     |
| 0xcf00 0058 | ARX2_ADO_CFG  |
| 0xcf00 005c | ARX2_ADO_MIDI |

| AVS Audio Transmitters Memory Map | See Chapter 6 - AVS |
|-----------------------------------|---------------------|
| Address                           | Register            |
| 0xcf00 00c0                       | ATX1_CFG            |
| 0xcf00 00c4                       | ATX1_TSTAMP         |
| 0xcf00 00c8                       | ATX1_PHDR           |
| 0xcf00 00cc                       | ATX1_CIP0           |
| 0xcf00 00d0                       | ATX1_CIP1           |
| 0xcf00 00d4                       | ATX1_ADI_CFG        |
| 0xcf00 00d8                       | ATX1_ADI_MIDI       |
| 0xcf00 00dc                       | ATX2_CFG            |
| 0xcf00 00e0                       | ATX2_TSTAMP         |
| 0xcf00 00e4                       | ATX2_PHDR           |
| 0xcf00 00e8                       | ATX2_CIP0           |
| 0xcf00 00ec                       | ATX2_CIP1           |
| 0xcf00 00f0                       | ATX2_ADI_CFG        |
| 0xcf00 00f4                       | ATX2_ADI_MIDI       |

| AVS ITP (Internal Time Processor) Memory Map | See Chapter 6 - AVS |
|----------------------------------------------|---------------------|
| Address                                      | Register            |
| 0xcf00 01f8                                  | ITP_CFG             |

| AVS Audio Transmitter Format Handler Memory Map | See Chapter 6 - AVS         |
|-------------------------------------------------|-----------------------------|
| Address                                         | Register                    |
| 0xcf00 02c0                                     | FMT_TXDI1_CFG0              |
| 0xcf00 02c4                                     | FMT_TXDI1_CFG1              |
| 0xcf00 02c8                                     | FMT_TXDI1_CFG2              |
| 0xcf00 02cc                                     | FMT_TXDI1_CFG3              |
| 0xcf00 02d0                                     | FMT_TXDI1_CFG4              |
| 0xcf00 02d4                                     | FMT_TXDI1_CFG5              |
| 0xcf00 02d8                                     | FMT_TXDI1_CFG6              |
| 0xcf00 02dc                                     | FMT_TXDI1_CSBLOCK_BYTEn     |
| 0xcf00 02f4                                     | FMT_TXDI1_CHANNELn_CS/LABEL |
| 0xcf00 0340                                     | FMT_TXDI2_CFG0              |
| 0xcf00 0344                                     | FMT_TXDI2_CFG1              |
| 0xcf00 0348                                     | FMT_TXDI2_CFG2              |

| 0xcf00 034c | FMT_TXDI2_CFG3              |
|-------------|-----------------------------|
| 0xcf00 0350 | FMT_TXDI2_CFG4              |
| 0xcf00 0344 | FMT_TXDI2_CFG5              |
| 0xcf00 0348 | FMT_TXDI2_CFG6              |
| 0xcf00 034c | FMT_TXDI2_CSBLOCK_BYTEn     |
| 0xcf00 0374 | FMT_TXDI2_CHANNELn_CS/LABEL |

| AVS Audio Receiver Formap Hadler Memory Map | See Chapter 6 - AVS   |
|---------------------------------------------|-----------------------|
| Address                                     | Register              |
| 0xcf00 0200                                 | FORMAT_RXDI1_CFG      |
| 0xcf00 0204                                 | FORMAT_RXDI1_LABELn   |
| 0xcf00 0214                                 | FORMAT_RXDI1_CSBLOCKn |
| 0xcf00 0230                                 | FORMAT_RXDI2_CFG      |
| 0xcf00 0234                                 | FORMAT_RXDI2_LABELn   |
| 0xcf00 0244                                 | FORMAT_RXDI2_CSBLOCKn |

| AVS Interrupt Controller Memory Map | See Chapter 6 - AVS |
|-------------------------------------|---------------------|
| Address                             | Register            |
| 0xcf00 013c                         | AVSI_INT0_STATUS    |
| 0xcf00 0140                         | AVSI_INT0_MASK      |
| 0xcf00 0144                         | AVSI_INT1_STATUS    |
| 0xcf00 0148                         | AVSI_INT1_MASK      |

| AVS Media FIFO Memory Map | See Chapter 6 - AVS |
|---------------------------|---------------------|
| Address                   | Register            |
| 0xcf00 0184               | AVSFIFO_PART0_BASE  |
| 0xcf00 0188               | AVSFIFO_PART0_LIMIT |
| 0xcf00 018c               | AVSFIFO_PART0_FLUSH |
| 0xcf00 0190               | AVSFIFO_PART1_BASE  |
| 0xcf00 0194               | AVSFIFO_PART1_LIMIT |
| 0xcf00 0198               | AVSFIFO_PART1_FLUSH |
| 0xcf00 019c               | AVSFIFO_PART2_BASE  |
| 0xcf00 01a0               | AVSFIFO_PART2_LIMIT |
| 0xcf00 01a4               | AVSFIFO_PART2_FLUSH |
| 0xcf00 01a8               | AVSFIFO_PART3_BASE  |
| 0xcf00 01ac               | AVSFIFO_PART3_LIMIT |
| 0xcf00 01b0               | AVSFIFO_PART3_FLUSH |
| 0xcf00 01fc               | AVSFIFO_STAT        |

| AVS MIDI Interface Memory Map | See Chapter 6 - AVS |
|-------------------------------|---------------------|
| Address                       | Register            |
| 0xcf00 01e4                   | AVSMIDI_STAT        |
| 0xcf00 01e8                   | AVSMIDI_CTRL        |
| 0xcf00 01ec                   | AVSMIDI_RX          |
| 0xcf00 01f0                   | AVSMIDI_TX0         |
| 0xcf00 01f4                   | AVSMIDI_TX1         |

| AVS General Memory Map | See Chapter 6 - AVS |
|------------------------|---------------------|
| Address                | Register            |
| 0xc800 0000            | PDB_INT (AVC_CTRL)  |

| Appendix 2. Revision history |            |                                                                                                                                                                                                               |
|------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revision                     | Made By    | Notes                                                                                                                                                                                                         |
| 0.01                         | M. Lave    | Created based on DICE II                                                                                                                                                                                      |
| 0.03                         | M. Lave    | Corrected Power pin errors.                                                                                                                                                                                   |
| 0.04                         | M. Lave    | Final pinout                                                                                                                                                                                                  |
| 0.05                         | L.Sherbak  | Minor fixes in pinout                                                                                                                                                                                         |
| 0.06                         | L.Sherbak  | Updates in AVS, ADAT, CC, Router, adding InS & Mixer                                                                                                                                                          |
| 0.07                         | M. Lave    | Fixed DICE JR/Mini TCD22xx confusion, inserted clock controller<br>block diagram. Changed mixer description. Removed references<br>to two PLL, router instances. Removed irrelevant soldering<br>information. |
| 0.08                         | L. Sherbak | Minor text fixes to InS text                                                                                                                                                                                  |
| 0.09                         | L.Sherbak  | Adding SPI spec                                                                                                                                                                                               |
| 0.10                         | L.Sherbak  | Fixing GPIO5 select description in GPCSR                                                                                                                                                                      |
| 0.11                         | L.Sherbak  | Fixing ADAT RX register description                                                                                                                                                                           |
| 0.12                         | M.Lave     | Fixing minor discrepancies between register descriptions and register graphics                                                                                                                                |
| 0.13                         | L.Sherbak  | Fixing discrepancies in GPIO tables                                                                                                                                                                           |
| 0.14                         | L.Sherbak  | Adding Address Remap block description                                                                                                                                                                        |
|                              |            | Adding Register Summary                                                                                                                                                                                       |
| 0.15                         | L.Sherbak  | Fixing bugs in ARM memory controller description & InS                                                                                                                                                        |
| 0.16                         | M. Lave    | Added spec for Industrial versions.                                                                                                                                                                           |
| 1.00                         | M. Lave    | SPI figure updated, missing reference. Moved this table to Appendix.                                                                                                                                          |

## - U. • . .