
1

Unibrain

Fire-i X™ SDK
documentation
Programmer’s Manual

2

Table of Contents
TABLE OF CONTENTS ... 2
INTRODUCTION ... 4
TECHNICAL DETAILS ... 5

ARCHITECTURE .. 5
PERFORMANCE ... 5
INSTALLATION ... 6
DESIGN ... 6

USAGE ... 7
SCENARIO I – SIMPLE VIDEO VIEWER 7
SCENARIO II – CONTROLLING CAMERA FEATURES 13
SCENARIO III – MANIPULATING CAPTURED FRAMES............ 16
SCENARIO IV – WORKING WITH A ROI (A.K.A. FORMAT 7) . 18

REFERENCE ... 20
FIREIXPREVIEWCTRL .. 20

CreateManager method 20
AttachCamera method 20
LeftClick event .. 21
RightClick event .. 21

FIREIGUID... 22
Byte property ... 22
ToString method... 22
FromString method .. 22

FIREIXMANAGER ... 24
GetNumOfConnectedCameras method 24
SelectCamera method .. 24
GetCameraFromIndex method 25
GetCameraFromGUID method 26
UseDirectShow method 27

FIREIXREGISTER .. 28
Bit property .. 28
Field property ... 28
FieldLen property ... 29
SwapEndian method .. 29

FIREIXTRIGGER ... 30
AbsControl property ... 30
Enabled property .. 30
Polarity property .. 31
Source property .. 31
Value property ... 32
Mode property ... 32
IsSupported property ... 33
HasAbsolute property .. 33
CanRead property .. 33
HasOnOff property ... 34
HasPolarity property .. 34
CanReadRaw property 34
Parameter property ... 35
IsSourceSupported method 35
IsModeSupported method 35
Reload method ... 36
Save method .. 36

FIREIXSTREAMFORMAT .. 37
PixelFormatString property 37
PixelFormat property ... 37
Resolution property .. 38

IsUserDefined property 39
IsCurrent property .. 39
Description property ... 39
Identifier property .. 40
Fixed property .. 40
UserDefined property ... 41
RawModeOverride property 41
Width property ... 42
Height property .. 42
Save method ... 43
Reload method ... 43

FIREIXFIXEDSTREAMFORMAT... 44
ResolutionString property................................... 44
FrameRateString property 44
FrameRate property ... 44
Width property ... 45
Height property .. 45
PacketSize property .. 46
PacketsPerFrame property 46
Description property ... 47
IsFrameRateSupported method 47
Save method ... 48
Reload method ... 48

FIREIXUSERDEFINEDSTREAMFORMAT 49
Left property ... 49
Right property .. 49
Top property ... 49
Bottom property ... 50
Width property ... 50
Height property .. 51
MaxWidth property .. 51
MaxHeight property ... 51
HorizontalPositionUnit property......................... 52
VerticalPositionUnit property 52
WidthUnit property .. 52
HeightUnit property ... 53
MaxPacketSize property 53
PacketSizeUnit property 53
PacketSize property .. 54
Description property ... 54
SetROI method ... 55
IsValid method.. 55
Save method ... 56
Reload method ... 56

ENUMFIREIXSTREAMFORMATS 57
Reset method ... 57
Next method ... 57

FIREIXFEATURE ... 58
Name property ... 58
IsSupported property .. 58
HasAbsolute property ... 59
HasOnePush property ... 59
CanRead property ... 60
HasOnOff property ... 60
HasAuto property ... 60

3

HasManual property .. 61
MinValue property ... 61
MaxValue property .. 61
Absolute property... 62
Enabled property .. 62
AutoMode property.. 63
Value property ... 63
HasSoftAbsolute property 64
SoftAbsolute property .. 64
ValueString property .. 64
MinValueString property 65
MaxValueString property 65
Unit property .. 66
AbsoluteValue property 66
MinAbsoluteValue property 67
MaxAbsoluteValue property 67
Reload method ... 68
OnePush method .. 68

ENUMFIREIXFEATURES ... 69
Reset method ... 69
Next method .. 69

FIREIXFRAME ... 70
GetPixel method ... 70
SetPixel method ... 70
GetRGB method ... 71
SetRGB method .. 71
SaveToFile method ... 72
FlipHorizontally method 72
FlipVertically method ... 72
Negative method.. 73
ToPicture method ... 73
DrawLine method ... 73
DrawString method .. 74
DrawRectangle method 74
DrawLineRGB method .. 75
DrawStringRGB method 75
DrawRectangleRGB method............................... 76

FIREIXCAMERA ... 77
GUID property .. 77
Vendor property ... 77
Model property .. 78
Serial property .. 78
FriendlyName property 78

StreamFormat property 79
Trigger property ... 79
AutoExposure property 79
Shutter property ... 80
Gain property ... 80
Iris property .. 80
ColorUB property .. 81
ColorVR property .. 81
Hue property .. 81
Saturation property .. 82
Focus property .. 82
Zoom property .. 82
Brightness property .. 83
Sharpness property ... 83
Gamma property .. 83
Feature property .. 84
RawConversion property 84
Register property .. 85
CommandRegister property 85
Icon property .. 86
NumOfMemoryPresets property 86
SelectStreamFormat method 87
AttachPreviewCtrl method 88
Run method .. 89
Stop method ... 89
IsRunning method .. 90
GetStreamFormatsEnumerator method 90
DisplayProperties method 90
IsFeatureSupported method 91
GetFeaturesEnumerator method 92
GetCurrentResolution method............................ 93
GetCameraPhoto method 93
SaveToMemory method 93
LoadFromMemory method 94
SaveToXML method .. 94
LoadFromXML method 95
RetrieveStreamFormat method 95
RetrieveStreamFormatFromIdentifier method ... 96
FrameReceived event ... 96
DeviceRemoved event .. 96

4

Introduction
The Fire-iX SDK is the latest addition to ubCore™ and the Unibrain APIs. It provides an entirely new and
comprehensive way to interact with multiple IEEE1394 IIDC compatible cameras, including video and feature
manipulation, direct register access, etc. Since it is based on Microsoft™ ActiveX™ technology, it is language
and development environment agnostic, integrating with all the languages with ActiveX and COM support.

The Fire-iX SDK can operate in two modes; ubCore and DirectShow. The SDK feature set is almost identical
and transparent under both modes of operation. It does not require familiarity with either of the two SDKs,
so it is an ideal fit in situations where the programmer does not need/want to delve into IEEE1394 or IIDC
details in order to perform simple camera tasks, such as setting a few features and capturing a few frames.
This is only on the surface though; the more powerful features are still there for anyone to use, they are just
not required for the simpler tasks.

5

Technical Details

Architecture
The following illustration shows how the various Unibrain APIs interact with each other, and how they are
abstracted from the programmer by using the Fire-iX SDK.

Performance
The performance of the program at runtime depends on which underlying API is selected (Firei.dll,
DirectShow/ubCore or DirectShow/MS Stack). There is no specific set of circumstances where selecting one
API over another will produce better results. The ease of changing between all three, which requires minimal
changes1

1 One line of code needed to choose between Firei.dll and DirectShow, no code difference to choose between
DirectShow/ubCore and MS Stack (ubSwitch is used in the latter case).

, allows the programmer to test through all three different cases and compare the performance.
Please keep in mind however, the performance using the MS Stack DirectShow drivers will be affected by the
MS 1394.sys driver, which is known to have various issues with popular operating systems (Windows XP
Service Pack 2 and Windows Vista included).

Firei DLL fiprop.ax
Camera Control Filter

fiyuv.ax
YUV-to-RGB Transform Filter

User Mode
DirectShow Engine

User Mode

Kernel Mode
MS Stream Class Driver

ubdcam.sys
WDM IIDC 1394 Camera Driver

Based on ubCore

fidcam.sys
WDM IIDC 1394 Camera Driver

Based on MS Stack

MS 1394 OHCI
Class Driver

MS 1394 OHCI
Miniport

ubCore 1394 OHCI
Class Driver

ubCore 1394 OHCI
Miniport

FiCommon.cpp functions

CFiCamera class

Fire-iX SDK

Fire-iX SDK 3rd Party Applications

Microsoft
Unibrain
Fire-iX
3rd Party

6

Installation
No specific installation of Fire-iX SDK is necessary. It is included with both ubCore Setup and Firei MS Stack
Setup. The FireiX.dll module (which contains the full functionality of Firei-X SDK) is copied and registered
with the system automatically during these installations. It is therefore necessary to have either ubCore or
Fire-i MS Stack installed and in working order for Fire-iX SDK to operate.

Design
The Fire-iX SDK is designed as an ActiveX control, bundled with a few COM objects that help control the
action, each with its own interface, properties and methods. The programmer either begins with the control
(for use on a GUI application) and then uses it to create the other COM objects, or directly constructs the
COM objects (for use on a command-line based application), omitting the ActiveX control altogether. The
following diagram attempts to depict how the various COM objects interact with the ActiveX control and
with each other:

FireiXPreviewCtrl
(ActiveX control)

FireiXManager FireiXCamera

FireiXStreamFormat

FireiXUserDefinedStreamFormat FireiXFixedStreamFormat

FireiXFeature

FireiXTrigger

FireiXFrame EnumFireiXStreamFormats

EnumFireiXFeatures

FireiGUID FireiXRegister

Helpers

7

Usage

Scenario I – Simple video viewer
Let’s start Visual Basic 6.0. Create a new empty project, of the “Standard EXE” variety:

This should produce a new empty project, with a single
form (empty as well). Now, right-click on the Components
bar and select “Components…”:

8

This will bring up the
components selection
dialog of VB. In the
“Controls” tab, select
the “FireiX 1.0 Type
Library” and click on OK:

This will add the Fire-iX
FireiXPreviewCtrl object
selector, which can be
used for video display:

Click on the “ub” tool, and create a window for video display on the empty form:

9

VB automatically sets the name of the object to be “FireiXPreviewCtrl1”, which for our purpose will do
nicely.

Now it’s time to edit the form code. First, we need two global variables, so we add them at the very top:

Dim Manager As FireiXManager
Dim Camera As FireiXCamera

The FireiXManager object will be used to construct our camera object. The FireiXCamera object
exposes all the features that our camera supports. We need to initialize our Manager object before using it.
This can be done either by calling:

Set Manager = New FireiXManager

or by using the factory contained with the ActiveX control, FireiXPreviewCtrl, like:

Set Manager = FireiXPreviewCtrl1.CreateManager

The two methods of constructing a FireiXManager object will produce the exact same result, so choosing
between the two is a matter of personal preference.

We override the Form_Load event to place our initialization code:

Private Sub Form_Load()
 Set Manager = FireiXPreviewCtrl1.CreateManager
End Sub

Now we need to construct our camera object. FireiXManager provides two methods for doing just that;
GetCameraFromIndex and GetCameraFromGUID. The former is useful when a) we have only one
camera connected to our system or b) we want to programmatically iterate between all the connected
cameras, and select the one we want2

Set Camera = Manager.GetCameraFromIndex(0)

. To simply construct the first (or only) camera connected to our
system, a call

will suffice. To iterate between all cameras, we can use GetNumOfConnectedCameras and proceed with a
regular for-loop:

Dim NumOfConnectedCameras As Integer
NumOfConnectedCameras = Manager.GetNumOfConnectedCameras
For i = 0 To NumOfConnectedCameras - 1
Set Camera = Manager.GetCameraFromIndex(i)
If Camera.Vendor = "Unibrain" Then Exit For
Next
If Camera.Vendor <> "Unibrain" Then
Unload Me
Exit Sub

2 Please keep in mind that the order in which the cameras will be indexed is non-deterministic. It can be considered to
be random even on the same system with the exact same configuration between reboots.

10

End If

The above code fragment will iterate through the connected cameras, and stop at the first camera that is
made by Unibrain. With the additional check at the end, it will effectively select the first available Unibrain
camera.

If the camera GUID (unique identifier) is known beforehand, we can use the GetCameraFromGUID method
of FireiXManager. We construct a FireiGUID object, initialize it with our known GUID, and then
construct the camera with GetCameraFromGUID:

Dim GUID As FireiGUID
Set GUID = New FireiGUID
GUID.FromString "08:14:43:61:02:63:0A:D2"
Set Camera = Manager.GetCameraFromGUID(GUID)
Set GUID = Nothing

Additionally, FireiXManager allows choosing a camera using a GUI through the SelectCamera method.
This method will present a camera selection dialog, and if the user selects one, it will return the camera’s
GUID:

For simplicity, we will follow this path in this example. So, after our FireiXManager construction, we add:

Dim GUID As FireiGUID
If Manager.SelectCamera(GUID) = False Then
Unload Me
Exit Sub
End If

11

If the user didn’t select a camera, the SelectCamera call will return False, in which case we exit the
application. The FireiGUID object is constructed inside the SelectCamera method, and it is then used to
create the camera object:

Set Camera = Manager.GetCameraFromGUID(GUID)
Set GUID = Nothing

Next, we need to connect the Camera object to our FireiXPreviewCtrl object. This is done with a single
call, either:

FireiXPreviewCtrl1.AttachCamera Camera

Or

Camera.AttachPreviewCtrl FireiXPreviewCtrl1

Again, this will produce the exact same result, it is a matter of programming preference. Effectively it means
that any video this camera will produce will end up being shown in this preview control.

Now we need to select which streaming format our camera will run at. This can be done programmatically
by either accessing the currently selected streaming mode (through the StreamFormat property of
FireiXCamera), or by accessing the supported streaming formats enumerator, through the
GetStreamFormatsEnumerator method. For the purposes of our simple example though, we will go
down a different path, the GUI-driven one.

We add a call to SelectStreamFormat:

Camera.SelectStreamFormat

This will allow selecting and setting a streaming format through the API provided GUI:

12

The available choice will of course vary depending on which camera this is called upon; only supported
formats will be presented. Also, the above selection dialog shown is the one provided by the Firei.dll API.
Using the DirectShow API will show a format selection dialog similar to:

Now that the streaming format is selected, the only part remaining is actually starting the camera. This
requires a simple call:

Camera.Run

Some cleanup is also necessary though, according to best programming practices. Before exiting, we’ll stop
the camera and destroy our two constructed objects. This can be done at the Form_Unload event:

Private Sub Form_Unload(Cancel As Integer)
If Not Camera Is Nothing Then Camera.Stop
Set Camera = Nothing
Set Manager = Nothing
End Sub

Running the program will show live video on our control on the form, after selecting the desired camera and
streaming format. If only one camera is connected on the system, it is selected without presenting a
selection dialog at all (and the SelectCamera method returns True immediately).

A nice touch to our program: Set the caption and the form icon to match our selected camera:

13

 Me.Caption = Camera.FriendlyName
 Me.Icon = Camera.Icon

This will change the form caption to look like:

By default, the Fire-iX SDK will use the Firei.dll API internally. If for some reason DirectShow is preferred, it
can be arranged with a single call, placed immediately after the FireiXManager object construction:

Manager.UseDirectShow

This call can be used only once in our program. Switching between underlying APIs on-the-fly at runtime is
not supported. No other change in our code is necessary, so simply commenting in and out this line will
switch between the two underlying APIs for testing purposes. With DirectShow enabled and ubCore
installed, by using ubSwitch (the ubCore tool) we can further toggle between ubCore DirectShow support
and MS-Stack DirectShow support.

Scenario II – Controlling camera features
Now suppose we need to change some camera features, like brightness or shutter speed. Again, there are
more than one ways of achieving that. Each feature for example can be accessed individually through its
FireiXFeature derived object; we can access that object by a simple direct call to the corresponding
camera property, like:

Dim Feature As FireiXFeature
Set Feature = Camera.Shutter

Another way to access a feature would be by name, using the Feature property of FireiXCamera:

Dim Feature As FireiXFeature
Set Feature = Camera.Feature("Shutter")

Suppose we want to change the shutter value to its maximum supported. Now that we have the Shutter
feature object, this can be done by:

If Feature.IsSupported Then
Feature.AutoMode = False
Feature.Value = Feature.MaxValue
End If
Set Feature = Nothing

Note that the above code fragment checks whether the camera supports the feature before accessing any of
its properties. Failure to do so would produce an error if the feature is not supported. Also, if the Shutter
feature is set to Auto, we’ll need to turn that off before setting the value, or an error will occur as well.

Yet another way to access the camera features is through the EnumFireiXFeatures enumerator provided
by FireiXCamera. This allows iterating through all the supported camera features, like:

Dim Feature As FireiXFeature

14

Dim FeaturesEnum As EnumFireiXFeatures
Set FeaturesEnum = Camera.GetFeaturesEnumerator(True, fgAll)
Do While FeaturesEnum.Next(Feature)
If Feature.HasAuto Then Feature.AutoMode = True
Loop
Set FeaturesEnum = Nothing
Set Feature = Nothing

The above example iterates through all the supported features (for additional information on
GetFeaturesEnumerator, see the reference section of this manual) of the camera, checks whether they
support Auto setting and if they do, sets it.

A GUI-driven way to manipulate the camera features is also provided. A call to the DisplayProperties
method of FireiXCamera will suffice:

Camera.DisplayProperties

This brings up the camera properties sheet:

NOTE: The call to DisplayProperties returns immediately after opening the dialog. Therefore it is
possible to manipulate the camera features while observing the results in the preview window. There is no
additional functionality that can be accessed through the GUI feature manipulator; everything that can be
done through the GUI, can also be done programmatically. For example, the Shutter feature discussed above
resides in the “Exposure” tab. The “AutoMode” setting is the one marked “at” with a checkbox. The slider
control corresponds to the value setting.

For the purposes of our example, we’ll add a listbox to our Scenario I sample application, containing the
names of all the features that are supported by the camera, and a button that brings up the camera
properties.

15

Firstly, we enlarge our form, to make way for the new controls:

Then, we add the two controls. It is also a good idea to change their corresponding variable names to
FeatureList and Properties respectively:

The best time to populate the listbox would be immediately after we constructed our FireiXCamera
object. As discussed above, iterating through the supported features is done with the
EnumFireiXFeatures enumerator:

Dim Feature As FireiXFeature
Dim FeaturesEnum As EnumFireiXFeatures
Set FeaturesEnum = Camera.GetFeaturesEnumerator(True, fgAll)

16

Do While FeaturesEnum.Next(Feature) = True
FeaturesList.AddItem Feature.Name
Loop
Set FeaturesEnum = Nothing
Set Feature = Nothing

This takes care of the listbox population. Now for the properties button, we override the Properties_Click
event:

Private Sub Properties_Click()
If Not Camera Is Nothing Then Camera.DisplayProperties
End Sub

Running the program produces the desired result:

Most cameras will reset to their default feature values if powered off. The SDK provides two ways to save
and restore them; to/from an XML file through the LoadFromXML and SaveToXML methods of
FireiXCamera and, if the camera supports memory presets, through the SaveToMemory and
LoadFromMemory methods. Note that the XML formatting of the file is compatible with the other tools of
ubCore. So for instance, the programmer can use Fire-i Application or FireIIDC to select and then save a
feature set, and then load it programmatically in a Fire-iX program.

Scenario III – Manipulating captured frames
Now that we have our simple viewer program up and running, watching the live video preview, let’s take it a
step further: we can manipulate the camera frames as they arrive.

In order to do that, we need to override the FrameReceived event of FireiXCamera. It is important to
declare our global camera variable with the “WithEvents” designation if event handling is required, so we
change the Camera declaration to:

Dim WithEvents Camera As FireiXCamera

17

Now we can safely override the FrameReceived event:

Private Sub Camera_FrameReceived(ByVal Frame As FireiXLibCtl.IFireiXFrame)
End Sub

As shown above, the event provides a FireiXFrame object for our perusal. Through this object we have
absolute access to the frame buffer, pixel by pixel, with the GetPixel/SetPixel and GetRGB/SetRGB
methods. The only difference between the two sets is the way the color value of the pixel is passed; in the
former it is passed as a Long value representing the color, in the latter it is passed with R, G and B values
separately. The same designation holds true for the other methods of FireiXFrame; whenever “RGB” is in
their name, it means separate R, G and B values.

Besides direct per-pixel manipulation, a few additional methods are implemented in FireiXFrame.
Suppose we’d like to draw a blue rectangular box, along the edges of the frame, and a big red X inside it. We
can use the DrawRectangleRGB and DrawLineRGB methods to achieve that:

Dim x1, y1, x2, y2 As Integer
x1 = 10
y1 = 10
x2 = Camera.StreamFormat.Width - x1
y2 = Camera.StreamFormat.Height - y1
Frame.DrawLineRGB x1, y1, x2, y2, 255, 0, 0
Frame.DrawLineRGB x2, y1, x1, y2, 255, 0, 0
Frame.DrawRectangleRGB x1, y1, x2 - x1, y2 - y1, 0, 0, 255, False

Note the way x2 and y2 are calculated: we use the Width and Height properties of the selected streaming
format to ascertain the edges of our frame. The “False” in the last parameter of DrawRectangleRGB,
means “empty” as opposed to “filled” box.

Now suppose we’d like to write some text on the frame as well. We can use the DrawStringRGB method
for this:

Frame.DrawStringRGB "Hello World", 0, 0, Me.Font, 100, 100, 0

A yellowish color is chosen this time, using the default font of our form (Me.Font), placed at the top left
corner of the frame.

This is what the outcome looks like:

18

NOTE: The aliasing of the drawn lines and text is due to the enlargement of the picture in order for it to fit in
our selected preview control. The actual streaming format that was selected for the above screenshot was
160×120, which is less than the size of the window. Similarly, if the format was larger than the screen, the
image would have been shrunk to fit accordingly. Also, to nitpick, there is no test made whether the image is
actually larger than 20×20, as would be required for the box and lines to fit. In case the image was smaller
than 20×20, an error would occur trying to call DrawLineRGB with positions out-of-bounds.

Additionally, we can save the frame at any time to a Windows BMP compatible file on disk. To do that,
simply call the SaveToFile method of FireiXFrame:

Frame.SaveToFile "c:\1.bmp"

The placement of the SaveToFile call is important. If it is placed before any changes on the frame, the file
will contain the frame as it is, whereas if it is placed after any changes, it will contain them too. The resulting
file will have the Width × Height size as sent by the camera, not as shown on the screen. So for instance, in
this case it would be 160×120, regardless of the size of the window showing the video.

NOTE: Please exercise caution when using the SaveToFile method. If a high frame rate streaming format is
selected, especially with a high resolution, the overhead on the system saving individual uncompressed BMP
files in quick succession can be extremely taxing. For example, a 1280×960×24bit image has a size on the disk
of roughly 3.52MB. At 30 frames per second, the throughput required would be above 100MB per second,
which is prohibitive in most real-world cases. In such instances it is preferable not to save every frame
captured but every n-th frame to reduce overhead – or simply use a lower frame rate.

Scenario IV – Working with a ROI (a.k.a. Format 7)
Some cameras support capturing a specific ROI (Region Of Interest), through what is defined in the IIDC
specification as “Format 7” or “Partial Image Format”. The Fire-iX SDK has full support for those modes of
operation, by using a derivative of the FireiXStreamFormat object, called
FireiXUserDefinedStreamFormat (as opposed to the FireiXFixedStreamFormat).

The SelectFormat method discussed in Scenario I allows such selection, but this time we’ll go a different
way, and manipulate the streaming format programmatically.

First, we need to iterate through all available streaming formats of the camera. We do that through the
EnumFireiXStreamFormats enumerator, in a similar way to iterating through the camera features:

Dim StreamFormat As FireiXStreamFormat
Dim StreamFormats As EnumFireiXStreamFormats
Set StreamFormats = Camera.GetStreamFormatsEnumerator
Do While StreamFormats.Next(StreamFormat) = True
If StreamFormat.IsUserDefined = True Then Exit Do
Loop
If StreamFormat Is Nothing Then
Unload Me
Exit Sub
End If
Dim w, h As Integer
w = StreamFormat.UserDefined.MaxWidth

19

h = StreamFormat.UserDefined.MaxHeight
StreamFormat.UserDefined.SetROI 0, 0, w, h
Camera.StreamFormat = StreamFormat
Set StreamFormat = Nothing

In the above code fragment, an EnumFireiXStreamFormats enumerator is requested from the camera,
and the first User Defined stream format is selected through iteration. If the camera doesn’t support any
User Defined formats, at the end of the iteration the StreamFormat variable will be Nothing – in which
case we exit the program. Since we ascertained that StreamFormat in fact is valid, and is of User Defined
type, we can use the UserDefined property of FireiXStreamFormat to access the User Defined
properties of the format. In this case we assign in the w and h integer variables the maximum allowed width
and height of the format respectively and then set it as our selection, using the SetROI method. Since no
complex values are set we don’t check the return state of SetROI – if an invalid rectangle was specified as
the User Defined size the SetROI method would return False. Finally, we set the now updated
StreamFormat to the Camera, via its StreamFormat property – we could also have done this through the
Save method of the FireiXStreamFormat itself.

In fact, the UserDefined property of FireiXStreamFormat returns a variable of type
FireiXUserDefinedStreamFormat. In case the FireiXStreamFormat is Fixed instead of User Defined,
the corresponding property is called Fixed accordingly and returns a variable of type
FireiXFixedStreamFormat. Even though a Fixed format carries that name, it contains a single variable
property – the frame rate (it can be set using its FrameRate property).

All formats, whether Fixed or User Defined, have two attributes in common: their FireiXResolution and
their FireiXPixelFormat. Both of these attributes are enumerated values – in the case of
FireiXResolution, the name is sort of a misnomer; if the stream format is User Defined it is actually
valued from resVariable to resVariable_7 which are roughly equivalent to the Format_7 Modes of the
camera (unlike for Fixed formats, which are valued from res160x120 to res1600x1200). This pair of values is
unique to a stream format, so it is sufficient to define the format.

Since the above situation is not always easy to work with, another way to identify a streaming format exists:
a unique identifier, which can be stored in a Long value. This is accessed through the Identifier property
of FireiXStreamFormat. This identifier can be used to retrieve this specific stream format from the
camera, using its RetrieveStreamFormatFromIdentifier method. Keep in mind though that any user
selected settings are not stored – it is the stream format that is retrieved, not its contents.

20

Reference
In the following reference of all interfaces implemented, “Long” is defined as a 32-bit signed integer value,
and “Integer” is defined as a 16-bit signed integer value. “Byte” on the other hand is an 8-bit unsigned
integer value. “Single” is a single-precision floating-point number.

FireiXPreviewCtrl
The FireiXPreviewCtrl is an ActiveX control, which purpose is to show the video output of the underlying API
at work. It can be resized at will while running, and can be attached on any form type, on any language or
programming environment that supports ActiveX.

Additionally, it has the following methods and events implemented in its interface:

CreateManager method

Prototype
FireiXManager CreateManager()

Comments
This method is a simple factory for a FireiXManager object instance. The created object is not dependent
on the lifecycle of the FireiXPreviewCtrl, it can be considered valid even when the control has been
destroyed.

Note that the FireiXManager object can be directly created in any language that supports COM object
creation. The CreateManager method is useful for languages that do not, or make it very difficult to do so.

Visual Basic 6.0 syntax
Dim Manager As FireiXManager
Set Manager = FireiXPreviewCtrl1.CreateManager

C++ syntax
IFireiXManager* pIManager;
HRESULT hr = pIPreviewCtrl1->CreateManager(&pIManager);

AttachCamera method

Prototype
AttachCamera(IN FireiXCamera Camera)

Comments
With this method, an already created FireiXCamera object is attached to this FireiXPreviewCtrl. This
“attachment” means in plain words, that whenever from now on the camera sends video, it will be displayed
on this control.

AttachCamera can be called many times during the lifecycle of the FireiXPreviewCtrl, each time the
existing attached camera (if any) is replaced with the new one. It is very conceivable that many cameras are
in succession attached to a single control, if desired by the programmer.

21

Visual Basic 6.0 syntax
FireiXPreviewCtrl1.AttachCamera Camera

C++ syntax
HRESULT hr = pIPreviewCtrl1->AttachCamera(pICamera);

LeftClick event

Prototype
LeftClick(IN Long X, IN Long Y)

Comments
This event is fired whenever a user clicks the left mouse button on the FireiXPreviewCtrl.

The X and Y parameters will contain the coordinates the click happened on. These coordinates are expressed
relative to the FireiXPreviewCtrl.

Syntax
Since event handlers are usually created automatically by the underlying programming environment, it
would not be useful to provide sample code here.

RightClick event

Prototype
RightClick(IN Long X, IN Long Y)

Comments
This event is fired whenever a user clicks the right mouse button on the FireiXPreviewCtrl.

The X and Y parameters will contain the coordinates the click happened on. These coordinates are expressed
relative to the FireiXPreviewCtrl.

Syntax
Since event handlers are usually created automatically by the underlying programming environment, it
would not be useful to provide sample code here.

22

FireiGUID
The FireiGUID object is a helper object, making the camera GUID easier to manipulate, store and retrieve.

It can be constructed directly, or through the SelectCamera method of FireiXManager. It supports a
number of properties and methods through its interface:

Byte property

Prototype
Byte Byte(IN Byte Index)

Comments
The Byte property is a read/write property, enabling the direct manipulation of any of the 8 bytes in a
FireiGUID object.

Visual Basic 6.0 syntax
Dim Byte0 As Byte
Byte0 = GUID.Byte(0) 'get
GUID.Byte(0) = Byte0 'set

C++ syntax
BYTE Value;
HRESULT hr = pIGUID->get_Byte(0, &Value); //get
Hr = pIGUID->put_Byte(0, Value); //set

ToString method

Prototype
String ToString()

Comments
The ToString method converts and returns the bytes contained in the FireiGUID object to a regular
string, with each of the 8 bytes separated with the ‘:’ character for better clarity. Each byte is represented in
2-character hexadecimal form.

Visual Basic 6.0 syntax
Dim StringGUID As String
StringGUID = GUID.ToString

C++ syntax
BSTR StringGUID;
HRESULT hr = pIGUID->ToString(&StringGUID);

FromString method

Prototype
FromString(IN String StringGUID)

23

Comments
The FromString method can be used to initialize a FireiGUID object with an 8-byte GUID represented as
a string, with each byte being represented as a 2-character hexadecimal value. The bytes can be separated
by any single character (must be the all the way) or not separated at all.

The output of the ToString method can be fed to the FromString method directly if desired.

Visual Basic 6.0 syntax
Dim StringGUID As String
StringGUID = "XX:XX:XX:XX:XX:XX:XX:XX"
GUID.FromString StringGUID

C++ syntax
CString StringGUID(_T("XX:XX:XX:XX:XX:XX:XX:XX"));
HRESULT hr = pIGUID->FromString(StringGUID.AllocSysString());

24

FireiXManager
The FireiXManager object is the starting point for the selection and construction of cameras.

It itself can be constructed either directly, or through the CreateManager method of
FireiXPreviewCtrl. By constructing it directly, a Fire-iX program can be completely detached from any
UI, existing entirely in command line (provided no video preview is necessary, just image processing and/or
manipulation).

With the use of UseDirectShow the programmer can opt to use the DirectShow API instead of the Firei.dll
API. This call is entirely sufficient, no other code changes are necessary.

It has a number of methods implemented, all (except UseDirectShow) having to do with the selection and
construction of FireiXCamera objects.

GetNumOfConnectedCameras method

Prototype
Byte GetNumOfConnectedCameras()

Comments
This method will return the number of connected cameras on the bus.

Please keep in mind that since cameras can be freely plugged in and unplugged, this call can return different
results at different times, even during runtime. Also, the number of cameras connected to the bus is not the
same as the number of cameras directly connected to the PC running the Fire-iX program. The 1394 bus
networks any connected cameras and PCs together, and the call to GetNumOfConnectedCameras will
return all the accessible cameras from this PC.

This call is not light on system resources (it produces a lot of traffic on the 1394 bus searching for cameras)
and care should be exercise when using it.

Visual Basic 6.0 syntax
Dim NumOfCameras As Byte
NumOfCameras = Manager.GetNumOfConnectedCameras

C++ syntax
BYTE NumOfCameras;
HRESULT hr = pIManager->GetNumOfConnectedCameras(&NumOfCameras);

SelectCamera method

Prototype
Boolean SelectCamera(OUT FireiGUID GUID)

Comments
This method when called will bring up a “Camera Selector” dialog, as constructed and maintained internally
by the APIs. Through this dialog, user selection of a camera is possible. The user can double-click on a
camera to select it, or click on one and then “OK”.

25

The dialog presented looks similar to:

The method returns True if a selection was made by the user and False if “Cancel” was pressed (no selection
made). If the result is True, then a FireiGUID object is constructed and passed through the GUID
parameter. This FireiGUID can then be used by other methods, such as the GetCameraFromGUID
method.

If only one camera is connected to the system, the method returns True immediately, without presenting
the selector dialog. The FireiGUID then represents the GUID of the single camera.

Visual Basic 6.0 syntax
Dim GUID As FireiGUID
Dim Selected As Boolean
Selected = Manager.SelectCamera(GUID)

C++ syntax
IFireiGUID* pIGUID;
VARIANT_BOOL bSelected;
HRESULT hr = pIManager->SelectCamera(&pIGUID, &bSelected);

GetCameraFromIndex method

Prototype
FireiXCamera GetCameraFromIndex(IN Byte Index)

26

Comments
This method constructs a FireiXCamera object and returns it, given an Index number. This number must
be less than GetNumOfConnectedCameras, starting from 0.

It is most useful when:

• A single camera is connected (a call with 0 index is sufficient).
• The order in which the cameras are created is not important, and all camera objects must be created

(a for-loop from 0 to GetNumOfConnectedCameras – 1 is sufficient).
• A search for a specific camera, following specific criteria is required (the same for-loop, this time

looking at the properties of each camera and stopping at the first that meets the criteria).

Visual Basic 6.0 syntax
Dim Camera As FireiXCamera
Dim i, NumOfCameras As Byte
NumOfCameras = Manager.GetNumOfConnectedCameras
For i = 0 To NumOfCameras – 1
 Set Camera = Manager.GetCameraFromIndex(i)

If Camera.Vendor = "Unibrain" Then Exit For
Next

C++ syntax
IFireiXCamera* pICamera;
BSTR Vendor;
BYTE NumOfCameras;
HRESULT hr = pIManager->GetNumOfConnectedCameras(&NumOfCameras);
for (BYTE i = 0; i < NumOfCameras; ++i)
{

hr = pIManager->GetCameraFromIndex(i, &pICamera);
if (SUCCEEDED(hr))
{
 pICamera->get_Vendor(&Vendor);
 if (CString(_T("Unibrain")) == CString(Vendor))
 break;
}

}

GetCameraFromGUID method

Prototype
FireiXCamera GetCameraFromGUID(IN FireiGUID GUID)

Comments
This method constructs a FireiXCamera object and returns it, given a valid FireiGUID object. The GUID
represented by this FireiGUID must belong to a camera connected on the system, otherwise an error will
occur.

It is most useful when the camera GUID is known beforehand, and provides a more direct way of accessing
the camera as opposed to GetCameraFromIndex, because the positioning of the camera on the bus is
irrelevant.

27

It is also mated to the SelectCamera method, as the FireiGUID returned by that method can be passed
directly in GetCameraFromGUID to create the selected camera.

Visual Basic 6.0 syntax
Dim Camera As FireiXCamera
Dim GUID As FireiGUID
If Manager.SelectCamera(GUID) = True Then
 Set Camera = Manager.GetCameraFromGUID(GUID)

 End If

C++ syntax
IFireiXCamera* pICamera;
IFireiGUID* pIGUID;
VARIANT_BOOL bSelected;
HRESULT hr = pIManager->SelectCamera(&pIGUID, &bSelected);
if (SUCCEEDED(hr) && bSelected)
 hr = pIManager->GetCameraFromGUID(pIGUID, &pICamera);

UseDirectShow method

Prototype
UseDirectShow()

Comments
This method switches from Firei.dll API (FireAPI-based) to DirectShow API (FireiAPI-based) internal mode.
The differences between the two modes are explained in greater detail in other areas of this text.

The call to UseDirectShow must be done as the first call immediately after constructing the
FireiXManager object. Calling a different method or property first and then UseDirectShow will result in
an error. Also, only a single call to UseDirectShow is possible in a single program – switching back and
forth at runtime is not supported.

Visual Basic 6.0 syntax
Manager.UseDirectShow

C++ syntax
HRESULT hr = pIManager->UseDirectShow();

28

FireiXRegister
The FireiXRegister object is a helper object designed to make reading and writing values contained in a
4-byte register easy. It can be used to read/write any single bit of the register (represented as a Boolean
value), or read/write any field of the register (represented as a Long value, and defined as from one bit to
another bit).

It can be used in conjunction with the Register and CommandRegister properties of the camera, as
those properties are represented by FireiXRegister objects.

Bit property

Prototype
Boolean Bit(IN Byte Index)

Comments
The Bit property is used for reading or setting a single bit of the register, and is represented by a Boolean
value; it is True when the bit is 1 and False when the bit is 0 in the FireiXRegister object.

The Index parameter can carry any value from 0 to 31, with 0 being the Most Significant Bit (represented in
little-endian form, the same way cameras store their register values in them). If a value greater than 31 is
passed, an error will occur.

It is the equivalent of using the Field property with the FromIndex and ToIndex parameters being equal to
Index.

Visual Basic 6.0 syntax
Dim Bit5 As Boolean
Bit5 = Reg.Bit(5) 'get
Reg.Bit(5) = Bit5 'set

C++ syntax
VARIANT_BOOL bBit5;
HRESULT hr = pIReg->get_Bit(5, &bBit5); //get
hr = pIReg->put_Bit(5, bBit5); //set

Field property

Prototype
Long Field(IN Byte FromIndex, IN Byte ToIndex)

Comments
The Field property can be used to read or set a sequence of bits in the register, from a given bit up to and
including another bit. It is represented by a Long value, so it can store the entire register as a number if
desired.

The two Index parameters must both be from 0 to 31, and the ToIndex value must be greater than or equal
to the FromIndex value. In any other case, an error occurs. Also, the Long value passed when setting the
Field must be less than or equal to the maximum value that can be stored in the number of bits comprising

29

the field. So for instance, the examples below, which define a field of length of 3 bits can store a value from
0 to 7. If a value of 8 or greater was tried, an error would occur.

If FromIndex and ToIndex are equal, it is the same as calling the Bit property with the same value (albeit
passing 0 or 1 as Long, instead of False or True as Boolean).

Visual Basic 6.0 syntax
Dim Value As Long
Value = Reg.Field(5, 7) 'get
Reg.Field(5, 7) = 6 'set

C++ syntax
LONG lValue;
HRESULT hr = pIReg->get_Field(5, 7, &lValue); //get
hr = pIReg->put_Field(5, 7, 6); //set

FieldLen property

Prototype
Long FieldLen(IN Byte FromIndex, IN Byte FieldLength)

Comments

Visual Basic 6.0 syntax
Dim Value As Long
Value = Reg.FieldLen(5, 3) 'get
Reg.FieldLen(5, 3) = 6 'set

C++ syntax
LONG lValue;
HRESULT hr = pIReg->get_FieldLen(5, 3, &lValue);//get
hr = pIReg->put_FieldLen(5, 3, 6); //set

SwapEndian method

Prototype
SwapEndian()

Comments
This method does a 32-bit endianness swap in the FireiXRegister object internally.

Please note that the entire value is swapped, meaning that any subsequent call to the FireiXRegister
properties will yield different results. Also, two subsequent calls to SwapEndian have no effect on the
value.

Visual Basic 6.0 syntax
Reg.SwapEndian

C++ syntax
HRESULT hr = pIReg->SwapEndian();

30

FireiXTrigger
The FireiXTrigger object encapsulates all the Trigger functionality that the camera may support. An
instance cannot be constructed directly; it is rather accessed through the Trigger property of the camera.

Please note that the following properties have no additional functionality hidden inside them, besides what
the camera itself supports. In essence, the entire FireiXTrigger object could have been two simple
FireiXRegister objects (one for inquiry, one for control); it exits merely as a helping hand, in effect
“naming” the bits and fields of the two registers as they map to the Trigger inquiry and control registers of
the camera.

In order to call any of the following properties and methods, the IsSupported property must be True,
otherwise each call will produce an error. Additionally, in order to read the value of any of the following
properties, the CanRead property must also be True.

AbsControl property

Prototype
Boolean AbsControl

Comments
This property reads/sets the Abs_Control field of the camera trigger control register (bit 1). In order to
access this property, the property HasAbsolute of the FireiXTrigger object must be True, otherwise an
error will occur.

Visual Basic 6.0 syntax
Dim Abs As Boolean
Abs = Trigger.AbsControl 'get
Trigger.AbsControl = True 'set

C++ syntax
VARIANT_BOOL bAbs;
HRESULT hr = pITrigger->get_AbsControl(&Abs); //get
hr = pITrigger ->put_AbsControl(bAbs); //set

Enabled property

Prototype
Boolean Enabled

Comments
This property reads/sets the ON_OFF field of the camera trigger control register (bit 6). In order to access
this property, the property HasOnOff of the FireiXTrigger object must be True, otherwise an error will
occur.

Visual Basic 6.0 syntax
Dim On As Boolean
On = Trigger.Enabled 'get
Trigger. Enabled = True 'set

31

C++ syntax
VARIANT_BOOL bOn;
HRESULT hr = pITrigger->get_Enabled(&bOn); //get
hr = pITrigger ->put_Enabled(bOn); //set

Polarity property

Prototype
Boolean Polarity

Comments
This property reads/sets the Trigger_Polarity field of the camera trigger control register (bit 7). In order
to access this property, the property HasPolarity of the FireiXTrigger object must be True, otherwise
an error will occur.

Visual Basic 6.0 syntax
Dim Polarity As Boolean
Polarity = Trigger.Polarity 'get
Trigger.Polarity = True 'set

C++ syntax
VARIANT_BOOL bPolarity;
HRESULT hr = pITrigger->get_Polarity(&bPolarity); //get
hr = pITrigger ->put_Polarity(bPolarity); //set

Source property

Prototype
FireiXTriggerSource Source

Comments
This property reads/sets the Trigger_Source field of the camera trigger control register (bits 8 to 10). In
order to set this property, a call to method IsSourceSupported of the FireiXTrigger object should
first be performed, to check if the value being set is supported in this camera.

FireiXTriggerSource is an enumerated value, with possible values being tsSource_0, tsSource_1,
tsSource_2, tsSource_3 and tsSource_SW.

Visual Basic 6.0 syntax
Dim TriggerSource As FireiXTriggerSource
TriggerSource = Trigger.Source 'get
Trigger.Source = tsSource_0 'set

C++ syntax
FireiXTriggerSource Source;
HRESULT hr = pITrigger->get_Source(&Source); //get
hr = pITrigger ->put_Source(tsSource_0); //set

32

Value property

Prototype
Boolean Value

Comments
This is a read only property that reflects the Trigger_Value field of the camera trigger control register (bit
11). In order to read this property, the property CanReadRaw of the FireiXTrigger object must be True,
otherwise an error will occur.

The resulting value can be considered as False being low and True being high signal value.

Visual Basic 6.0 syntax
Dim Value As Boolean
Value = Trigger.Value

C++ syntax
VARIANT_BOOL bValue;
HRESULT hr = pITrigger->get_Value(&bValue);

Mode property

Prototype
FireiXTriggerMode Mode

Comments
This property reads/sets the Trigger_Mode field of the camera trigger control register (bits 12 to 15). In
order to set this property, a call to method IsModeSupported of the FireiXTrigger object should first
be performed, to check if the value being set is supported in this camera.

FireiXTriggerMode is an enumerated value, with possible values being tmMode_0, tmMode_1,
tmMode_2, tmMode_3, tmMode_4, tmMode_5, tmMode_14 and tmMode_15.

Visual Basic 6.0 syntax
Dim TriggerMode As FireiXTriggerMode
TriggerMode = Trigger.Mode 'get
Trigger.Mode = tmMode_0 'set

C++ syntax
FireiXTriggerMode Mode;
HRESULT hr = pITrigger->get_Mode(&Mode); //get
hr = pITrigger ->put_Mode(tmMode_0); //set

33

IsSupported property

Prototype
Boolean IsSupported

Comments
This is a read only property that reflects the Presence_Inq field of the camera trigger inquiry register (bit
0). This property can always be read, and it is a necessary requirement for it to be True for all the other
methods and properties to have their intended behavior.

Visual Basic 6.0 syntax
Dim Supported As Boolean
Supported = Trigger.IsSupported

C++ syntax
VARIANT_BOOL bSupported;
HRESULT hr = pITrigger->get_IsSupported(&bSupported);

HasAbsolute property

Prototype
Boolean HasAbsolute

Comments
This is a read only property that reflects the Abs_Control_Inq field of the camera trigger inquiry register
(bit 1). It is a necessary requirement for it to be True for the AbsControl property to be accessible.

Visual Basic 6.0 syntax
Dim HasAbs As Boolean
HasAbs = Trigger.HasAbsolute

C++ syntax
VARIANT_BOOL bHasAbs;
HRESULT hr = pITrigger->get_HasAbsolute(&bHasAbs);

CanRead property

Prototype
Boolean CanRead

Comments
This is a read only property that reflects the ReadOut_Inq field of the camera trigger inquiry register (bit 4).
It is a necessary requirement for it to be True for any of the control properties to be readable.

Visual Basic 6.0 syntax
Dim CanRead As Boolean
CanRead = Trigger.CanRead

C++ syntax
VARIANT_BOOL bCanRead;
HRESULT hr = pITrigger->get_CanRead(&bCanRead);

34

HasOnOff property

Prototype
Boolean HasOnOff

Comments
This is a read only property that reflects the On/Off_Inq field of the camera trigger inquiry register (bit 5).
It is a necessary requirement for it to be True for the Enable property to be accessible.

Visual Basic 6.0 syntax
Dim OnOff As Boolean
OnOff = Trigger.HasOnOff

C++ syntax
VARIANT_BOOL bOnOff;
HRESULT hr = pITrigger->get_HasOnOff(&bOnOff);

HasPolarity property

Prototype
Boolean HasPolarity

Comments
This is a read only property that reflects the Polarity_Inq field of the camera trigger inquiry register (bit
6). It is a necessary requirement for it to be True for the Polarity property to be accessible.

Visual Basic 6.0 syntax
Dim HasPol As Boolean
HasPol = Trigger.HasPolarity

C++ syntax
VARIANT_BOOL bHasPol;
HRESULT hr = pITrigger->get_HasPolarity(&bHasPol);

CanReadRaw property

Prototype
Boolean CanReadRaw

Comments
This is a read only property that reflects the Value_Read_Inq field of the camera trigger inquiry register
(bit 7). It is a necessary requirement for it to be True for the Value property to be accessible.

Visual Basic 6.0 syntax
Dim CanReadRaw As Boolean
CanReadRaw = Trigger.CanReadRaw

C++ syntax
VARIANT_BOOL bCanReadRaw;
HRESULT hr = pITrigger->get_CanReadRaw(&bCanReadRaw);

35

Parameter property

Prototype
Integer Parameter

Comments
This property reads/sets the Parameter field of the camera trigger control register (bits 20 to 31). Since this
is an optional field for the trigger, there is no equivalent inquiry to be made whether it is available or not.
However, acceptable values are integers greater than or equal to zero and less than 4096.

Visual Basic 6.0 syntax
Dim Parameter As Integer
Parameter = Trigger.Parameter 'get
Trigger.Parameter = 1000 'set

C++ syntax
SHORT ushParam;
HRESULT hr = pITrigger->get_Parameter(&ushParam); //get
hr = pITrigger->put_Parameter(ushParam); //set

IsSourceSupported method

Prototype
Boolean IsSourceSupported(IN FireiXTriggerSource Source)

Comments
This method checks whether a given FireiXTriggerSource value is supported by the camera. The
programmer should typically test for the support of a trigger source value, before trying to set it using the
Source property.

Visual Basic 6.0 syntax
Dim Supported As Boolean
Supported = Trigger.IsSourceSupported(tsSource_0)

C++ syntax
VARIANT_BOOL bSupported;
HRESULT hr =

pITrigger->get_IsSourceSupported(tsSource_0, &bSupported);

IsModeSupported method

Prototype
Boolean IsModeSupported(IN FireiXTriggerMode Mode)

Comments
This method checks whether a given FireiXTriggerMode value is supported by the camera. The
programmer should typically test for the support of a trigger mode value, before trying to set it using the
Mode property.

Visual Basic 6.0 syntax
Dim Supported As Boolean

36

Supported = Trigger.IsModeSupported(tmMode_0)

C++ syntax
VARIANT_BOOL bSupported;
HRESULT hr = pITrigger->get_IsModeSupported(tmMode_0, &bSupported);

Reload method

Prototype
Reload()

Comments
This method reloads the values of the trigger control register from the camera, so effectively it acts as an
“undo” function for any changes made through the various properties, as long as Save hasn’t yet been
called.

The inquiry register on the other hand is not reloaded, since it contains read-only values which cannot be
changed anyway.

Visual Basic 6.0 syntax
Trigger.Reload

C++ syntax
HRESULT hr = pITrigger->Reload();

Save method

Prototype
Save()

Comments
This method saves any changes made to the trigger control register of the camera. If for some reason this
cannot be completed (i.e., the camera refuses the write request), an error will occur.

Any subsequent calls to the Reload method will revert to this saved state.

Visual Basic 6.0 syntax
Trigger.Save

C++ syntax
HRESULT hr = pITrigger->Save();

37

FireiXStreamFormat
The FireiXStreamFormat object encapsulates the video format settings relevant a given camera. A
FireiXStreamFormat object instance cannot and should not be created directly; its functionality is paired
closely with the specific camera, so the camera is responsible for constructing the object.

To obtain a FireiXStreamFormat, the programmer can use the StreamFormat property of
FireiXCamera. Additionally, it can be obtained through the EnumFireiXStreamFormats enumerator;
since the enumerator is created by the camera, all the FireiXStreamFormats obtained through it, are
connected with that camera automatically. It can also be obtained directly through the two “retrieve”
methods, RetrieveStreamFormat and RetrieveStreamFormatFromIdentifier.

The following properties and methods are not final; changes are kept in the FireiXStreamFormat object
and only passed to the camera as the current settings when the Save method is called (or the
FireiXStreamFormat is set to the camera using the StreamFormat property). They can also be reverted
to the currently saved in the camera values using the Reload method.

PixelFormatString property

Prototype
String PixelFormatString

Comments
This is a read only property that returns the pixel format of the FireiXStreamFormat as a string. A pixel
format is not unique to a FireiXStreamFormat. A pair of a pixel format and a resolution however is.

Visual Basic 6.0 syntax
Dim PixelFormat As String
PixelFormat = StreamFormat.PixelFormatString

C++ syntax
BSTR PixelFormat;
HRESULT hr = pIStreamFormat->get_PixelFormatString(&PixelFormat);

PixelFormat property

Prototype
FireiXPixelFormat PixelFormat

Comments
This is a read only property that returns the pixel format of the FireiXStreamFormat as a
FireiXPixelFormat value. A pixel format is not unique to a FireiXStreamFormat. A pair of a pixel
format and a resolution however is.

Possible values in the FireiXPixelFormat enumerated value are:

pfNone,
pfY_MONO,
pfYUV_411,

38

pfYUV_422,
pfYUV_444,
pfRGB_24,
pfY_MONO_16,
pfRGB_48,
pfS_Y_MONO_16,
pfS_RGB_48,
pfRAW_8,
pfRAW_16

Visual Basic 6.0 syntax
Dim PixelFormat As FireiXPixelFormat
PixelFormat = StreamFormat.PixelFormat

C++ syntax
FireiXPixelFormat PixelFormat;
HRESULT hr = pIStreamFormat->get_PixelFormat(&PixelFormat);

Resolution property

Prototype
FireiXResolution Resolution

Comments
This is a read only property that returns the resolution of the FireiXStreamFormat as a
FireiXResolution value. A resolution is not unique to a FireiXStreamFormat. A pair of a pixel format
and a resolution however is.

Possible values in the FireiXResolution enumerated value are:

resNone,
res160x120,
res320x240,
res640x480,
res800x600,
res1024x768,
res1280x960,
res1600x1200,
resVariable,
resVariable_1,
resVariable_2,
resVariable_3,
resVariable_4,
resVariable_5,
resVariable_6,
resVariable_7

The values from res160x120 up to res1600x1200 represent Fixed formats, and from resVariable to
resVariable_7 represent User Defined formats.

 Visual Basic 6.0 syntax
Dim Resolution As FireiXResolution

39

Resolution = StreamFormat.Resolution

C++ syntax
FireiXResolution Resolution;
HRESULT hr = pIStreamFormat->get_Resolution(&Resolution);

IsUserDefined property

Prototype
Boolean IsUserDefined

Comments
This is a read only property that returns whether the given FireiXStreamFormat is User Defined. If True,
the UserDefined property of FireiXStreamFormat can be used. Otherwise, the Fixed property can be
used.

Visual Basic 6.0 syntax
Dim UserDefined As Boolean
UserDefined = StreamFormat.IsUserDefined

C++ syntax
VARIANT_BOOL bUserDefined;
HRESULT hr = pIStreamFormat->get_IsUserDefined(&bUserDefined);

IsCurrent property

Prototype
Boolean IsCurrent

Comments
This is a read only property that returns whether the given FireiXStreamFormat is the currently selected
streaming format of the camera. Please note that it does not necessarily mean that all parameters of the
stream format are saved on the camera; it merely means it has the same pixel format and resolution.

If the FireiXStreamFormat was obtained through the StreamFormat property of FireiXCamera
(which returns the currently selected FireiXStreamFormat) this property should always be True. It is
therefore only useful if the FireiXStreamFormat object was obtained by other means.

Visual Basic 6.0 syntax
Dim Current As Boolean
Current = StreamFormat.IsCurrent

C++ syntax
VARIANT_BOOL bCurrent;
HRESULT hr = pIStreamFormat->get_IsCurrent(&bCurrent);

Description property

Prototype
String Description

40

Comments
This is a read only property that returns a textual representation of the FireiXStreamFormat. The text
contains the pixel format and the resolution of the streaming format. A typical description for a Fixed format
would look like:

Y_MONO, 160 X 120

In case of a User Defined format the string contains the maximum resolution instead, similar to:

Y_MONO, Max 160 X 120

Visual Basic 6.0 syntax
Dim Description As String
Description = StreamFormat.Description

C++ syntax
BSTR Description;
HRESULT hr = pIStreamFormat->get_Description(&Description);

Identifier property

Prototype
Long Identifier

Comments
This is a read only property that returns a unique identifier, in the form of a Long value that can be stored for
later usage (e.g., to retrieve this format directly from the camera using
RetrieveStreamFormatFromIdentifier).

This identifier is ideal for storing the stream format selection to a windows control, such as a Combo Box or a
List Box (as each entry’s data). It should be noted however, that the variable settings of
FireiXStreamFormat are not transferred through this unique identifier; only the constant attributes of a
FireiXStreamFormat, i.e., the pixel format and resolution.

Visual Basic 6.0 syntax
Dim ID As Long
ID = StreamFormat.Identifier

C++ syntax
LONG lID;
HRESULT hr = pIStreamFormat->get_Identifier(&lID);

Fixed property

Prototype
FireiXFixedStreamFormat Fixed

41

Comments
This is a read only property that returns the associated FireiXFixedStreamFormat object with this
FireiXStreamFormat. It is only valid if the IsUserDefined property is False (an error would occur trying
to access this property with IsUserDefined being True).

Visual Basic 6.0 syntax
Dim Fixed As FireiXFixedStreamFormat
Set Fixed = StreamFormat.Fixed

C++ syntax
IFireiXFixedStreamFormat* pIFixed;
HRESULT hr = pIStreamFormat->get_Fixed(&pIFixed);

UserDefined property

Prototype
FireiXUserDefinedStreamFormat UserDefined

Comments
This is a read only property that returns the associated FireiXUserDefinedStreamFormat object with
this FireiXStreamFormat. It is only valid if the IsUserDefined property is True (an error would occur
trying to access this property with IsUserDefined being False).

Visual Basic 6.0 syntax
Dim UserDefined As FireiXUserDefinedStreamFormat
Set UserDefined = StreamFormat.UserDefined

C++ syntax
IFireiXUserDefinedStreamFormat* pIUserDefined;
HRESULT hr = pIStreamFormat->get_UserDefined(&pIUserDefined);

RawModeOverride property

Prototype
FireiXRawMode RawModeOverride

Comments
This is a read/write property that allows the programmer to establish if a bayer conversion will be performed
on the image data coming from the camera and if so, the color filter that the camera is using.

The default setting is rmAuto, which means the SDK will try to determine the correct conversion necessary.
This is not always possible, since many raw-mode cameras sent raw-data as regular Y_MONO. In those cases,
an override is necessary if a conversion to RGB is desired, hence this property.

Per the IIDC specification, only under User Defined modes (Format_7) a camera is allowed to send raw
unconverted data – in that case, the color filter is supplied by the camera. However, many camera
manufacturers disguise raw data as Y_MONO, sent either through Fixed or User Defined streaming formats.

The RawModeOverride property carries enumerated values; possibilities are:

42

rmAuto,
rmNone,
rmRGGB,
rmGRBG,
rmGBRG,
rmBGGR

Visual Basic 6.0 syntax
Dim RawMode As FireiXRawMode
RawMode = StreamFormat.RawModeOverride 'get
StreamFormat.RawModeOverride = rmRGGB 'set

C++ syntax
FireiXRawMode RawMode;
HRESULT hr = pIStreamFormat->get_RawModeOverride(&RawMode); //get
hr = pIStreamFormat->put_RawModeOverride(rmRGGB); //set

Width property

Prototype
Integer Width

Comments
This is a read only property that returns the resolution width of the streaming format. This is constant for a
Fixed streaming format and variable on a User Defined.

Visual Basic 6.0 syntax
Dim Width As Integer
Width = StreamFormat.Width

C++ syntax
SHORT shWidth;
HRESULT hr = pIStreamFormat->get_Width(&shWidth);

Height property

Prototype
Integer Height

Comments
This is a read only property that returns the resolution height of the streaming format. This is constant for a
Fixed streaming format and variable on a User Defined.

Visual Basic 6.0 syntax
Dim Height As Integer
Height = StreamFormat.Height

C++ syntax
SHORT shHeight;
HRESULT hr = pIStreamFormat->get_Height(&shHeight);

43

Save method

Prototype
Save()

Comments
This method sets this FireiXStreamFormat to the camera, including any selected attributes, whether
Fixed or User Defined. If for some reason this cannot be completed (i.e., the camera refuses the write
request), an error will occur.

Any subsequent calls to the Reload method will revert to this saved state.

The effect of this method is the same as using the StreamFormat property of FireiXCamera, to set this
FireiXStreamFormat.

Visual Basic 6.0 syntax
StreamFormat.Save

C++ syntax
HRESULT hr = pIStreamFormat->Save();

Reload method

Prototype
Reload()

Comments
This method reloads the default values of this streaming format from the camera, so effectively it acts as an
“undo” function for any changes made through the various properties, as long as Save hasn’t yet been
called.

Visual Basic 6.0 syntax
StreamFormat.Reload

C++ syntax
HRESULT hr = pIStreamFormat->Reload();

44

FireiXFixedStreamFormat
The FireiXFixedStreamFormat object is derived from FireiXStreamFormat. It carries any additional
functionality that pertains to Fixed streaming formats. It cannot be constructed directly; it is only ever
obtained through the Fixed property of FireiXStreamFormat.

Its properties are mostly read-only, except for the FrameRate, which can be set by the programmer.

ResolutionString property

Prototype
String ResolutionString

Comments
This is a read only property that returns the resolution of the FireiXFixedStreamFormat as a string. A
resolution is not unique to a FireiXStreamFormat. A pair of a pixel format and a resolution however is.

Visual Basic 6.0 syntax
Dim Resolution As String
Resolution = Fixed.ResolutionString

C++ syntax
BSTR Resolution;
HRESULT hr = pIFixed->get_ResolutionString(&Resolution);

FrameRateString property

Prototype
String FrameRateString

Comments
This is a read/write property that can be used to retrieve a textual representation of the frame rate of the
streaming format and then set it back.

Since the format of the text is specific, setting the property can be safely done only with values got from it.

Visual Basic 6.0 syntax
Dim FrameRate As String
FrameRate = Fixed.FrameRateString 'get
Fixed.FrameRateString = FrameRate 'set

C++ syntax
BSTR FrameRate;
HRESULT hr = pIFixed->get_FrameRateString(&FrameRate); //get
hr = pIFixed->put_FrameRateString(FrameRate); //set

FrameRate property

Prototype
FireiXFrameRate FrameRate

45

Comments
This is a read/write property that can be used to retrieve or set the frame rate of the
FireiXFixedStreamFormat. It is represented by an enumerated value (FireiXFrameRate), with the
following possibilities:

fpsNone,
fps1_875,
fps3_75,
fps7_5,
fps15,
fps30,
fps60,
fps120,
fps240

The programmer can test whether a given frame rate is valid with this Fixed format and acceptable by the
camera, a call to IsFrameRateSupported is sufficient.

Visual Basic 6.0 syntax
Dim FrameRate As FireiXFrameRate
FrameRate = Fixed.FrameRate 'get
Fixed.FrameRate = fps30 'set

C++ syntax
FireiXFrameRate FrameRate;
HRESULT hr = pIFixed->get_FrameRate(&FrameRate); //get
hr = pIFixed->put_FrameRate(FrameRate); //set

Width property

Prototype
Integer Width

Comments
This is a read only property that returns the resolution width of the streaming format. This will be constant
between successive reads, since the width is always the same on a given Fixed streaming format.

Visual Basic 6.0 syntax
Dim Width As Integer
Width = Fixed.Width

C++ syntax
SHORT shWidth;
HRESULT hr = pIFixed->get_Width(&shWidth);

Height property

Prototype
Integer Height

46

Comments
This is a read only property that returns the resolution height of the streaming format. This will be constant
between successive reads, since the height is always the same on a given Fixed streaming format.

Visual Basic 6.0 syntax
Dim Height As Integer
Height = Fixed.Height

C++ syntax
SHORT shHeight;
HRESULT hr = pIFixed->get_Height(&shHeight);

PacketSize property

Prototype
Long PacketSize

Comments
This is a read only property that returns the size in bytes of the packets for this streaming format. This will be
constant between successive reads, since the packet size is always the same on a given Fixed streaming
format.

Visual Basic 6.0 syntax
Dim PacketSize As Long
PacketSize = Fixed.PacketSize

C++ syntax
LONG lPacketSize;
HRESULT hr = pIFixed->get_PacketSize(&lPacketSize);

PacketsPerFrame property

Prototype
Long PacketsPerFrame

Comments
This is a read only property that returns the number of packets per frame for this streaming format. This will
be constant between successive reads, since the number of packets per frame is always the same on a given
Fixed streaming format.

Visual Basic 6.0 syntax
Dim PacketsPerFrame As Long
PacketsPerFrame = Fixed.PacketsPerFrame

C++ syntax
LONG lPacketsPerFrame;
HRESULT hr = pIFixed->get_PacketsPerFrame(&lPacketsPerFrame);

47

Description property

Prototype
String Description

Comments
This is a read only property that returns a textual representation of the FireiXFixedStreamFormat. The
text contains the pixel format and the resolution of the streaming format. A typical description would look
like:

Y_MONO, 160 X 120

It is also the same value returned by the Description property of the FireiXStreamFormat from which
this FireiXFixedStreamFormat was derived from.

Visual Basic 6.0 syntax
Dim Description As String
Description = Fixed.Description

C++ syntax
BSTR Description;
HRESULT hr = pIFixed->get_Description(&Description);

IsFrameRateSupported method

Prototype
Boolean IsFrameRateSupported(IN FireiXFrameRate FrameRate)

Comments
This method will return True if the supplied FireiXFrameRate is both available in this
FireiXFixedStreamFormat and acceptable by the camera and the current conditions of the 1394 bus.

A frame rate may not be available on a given Fixed streaming format, as defined in the IIDC spec. It may also
not be supported by the camera; these are static conditions. There are dynamic conditions though, such as
the isochronous speed of the bus the camera is connected to, limited by both hardware and software. Some
frame rates may require a higher isochronous speed than what is available currently, and even though the
camera may support the frame rate, it might not be currently achievable. In all those cases,
IsFrameRateSupported will return False.

Visual Basic 6.0 syntax
Dim Supported As Boolean
Supported = Fixed.IsFrameRateSupported fps30

C++ syntax
VARIANT_BOOL bSupported;
HRESULT hr = pIFixed->IsFrameRateSupported(fps30, &bSupported);

48

Save method

Prototype
Save()

Comments
This method sets this FireiXFixedStreamFormat to the camera, including the selected frame rate. If for
some reason this cannot be completed (i.e., the camera refuses the write request), an error will occur.

Any subsequent calls to the Reload method will revert to this saved state.

The effect of this method is the same as using the StreamFormat property of FireiXCamera, to set the
FireiXStreamFormat from which this FireiXFixedStreamFormat was derived.

Visual Basic 6.0 syntax
Fixed.Save

C++ syntax
HRESULT hr = pIFixed->Save();

Reload method

Prototype
Reload()

Comments
This method reloads the default values of this streaming format from the camera, so effectively it acts as an
“undo” function for any changes made in the frame rate, as long as Save hasn’t yet been called.

Visual Basic 6.0 syntax
Fixed.Reload

C++ syntax
HRESULT hr = pIFixed->Reload();

49

FireiXUserDefinedStreamFormat
The FireiXUserDefinedStreamFormat object is derived from FireiXStreamFormat. It carries any
additional functionality that pertains to User Defined streaming formats. It cannot be constructed directly; it
is only ever obtained through the UserDefined property of FireiXStreamFormat.

Unlike the FireiXFixedStreamFormat object, there many selectable attributes in
FireiXUserDefinedStreamFormat.

Left property

Prototype
Integer Left

Comments
This is a read only property that can be used to read the currently set left coordinate of the Region of
Interest set in the FireiXUserDefinedStreamFormat. This can be set through the SetROI method.

Visual Basic 6.0 syntax
Dim Left As Integer
Left = UserDefined.Left

C++ syntax
SHORT shLeft;
HRESULT hr = pIUserDefined->get_Left(&shLeft);

Right property

Prototype
Integer Right

Comments
This is a read only property that can be used to read the currently set right coordinate of the Region of
Interest set in the FireiXUserDefinedStreamFormat. This can be set through the SetROI method.

Visual Basic 6.0 syntax
Dim Right As Integer
Right = UserDefined.Right

C++ syntax
SHORT shRight;
HRESULT hr = pIUserDefined->get_Right(&shRight);

Top property

Prototype
Integer Top

50

Comments
This is a read only property that can be used to read the currently set top coordinate of the Region of
Interest set in the FireiXUserDefinedStreamFormat. This can be set through the SetROI method.

Visual Basic 6.0 syntax
Dim Top As Integer
Top = UserDefined.Top

C++ syntax
SHORT shTop;
HRESULT hr = pIUserDefined->get_Top(&shTop);

Bottom property

Prototype
Integer Bottom

Comments
This is a read only property that can be used to read the currently set bottom coordinate of the Region of
Interest set in the FireiXUserDefinedStreamFormat. This can be set through the SetROI method.

Visual Basic 6.0 syntax
Dim Bottom As Integer
Bottom = UserDefined.Bottom

C++ syntax
SHORT shBottom;
HRESULT hr = pIUserDefined->get_Bottom(&shBottom);

Width property

Prototype
Integer Width

Comments
This is a read only property that can be used to read the currently set width of the Region of Interest set in
the FireiXUserDefinedStreamFormat. This can be set through the SetROI method and it is equal to
Right – Left. It is also the same value returned by the Width property of the FireiXStreamFormat
from which this FireiXUserDefinedStreamFormat was derived from.

Visual Basic 6.0 syntax
Dim Width As Integer
Width = UserDefined.Width

C++ syntax
SHORT shWidth;
HRESULT hr = pIUserDefined->get_Width(&shWidth);

51

Height property

Prototype
Integer Height

Comments
This is a read only property that can be used to read the currently set height of the Region of Interest set in
the FireiXUserDefinedStreamFormat. This can be set through the SetROI method and it is equal to
Bottom – Top. It is also the same value returned by the Height property of the FireiXStreamFormat
from which this FireiXUserDefinedStreamFormat was derived from.

Visual Basic 6.0 syntax
Dim Height As Integer
Height = UserDefined.Height

C++ syntax
SHORT shHeight;
HRESULT hr = pIUserDefined->get_Height(&shHeight);

MaxWidth property

Prototype
Integer MaxWidth

Comments
This is a read only property that can be used to read the maximum possible width for the Region of Interest
of the FireiXUserDefinedStreamFormat.

Visual Basic 6.0 syntax
Dim MaxWidth As Integer
MaxWidth = UserDefined.MaxWidth

C++ syntax
SHORT shMaxWidth;
HRESULT hr = pIUserDefined->get_MaxWidth(&shMaxWidth);

MaxHeight property

Prototype
Integer MaxHeight

Comments
This is a read only property that can be used to read the maximum possible height for the Region of Interest
of the FireiXUserDefinedStreamFormat.

Visual Basic 6.0 syntax
Dim MaxHeight As Integer
MaxHeight = UserDefined.MaxHeight

C++ syntax
SHORT shMaxHeight;

52

HRESULT hr = pIUserDefined->get_MaxHeight(&shMaxHeight);

HorizontalPositionUnit property

Prototype
Integer HorizontalPositionUnit

Comments
This is a read only property that can be used to read the horizontal unit for the position of the Region of
Interest of the FireiXUserDefinedStreamFormat. The left, right, top and bottom x-coordinates of the
ROI must be perfectly divisible by this value.

Visual Basic 6.0 syntax
Dim HPosUnit As Integer
HPosUnit = UserDefined.HorizontalPositionUnit

C++ syntax
SHORT shHPosUnit;
HRESULT hr = pIUserDefined->get_HorizontalPositionUnit(&shHPosUnit);

VerticalPositionUnit property

Prototype
Integer VerticalPositionUnit

Comments
This is a read only property that can be used to read the vertical unit for the position of the Region of
Interest of the FireiXUserDefinedStreamFormat. The left, right, top and bottom y-coordinates of the
ROI must be perfectly divisible by this value.

Visual Basic 6.0 syntax
Dim VPosUnit As Integer
VPosUnit = UserDefined.VerticalPositionUnit

C++ syntax
SHORT shVPosUnit;
HRESULT hr = pIUserDefined->get_VerticalPositionUnit(&shVPosUnit);

WidthUnit property

Prototype
Integer WidthUnit

Comments
This is a read only property that can be used to read the width unit for the Region of Interest of the
FireiXUserDefinedStreamFormat. The total width of the ROI must be perfectly divisible by this value.

Visual Basic 6.0 syntax
Dim WUnit As Integer
WUnit = UserDefined.WidthUnit

53

C++ syntax
SHORT shWUnit;
HRESULT hr = pIUserDefined->get_WidthUnit(&shWUnit);

HeightUnit property

Prototype
Integer HeightUnit

Comments
This is a read only property that can be used to read the height unit for the Region of Interest of the
FireiXUserDefinedStreamFormat. The total height of the ROI must be perfectly divisible by this value.

Visual Basic 6.0 syntax
Dim HUnit As Integer
HUnit = UserDefined.HeightUnit

C++ syntax
SHORT shHUnit;
HRESULT hr = pIUserDefined->get_HeightUnit(&shHUnit);

MaxPacketSize property

Prototype
Long MaxPacketSize

Comments
This is a read only property that can be used to read the maximum allowed packet size in bytes of the
FireiXUserDefinedStreamFormat. The PacketSize property cannot be set to a value greater than
this value.

Visual Basic 6.0 syntax
Dim MaxPacketSize As Long
MaxPacketSize = UserDefined.MaxPacketSize

C++ syntax
LONG lMaxPacketSize;
HRESULT hr = pIUserDefined->get_MaxPacketSize(&lMaxPacketSize);

PacketSizeUnit property

Prototype
Long PacketSizeUnit

Comments
This is a read only property that can be used to read the packet size unit of the
FireiXUserDefinedStreamFormat. The PacketSize property must be set to a value perfectly divisibly
by this value.

Visual Basic 6.0 syntax
Dim PacketSizeUnit As Long

54

PacketSizeUnit = UserDefined.PacketSizeUnit

C++ syntax
LONG lPacketSizeUnit;
HRESULT hr = pIUserDefined->get_PacketSizeUnit(&lPacketSizeUnit);

PacketSize property

Prototype
Long PacketSize

Comments
This is a read/write property that can be used to retrieve or set the size in bytes of each packet the camera
will transmit for this format.

When setting it, acceptable values are greater than or equal to 0 and less than or equal to the
MaxPacketSize property. The value must also be perfectly divisible by the value of PacketSizeUnit
property.

Setting this value to 0 means the SDK will try and determine the correct packet size automatically, either by
setting it to the maximum possible, or by querying the camera for it.

Visual Basic 6.0 syntax
Dim PacketSize As Long
PacketSize = UserDefined.PacketSize 'get
UserDefined.PacketSize = 0 'set

C++ syntax
LONG lPacketSize;
HRESULT hr = pIUserDefined->get_PacketSize(&lPacketSize); //get
hr = pIUserDefined->put_PacketSize(0); //set

Description property

Prototype
String Description

Comments
This is a read only property that returns a textual representation of the
FireiXUserDefinedStreamFormat. The text contains the pixel format and the maximum resolution of
the streaming format. A typical description would look like:

Y_MONO, Max 160 X 120

It is also the same value returned by the Description property of the FireiXStreamFormat from which
this FireiXUserDefinedStreamFormat was derived from.

Visual Basic 6.0 syntax
Dim Description As String
Description = UserDefined.Description

55

C++ syntax
BSTR Description;
HRESULT hr = pIUserDefined->get_Description(&Description);

SetROI method

Prototype
Boolean SetROI(

IN Integer Left,
IN Integer Top,
IN Integer Width
IN Integer Height
)

Comments
This method is used to set the desired coordinates and size of the Region of Interest for the
FireiXUserDefinedStreamFormat.

The Left and Top values must be greater than or equal to 0 and less than or equal to the MaxWidth and
MaxHeight properties respectively. They must also be perfectly divisible by HorizontalPositionUnit
and VerticalPositionUnit respectively.

The Width and Height values must be greater than or equal to WidthUnit and HeightUnit respectively
and less than or equal to MaxWidth and MaxHeight respectively. They must also be perfectly divisible by
WidthUnit and HeightUnit respectively. Additionally, they must not be greater than the available rectangle
as set by the Left and Top values (i.e., the sum of Width and Left must not be greater than MaxWidth and
the sum of Height and Top must not be greater than MaxHeight).

The method will return True or False, depending on whether the above conditions are met. It will not query
the camera for validity; any checks are made inside the SDK, according to the reported parameters of the
camera.

Visual Basic 6.0 syntax
Dim Result As Boolean
Result = UserDefined.SetROI(0, 0, 160, 120)

C++ syntax
VARIANT_BOOL bResult;
HRESULT hr = pIUserDefined->SetROI(0, 0, 160, 120, &bResult);

IsValid method

Prototype
Boolean IsValid()

Comments
This method will return True if the currently set properties of the FireiXUserDefinedStreamFormat are
acceptable by the camera.

56

This is useful in those cases where the camera reported acceptable values are not 100% correct. For
instance, even though theoretically a camera should support a ROI width from WidthUnit to MaxWidth,
this is not always the case in practice. Since calling Save produces an error in that case, calling IsValid
beforehand can provide a measure of safety.

Visual Basic 6.0 syntax
Dim Valid As Boolean
Valid = UserDefined.IsValid

C++ syntax
VARIANT_BOOL bValid;
HRESULT hr = pIUserDefined->IsValid(&bValid);

Save method

Prototype
Save()

Comments
This method sets this FireiXUserDefinedStreamFormat to the camera, including the selected Region of
Interest and PacketSize. If for some reason this cannot be completed (i.e., the camera refuses the write
request), an error will occur. To prevent this, a call to IsValid first can be performed.

Any subsequent calls to the Reload method will revert to this saved state.

The effect of this method is the same as using the StreamFormat property of FireiXCamera, to set the
FireiXStreamFormat from which this FireiXUserDefinedStreamFormat was derived.

Visual Basic 6.0 syntax
UserDefined.Save

C++ syntax
HRESULT hr = pIUserDefined->Save();

Reload method

Prototype
Reload()

Comments
This method reloads the default values of this streaming format from the camera, so effectively it acts as an
“undo” function for any changes made in the Region of Interest and PacketSize, as long as Save hasn’t
yet been called.

Visual Basic 6.0 syntax
UserDefined.Reload

C++ syntax
HRESULT hr = pIUserDefined->Reload();

57

EnumFireiXStreamFormats
The EnumFireiXStreamFormats enumerator can be used to iterate between a set of
FireiXStreamFormat objects. It cannot be constructed directly, it is obtained through the
GetStreamFormatsEnumerator method of FireiXCamera.

As is the case with EnumFireiXFeatures, this object implements only two methods that are sufficient for
iterating.

Reset method

Prototype
Reset()

Comments
This method will start the iteration from the beginning, i.e., the next call to Next will return the first
FireiXStreamFormat.

It is not necessary to call this method on a newly constructed EnumFireiXStreamFormats object, it will
start from the beginning by default.

Visual Basic 6.0 syntax
StreamFormats.Reset

C++ syntax
HRESULT hr = pIStreamFormats->Reset();

Next method

Prototype
Boolean Next(OUT FireiXStreamFormat StreamFormat)

Comments
This can be used to obtain the next FireiXStreamFormat in EnumFireiXStreamFormats. It will return
True if another item is available, and False if this was the last item. To start again from the first item, a call to
Reset is sufficient.

Visual Basic 6.0 syntax
Do While StreamFormats.Next(StreamFormat) = True
 …
Loop

C++ syntax
VARIANT_BOOL bHasNext;
HRESULT hr = pIStreamFormats->Next(&pIStreamFormat, &bHasNext);
while (bHasNext)
{

…
hr = pIStreamFormats->Next(&pIStreamFormat, &bHasNext);

}

58

FireiXFeature
The FireiXFeature object encapsulates all functionality related to a camera feature. It contains all the
information available through the feature’s inquiry register, and all the capabilities available through the
feature’s control register in one concise package.

The FireiXFeature object cannot be constructed directly by the programmer; instead, it is accessible
through the camera properties at any time. The FireiXCamera object offers a specialized read-only
property for accessing each individual feature. For example, it has a Shutter property that returns the
FireiXFeature object pertaining to the shutter feature. If a more generic way to access features is
required, the Feature property can be used instead; it takes a string of the name of the feature as a
parameter.

Additionally, there is an EnumFireiXFeatures enumerated object, operating in much the same way as the
EnumFireiXStreamFormats enumerator, and it allows iterating between the features of the camera. This
is enumerator is accessible through the GetFeaturesEnumerator method of FireiXCamera.

The FireiXFeature object implements various properties and methods to its interface. Unlike the
FireiXStreamFormat and FireiXTrigger objects, any change made to the FireiXFeature instance
is directly passed to the camera, as there is no specific Save method.

Name property

Prototype
String Name

Comments
This is a read-only property that returns the name of the object as a string. This name is the exact same
name that can be used to retrieve this FireiXFeature object, through the Feature property of
FireiXCamera.

Visual Basic 6.0 syntax
Dim Name As String
Name = Feature.Name

C++ syntax
BSTR Name;
HRESULT hr = pIFeature->get_Name(&Name);

IsSupported property

Prototype
Boolean IsSupported

Comments
This is a read-only property that will return whether this FireiXFeature represents a feature supported
by the camera.

59

If this property is False, no other property or method of FireiXFeature should be called, otherwise an
error would occur.

Visual Basic 6.0 syntax
Dim Supported As Boolean
Supported = Feature.IsSupported

C++ syntax
VARIANT_BOOL bSupported;
HRESULT hr = pIFeature->get_IsSupported(&bSupported);

HasAbsolute property

Prototype
Boolean HasAbsolute

Comments
This is a read-only property that will return whether this FireiXFeature supports setting its value through
“Absolute” values.

If this property is False, the Absolute property of FireiXFeature should not be accessed, otherwise an
error would occur.

Visual Basic 6.0 syntax
Dim HasAbsolute As Boolean
HasAbsolute = Feature.HasAbsolute

C++ syntax
VARIANT_BOOL bHasAbsolute;
HRESULT hr = pIFeature->get_HasAbsolute(&bHasAbsolute);

HasOnePush property

Prototype
Boolean HasOnePush

Comments
This is a read-only property that will return whether this FireiXFeature supports setting its value through
a “One Push” operation (as defined by the IIDC specification).

If this property is False, the OnePush method of FireiXFeature should not be called, otherwise an error
would occur.

Visual Basic 6.0 syntax
Dim HasOnePush As Boolean
HasOnePush = Feature.HasOnePush

C++ syntax
VARIANT_BOOL bHasOnePush;
HRESULT hr = pIFeature->get_HasOnePush(&bHasOnePush);

60

CanRead property

Prototype
Boolean CanRead

Comments
This is a read-only property that will return whether this FireiXFeature supports reading its value.

If this property is False, the Value property of FireiXFeature should not be read, otherwise an error
would occur. This does not mean it cannot be set however; the HasManual property can be used to
determine that.

Visual Basic 6.0 syntax
Dim CanRead As Boolean
CanRead = Feature.CanRead

C++ syntax
VARIANT_BOOL bCanRead;
HRESULT hr = pIFeature->get_CanRead(&bCanRead);

HasOnOff property

Prototype
Boolean HasOnOff

Comments
This is a read-only property that will return whether this FireiXFeature supports turning it on and off
entirely.

If this property is False, the Enable property of FireiXFeature should not be accessed, otherwise an
error would occur.

Visual Basic 6.0 syntax
Dim HasOnOff As Boolean
HasOnOff = Feature.HasOnOff

C++ syntax
VARIANT_BOOL bHasOnOff;
HRESULT hr = pIFeature->get_HasOnOff(&bHasOnOff);

HasAuto property

Prototype
Boolean HasAuto

Comments
This is a read-only property that will return whether this FireiXFeature supports setting its value
automatically, according to the camera shooting circumstances.

If this property is False, the AutoMode property of FireiXFeature should not be accessed, otherwise an
error would occur.

61

Visual Basic 6.0 syntax
Dim HasAuto As Boolean
HasAuto = Feature.HasAuto

C++ syntax
VARIANT_BOOL bHasAuto;
HRESULT hr = pIFeature->get_HasAuto(&bAuto);

HasManual property

Prototype
Boolean HasManual

Comments
This is a read-only property that will return whether this FireiXFeature supports setting its value
manually, through the Value property.

If this property is False, the Value property of FireiXFeature should not be set, otherwise an error would
occur. It could still be read though; the CanRead property can be used to determine that.

Visual Basic 6.0 syntax
Dim HasManual As Boolean
HasManual = Feature.HasManual

C++ syntax
VARIANT_BOOL bHasManual;
HRESULT hr = pIFeature->get_HasManual(&bHasManual);

MinValue property

Prototype
Long MinValue

Comments
This is a read-only property that will return the minimum value that can be set to this FireiXFeature,
through the Value property.

Visual Basic 6.0 syntax
Dim MinValue As Long
MinValue = Feature.MinValue

C++ syntax
LONG lMinValue;
HRESULT hr = pIFeature->get_MinValue(&lMinValue);

MaxValue property

Prototype
Long MaxValue

62

Comments
This is a read-only property that will return the maximum value that can be set to this FireiXFeature,
through the Value property.

Visual Basic 6.0 syntax
Dim MaxValue As Long
MaxValue = Feature.MaxValue

C++ syntax
LONG lMaxValue;
HRESULT hr = pIFeature->get_MaxValue(&lMaxValue);

Absolute property

Prototype
Boolean Absolute

Comments
This is a read/write property that will retrieve or set whether this FireiXFeature will use “absolute”
values when setting its value. If set to True, the value of the feature is then read and set through the
AbsoluteValue property, instead of the Value property.

This property is not available if HasAbsolute is False.

Visual Basic 6.0 syntax
Dim Absolute As Boolean
Absolute = Feature.Absolute 'get
Feature.Absolute = True 'set

C++ syntax
VARIANT_BOOL bAbsolute;
HRESULT hr = pIFeature->get_Absolute(&bAbsolute); //get
hr = pIFeature->put_Absolute(VARIANT_TRUE); //set

Enabled property

Prototype
Boolean Enabled

Comments
This is a read/write property that will retrieve or set whether this FireiXFeature is on or off. If set to False
a call to any of its properties or methods could result in an error.

This property is not available if HasOnOff is False.

Visual Basic 6.0 syntax
Dim Enabled As Boolean
Enabled = Feature.Enabled 'get
Feature.Enabled = True 'set

63

C++ syntax
VARIANT_BOOL bEnabled;
HRESULT hr = pIFeature->get_Enabled(&bEnabled); //get
hr = pIFeature->put_Enabled(VARIANT_TRUE); //set

AutoMode property

Prototype
Boolean AutoMode

Comments
This is a read/write property that will retrieve or set whether this FireiXFeature will be setting its value
automatically or not. If set to True, the Value property cannot be set, or an error would occur.

This property is not available if HasAuto is False.

Visual Basic 6.0 syntax
Dim Auto As Boolean
Auto = Feature.AutoMode 'get
Feature.AutoMode = True 'set

C++ syntax
VARIANT_BOOL bAuto;
HRESULT hr = pIFeature->get_AutoMode(&bAuto); //get
hr = pIFeature->put_AutoMode(VARIANT_TRUE); //set

Value property

Prototype
Long Value

Comments
This is a read/write property that will retrieve or set the value of this FireiXFeature. In order to read the
value, the CanRead property must be True. In order to set the value, the HasManual property must be
True, and the AutoMode property must be False. The value being set must also reside inside the boundaries
set by the MinValue and MaxValue properties.

Visual Basic 6.0 syntax
Dim Value As Long
Value = Feature.Value 'get
Feature.Value = Feature.MaxValue 'set

C++ syntax
LONG lValue, lMaxValue;
HRESULT hr = pIFeature->get_Value(&lValue); //get
hr = pIFeature = pIFeature->get_MaxValue(&lMaxValue);
hr = pIFeature->put_Value(lMaxValue); //set

64

HasSoftAbsolute property

Prototype
Boolean HasSoftAbsolute

Comments
This is a read-only property that will return whether this FireiXFeature supports setting its value through
“absolute” values, calculated through the API3

If this property is False, the MinAbsoluteValue, MaxAbsoluteValue and SoftAbsolute properties are
inaccessible.

.

Visual Basic 6.0 syntax
Dim HasSoftAbsolute As Boolean
HasSoftAbsolute = Feature.HasSoftAbsolute

C++ syntax
VARIANT_BOOL bHasSoftAbsolute;
HRESULT hr = pIFeature->get_HasSoftAbsolute(&bHasSoftAbsolute);

SoftAbsolute property

Prototype
Boolean SoftAbsolute

Comments
This is a read/write property that will turn the SoftAbsolute feature on and off, if supported. Trying to set
this feature when HasSoftAbsolute is False will result in an error.

If this property is True, the AbsoluteValue property is used to set the feature value instead of the Value
property.

Visual Basic 6.0 syntax
Dim SoftAbsolute As Boolean
SoftAbsolute = Feature.SoftAbsolute 'get
Feature.SoftAbsolute = True 'set

C++ syntax
VARIANT_BOOL bSoftAbsolute;
HRESULT hr = pIFeature->get_SoftAbsolute(&bSoftAbsolute); //get
hr = pIFeature->put_AutoMode(VARIANT_TRUE); //set

ValueString property

Prototype
String ValueString

3 This feature is called by the various Unibrain APIs “SoftAbsolute”. It is only available on specific cameras, mostly
Unibrain models. The camera in effect works in its regular manual values mode; the interface with the program
operates in absolute mode, and the underlying API takes care of the value adaptation.

65

Comments
This is a read/write property that will retrieve or set the value of the feature through a textual
representation of it. The string will include the unit of the feature if in absolute mode.

Through this property the value can be read or set either in Absolute, SoftAbsolute or Relative mode, albeit
with different formats.

The same limitations as in the Value and AbsoluteValue properties apply.

Visual Basic 6.0 syntax
Dim ValueString As String
ValueString = Feature.ValueString 'get
Feature.ValueString = ValueString 'set

C++ syntax
BSTR ValueString;
HRESULT hr = pIFeature->get_ValueString(&ValueString); //get
hr = pIFeature->put_ValueString(ValueString); //set

MinValueString property

Prototype
String MinValueString

Comments
This is a read-only property that will retrieve the minimum allowed value of the feature as a textual
representation. The string will include the unit of the feature if in absolute mode.

The same limitations as in the MinValue and MinAbsoluteValue properties apply.

Visual Basic 6.0 syntax
Dim MinValueString As String
MinValueString = Feature.MinValueString

C++ syntax
BSTR MinValueString;
HRESULT hr = pIFeature->get_MinValueString(&MinValueString);

MaxValueString property

Prototype
String MaxValueString

Comments
This is a read-only property that will retrieve the maximum allowed value of the feature as a textual
representation. The string will include the unit of the feature if in absolute mode.

The same limitations as in the MaxValue and MaxAbsoluteValue properties apply.

Visual Basic 6.0 syntax
Dim MaxValueString As String

66

MaxValueString = Feature.MaxValueString

C++ syntax
BSTR MaxValueString;
HRESULT hr = pIFeature->get_MaxValueString(&MaxValueString);

Unit property

Prototype
FireiXFeatureUnit Unit

Comments
This is a read-only property that will retrieve the unit of the value of the feature as FireiXFeatureUnit
enumerated values.

Possible values returned are:

fuNone,
fuFractionPercent,
fuExposureValue,
fuKelvin,
fuDegree,
fuTime,
fuDecibel,
fuFStops,
fuDistance,
fuActualPercent

Visual Basic 6.0 syntax
Dim Unit As FireiXFeatureUnit
Unit = Feature.Unit

C++ syntax
FireiXFeatureUnit Unit;
HRESULT hr = pIFeature->get_Unit(&Unit);

AbsoluteValue property

Prototype
Single AbsoluteValue

Comments
This is a read/write property that will retrieve or set the absolute value of this FireiXFeature. For this
property to be enabled instead of the Value property, the Absolute or SoftAbsolute properties must
be True. Additionally, the value must reside in the boundaries set by the MinAbsoluteValue and
MaxAbsoluteValue properties.

Since absolute values have fractional parts, this value is represented through a single-precision floating point
number.

67

Visual Basic 6.0 syntax
Dim Value As Single
Value = Feature.AbsoluteValue 'get
Feature.Value = Feature.AboluteValue 'set

C++ syntax
float fValue;
HRESULT hr = pIFeature->get_AbsoluteValue(&fValue); //get
hr = pIFeature->put_AbsoluteValue(fValue); //set

MinAbsoluteValue property

Prototype
Single MinAbsoluteValue

Comments
This is a read-only property that will return the minimum value that can be set to this FireiXFeature,
through the AbsoluteValue property.

Since absolute values have fractional parts, this value is represented through a single-precision floating point
number.

Visual Basic 6.0 syntax
Dim MinValue As Single
MinValue = Feature.MinAbsoluteValue

C++ syntax
float fMinValue;
HRESULT hr = pIFeature->get_MinAbsoluteValue(&fMinValue);

MaxAbsoluteValue property

Prototype
Single MaxAbsoluteValue

Comments
This is a read-only property that will return the maximum value that can be set to this FireiXFeature,
through the AbsoluteValue property.

Since absolute values have fractional parts, this value is represented through a single-precision floating point
number.

Visual Basic 6.0 syntax
Dim MaxValue As Single
MaxValue = Feature.MaxAbsoluteValue

C++ syntax
float fMaxValue;
HRESULT hr = pIFeature->get_MaxAbsoluteValue(&fMaxValue);

68

Reload method

Prototype
Reload()

Comments
This method can be used to read the current value and absolute value (if applicable, along with the
minimum and maximum absolute values) of the camera feature.

It is particularly useful after a OnePush call, or if the camera is in AutoMode, as reading the value through
the Value property will not return the current value on the camera, rather the value stored in the
FireiXFeature object. This is done for bus bandwidth conservation.

Visual Basic 6.0 syntax
Feature.Reload

C++ syntax
HRESULT hr = pIFeature->Reload();

OnePush method

Prototype
OnePush()

Comments
This method, when called, will perform a complete one-push operation on the camera for the feature4

This method is available only if HasOnePush is True; calling it otherwise will result in an error.

.

Visual Basic 6.0 syntax
Feature.OnePush

C++ syntax
HRESULT hr = pIFeature->OnePush();

4 A one push operation is two-step: first the register for the one push is set, and then the acknowledge register is
repeatedly read until the operation is finished. The OnePush method does these two steps in one call and returns when
the one push operation is finished.

69

EnumFireiXFeatures
The EnumFireiXFeatures enumerator can be used to iterate between a set of FireiXFeature objects.
It cannot be constructed directly, it is obtained through the GetFeaturesEnumerator method of
FireiXCamera.

As is the case with EnumFireiXStreamFormats, this object implements only two methods that are
sufficient for iterating.

Reset method

Prototype
Reset()

Comments
This method will start the iteration from the beginning, i.e., the next call to Next will return the first
FireiXFeature.

It is not necessary to call this method on a newly constructed EnumFireiXFeatures object, it will start
from the beginning by default.

Visual Basic 6.0 syntax
Features.Reset

C++ syntax
HRESULT hr = pIFeatures->Reset();

Next method

Prototype
Boolean Next(OUT FireiXFeature Feature)

Comments
This can be used to obtain the next FireiXFeature in EnumFireiXFeatures. It will return True if
another item is available, and False if this was the last item. To start again from the first item, a call to Reset
is sufficient.

Visual Basic 6.0 syntax
Do While Features.Next(Feature) = True
 …
Loop

C++ syntax
VARIANT_BOOL bHasNext;
HRESULT hr = pIFeatures->Next(&pIFeature, &bHasNext);
while (bHasNext)
{

…
hr = pIFeatures->Next(&pIFeature, &bHasNext);

}

70

FireiXFrame
The FireiXFrame object contains a single camera frame, allowing the programmer to read and write the
image data pixel by pixel. It also provides some useful methods that help manipulate the image, e.g., draw
lines, rectangles or print text on the image.

This object cannot be constructed directly; it is constructed and maintained internally by the SDK, and
passed through the FrameReceived event of FireiXCamera. It can be considered valid throughout the
context of the event handler – but it cannot be stored in memory for later use.

GetPixel method

Prototype
Long GetPixel(IN Integer X, IN Integer Y)

Comments
This method returns the color value as a Long, (or OLE_COLOR) of a given by coordinates pixel of the image
buffer.

X and Y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiXStreamFormat properties Width
and Height.

Visual Basic 6.0 syntax
Dim Color As Long
Color = Frame.GetPixel(0, 0)

C++ syntax
LONG lColor;
HRESULT hr = pIFrame->GetPixel(0, 0, &lColor);

SetPixel method

Prototype
SetPixel(IN Integer X, IN Integer Y, IN Long Color)

Comments
This method sets the color value from a Long, (or OLE_COLOR) to a given by coordinates pixel of the image
buffer.

X and Y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiXStreamFormat properties Width
and Height.

Visual Basic 6.0 syntax
Frame.SetPixel 0, 0, 0

C++ syntax
HRESULT hr = pIFrame->SetPixel(0, 0, 0);

71

GetRGB method

Prototype
GetRGB(

IN Integer X,
IN Integer Y,
OUT Byte Red,
OUT Byte Green,
OUT Byte Blue
)

Comments
This method returns the color value as a Red, Green and Blue components of a given by coordinates pixel of
the image buffer.

X and Y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiXStreamFormat properties Width
and Height.

Visual Basic 6.0 syntax
Dim Red, Green, Blue As Byte
Frame.GetRGB 0, 0, Red, Green, Blue

C++ syntax
BYTE Red, Green, Blue;
HRESULT hr = pIFrame->GetRGB(0, 0, &Red, &Green, &Blue);

SetRGB method

Prototype
SetRGB(

IN Integer X,
IN Integer Y,
IN Byte Red,
IN Byte Green,
IN Byte Blue
)

Comments
This method sets the color value of a given by coordinates pixel of the image buffer, using Red, Green and
Blue components.

X and Y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiXStreamFormat properties Width
and Height.

Visual Basic 6.0 syntax
Frame.SetRGB 0, 0, 0, 0, 0

C++ syntax
HRESULT hr = pIFrame->SetRGB(0, 0, 0, 0, 0);

72

SaveToFile method

Prototype
Long SaveToFile(IN String Filename)

Comments
This method will save the contents of the FireiXFrame to disk, as a regular Windows uncompressed BMP
file. The Filename must be supplied, with or without the .bmp extension (the SDK will add it if it was
omitted).

The return value of SaveToFile is the Win32 error code from the internal save operation. It is 0 if the save
was successful.

Visual Basic 6.0 syntax
Dim Win32Err As Long
Win32Err = Frame.SaveToFile "c:\Frame1.bmp"

C++ syntax
LONG lWin32Err;
HRESULT hr = pIFrame->SaveToFile(_T("c:\Frame1.bmp"), &lWin32Err);

FlipHorizontally method

Prototype
FlipHorizontally()

Comments
This method will invert the frame in-place along the y-axis (horizontally).

Visual Basic 6.0 syntax
Frame.FlipHorizontally

C++ syntax
HRESULT hr = pIFrame->FlipHorizontally();

FlipVertically method

Prototype
FlipVertically()

Comments
This method will invert the frame in-place along the x-axis (vertically).

Visual Basic 6.0 syntax
Frame.FlipVertically

C++ syntax
HRESULT hr = pIFrame->FlipVertically();

73

Negative method

Prototype
Negative()

Comments
This method will invert the color information of the frame. The result will be similar to a photographic
negative.

Visual Basic 6.0 syntax
Frame.Negative

C++ syntax
HRESULT hr = pIFrame->Negative();

ToPicture method

Prototype
IPictureDisp ToPicture()

Comments
This method will return the frame data as an IPictureDisp object. This is a common object type used
throughout the COM (and ActiveX) implementation, used for carrying picture data.

Visual Basic 6.0 syntax
Dim Picture As IPictureDisp
Set Picture = Frame.ToPicture

C++ syntax
IPictureDisp* pIPicture;
HRESULT hr = pIFrame->ToPicture(&pIPicture);

DrawLine method

Prototype
DrawLine(

IN Integer FromX,
IN Integer FromY,
IN Integer ToX,
IN Integer ToY,
IN Long Color
)

Comments
This method will draw a line from a point defined by a set of coordinates (FromX, FromY) to another point
defined by a set of coordinates(ToX, ToY), using the color defined by a Long number (OLE_COLOR).

The coordinates given as the 4 parameters must reside in the frame boundaries, otherwise an error will
occur.

74

Visual Basic 6.0 syntax
Frame.DrawLine 0, 0, 50, 50, 0

C++ syntax
HRESULT hr = pIFrame->DrawLine(0, 0, 50, 50, 0);

DrawString method

Prototype
DrawString(

IN String Text,
IN Integer X,
IN Integer Y,
IN IFontDisp Font,
IN Long Color
)

Comments
This method will draw a string of text on a point on the frame defined by a set of coordinates (X, Y), using the
color defined by a Long number (OLE_COLOR), and a valid IFontDisp object.

The coordinates given as the 2 parameters must reside in the frame boundaries, otherwise an error will
occur.

Visual Basic 6.0 syntax
Frame.DrawString "Hello World", 0, 0, Me.Font, 0

C++ syntax
HRESULT hr = pIFrame->DrawString(

_T("Hello World"),
0, 0,
pIFont,
0);

DrawRectangle method

Prototype
DrawRectangle(

IN Integer X,
IN Integer Y,
IN Integer Width,
IN Integer Height,
IN Long Color,
IN Boolean Filled
)

Comments
This method will draw a rectangle, with its top-left corner being at a point defined by a set of coordinates (X,
Y) having a specific Width and Height and using the color defined by a Long number (OLE_COLOR).
Additionally, it can be specified whether this rectangle will be empty (just its outline drawn) or filled.

75

The coordinates defined by the 4 parameters given must reside in the frame boundaries, otherwise an error
will occur.

Visual Basic 6.0 syntax
Frame.DrawRectangle 0, 0, 50, 50, 0, False

C++ syntax
HRESULT hr = pIFrame->DrawRectangle(0, 0, 50, 50, 0, VARIANT_FALSE);

DrawLineRGB method

Prototype
DrawLineRGB(

IN Integer FromX,
IN Integer FromY,
IN Integer ToX,
IN Integer ToY,
IN Byte Red,
IN Byte Green,
IN Byte Blue
)

Comments
This method will draw a line from a point defined by a set of coordinates (FromX, FromY) to another point
defined by a set of coordinates(ToX, ToY), using the color defined by its Red, Green and Blue components.

The coordinates given as the 4 parameters must reside in the frame boundaries, otherwise an error will
occur.

Visual Basic 6.0 syntax
Frame.DrawLineRGB 0, 0, 50, 50, 0, 0, 0

C++ syntax
HRESULT hr = pIFrame->DrawLineRGB(0, 0, 50, 50, 0, 0, 0);

DrawStringRGB method

Prototype
DrawString(

IN String Text,
IN Integer X,
IN Integer Y,
IN IFontDisp Font,
IN Byte Red,
IN Byte Green,
IN Byte Blue
)

Comments
This method will draw a string of text on a point on the frame defined by a set of coordinates (X, Y), using the
color defined by its Red, Green and Blue components, and a valid IFontDisp object.

76

The coordinates given as the 2 parameters must reside in the frame boundaries, otherwise an error will
occur.

Visual Basic 6.0 syntax
Frame.DrawStringRGB "Hello World", 0, 0, Me.Font, 0, 0, 0

C++ syntax
HRESULT hr = pIFrame->DrawStringRGB(

_T("Hello World"),
0, 0,
pIFont,
0, 0, 0);

DrawRectangleRGB method

Prototype
DrawRectangle(

IN Integer X,
IN Integer Y,
IN Integer Width,
IN Integer Height,
IN Byte Red,
IN Byte Green,
IN Byte Blue,
IN Boolean Filled
)

Comments
This method will draw a rectangle, with its top-left corner being at a point defined by a set of coordinates (X,
Y) having a specific Width and Height and using the color defined by its Red, Green and Blue components.
Additionally, it can be specified whether this rectangle will be empty (just its outline drawn) or filled.

The coordinates defined by the 4 parameters given must reside in the frame boundaries, otherwise an error
will occur.

Visual Basic 6.0 syntax
Frame.DrawRectangleRGB 0, 0, 50, 50, 0, 0, 0, False

C++ syntax
HRESULT hr = pIFrame->DrawRectangleRGB(

0, 0,
50, 50,
0, 0, 0,
VARIANT_FALSE);

77

FireiXCamera
The FireiXCamera object encapsulates all functionality pertaining to the camera itself; therefore it could
be considered to be the “central” object of the SDK.

It acts as a factory for many other objects: FireiXFeature, FireiXStreamFormat and FireiXTrigger,
along with the two enumerators, EnumFireiXFeatures and EnumFireiXStreamFormats.

It cannot be constructed directly however; the FireiXManager object is responsible for constructing a
FireiXCamera instance.

Besides having a great number of properties and methods, it also implements two events: FrameReceived,
and DeviceRemoved. The former, if handled, will be fired every time a new frame is received by the SDK;
the latter will be fired if the camera is physically removed from the system.

GUID property

Prototype
FireiGUID GUID

Comments
This is a read-only property that can be used to retrieve the GUID of the camera. It constructs and initializes
a FireiGUID object internally and then returns it.

Visual Basic 6.0 syntax
Dim GUID As FireiGUID
Set GUID = Camera.GUID

C++ syntax
FireiGUID* pIGUID;
HRESULT hr = pICamera->get_GUID(&pIGUID);

Vendor property

Prototype
String Vendor

Comments
This is a read-only property that can be used to retrieve the vendor name of the camera, as a string.

Visual Basic 6.0 syntax
Dim VendorName As String
VendorName = Camera.Vendor

C++ syntax
BSTR VendorName;
HRESULT hr = pICamera->get_Vendor(&VendorName);

78

Model property

Prototype
String Model

Comments
This is a read-only property that can be used to retrieve the model name of the camera, as a string.

Visual Basic 6.0 syntax
Dim ModelName As String
ModelName = Camera.Model

C++ syntax
BSTR ModelName;
HRESULT hr = pICamera->get_Model(&ModelName);

Serial property

Prototype
Long Serial

Comments
This is a read-only property that can be used to retrieve the serial number of the camera, as a Long.

Visual Basic 6.0 syntax
Dim SerialNo As Long
SerialNo = Camera.Serial

C++ syntax
LONG lSerialNo;
HRESULT hr = pICamera->get_Serial(&lSerialNo);

FriendlyName property

Prototype
String FriendlyName

Comments
This is a read-only property that can be used to retrieve an SDK-constructed “friendly name” for the camera,
as a Long. This “friendly name” is a combination of the vendor name, the model name and the serial number
of the camera.

A typical friendly name is similar to:

Unibrain Fire-i 1.2 40045266

Visual Basic 6.0 syntax
Dim FriendlyName As String
FriendlyName = Camera.FriendlyName

C++ syntax
BSTR FriendlyName;

79

HRESULT hr = pICamera->get_FriendlyName(&FriendlyName);

StreamFormat property

Prototype
FireiXStreamFormat StreamFormat

Comments
This is a read/write property that will retrieve or set the currently selected FireiXStreamFormat of this
FireiXCamera. Through this FireiXStreamFormat, all the streaming format functionality of the camera
is exposed to the programmer.

The “set” operation of this property is the equivalent of calling the Save method of FireiXStreamFormat.

Visual Basic 6.0 syntax
Dim StreamFormat As FireiXStreamFormat
Set StreamFormat = Camera.StreamFormat 'get
Camera.StreamFormat = StreamFormat 'set

C++ syntax
FireiXStreamFormat* pIStreamFormat;
HRESULT hr = pICamera->get_StreamFormat(&pIStreamFormat); //get
hr = pICamera->put_StreamFormat(pIStreamFormat); //set

Trigger property

Prototype
FireiXTrigger Trigger

Comments
This is a read/write property that will retrieve or set the currently selected FireiXTrigger of this
FireiXCamera. Through this FireiXTrigger, all the trigger functionality of the camera is exposed to the
programmer.

The “set” operation of this property is the equivalent of calling the Save method of FireiXTrigger.

Visual Basic 6.0 syntax
Dim Trigger As FireiXTrigger
Set Trigger = Camera.Trigger 'get
Camera.Trigger = Trigger 'set

C++ syntax
FireiXTrigger* pITrigger;
HRESULT hr = pICamera->get_Trigger(&pITrigger); //get
hr = pICamera->put_Trigger(pITrigger); //set

AutoExposure property

Prototype
FireiXFeature AutoExposure

80

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the
AutoExposure feature of the camera.

Visual Basic 6.0 syntax
Dim AutoExposure As FireiXFeature
Set AutoExposure = Camera.AutoExposure

C++ syntax
FireiXFeature* pIAutoExposure;
HRESULT hr = pICamera->get_AutoExposure(&pIAutoExposure);

Shutter property

Prototype
FireiXFeature Shutter

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the Shutter
feature of the camera.

Visual Basic 6.0 syntax
Dim Shutter As FireiXFeature
Set Shutter = Camera.Shutter

C++ syntax
FireiXFeature* pIShutter;
HRESULT hr = pICamera->get_Shutter(&pIShutter);

Gain property

Prototype
FireiXFeature Gain

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the Gain
feature of the camera.

Visual Basic 6.0 syntax
Dim Gain As FireiXFeature
Set Gain = Camera.Gain

C++ syntax
FireiXFeature* pIGain;
HRESULT hr = pICamera->get_Gain(&pIGain);

Iris property

Prototype
FireiXFeature Iris

81

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the Iris
feature of the camera.

Visual Basic 6.0 syntax
Dim Iris As FireiXFeature
Set Iris = Camera.Iris

C++ syntax
FireiXFeature* pIIris;
HRESULT hr = pICamera->get_Iris(&pIIris);

ColorUB property

Prototype
FireiXFeature ColorUB

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the U/B
component of the Color feature of the camera.

Visual Basic 6.0 syntax
Dim ColorUB As FireiXFeature
Set ColorUB = Camera.ColorUB

C++ syntax
FireiXFeature* pIColorUB;
HRESULT hr = pICamera->get_ColorUB(&pIColorUB);

ColorVR property

Prototype
FireiXFeature ColorVR

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the V/R
component of the Color feature of the camera.

Visual Basic 6.0 syntax
Dim ColorVR As FireiXFeature
Set ColorVR = Camera.ColorVR

C++ syntax
FireiXFeature* pIColorVR;
HRESULT hr = pICamera->get_ColorVR(&pIColorVR);

Hue property

Prototype
FireiXFeature Hue

82

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the Hue
feature of the camera.

Visual Basic 6.0 syntax
Dim Hue As FireiXFeature
Set Hue = Camera.Hue

C++ syntax
FireiXFeature* pIHue;
HRESULT hr = pICamera->get_Hue(&pIHue);

Saturation property

Prototype
FireiXFeature Saturation

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the
Saturation feature of the camera.

Visual Basic 6.0 syntax
Dim Saturation As FireiXFeature
Set Saturation = Camera.Saturation

C++ syntax
FireiXFeature* pISaturation;
HRESULT hr = pICamera->get_Saturation(&pISaturation);

Focus property

Prototype
FireiXFeature Focus

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the Focus
feature of the camera.

Visual Basic 6.0 syntax
Dim Focus As FireiXFeature
Set Focus = Camera.Focus

C++ syntax
FireiXFeature* pIFocus;
HRESULT hr = pICamera->get_Focus(&pIFocus);

Zoom property

Prototype
FireiXFeature Zoom

83

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the Zoom
feature of the camera.

Visual Basic 6.0 syntax
Dim Zoom As FireiXFeature
Set Zoom = Camera.Zoom

C++ syntax
FireiXFeature* pIZoom;
HRESULT hr = pICamera->get_Zoom(&pIZoom);

Brightness property

Prototype
FireiXFeature Brightness

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the
Brightness feature of the camera.

Visual Basic 6.0 syntax
Dim Brightness As FireiXFeature
Set Brightness = Camera.Brightness

C++ syntax
FireiXFeature* pIBrightness;
HRESULT hr = pICamera->get_Brightness(&pIBrightness);

Sharpness property

Prototype
FireiXFeature Sharpness

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the
Sharpness feature of the camera.

Visual Basic 6.0 syntax
Dim Sharpness As FireiXFeature
Set Sharpness = Camera.Sharpness

C++ syntax
FireiXFeature* pISharpness;
HRESULT hr = pICamera->get_Sharpness(&pISharpness);

Gamma property

Prototype
FireiXFeature Gamma

84

Comments
This is a read-only property that can be used to retrieve directly the FireiXFeature object for the Gamma
feature of the camera.

Visual Basic 6.0 syntax
Dim Gamma As FireiXFeature
Set Gamma = Camera.Gamma

C++ syntax
FireiXFeature* pIGamma;
HRESULT hr = pICamera->get_Gamma(&pIGamma);

Feature property

Prototype
FireiXFeature Feature(IN String FeatureName)

Comments
This is a read-only property that can be used to retrieve the FireiXFeature object of any of features of
the camera.

It takes the name (as a string) of the feature to locate the desired FireiXFeature object. This name is the
same as the one returned by the Name property of FireiXFeature. If the parameter passed is not a
recognized feature name, an error will occur.

Visual Basic 6.0 syntax
Dim Feature As FireiXFeature
Set Feature = Camera.Feature("Shutter")

C++ syntax
FireiXFeature* pIFeature;
HRESULT hr = pICamera->get_Feature(_T("Shutter"), &pIFeature);

RawConversion property

Prototype
FireiXRawConversion RawConversion

Comments
This is a read/write property that can be used to retrieve or set the Bayer conversion method that will be
employed in case it is set on the streaming format.

The Fire-iX SDK uses the Bayer conversion algorithms implemented in the Firei.dll and DirectShow APIs as
they are, benefitting automatically from future performance updates in them.

Possible values of the FireiXRawConversion enumerated value are:

rcNearestNeighbor,
rcBilinearInterpolation,
rcSmoothHueTransition

85

The three implemented algorithms are ordered “Best Performance → Best Quality”.
rcBilinearInterpolation is the default setting.

Please note that the rcSmoothHueTransition algorithm is only implemented in the Firei.dll API; if set
while using the DirectShow API, an error will occur.

Visual Basic 6.0 syntax
Dim RawConversion As FireiXRawConversion
RawConversion = Camera.RawConversion 'get
Camera.RawConversion = rcBilinearInterpolation 'set

C++ syntax
FireiXRawConversion RawConversion;
HRESULT hr = pICamera->get_RawConversion(&RawConversion); //get
hr = pICamera->put_RawConversion(rcBilinearInterpolation); //set

Register property

Prototype
FireiXRegister Register(IN Long Offset)

Comments
This is a read/write property that can be used to retrieve or set any register of the camera, given its offset as
a parameter.

The get operation will read the value from the camera and initialize a FireiXFeature object, returning it
to the programmer. The set operation will write the value to the camera, given a valid FireiXFeature
object. If for some reason the camera rejects the read or write request, an error will occur (the exception
information will contain the nature of the error).

Please note that the offset parameter is based at 0 – for accessing the command registers of the camera
(normally based at hex F0000000) the CommandRegister parameter can be used instead.

Visual Basic 6.0 syntax
Dim Register As FireiXRegister
Register = Camera.Register(&H404) 'get
Camera.Register(&H404) = Register 'set

C++ syntax
FireiXRegister* pIRegister;
HRESULT hr = pICamera->get_Register(0x404, &pIRegister); //get
hr = pICamera->put_Register(0x404, pIRegister); //set

CommandRegister property

Prototype
FireiXRegister CommandRegister(IN Long Offset)

86

Comments
This is a read/write property that can be used to retrieve or set any command register of the camera, given
its offset as a parameter. As “command register” is defined as a register with its offset based on the
command-base register offset (normally hex F0000000).

The get operation will read the value from the camera and initialize a FireiXFeature object, returning it
to the programmer. The set operation will write the value to the camera, given a valid FireiXFeature
object. If for some reason the camera rejects the read or write request, an error will occur (the exception
information will contain the nature of the error).

The CommandRegister property has the exact same effect as the Register property, if the command-
base offset is added to the offset parameter. Since this offset is theoretically variable (camera-specific), for
command registers it is best to use the CommandRegister property.

Visual Basic 6.0 syntax
Dim Register As FireiXRegister
Register = Camera.CommandRegister(&H504) 'get
Camera.CommandRegister(&H504) = Register 'set

C++ syntax
FireiXRegister* pIRegister;
HRESULT hr =

pICamera->get_CommandRegister(0x504, &pIRegister); //get
hr = pICamera->put_CommandRegister(0x504, pIRegister); //set

Icon property

Prototype
IPictureDisp Icon

Comments
This is a read-only property that can be used to retrieve an IPictureDisp object of icon-type, depicting
the camera itself. This picture is derived from an internal database of camera pictures that the Unibrain APIs
maintain and is selected automatically, using the camera vendor and model.

Visual Basic 6.0 syntax
Dim Icon As IPictureDisp
Icon = Camera.Icon

C++ syntax
IPictureDisp* pIIcon;
HRESULT hr = pICamera->get_Icon(&pIIcon);

NumOfMemoryPresets property

Prototype
Long NumOfMemoryPresets

87

Comments
This is a read-only property that can be used to retrieve the number of available memory presets of the
camera.

If this number is 0, the camera does not support memory presets (rendering the SaveToMemory and
LoadFromMemory methods inaccessible).

Visual Basic 6.0 syntax
Dim NumOfMemoryPresets As Long
NumOfMemoryPresets = Camera.NumOfMemoryPresets

C++ syntax
LONG lNumOfMemoryPresets;
HRESULT hr = pICamera->get_NumOfMemoryPresets(&lNumOfMemoryPresets);

SelectStreamFormat method

Prototype
SelectStreamFormat()

Comments
This method when called will bring up a “Stream Format Selector” dialog, as constructed and maintained
internally by the APIs. Through this dialog, user selection of a streaming format is possible. The appearance
of this dialog varies depending on the underlying API selected. If Firei.dll is currently running, the dialog will
look similar to:

88

If on the other hand the DirectShow API is currently running, the dialog will look similar to:

Upon the return of the method, the streaming format that the user selected will be also set on the camera
automatically. It can be retrieved by the programmer, if desired, through the StreamFormat property. If
the user did not select a format, pressing “Cancel”, there is no change made to the camera.

Visual Basic 6.0 syntax
Camera.SelectStreamFormat

C++ syntax
HRESULT hr = pICamera->SelectStreamFormat();

AttachPreviewCtrl method

Prototype
AttachPreviewCtrl(IN FireiXPreviewCtrl PreviewCtrl)

Comments
This method can be used to attach a FireiXPreviewCtrl object to this FireiXCamera, for video
preview purposes.

It has the exact same effect as calling the AttachCamera method of FireiXPreviewCtrl.

89

Visual Basic 6.0 syntax
Camera.AttachPreviewCtrl FireiXPreviewCtrl1

C++ syntax
HRESULT hr = pICamera->AttachPreviewCtrl(pIFireiXPreviewCtrl);

Run method

Prototype
Run()

Comments
This method will start the streaming of the camera.

If the FireiXCamera object is attached to a FireiXPreviewCtrl, the preview on that control will also
start.

If the camera is already running, a call to Run will have no effect5

Visual Basic 6.0 syntax

. If the camera for some reason cannot
start, or the preview window (if applicable) is invalid in some way, an error will occur.

Camera.Run

C++ syntax
HRESULT hr = pICamera->Run();

Stop method

Prototype
Stop()

Comments
This method will stop the streaming of the camera.

If the FireiXCamera object is attached to a FireiXPreviewCtrl, the preview on that control will also
stop.

If the camera is not running, a call to Stop will have no effect. If the camera for some reason cannot stop, an
error will occur.

Visual Basic 6.0 syntax
Camera.Stop

C++ syntax
HRESULT hr = pICamera->Stop();

5 This is not entirely true; if the camera was started while not being attached to a FireiXPreviewCtrl, then attached
and Run was called again, the preview will start.

90

IsRunning method

Prototype
Boolean IsRunning()

Comments
This method will return whether the camera is currently running.

Please note that IsRunning will return True even if the camera was not started during runtime (i.e., it was
running before the program was run).

Visual Basic 6.0 syntax
Dim Running As Boolean
Running = Camera.IsRunning

C++ syntax
VARIANT_BOOL bRunning;
HRESULT hr = pICamera->IsRunning(&bRunning);

GetStreamFormatsEnumerator method

Prototype
EnumFireiXStreamFormats GetStreamFormatsEnumerator()

Comments
This method can be used to retrieve the EnumFireiXStreamFormats object, the FireiXStreamFormat
enumerator object.

The EnumFireiXStreamFormats enumerator that is returned contains only the supported formats of the
specific camera at that specific time. Since the actual speed of the bus the camera is connected to can vary
depending on various parameters, the supported formats will also vary, depending on the speed of the bus
(besides the make and model of the camera).

For more information on how to iterate between the FireiXStreamFormat objects contained in
EnumFireiXStreamFormats, please refer to the EnumFireiXStreamFormats section of this text.

Visual Basic 6.0 syntax
Dim StreamFormats As EnumFireiXStreamFormats
Set StreamFormats = Camera.GetStreamFormatsEnumerator

C++ syntax
IEnumFireiXStreamFormats* pIStreamFormats;
HRESULT hr = pICamera->GetStreamFormatsEnumerator(&pIStreamFormats);

DisplayProperties method

Prototype
DisplayProperties()

91

Comments
This method when called will bring up a “Display Properties” dialog for the camera. This dialog can then be
used to set the various feature values of the camera.

Unlike the other UI-driven methods of the SDK (namely SelectCamera and SelectStreamFormat), this
dialog has an immediate effect on the camera as the values and settings of the features are changed.
Additionally, the method opens up the dialog and returns immediately. The dialog will remain open until the
user closes it, affecting the camera whether it is running or not.

The presented dialog is almost exactly the same in appearance, regardless if DirectShow or Firei.dll is the
current selected underlying API, and it looks similar to:

Visual Basic 6.0 syntax
Camera.DisplayProperties

C++ syntax
HRESULT hr = pICamera->DisplayProperties();

IsFeatureSupported method

Prototype
Boolean IsFeatureSupported(IN String FeatureName)

Comments
This method will return whether a given feature is supported. The feature parameter is defined as a String,
containing the name of the feature. This name is the same as the one the Name property of
FireiXFeature would return.

92

Visual Basic 6.0 syntax
Dim Supported As Boolean
Supported = Camera.IsFeatureSupported("Shutter")

C++ syntax
VARIANT_BOOL bSupported;
HRESULT hr =

pICamera->IsFeatureSupported(_T("Shutter"), &bSupported);

GetFeaturesEnumerator method

Prototype
EnumFireiXFeatures GetFeaturesEnumerator(

IN Boolean SupportedOnly,
IN FireiXFeatureGroup FeatureGroup
)

Comments
This method will construct and return an EnumFireiXFeatures object. This enumerator will contain the
FireiXFeature objects, depending on the parameters pass to GetFeaturesEnumerator. The first
parameter will toggle whether all features will be returned, or only the ones supported by the camera.
Additionally, since the features are divided in 3 groups (Exposure, Color, Basic), through the FeatureGroup
parameter, further reduction on the returned set can be achieved.

The possible values for the FeatureGroup parameter are:

fgAll,
fgExposure,
fgColor,
fgBasic

If fgAll is selected, all features will participate in the enumerator, otherwise only the ones defined by the
FireiXFeatureGroup value.

For more information on how to iterate between the FireiXFeature objects contained in
EnumFireiXFeatures, please refer to the EnumFireiXFeatures section of this text.

Visual Basic 6.0 syntax
Dim Features As EnumFireiXFeatures
Set Features = Camera.GetFeaturesEnumerator(True, fgAll)

C++ syntax
IEnumFireiXFeatures* pIFeatures;
HRESULT hr = pICamera->GetFeaturesEnumerator(

VARIANT_TRUE,
fgAll,
&pIFeatures
);

93

GetCurrentResolution method

Prototype
GetCurrentResolution(OUT Integer Width, OUT Integer Height)

Comments
This method will return (by reference) the width and height of the camera stream format resolution in
pixels.

Visual Basic 6.0 syntax
Dim Width, Height As Integer
Camera.GetCurrentResolution Width, Height

C++ syntax
SHORT shWidth, shHeight;
HRESULT hr = pICamera->GetCurrentResolution(&shWidth, &shHeight);

GetCameraPhoto method

Prototype
IPictureDisp GetCameraPhoto(

IN Integer EdgeSize,
IN Byte bgRed,
IN Byte bgGreen,
IN Byte bgBlue,
IN Byte bgAlpha
)

Comments
This method constructs and returns an IPictureDisp object, of type bitmap, that contains a photograph of the
camera connected. This photograph is derived from an internal database that Unibrain maintains, and the
SDK utilizes.

The resulting picture will be square (width equal height); the size of each edge can be defined. Additionally,
the programmer can choose the background color of the picture (for rendering transparently on a control),
in all 4 color components, Red, Green, Blue and Alpha.

Visual Basic 6.0 syntax
Dim Photo As IPictureDisp;
Photo = Camera.GetCameraPhoto(80, 255, 255, 255, 255)

C++ syntax
IPictureDisp* pIPhoto;
HRESULT hr = pICamera->GetCameraPhoto(80, 255, 255, 255, 255, &pIPhoto);

SaveToMemory method

Prototype
SaveToMemory(IN Byte ChannelNumber)

94

Comments
This method will save all current features to a memory preset channel on the camera. Since channel 0 is
reserved for the camera default values, it cannot be used as a parameter in SaveToMemory.

In order to ascertain what the maximum channel number allowed is, the NumOfMemoryPresets property
can be used: in effect, the number representing the NumOfMemoryPresets value is the maximum allowed
value for SaveToMemory.

If for any reason the camera cannot save the settings, an error will occur.

Visual Basic 6.0 syntax
Camera.SaveToMemory 1

C++ syntax
HRESULT hr = pICamera->SaveToMemory(1);

LoadFromMemory method

Prototype
LoadFromMemory(IN Byte ChannelNumber)

Comments
This method will load all current features from a memory preset channel of the camera. Since channel 0 is
reserved for the camera default values, it cannot be used as a parameter in LoadFromMemory.

In order to ascertain what the maximum channel number allowed is, the NumOfMemoryPresets property
can be used: in effect, the number representing the NumOfMemoryPresets value is the maximum allowed
value for LoadFromMemory.

If for any reason the camera cannot load the settings, an error will occur.

Visual Basic 6.0 syntax
Camera.LoadFromMemory 1

C++ syntax
HRESULT hr = pICamera->LoadFromMemory(1);

SaveToXML method

Prototype
SaveToXML(IN String Filename)

Comments
This method will save all current features to a file on disk, in XML format. The parameter passed represents
the filename to save as, and it cannot be empty.

The resulting XML file has 100% compatible format with the XML files saved and loaded from the other
Unibrain tools, like FireIIDC and Fire-i Application.

If for any reason the file cannot be written to disk, an error will occur.

95

Visual Basic 6.0 syntax
Camera.SaveToXML "c:\settings.xml"

C++ syntax
HRESULT hr = pICamera->SaveToXML(_T("c:\settings.xml"));

LoadFromXML method

Prototype
LoadFromXML(IN String Filename)

Comments
This method will load all features from an XML file on disk, and set them to the camera. The parameter
passed represents the filename to load from, and it cannot be empty.

The XML file being loaded can be the one saved with SaveToXML, or any other XML files created by the
other Unibrain tools, like FireIIDC and Fire-i Application, since these are 100% compatible.

If for any reason the settings cannot be loaded or set to the camera, an error will occur.

Visual Basic 6.0 syntax
Camera.LoadFromXML "c:\settings.xml"

C++ syntax
HRESULT hr = pICamera->LoadFromXML(_T("c:\settings.xml"));

RetrieveStreamFormat method

Prototype
FireiXStreamFormat RetrieveStreamFormat(

IN FireiXPixelFormat PixelFormat,
IN FireiXResolution Resolution
)

Comments
This method will return a FireiXStreamFormat object that has the given FireiXPixelFormat and
FireiXResolution attributes, provided it is supported by the camera.

There is only a single FireiXStreamFormat object having the same FireiXPixelFormat and
FireiXResolution values.

Visual Basic 6.0 syntax
Dim StreamFormat As FireiXStreamFormat
Set StreamFormat = Camera.RetrieveStreamFormat(pfY_MONO, res320x240)

C++ syntax
IFireiXStreamFormat* pIStreamFormat;
HRESULT hr = pICamera->RetrieveStreamFormat(
 pfY_MONO, res320x240, &pIStreamFormat);

96

RetrieveStreamFormatFromIdentifier method

Prototype
FireiXStreamFormat RetrieveStreamFormatFromIdentifier(
 IN Long Identifier

)

Comments
This method will return a FireiXStreamFormat object that has the given unique identifier. This identifier
can be retrieved by the Identifier property of FireiXStreamFormat only.

If the identifier given is not valid, or if it points to a FireiXStreamFormat that is not supported by the
camera, an error will occur.

Visual Basic 6.0 syntax
Dim Identifier As Long 'Identifier value retrieved by any means
Dim StreamFormat As FireiXStreamFormat
Set StreamFormat = _
 Camera.RetrieveStreamFormatFromIdentifier(Identifier)

C++ syntax
IFireiXStreamFormat* pIStreamFormat;
LONG lIdentifier; // lIdentifier value retrieved by any means
HRESULT hr = pICamera->RetrieveStreamFormatFromIdentifier(
 lIdentifier, &pIStreamFormat);

FrameReceived event

Prototype
FrameReceived(IN FireiXFrame Frame)

Comments
This event is fired whenever a frame is received from the camera, after it has been converted to RGB for
viewing, but before having been actually sent to the screen (if applicable). It is therefore useful both to
perform image processing using the provided FireiXFrame object and manipulation before display.

The supplied FireiXFrame object can be considered valid in the context of the event handler, and any
changes made to it (through its methods) are then reflected on the preview screen (if applicable) upon exit
from the event handler.

Syntax
Since event handlers are usually created automatically by the underlying programming environment, it
would not be useful to provide sample code here.

DeviceRemoved event

Prototype
DeviceRemoved()

97

Comments
This event is only ever fired once during the lifecycle of the FireiXCamera object, if the camera is
physically removed from the system.

Since calling any methods or properties of the camera after it has been removed would result in an error,
this event notifies that the camera has been unplugged, giving the programmer the chance to handle the
situation.

Syntax
Since event handlers are usually created automatically by the underlying programming environment, it
would not be useful to provide sample code here.

	Table of Contents
	Introduction
	Technical Details
	Architecture
	Performance
	Installation
	Design

	Usage
	Scenario I – Simple video viewer
	Scenario II – Controlling camera features
	Scenario III – Manipulating captured frames
	Scenario IV – Working with a ROI (a.k.a. Format 7)

	Reference
	FireiXPreviewCtrl
	CreateManager method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	AttachCamera method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	LeftClick event
	Prototype
	Comments
	Syntax

	RightClick event
	Prototype
	Comments
	Syntax

	FireiGUID
	Byte property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	ToString method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FromString method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXManager
	GetNumOfConnectedCameras method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SelectCamera method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	GetCameraFromIndex method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	GetCameraFromGUID method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	UseDirectShow method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXRegister
	Bit property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Field property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FieldLen property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SwapEndian method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXTrigger
	AbsControl property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Enabled property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Polarity property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Source property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Value property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Mode property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsSupported property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasAbsolute property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	CanRead property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasOnOff property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasPolarity property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	CanReadRaw property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Parameter property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsSourceSupported method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsModeSupported method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Reload method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Save method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXStreamFormat
	PixelFormatString property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	PixelFormat property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Resolution property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsUserDefined property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsCurrent property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Description property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Identifier property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Fixed property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	UserDefined property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	RawModeOverride property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Width property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Height property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Save method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Reload method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXFixedStreamFormat
	ResolutionString property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FrameRateString property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FrameRate property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Width property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Height property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	PacketSize property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	PacketsPerFrame property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Description property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsFrameRateSupported method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Save method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Reload method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXUserDefinedStreamFormat
	Left property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Right property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Top property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Bottom property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Width property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Height property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MaxWidth property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MaxHeight property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HorizontalPositionUnit property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	VerticalPositionUnit property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	WidthUnit property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HeightUnit property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MaxPacketSize property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	PacketSizeUnit property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	PacketSize property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Description property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SetROI method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsValid method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Save method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Reload method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	EnumFireiXStreamFormats
	Reset method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Next method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXFeature
	Name property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsSupported property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasAbsolute property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasOnePush property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	CanRead property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasOnOff property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasAuto property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasManual property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MinValue property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MaxValue property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Absolute property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Enabled property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	AutoMode property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Value property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	HasSoftAbsolute property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SoftAbsolute property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	ValueString property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MinValueString property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MaxValueString property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Unit property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	AbsoluteValue property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MinAbsoluteValue property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	MaxAbsoluteValue property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Reload method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	OnePush method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	EnumFireiXFeatures
	Reset method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Next method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXFrame
	GetPixel method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SetPixel method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	GetRGB method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SetRGB method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SaveToFile method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FlipHorizontally method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FlipVertically method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Negative method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	ToPicture method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	DrawLine method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	DrawString method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	DrawRectangle method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	DrawLineRGB method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	DrawStringRGB method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	DrawRectangleRGB method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FireiXCamera
	GUID property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Vendor property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Model property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Serial property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FriendlyName property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	StreamFormat property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Trigger property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	AutoExposure property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Shutter property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Gain property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Iris property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	ColorUB property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	ColorVR property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Hue property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Saturation property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Focus property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Zoom property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Brightness property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Sharpness property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Gamma property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Feature property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	RawConversion property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Register property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	CommandRegister property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Icon property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	NumOfMemoryPresets property
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SelectStreamFormat method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	AttachPreviewCtrl method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Run method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	Stop method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsRunning method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	GetStreamFormatsEnumerator method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	DisplayProperties method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	IsFeatureSupported method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	GetFeaturesEnumerator method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	GetCurrentResolution method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	GetCameraPhoto method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SaveToMemory method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	LoadFromMemory method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	SaveToXML method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	LoadFromXML method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	RetrieveStreamFormat method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	RetrieveStreamFormatFromIdentifier method
	Prototype
	Comments
	Visual Basic 6.0 syntax
	C++ syntax

	FrameReceived event
	Prototype
	Comments
	Syntax

	DeviceRemoved event
	Prototype
	Comments
	Syntax

