
 
How to use it 

To test this mouse tutorial, a minimal configuration is required: 
 
- Use the Jumpers: 

PWR_J - depend of voltage source 
VREFF - present 
DBG     - present 
 

- run program 
- use the USB cable to connect the PC to USB of the Board. 
 
Mouse motion events are emulated with the following: 

Butt1 - Left movement of the mouse marker 
Butt2 - Right movement of the mouse marker 
Trimer Clock-wise - Up movement of the mouse marker 
Trimer Counter-clock-wise - Down movement of the mouse marker 

 
The first time the device is connected to the computer, Windows will load the driver for 

identified device. The USB Human Interface Device driver will be automatically loaded. 
 

Software implementation 
1 Device enumeration and configuration - When a USB device is attached, the host issues 

a reset signal. When the reset signal is released, the device enters the enumerated state. 
1.1 USB Reset - When a USB reset signal is detected on the bus, the DEV_STAT bit in 

the DEVINTS register is set and a USB interrupt is generated.  
1.2 Enumeration - The host performs a bus enumeration to identify the attached device 

and to assign a unique address to it. The device responds to the requests sent by the host during 
the enumeration process on its default pipe (endpoint 0). 

Enumeration steps: 
a. Get Device descriptor - The host sends a get device descriptor request. The device 

replies with its device descriptor to report its attributes (Device Class, maximum packet size for 
endpoint zero). 

b. Set address -A USB device uses the default address after reset until the host assigns a 
unique address using the set address request. The firmware writes the device address assigned by 
the host by SET_ADDRESS command (0xD0) user must be set bit7 to enable embedded function 
of USB engine.  

c. Get configuration - The host sends a get configuration. The device replies with its 
configuration descriptor, interface descriptor and endpoint descriptor. The configuration 
descriptor describes the number of interfaces provided by the configuration, the power source 
(Bus or Self powered) and the maximum power consumption of the USB device from the bus. 
The Interface descriptor describes the number of endpoints used by this interface. The Endpoint 
descriptor describes the transfer type supported and the bandwidth requirements. 

d. Set Configuration - The host assigns a configuration value to the device based on the 
configuration information. The device is then in configured state and can draw the amount of 



power described in the configuration descriptor. The device is now configured and ready to be 
used. 

For more information, see also the USB specification, chapter 9, “USB Device 
Framework”. 

2. USB Mouse descriptor - USB protocol can configure devices at start-up or when they 
are plugged-in at run time. These devices are divided into various device classes. Each device 
class defines the common behavior and protocols for devices that serve similar functions. 

2.1 Descriptor Structure - The HID class consists primarily of devices that are used by 
humans to control the operation of computer systems. Mice, like all pointing devices, are typical 
examples of HID class devices. These segments are called Descriptors and are divided into 
several types: Device Descriptor, Configuration Descriptor, Interface Descriptor, HID Descriptor, 
Endpoint Descriptor, String Descriptor and Report Descriptor. All Descriptors are mandatory in 
LPC_HID.C. 

2.2 Device Descriptors - At the top level, a descriptor includes two tables of information 
referred to as the Device Descriptor and the String Descriptor. A standard USB Device 
Descriptor specifies the Product ID and other information’s about the device. For example, 
Device Descriptor fields primarily include: Class, Subclass, Vendor, Product, Version. The 
following code corresponds to USB Mouse Descriptors applied to a two-buttons, two- axis opto-
mechanical mouse. 

const char devDescriptor[] = 
{ 
  /* Device descriptor */ 
  0x12,                 // bLength 
  0x01,                 // bDescriptorType 
  0x10,                 // bcdUSBL 
  0x01,                 // 
  0x00,                 // bDeviceClass: 
  0x00,                 // bDeviceSubclass: 
  0x00,                 // bDeviceProtocol: 
  MAX_CTRL_EP_PK_SIZE,  // bMaxPacketSize0 
  0xFF,                 // idVendorL 
  0xFF,                 // 
  0x01,                 // idProductL 
  0x00,                 // 
  0x00,                 // bcdDeviceL 
  0x00,                 // 
  0x01,                 // iManufacturer // Index of string descriptor describing manufacturer  
  0x02,                 // iProduct // Index of string descriptor describing produt 
  0x00,                 // SerialNumber 
  0x01                  // bNumConfigs 
}; 
2.3 Configuration Descriptor - This Descriptor divided into several segments includes 

Interface Descriptor, HID descriptor and Endpoint Descriptor: 
const char cfgDescriptor[] = 
{ 
  /* ============== CONFIGURATION 1 =========== */ 
  /* Configuration 1 descriptor */ 
  0x09,   // CbLength 
  0x02,   // CbDescriptorType 
  0x22,   // CwTotalLength 2 EP + Control 
  0x00, 
  0x01,   // CbNumInterfaces 



  0x01,   // CbConfigurationValue 
  0x00,   // CiConfiguration 
  0xA0,   // CbmAttributes Bus powered + Remote Wakeup 
  0x32,   // CMaxPower: 100mA 
 
  /* Mouse Interface Descriptor Requirement */ 
  0x09,   // bLength 
  0x04,   // bDescriptorType 
  0x00,   // bInterfaceNumber 
  0x00,   // bAlternateSetting 
  0x01,   // bNumEndpoints 
  0x03,   // bInterfaceClass: HID code 
  0x01,   // bInterfaceSubclass 
  0x02,   // bInterfaceProtocol: Mouse 
  0x00,   // iInterface 
 
  /* HID Descriptor */ 
  0x09,   // bLength 
  0x21,   // bDescriptor type: HID Descriptor Type 
  0x00,   // bcdHID 
  0x01, 
  0x00,   // bCountry Code 
  0x01,   // bNumDescriptors 
  0x22,   // bDescriptorType 
  sizeof(mouseDescriptor), // wItemLength 
  0x00, 
 
  /* Endpoint 1 descriptor */ 
  0x07,         // bLength 
  0x05,         // bDescriptorType 
  ((EP_REP&1)<<7) + (EP_REP>>1),// bEndpointAddress and direction, Endpoint Logic address!! 
  0x03,         // bmAttributes      INT 
  0x04,         // wMaxPacketSize: 3 bytes (button, x, y) 
  0x00, 
  0x0A,         // polling bInterval 
}; 
2.4 Report Descriptor - The Report Descriptor is different from the other descriptors in 

that it is not simply a table of values. It is made up of items that provide information about the 
data provided by each control in a device. Input items are used to tell the host what type of data 
will be returned as input to the host for interpretation, whether the data is absolute or relative and 
other pertinent information. By looking at a Report Descriptor alone, an application knows how 
to handle incoming data, as well as what the data could be used for. The following descriptor 
describes a two-buttons, two-axis USB Mouse. 

2.5 String Descriptor - The previous descriptors can contain references to string 
Descriptors that provide displayable 
information describing a descriptor in human-readable form. The inclusion of string Descriptors 
is optional. String Descriptors use UNICODE encoding. In the following String Descriptor 
example, all fields can be modified to enter your own manufacturer index, product index and 
serial number index. 

const char LanguagesStr[] = 
{ 
  /* String descriptor 0*/ 
  0x04, // bLength 



  0x03, // bDescriptorType 
  0x09,0x04 // Language English 
}; 
const char ManufacturerStr[] = 
{ 
  /* String descriptor 1*/ 
  60,   // bLength 
  0x03, // bDescriptorType 
  'P',0,'h',0,'i',0,'l',0,'i',0,'p',0,' ',0,'S',0,'e',0,'m',0,'i',0,'c',0,'o',0,'n',0,'d',0, 'u',0,'c',0,'t',0,'o',0,'r',0,'s',0,' 
',0,'L',0,'P',0,'C',0,'2',0,'1',0,'4',0,'8',0, 
}; 
const char ProductStr[] = 
{ 
  /* String descriptor 2*/ 
  98,   // bLength 
  0x03, // bDescriptorType 
  'I',0,'A',0,'R',0,' ',0,'E',0,'m',0,'b',0,'e',0,'d',0,'d',0,'e',0,'d',0,' ',0,'W',0,'o',0,'r',0,'k',0,'b',0,'e',0,'n',0,'c',0,'h',0,'  
',0,'A',0,'R',0,'M',0,' ',0,'-',0,' ',0,'H',0,'I',0,'D',0,' ',0,'D',0,'e',0,'v',0,'i',0,'c',0,'e',0,' 
',0,'e',0,'x',0,'a',0,'m',0,'p',0,'l',0,'e',0,'!',0 
}; 

3 Data transfer - The USB Mouse should be able to receive data on endpoint 0 and send data 
through endpoint 0 and endpoint 1. All the decoding / encoding operations on the USB frames are 
handled by firmware. The firmware must determine the endpoint number which has sent or 
received data by reading the ENDPINTS register.. The transfer types supported by this 
application are: 

3.1 Control transfer with endpoint 0 (SETUP and IN (Physic Endpoint 1) and OUT 
(Physic Endpoint 0) tokens) - All control transfers are supported by endpoint 0. There can be 
control transfers with data phase and control transfers without data phase. As a consequence, a 
control transfer may have three transaction stages: a Setup stage, a Data stage (not for no-data 
control transfer) and a Status stage. 

3.2. Interrupt transfer with endpoint 1 (Physic Endpoint 3) IN token - After the 
enumeration phase, the host continuously issues IN tokens through the endpoint 1 interrupt pipe. 
As the mouse has some data to return to the host, it returns three bytes of data (for a 2-axis 
mouse). These bytes are in format used for the boot report format for USB Mouse so that the data 
can be correctly interpreted by the BIOS. 

When the mouse has some data to return to the host through the interrupt pipe, it must 
write this data in the Transmute buffer and enable endpoint 1 in transmission by setting the 
Buffer Valid command (0xFA). The host polls endpoint 1 with a polling interval given in the 
endpoint descriptor by sending an IN token. The hardware interface replies with STALL, NAK or 
data. 

4. Mouse handling routines - According to the LPC2146 microcontroller, all USB events 
are managed by interrupt. When an USB event occurs, a flag of the Device Interrupt State 
Register (DEVINTS) is set by hardware. Then, the firmware determines the interrupt origin by 
reading the DEVINTS register, and clears the interrupt flag. The HID_CallBack() routine reads 
the software register (USB_IntrStaus) to determine the USB interrupt source and jumps to the 
corresponding interrupt routine.  

The Mouse handling routine is divided into two parts executed by the microcontroller.  
A first part is executing in forward and implements control endpoint management.  
The second part is executing in background and implements the buttons and data 

transitions to host by the endpoint 1. 


