
FireAPI User Mode Interface Unibrain

Unibrain FireAPI™
Documentation

1394 Class Driver

User Mode Interface

Release 5.60 (Dec 2008)

A detailed list of features added to each version of FireAPI

can be found at the end of this document.

FireAPI User Mode Interface Unibrain

Part I - Technical Overview .. 1
Introduction .. 2
References from the IEEE-1394 Standard ... 2
Architecture .. 3
Conventions ... 3
Before You Start .. 4

Initializing with FireAPI ... 5
Initializing and Terminating 1394 Support .. 5
Multiple Adapter Support ... 6
Enumerating the installed adapters .. 6
Opening a handle to an adapter ... 7
Opening an adapter by GUID... 8
Receiving notifications about the dynamic addition of 1394 adapters 9

Asynchronous Operations ... 10
Initiating Transaction Requests .. 10

Maximum Transmission Speed Per Destination NodeID 10
Maximum Asynchronous Packet Size .. 11
Bandwidth Consumption .. 13
Broadcast Requests ... 13
Software Loopback .. 13
Transaction Management .. 14
Transaction Label Management for Outgoing Transaction Requests 14
Transmit Order ... 15
NodeID & Device Functions ... 16
Bus Resets & Asynchronous Transactions .. 18
Bus Reset Exceptions (obsolete) ... 19
Reading the GUID of bus nodes .. 20
Reading the GUID of bus nodes – Transaction Failures 21
Reading the GUID of bus nodes – Transaction Timeouts 22
Reading the GUID of bus nodes – Various Notes 23
Determining the nodes connected to the 1394 Bus 24
Enumerating the Devices on the 1394 Bus .. 26
Non-blocking Calls ... 28
Write Transaction Requests ... 30
Lock Transaction Requests.. 31
Handle-Based Functions .. 33
Using Device Handles .. 34
Retrying transactions with C1394Retry functions 37
Performing Asynchronous Streaming transactions 38

Accepting Transactions from Remote Nodes ... 41
The 1394 Address Space .. 41
Address Ranges in the 1394 Address Space... 42
Allocating and Freeing an Address Range ... 43
Incoming Transaction Request Processing .. 45
Application Control Flow .. 47
Simple CSR Server Sample ... 47
Mapping an Address Range to more than one adapters 49

FireAPI User Mode Interface Unibrain

Performance Optimization for Incoming Requests 49
Requests Spanning Address Ranges .. 51
Receiving Asynchronous Streaming transactions 51
Advantages of FireAPI Incoming Transaction Request Processing 51
Summary of Class Driver Transaction Processing functions.................... 51
Common Errors in Transaction Processing.. 52

Event Notifications .. 53
Registering a Bus Reset Notification .. 54
Using a separate thread for events .. 56
Notes on Bus Reset Processing .. 58

Isochronous Operations ... 59
Adapter Channels & DMA Channels .. 59
DMA Multiplexing ... 61
DMA Multiplexing Modes ... 62
Opening an Adapter Channel... 64
Enabling stream channel numbers for an Adapter Channel 65

Adapter Channel Operating Models ... 68
Queued-Completion Model .. 70
Instant Completion Notification .. 71
Isochronous Request Types .. 72
Why use ‘Packet’ or ‘Fixed’ operations? .. 74
Design Examples ... 75

Processing Isochronous Requests ... 77
Outline of Isochronous Processing Loop ... 77
Queueing Isochronous Requests ... 78
Retrieving Complete Isochronous Requests .. 79
How many requests to queue? .. 80
Queueing ‘Small’ Requests .. 81
Isochronous Options .. 82
Common Mistakes in Isochronous Processing .. 83
Isochronous Operation Limits .. 87

Isochronous Resource Allocation ... 88
Isochronous Timing .. 88
The Protocol ... 88
Bus Reset & Isochronous Resources .. 90
Identifying the IRM ... 90
Allocating a channel number using compare swap 90
Allocating bandwidth using compare swap .. 92
Freeing Isochronous Resources .. 92

VersaPHY Operations ... 93
VersaPHY Basics ... 93
VersaPHY Functions & Profiles ... 93
VersaPHY Transactions ... 94
VersaPHY API Overview ... 94
VersaPHY PhyID functions .. 94
VersaPHY Label functions ... 94
VersaPHY Packet Structures ... 95
VersaPHY Packet Initialization/Handling ... 96

FireAPI User Mode Interface Unibrain

VersaPHY Transaction Serialization .. 96
VersaPHY Transaction Timeout ... 97

Miscellaneous Topics ... 98
Endianess Considerations ... 98
Endianess Swapping ... 98
Utility String Functions ... 99
64-bit Integer Arithmetic ... 100
Path Speed Information ... 101
Bus Topology Information .. 103
C1394_NODE_INFO ... 103
SelfID Analysis Error Codes ... 106
Topology Analysis Error Codes .. 108
Manipulating CYCLE_TIME timestamps .. 109
Application Reaction Time ... 112
Accessing the Link Layer Registers ... 115
Changing the FIFO settings ... 116

Part II FireAPI Function Reference 120

Initialization Functions ... 121
C1394Initialize .. 122
C1394Terminate ... 123
C1394GetAdapters ... 124
C1394OpenAdapter ... 125
C1394CloseAdapter ... 126

Outgoing Asynchronous Transactions 127
C1394ReadNode .. 128
C1394WriteNode .. 131
C1394LockNode ... 134
C1394CompareSwapNode ... 139
C1394TransmitRaw .. 141
C1394ReadNodeAsynch .. 143
C1394WriteNodeAsynch .. 146
C1394LockNodeAsynch ... 149
C1394PingNode ... 153
C1394ReadPHYRegister ... 154
C1394QueryPhyBaseRegs .. 156
C1394QueryPhyPagedRegs .. 158
C1394TransmitPackets .. 160

FIREAPI_TRANSACTION ... 164
C1394AcknowledgeBusReset .. 166
C1394CompleteAsynch .. 167

Incoming Asynchronous Transactions 168
C1394MapAddressRange .. 169
C1394UnmapAddressRange .. 173
C1394GetNextRequest .. 174
C1394SendErrorResponse .. 176
C1394SendResponse .. 177

FireAPI User Mode Interface Unibrain

C1394ServiceTransactionRequest ... 178
C1394CompletePacket .. 179
C1394CompletePackets ... 179

Device Handle Functions ... 180
C1394OpenDevice ... 181
C1394CloseDevice ... 182
C1394ReadDevice ... 183
C1394WriteDevice ... 186
C1394GetDeviceNodeId .. 189

Retry Functions ... 190
C1394MayRetryTransaction ... 191
C1394RetryReadNodeInQuads .. 192
C1394RetryReadNodeExInQuads ... 193
C1394RetryReadDeviceInQuads ... 194
C1394RetryWriteDeviceInQuads ... 195

Isochronous Processing .. 196
C1394OpenAdapterChannel .. 197
C1394CloseAdapterChannel .. 200
C1394IsochQueue ... 201
C1394GetNextCompleteRequest ... 203
C1394IsochCancel ... 204

VersaPHY Functions ... 205
C1394VPReadNode ... 206
C1394VPWriteNode ... 209
C1394VPSendPacket ... 212
C1394VPChannelOpen .. 213
C1394VPChannelClose ... 216
C1394VPChannelGetNextPacket ... 217
C1394VPChannelRead .. 218
C1394VPChannelWrite .. 220

Control & Information Functions 221
C1394BusReset ... 222
C1394IsBusResetInProgress ... 223
C1394GetBusResetCount .. 224
C1394QueryInformation ... 225
C1394QueryBooleanInformation .. 238
C1394QueryULONGInformation .. 239
C1394SetInformation ... 240
C1394GetAdapterMaxRec ... 244
C1394GetAdapterGUID ... 245
C1394GetAdapterNodeID .. 246
C1394GetAdapterSpeed .. 247
C1394GetCycleTime .. 248
C1394GetIRMNodeID .. 249
C1394GetRootNodeID ... 250
C1394GetMaxPayloadForMaxRec ... 251

FireAPI User Mode Interface Unibrain

C1394GetMaxPayloadForSpeed .. 252
C1394GetMaxSpeedBetweenNodes .. 253
C1394GetMaxSpeedToNode ... 254
C1394GetNodeSpeed .. 255
C1394GetPhyPacketType .. 256
C1394GetTransactionType .. 257
C1394GetExpectedResponseCode ... 258
C1394IsResponseCodeLegal ... 259
C1394IsTransactionCodeLegal .. 260

Event Notification Functions 261
C1394RegisterNotification .. 262
C1394UnregisterNotification... 266
C1394GetAsynchEvent .. 267
C1394GetAsynchEventHandle ... 268
C1394GetAddAdapterEventHandle .. 269

Miscellaneous Functions ... 270
C1394AddBigEndian32 .. 271
C1394AddBigEndian64 .. 271
C1394CalculateCRC16 .. 272
C1394CalculateCRC8 .. 273
C1394CalculateLinkCRC ... 274
C1394DebugPrint ... 275

Part III FireAPI Structures & Macros Reference 276
C1394_PACKET_HEADER .. 277

Incoming Packets & C1394_PACKET_HEADER 277
Outgoing Packets & C1394_PACKET_HEADER 279

FIREAPI_ISOCH_REQUEST ... 282
Request Index .. 285
Request Timeouts .. 285
Bus Reset Handling ... 287
Other Options ... 288
Isochronous Completion Status ... 289

Isochronous Operation Parameters .. 291
C1394_ISOCH_RCV_FIXED_PKTS .. 291
C1394_ISOCH_RCV_FIXED_DATA ... 293
C1394_ISOCH_RCV_FIXED_DATA_NH .. 295
C1394_ISOCH_XMIT_PKTS ... 296
C1394_ISOCH_XMIT_FIXED_PKTS ... 298
C1394_ISOCH_XMIT_DATA ... 300
C1394_ISOCH_IDLE_CYCLES ... 301

Isochronous Packet Header Structures & Macros 302
C1394_STREAM_PACKET_HEADER .. 302
MAKE_ISOCH_HEADER .. 302

PHY Packet Structures & Macros ... 303
C1394_PHY_PACKET_GENERIC .. 303
C1394_PHY_PACKET_SELF_ID_0 .. 303
C1394_PHY_PACKET_SELF_ID_N .. 304
C1394_PHY_PACKET_SELF_ID_1 .. 305

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_SELF_ID_2 .. 306
C1394_PHY_PACKET_SELF_ID_3 .. 307
C1394_PHY_PACKET_LINK_ON ... 307
C1394_PHY_PACKET_CONFIGURATION ... 308
C1394_PHY_PACKET_EXTENDED ... 308
C1394_PHY_PACKET_PING .. 309
C1394_PHY_PACKET_REMOTE_ACCESS ... 309
C1394_PHY_PACKET_REMOTE_REPLY .. 310
C1394_PHY_PACKET_REMOTE_COMMAND 311
C1394_PHY_PACKET_REMOTE_CONFIRMATION 312
C1394_PHY_PACKET_RESUME ... 313
C1394_PHY_PACKET ... 313

Status Codes Reference (alphabetical listing) .. 315

Change History (reverse chronological order) 318

FireAPI User Mode Interface Unibrain

Part I - Technical Overview

Page 1

FireAPI User Mode Interface Unibrain

Introduction
This document contains a description of the 1394 features provided by FireAPI. It is not intended as a
general purpose 1394 tutorial. Please refer to the IEEE 1394 standard or to other provided
documentation for a general description of the operations of the 1394 protocol.

This documentation assumes that you are familiar with the following core 1394 concepts:

• 1394 Address Space & Topology
• Bus & Physical Identifiers
• 1394 Bus Reset procedures
• 1394 Transmission Rates
• Control & Status Registers (CSRs)
• Transaction Requests & Responses
• Split & Unified Transactions
• Transaction Labels
• Packet Acknowledges
• Asynchronous & Isochronous transmission mode
• 1394 Globally Unique Identifiers (GUIDs)

You may get information about the above concepts by referring to the following paragraphs of the
IEEE 1394-1995 and IEEE 1394a-2000 standards:

References from the IEEE-1394 Standard
Ch.2 Definitions & Abbreviations 4.3.4.1 SelfID Packet
3.2.1 Cable Environment 4.3.4.2 LinkOn Packet
3.3 Addressing 4.3.4.3 PHY Configuration Packet
3.4 Protocol Architecture 4.3.6 Gap Timing
3.4.1 Data Transfer Services 6.2 up to Packet Formats

6.2.5.2.2 3.5 Transaction Layer
3.5.1 Transaction Layer Services 7.3.2 up to Transaction Descriptions

7.3.2.5 3.5.2 Lock Subcommands
3.6 Link Layer 8.1 Serial Bus Mgmt Summary
3.6.1 Link Layer Services 8.1.1 Node Control
3.6.2 Link and Transaction Layer Interactions 8.1.2 Isochronous Resource Manager
3.6.2.1 Unified Transactions 8.1.4 Bus Manager
3.6.2.2 Split Transactions 8.3.1 Node Capabilities Taxonomy
3.6.2.3 Subaction Concatenation 8.3.2 Command & Status Registers
3.6.3 Asynchronous Arbitration 8.3.2.3 Serial Bus Dependent Registers
3.6.4 Isochronous Arbitration 8.4.2 Bus Configuration Procedures
3.7.2 Fair Arbitration 8.4.3 Isochronous Management
3.7.3.1 Cable Configuration 8.4.5 Speed Management
3.7.3.1.1 Bus Initialize 8.4.5.1 Accessing the Speed Map
3.7.3.1.2 Tree Identify 8.4.6 Topology Management
3.7.3.1.3 Self Identify 8.4.6.1 Accessing the Topology Map
3.7.3.2 Normal Arbitration Annex E.3 Ph.Layer Configuration Example
3.8 Bus Management Annex H Bus Configuration Example

Page 2

FireAPI User Mode Interface Unibrain

Architecture
Unibrain’s 1394 stack is formed by a set of drivers layered on top of each other. The heart of this stack
is the driver that implements the 1394 protocol (the transaction layer) and provides all the services that
are needed by client drivers and applications. This is called the 1394 Class Driver (UB1394.SYS), often
simply refered to as the Class Driver.

Beneath the 1394 Class Driver lie one or more 1394 Miniport Drivers (for example UBLYNX.SYS or
UBOHCI.SYS). A 1394 miniport driver is assigned very specific tasks that have to do with directly
accessing the adapter hardware. The 1394 Class Driver never directly accesses the adapter hardware,
but uses the services of a 1394 Miniport Driver in order to do so.

Above the 1394 Class Driver lay one or more Client Drivers. 1394 Client Drivers use the services
provided by the class driver in order to communicate over the 1394 physical medium. FireNet
(UBFWNET.SYS) and the Serial Bus Manager are 1394 Client Drivers.

Components like FireNet™ can only be implemented in kernel mode, since FireNet™ also is a network
driver, and network drivers necessarily run in kernel mode. The Serial Bus Manager could possibly run
as a user mode service, but it was implemented as a kernel driver in order to ensure that it would be
able to respond as fast as possible to the various bus events.

In general, any component that is speed-critical, and/or provides some form of programming interface
to higher level components (applications or higher level kernel mode components), should be
implemented in kernel mode.
Otherwise a user mode application or service (demon) should be all that is required to do whatever is
necessary.

Conventions
• All FireAPI functions are prefixed with the C1394 prefix. The term C1394XXX will be used when

reffering to any of the functions of FireAPI.
• Sample code will be typed in a fixed pitch font.
• Color-coding will be used in the sample code for easier reading. This will be applied to comments,

keywords, numbers and strings. Additionally C1394XXX function calls will be in bold text.
• A variant of Hungarian naming is used for variables. Each variable name is prefixed by one or

more characters that identify its type. Additionally, all global variables are prefixed with a ‘g_’ and

Page 3

FireAPI User Mode Interface Unibrain

all function arguments with a ‘a_’. For example:
 uIndex is a local variable of type unsigned long.
 g_uOperations is a global variable of type unsigned long.
 a_puIndex is a parameter that is a pointer to an unsigned long.
 szName is a local string variable.

• When the text refers to function, type and constant names they will appear in this font:
C1394Initialize.

• When the text refers to file names they will appear in this font: FireAPI.h
• When the text refers to structure fields and parameters their names will appear italicised.
• Most C1394XXX functions need to return error information to the caller. For this reason FireAPI

uses the STATUS_1394 type, which includes several status codes. A listing of these codes can be
found at the end of this document.
STATUS_1394_SUCCESS is the status code that is used to indicate that an operation is successful.
Almost all other status codes are describing an error situation.

• Sample code fragments will usually not include complete error-handling code in order to keep the
text simple and small.

Before You Start
• Each source file that uses FireAPI functions must include the header file FireAPI.h. All other

necessary header files are pulled in by this file.
• You must add the directory where the FireAPI header files reside to your project’s include

directories.
• You must add the directory where the FireAPI library files reside to your project’s library

directories.
• You must add UB1394.LIB to the link libraries of your project.
• C1394INITIALIZE.OBJ is for kernel mode FireAPI clients only. Do not use with applications.
• You must have UB1394.DLL installed in a directory where it can be located by your executable. It

is suggested that you either copy UB1394.DLL to a directory that is in your system’s PATH, or that
you add the directory where UB1394.DLL is installed to your system’s PATH.

• The installation program of the ubCore 1394 runtime provided with FireAPI installs the retail
version of the drivers (also called free drivers). It is strongly suggested that you install the debug
drivers and DLL1 that can be found in the FireAPI Drivers directory.
The debug binaries provide warning and error messages for ALL failed FireAPI operations
(invalid parameters, unsucessful operations etc). This will provide invaluable help during all stages
of your development process.
In order to be effective on this you have to install all the debug binaries (SYS and DLLs). For
example, if an operation fails inside UB1394.DLL but you only have the debug SYS files installed,
then you will not see the related debug messages.
Unibrain will only provide FireAPI developer support if the reported problems are accompanied
by the messages produced by the debug binaries, or if the problem only occurs on free drivers but
not on debug drivers.

1 See the FireAPI Installation Guide for information on how to install the debug binaries, and how to
view the kernel debugger messages.

Page 4

FireAPI User Mode Interface Unibrain

Initializing with FireAPI

Initializing and Terminating 1394 Support
The very first thing that a FireAPI application has to do is to call C1394Initialize, which performs all
the necessary actions to initialize support for 1394. This is the function that will check whether the
FireAPI driver stack is installed properly and the appropriate drivers started, and initialize the internal
structures that the stack will need.
This call is coupled with a call to C1394Terminate, usually when the application exits.

If any C1394xxx function is called before C1394Initialize or after C1394Terminate, then the call will
fail.

The sample code below demonstrates the usage of these functions.

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 STATUS_1394 Status1394;

 Status1394 = C1394Initialize();

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf("C1394Initialize failed with status %s\n",
 C1394StatusString(Status1394));
 return -1;
 }

 // Do other processing.
 puts("Processing...");

 C1394Terminate();
 return 0;
}

A well behaved application should always check the return value of C1394Initialize and handle the
failure as appropriate. See the comments section of C1394Initialize for more information on the
reasons that could make this function fail.

It is not mandatory to call C1394Terminate when the application is exiting. For example if an
application crashes, then the 1394 stack will automatically perform the operations performed by
C1394Terminate.
This means that application writers need not worry about calling this function from inside fatal error or
abnormal termination handlers.
However it is suggested that developers call this function upon normal application termination.

Page 5

FireAPI User Mode Interface Unibrain

Multiple Adapter Support
FireAPI supports multiple adapters in the same PC and implements a separate 1394 address space for
each adapter.
It would not be not correct to implement a single 1394 address space on the PC, because the host
computer cannot be considered to be the “1394 Node”.
This is because there are data in 1394 Control and Status Registers (CSRs) that logically and
technically belong to a specified bus or adapter (BUS_MANAGER_ID register, Configuration ROM
information, TOPOLOGY_MAP registers etc).
Since each adapter must have different information on these registers, whose offsets are fixed, it is
necessary that the 1394 stack implements a different 1394 address space for each adapter.

Applications and client drivers running on a PC, must open one or more handles to the adapters
installed on the PC, in order to be able to perform any 1394 operations through these adapters. In
almost all FireAPI calls, the first parameter is the handle that identifies the adapter to the 1394 stack.

Unless an application has specific knowledge that it will execute in a system with 1 adapter, it should
be designed to expect more than one installed adapter on a PC. If the application can only work through
one adapter at a time, then it should provide the ability to let the user specify over which adapter it
wants to run.

Enumerating the installed adapters
The sample code below demonstrates how an application enumerates the adapters installed on the local
host:

#include <stdio.h>
#include <FireAPI.h>

#define MAX_ADAPTERS 4

main(void)
{
 C1394_GUID AdapterGuid[MAX_ADAPTERS];
 unsigned long I, uAdapters;

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 uAdapters = C1394GetAdapters(AdapterGuid, MAX_ADAPTERS);

 printf("%u adapters are locally installed.\n", uAdapters);

 for (I=0; I<uAdapters; I++)
 {
 printf("Adapter No.%u GUID : %02X %02X %02X %02X %02X %02X %02X %02X",
 I,
 (unsigned long) AdapterGuid[I].Bytes[0],
 (unsigned long) AdapterGuid[I].Bytes[1],
 (unsigned long) AdapterGuid[I].Bytes[2],
 (unsigned long) AdapterGuid[I].Bytes[3],
 (unsigned long) AdapterGuid[I].Bytes[4],
 (unsigned long) AdapterGuid[I].Bytes[5],
 (unsigned long) AdapterGuid[I].Bytes[6],
 (unsigned long) AdapterGuid[I].Bytes[7]
);
 }

 C1394Terminate();
 return 0;
}

Applications need not worry about what will happen if there are more adapters installed than what they
can handle. For example if MAX_ADAPTERS in the code fragment above was 2, and there were 3 installed
boards, then C1394GetAdapters would return 2.

Page 6

FireAPI User Mode Interface Unibrain

This means that an application that is written to work with only one adapter can simply go about as
shown below:

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_GUID AdapterGuid;

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 C1394GetAdapters(&AdapterGuid, 1);

 printf("Adapter GUID : %08X-%08X\n",
 SwapEndian32(*((unsigned long*) AdapterGuid.Bytes)),
 SwapEndian32(*((unsigned long*) &AdapterGuid.Bytes[4]))
);

 C1394Terminate();
 return 0;
}

This sample also demonstrates the use of FireAPI function SwapEndian32, that can be used to byte
swap a 32-bit value.

Opening a handle to an adapter
The following sample demonstrates the simplest way to open a handle to an adapter, which is to open a
handle to the default adapter. If there is only one adapter installed, then this is also the default adapter.
If there are more than one adapters installed, then the default adapter is the one that was enumerated
first by the 1394 stack2.

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 STATUS_1394 Status1394;

 C1394AdapterHandle = NULL;

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 Status1394 = C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

 if (STATUS_1394_SUCCESS != Status1394)
 return -2;

 // Do the rest of the processing.
 // ...

 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

As is the case with C1394Terminate, it is not mandatory to call C1394CloseAdapter when the
application is exiting. For example if an application crashes, then the 1394 stack will automatically
perform the operations performed by C1394CloseAdapter.
This means that application writers need not worry about calling this function from inside fatal error or
abnormal termination handlers.
However it is suggested that developers call this function upon normal application termination.

2 In future versions of FireAPI, when there are multiple adapters installed it will be possible to specify
which adapter will be the default through registry settings.

Page 7

FireAPI User Mode Interface Unibrain

Opening an adapter by GUID
The sample below demonstrates how to open a handle to all the adapters that are installed on the local
workstation.

#include <stdio.h>
#include <FireAPI.h>

#define MAX_ADAPTERS 4

main(void)
{
 C1394_GUID AdapterGuid[MAX_ADAPTERS];
 C1394_ADAPTER_HANDLE AdapterHandle[MAX_ADAPTERS];
 STATUS_1394 Status1394;
 unsigned long I, uAdapters;

 // Set everything to NULL.
 memset(AdapterGuid, sizeof(AdapterGuid), 0);
 memset(AdapterHandle, sizeof(AdapterHandle), 0);

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 uAdapters = C1394GetAdapters(AdapterGuid, MAX_ADAPTERS);

 for (I=0; I<uAdapters; I++)
 {
 Status1394 = C1394OpenAdapter(&AdapterGuid[I], NULL, &AdapterHandle[I]);

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf("C1394OpenAdapter returned %s\n", C1394StatusString(Status1394));
 goto Cleanup;
 }
 }

/////////////
Cleanup:;
 for (I=0; I<uAdapters; I++)
 if Handle[I]) (NULL != Adapter
 C1394CloseAdapter(AdapterHandle[I]);

 C1394Terminate();
 return 0;
}

For more information on C1394OpenAdapter see the description of this function.

Page 8

FireAPI User Mode Interface Unibrain

Receiving notifications about the dynamic addition of 1394 adapters
The sample below demonstrates how to receive notifications about the addition of 1394 adapters in the
system. This process happens through the Plug-n-Play functionality of the operating system. A disabled
1394 adapter might be enabled by the user through the Device Manager, or a PCMCIA 1394 adapter
might be added, in the case of a laptop.

#include <stdio.h>
#include <FireAPI.h>

#define MAX_ADAPTERS 4

main(void)
{
 HANDLE hWaitEvent;

 C1394_GUID AdapterGuid[MAX_ADAPTERS];
 C1394_ADAPTER_HANDLE AdapterHandle[MAX_ADAPTERS];
 DWORD WaitStatus;
 STATUS_1394 Status1394;
 unsigned long I, uAdapters;

 // Set everything to NULL.
 memset(AdapterGuid, sizeof(AdapterGuid), 0);
 memset(AdapterHandle, sizeof(AdapterHandle), 0);

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 hWaitEvent = C1394GetAddAdapterEventHandle();
 WaitStatus = WaitForSingleObject(hWaitEvent, FALSE, INFINITE);

 if(WAIT_OBJECT_0 == WaitStatus)
 {
 uAdapters = C1394GetAdapters(AdapterGuid, MAX_ADAPTERS);

 for (I=0; I<uAdapters; I++)
 {
 Status1394 = C1394OpenAdapter(&AdapterGuid[I], NULL, &AdapterHandle[I]);

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf(returned %s\n", "C1394OpenAdapter
 C1394StatusString(Status1394));
 goto Cleanup;
 }
 }
 }

/////////////
Cleanup:;
 for (I=0; I<uAdapters; I++)
 if Handle[I]) (NULL != Adapter
 C1394CloseAdapter(AdapterHandle[I]);

 C1394Terminate();
 return 0;
}

Note that the AddAdapter event handle is not initially signalled, so the code above will wait infinitely
if there is no new adapter added to the system. An application typically opens any adapters present
when it is starting up and then monitors the event for the addition of new adapters. When new adapters
are added the application should retrieve the GUIDs of all local adapters, compare them with those it
has already opened and locate itself the GUID of the new adapter.
For more information on C1394GetAddAdapterEventHandle see the description of this function.

Page 9

FireAPI User Mode Interface Unibrain

Asynchronous Operations

Initiating Transaction Requests
Maximum Transmission Speed Per Destination NodeID
One of the fundamental characteristics of 1394 is that the PHY chips automatically act as physical
repeaters, even if the node is unpowered or has its link layer turned off.
However due to the technical characteristics of 1394, nodes that operate at lower speeds cannot repeat
higher speed transmissions. This way they act as a traffic bottleneck.

According to the original 1394 standard (IEEE1394-1995), after a bus reset takes place the Serial Bus
Manager analyzes the configuration of the bus, calculates a speed map which contains the maximum
speed of communication between any two nodes on the bus, and publishes this information in the
SPEED_MAP registers.
The rest of the nodes on the bus can then read these values and find out what is the highest possible
transmission rate at which they can communicate with each other.

The SPEED_MAP registers have been obsoleted by the IEEE1394a-2000 standard, so this option is no
longer available to applications.

In 1394a and later, it is possible for each port on an adapter to operate on a different speed than the link
chip. The 1394a standard provides the means, by remote PHY register reads, to discover the speed that
each port runs at, and using topology information make it possible for a node to build a speed map for
the current topology of the 1394 bus.
The 1394 Class Driver at every node performs this analysis and can readily provide path-speed
information to any application running on the PC.

Page 10

FireAPI User Mode Interface Unibrain

This information is available to any application as soon as a bus reset is complete through the
C1394GetMaxSpeedToNode and C1394GetMaxSpeedBetweenNodes functions.

Broadcast packets should be transmitted at the speed of the slowest device on the bus, so that all
devices can receive the packet.

All transmission requests made to the 1394 Class Driver can contain the speed at which the
transmission should be made. However most high-level APIs do not take a speed parameter but
internally automatically select the maximum appropriate speed for the destination node.

Maximum Asynchronous Packet Size
The maximum size of outgoing asynchronous packets towards some node is dependent not only on the
maximum transmission speed on the path to that node, but also on the value of the max_rec field in the
destination node’s Bus_Info_Block.
Note that this limits the size of block write transactions that the target node can receive, and the size of
block read responses that the target node can send. It does not necessarily limit the size of block write
transactions that node can transmit.

The class driver provides the C1394GetMaxPayloadForSpeed and C1394GetMaxPayloadForMaxRec
functions in order to perform these calculations.

Currently the class driver does not take the max_rec field of the target node into consideration for
limiting the size of outgoing requests, but only uses the speed of the path to the target node.
This means for example that the class driver will fail3 an asynchronous block write of 1600 bytes or an
asynchronous block read of 1600 bytes to a destination that can be reached only at S200.

In future versions the class driver very shortly after a bus reset will read the max_rec field of all nodes,
and then combine this information with the path-speed information in order to calculate the maximum
asynchronous packet size for that node.

The tables below are taken from the 1394 standards, and can be used as references for the maximum
asynchronous block size depending on the speed, and max_rec.

Data Rate Maximum Data Payload (bytes)
S100 512
S200 1024
S400 2048
S800 4096

Table 1. Maximum payload size for primary packets with data block payload

The table above applies to asynchronous packets with data block payload. The limit for isochronous
packets is different (the double).

3 This means that the packet will not be transmitted at all, and a status code of
STATUS_1394_SIZE_LIMITATION will be returned.

Page 11

FireAPI User Mode Interface Unibrain

The encoding of the max_rec field is shown in the table below.

Code Maximum Data Payload (bytes)
0 Not specified
1 4
2 8
3 16
4 32
5 64
6 128
7 256
8 512
9 1024

A16 2048
B16 4096
C16 8192
D16 16384
E16 Reserved
F16 Reserved

Table 2. Encoding of max_rec field

Page 12

FireAPI User Mode Interface Unibrain

Bandwidth Consumption
The bandwidth that is necessary to transmit a packet, does not only depend on the size of the packet,
but also on the speed on which it is transmitted. As the transmission rate increases, the required
bandwidth is halfed. This is true both for asynchronous and isochronous transmissions.

For example it takes the double bandwidth to transmit a 512-byte packet at S100, than it takes to
transmit it at S200, and it takes double the bandwidth to transmit it at S200 than it takes at S400.

This means that transmitting a 512-byte packet at S100, consumes the same bandwidth4 as a 1024-byte
packet at S200 or a 2048-byte packet as S400.

It is obvious that transmissions at a rate lower than the required one are a waste of bandwidth and
applications should avoid them.

Broadcast Requests
Broadcast requests have a destination node ID equal to 6310 (3F16). Only write transactions (block or
quadlet) can be sent as broadcasts.

The class driver guarantees that a broadcast transaction uses a transaction label that is not in use at the
moment of transmission for all nodes on the bus. This is a very subtle detail of the 1394 protocol.
It is a requirement that a node must not have at the same time pending to a node on the bus more than
one transaction with the same transaction label. On a bus with heavy asynchronous traffic this
phenomenon will certainly manifest and it would be practically impossible to diagnose or deal with.
The class driver efficiently deals with this issue and relieves all applications from the possibility of
such an error. If that was not the case, then there would always be the possibility that a node rejected
the broadcast packet, and an application would have to design complex recovery procedures to deal
with such an error.

Broadcasts are by default sent at the broadcast speed, which is the speed of the slowest device on the
bus. This is done so that all devices can receive the transmission.
However it is possible for an application to send a broadcast at a speed higher that the broadcast speed.
In this case the application should know the bus topology, and make sure that it does not care for the
nodes that will miss the broadcast. Given this fact, there are two reasons why an application would
want to broadcast at a higher rate:
• Send a packet that is bigger that what can be transmitted at the broadcast speed.
• Consume less 1394 bandwidth.

Software Loopback
The miniport drivers provide completely transparent loopback functionality, and of course the class
driver supports it as well.
This means that an application can access 1394 registers owned by other applications or drivers on the
same machine. This is done through 1394 transactions, as if the target register lies on a different node.

This feature is very useful for applications, because it allows applications that communicate over 1394
to be developed and tested on a single PC before they are tested on the network, and of course allows
such applications to run on the same PC even in production environments.

Broadcasts are also loopbacked, but they must be specifically permitted for when a 1394 address range
is created. For more information refer to the discussion of the ACCESS_BROADCAST_LOOPBACK
flag in the description of function C1394MapAddressRange.

Raw transmissions (function C1394TransmitRaw) are not loopbacked.

4 Actually even more, because the 20 byte header should also be taken into consideration.

Page 13

FireAPI User Mode Interface Unibrain

Transaction Management
Transaction management is involved with implementing the 1394 transaction layer according to the
rules specified in the 1394 standards. The rules that must be followed are listed below:
• There are 64 transaction labels.
• A node should not have at any moment two pending split transaction requests with the same

transaction label transmitted to the same node.
• A node should not accept at any moment two pending split transactions from the same node with

the same transaction label.
• A response to a split transaction request should be received within the time interval described by

the value of the SPLIT_TIMEOUT register. Otherwise, the split transaction should be declared
timed out, and a late response should be discarded.

• When a split transaction is timed out, the transaction label should not be reused for a transaction to
the same node until twice the amount of time specified by the SPLIT_TIMEOUT register has
elapsed.

• A quadlet transaction is only allowed on a quadlet aligned address.
• The source NodeID in a transaction response should be exactly the same as the destination NodeID

in the corresponding transaction request. The class driver provides a configuration option that
relaxes this requirement and allows 3FF16 and the current bus ID of the local bus to be used
interchangeably. This is meant for use with hardware devices that always respond using 3FF16 as
the bus ID no matter what was the bus ID in the request packet.

• The data length of a transaction response should be exactly the same as the data length specified in
the corresponding transaction request.

• A block write response with data length equal to 4 can only be sent as an answer to a block write
request with data length equal to 4.

• A quadlet write response can only be sent for a quadlet write request.
• The above imply that the transaction label used in a broadcast transaction (destination

NodeID==63) must not be pending on any node.

An additional rule that will be added to prevent abnormal conditions is that if a read request is received
with a data_length field greater than what the node can transmit to the source node (due to packet size
limitations to that node), the transaction will be considered invalid and will be completed with a
resp_type_error.

Transaction Label Management for Outgoing Transaction Requests
The transaction label field in a packet header uses 6 bits. This means that a node can have a maximum
of 64 split transaction requests pending to a given node. If clients make more than 64 concurrent
transmission requests to a given destination node, then some of them will fail to allocate a transaction
label.

This is an error condition that might occur frequently on a bus with heavy asynchronous traffic, and
will only last for a short time.

The FireAPI class driver makes transaction label management completely
transparent to applications. An application never specifies the transaction
label to be used on a transaction request.

In order to achieve this, the class driver maintains a queue of pending transmit requests for the
destination node that need to allocate a transaction label. Whenever transaction labels are freed, queued
transmit requests can be transmitted.

So applications never need to worry about transaction labels.

Page 14

FireAPI User Mode Interface Unibrain

Transmit Order
In general, whenever a client wants to be sure of the processing order of two transactions, it should
transmit the first, get an acknowledgement and a response and then transmit the second.

Additionally the following are performed by the class driver:
• Raw transmit requests are performed immediately, without regards to any other transmit requests

that might be queued in various places within the class driver.
• NodeID-based transaction request packets that use a pre-allocated transaction label5 are

transmitted immediately. This means that they might be transmitted before any older
NodeID-based transaction request packets that are still waiting for a transaction label at the
destination node’s transaction label queue.

• An urgent6 NodeID-based transaction request packet for node X that must allocate a transaction
label is always transmitted before any non-urgent packets for node X that were already queued in
node X transaction label queue when the urgent request was submitted.

• NodeID-based transmits for different destination node IDs transmit independently of each other. If
a client submits two packets to the class driver, the first for node W and the second for node Y,
then the following transmit-order scenarios are possible:
1. Both destination nodes’ transaction label queues are empty and a transaction label can be

allocated for both packets. Then the packet for W is transmitted first and the packet for Y is
transmitted second.

2. One of the two queues is busy while the other is not. The packet for the destination node with
the non-busy queue is transmitted first.

3. Both destination node queues are busy. Then the order of transmission is random. The packet
that will reach the top of its transaction label queue first, will transmit first.

• Transaction response packets for a node are in principle independent of transaction requests for the
same node. A response packet for destination node X, may transmit before one or more older
transaction request packets that were submitted for node X, because these packets might be waiting
in the transaction label queue for node X.

• All handle-based transaction request packets from a given handle, always maintain their relative
transmit order, even if a bus reset takes place.

• Transmit requests from different handles are completely independent of each other, even if both
handles refer to the same destination node. In general if handles H1 and H2 refer to the same node,
then transmits through these handles will be ordered by time of submission, but this might change
when a bus reset takes place, because these requests will be requeued on a handle basis.

• In a transmit call that specifies more than one packets, the packets are transmitted in the order they
are found inside the packet array, with the exceptions described above.

5 Pre-allocated transaction label are only available for kernel mode FireAPI clients.
6 Urgent transaction requests are only available for kernel mode FireAPI clients.

Page 15

FireAPI User Mode Interface Unibrain

NodeID & Device Functions
The 1394-1995 standard requires that every node has a 64-bit unique node identifier, call Globally
Unique Identifier or GUID7 in their Bus_Info_Block.

One of the basic characteristics of 1394 is the fact that it supports plug-n-play by automatically
reconfiguring physical device addresses when one or more devices are added or removed from the
1394 bus.
However this results into a reassignment of the physical IDs to the devices on the bus. A device can
only be permanently identified by its GUID, which is constant through the device’s lifetime.

After a bus reset, software should in principle reidentify the device, by enumerating the active nodes on
the bus and locating the device it was working with before the bus reset.

When one node wants to transmit a packet to another node, in the lowest level the drivers must use the
target node’s 16-bit NodeID.

The 16-bit NodeIDs of 1394 are dynamically configurable and can change any time a bus reset occurs.
If the bus reset is software initiated and a forceroot PHY configuration packet has not been sent
specifying for root a node other than the current root, then the bus configuration stay the same and the
NodeIDs will not change. However, if the root changes or the bus configuration changes (by adding or
removing devices from the bus) then the NodeIDs of most devices will change.

Dealing correctly with this dynamic reconfiguration of the bus is of primary importance to the correct
operation of applications. The easiest way for applications to deal with this problem is to bypass it, by
using Device Handles. A device handle is a way to identify a 1394 device by its GUID.

The user mode interface of FireAPI implements two types of functions that developers can use to
access a remote node:
• The NodeID functions that accept the 16-bit NodeID of the target device.
• The Device functions that accept a handle to the target device. These are only available in user

mode (sample source code is provided in this document).

In the lowest level Device functions resolve to the appropriate NodeID function call so we will have to
first analyze the operation of NodeID functions. The NodeID functions are listed in the table below.

Function Name Description
C1394ReadNode
C1394WriteNode
C1394LockNode

Blocking calls that perform a single read, write or lock transaction
with a destination node.

C1394ReadNodeAsynch
C1394WriteNodeAsynch
C1394LockNodeAsynch

Non-blocking calls that perform a single read, write or lock
transactions with a destination node.

C1394TransmitPackets Non-blocking call that can send multiple transaction requests to
various nodes.

C1394ReadNodeEx
C1394WriteNodeEx
C1394LockNodeEx

Blocking calls that perform a single read, write or lock transaction
with a destination node.

C1394ReadNodeAsynchEx
C1394WriteNodeAsynchEx
C1394LockNodeAsynchEx

Non-blocking calls that perform a single read, write or lock
transactions with a destination node.

C1394TransmitPacketsEx Non-blocking call that can send multiple transaction requests to
various nodes.

7 Also known as EUI-64 (Extended Unique Identifier, 64 bits).

Page 16

FireAPI User Mode Interface Unibrain

The Device functions are listed in the table below.

Function Name Description
C1394OpenDevice
C1394CloseDevice Open/Close a handle to a device.

C1394ReadDevice
C1394WriteDevice

Blocking calls that perform a single read or write transaction with
a destination device. Lock transactions are NOT currently
supported by the API.

C1394GetDeviceNodeId Returns the current Node Id of the particular device.

Page 17

FireAPI User Mode Interface Unibrain

Bus Resets & Asynchronous Transactions
The 1394 stack maintains the System Bus Reset Count, which indicates the number of bus resets that
have occurred since the 1394 stack loaded. The value of the System Bus Reset Count is returned by
calling C1394GetBusResetCount.

FireAPI requires that each NodeID packet transmission is associated with a Bus Reset Count.

If the Bus Reset Count associated with a packet transmission is not the same as the System Bus Reset
Count then the 1394 stack will fail the transmission with STATUS_1394_BUS_RESET.

Transaction Requests are given their Bus Reset Count by the application, while Transaction Responses
should use the Bus Reset Count of the corresponding Transaction Request packet.

This in general means that applications should maintain some kind of Application Bus Reset Count that
they should use as the Bus Reset Count of any packet they are trying to transmit.

Kernel mode FireAPI clients are required to maintain such a Bus Reset Count, since this is a parameter
to the kernel mode C1394ReadNode and C1394WriteNode functions8.
Because user mode FireAPI applications were not originally required to maintain such a Bus Reset
Count, the 1394 stack by default internally maintains and automatically updates such a count for each
application.

If an application wishes to maintain and update the bus reset count by itself, it should call
C1394AcknowledgeBusReset for the adapter as soon as it opens the adapter with
C1394OpenAdapter. From that point on, the 1394 stack will NOT update automatically the internal
Bus Reset Count that it maintains for the application.

When a bus reset occurs then the application’s Bus Reset Count will become different from the System
Bus Reset Count. The next time the application tries to transmit a packet using any of the standard
transaction request function (C1394ReadNode, C1394WriteNode, C1394LockNode,
C1394ReadNodeAsynch, C1394WriteNodeAsynch, C1394LockNodeAsynch and
C1394TransmitPackets) the function will return STATUS_1394_BUS_RESET.
The application must call C1394AcknowledgeBusReset in order to be able to transmit a transaction
request again. This will synchronize the application’s Bus Reset Count to the System Bus Reset Count.

This way the application can realize that a bus reset has occurred since the last time it sent a transaction
request, and it will be prevented from transmitting any new requests until it calls
C1394AcknowledgeBusReset. With this call the application can be considered to inform the 1394
stack that it has taken all necessary actions to update its internal structures based on the new bus
topology.

Page 18

FireAPI User Mode Interface Unibrain

Bus Reset Exceptions (obsolete)
An optional facility that used to be available to applications prior to ubCore 5.50 was the ability of
UB1394.DLL to raise a SEH exception instead of returning STATUS_1394_BUS_RESET.
This was supposed to make the application code much easier to write and understand because the
‘exceptional’ event is handled outside the main execution flow of the program.

This was controlled on a per-process basis, through the use of C1394SetInformation and the
OID_BUS_RESET_EXCEPTIONS identifier. An exception would only be raised by C1394ReadNode,
C1394WriteNode and C1394LockNode. The non-blocking versions of these functions would not raise
an exception.

The exception code that was raised was configurable by the application, and is specified in the call to
C1394SetInformation. The exception raised by UB1394.DLL was continuable. This means that the
application’s exception filter could do all the required processing to update the state of the application
and then return EXCEPTION_CONTINUE_EXECUTION. As a consequence the function that raised the
exception would continue normally its operation and return STATUS_1394_BUS_RESET.

For more information on exceptions see the documentation of the Microsoft Platform SDK under
Base Services – Debugging & Error Handling – Structured Exception Handling.

The support for Bus Reset Exceptions was discontinued in version 5.50 of ubCore, since it was proved
that:

• Practically noone used it.
• It can cause much more harm than benefit to an application developer.

Since the setting is process-wide, if a third party Firewire component (DLL) gets loaded into
a process and enables Bus Reset Exceptions then it will break all other code that was written
to expect return error codes and does not have exception handlers.

• It greatly complicates development for both Unibrain and partners.
It is extremely difficult to write code for a component of any sort that will run correctly on
both the return error code and bus reset exception models. The code will either have to be
written twice (leading to a maintenance nightmare), or it will most likely contain errors.

Page 19

FireAPI User Mode Interface Unibrain

Reading the GUID of bus nodes
The following sample demonstrates the usage of C1394ReadNode. The code tries to read the GUID of
each node on the bus.

#include <stdio.h>
#include <FireAPI.h>

void ReadNodeGuid(C1394_ADAPTER_HANDLE a_C1394AdapterHandle,
 C1394_NODE_ID a_NodeID)
{
 STATUS_1394 Status1394;
 C1394_GUID NodeGuid;
 C1394_RESPONSE_CODE ResponseCode;
 C1394_ACK_CODE AcknowledgeCode;

 Status1394 = C1394ReadNode(a_C1394AdapterHandle,
 a_NodeID,
 CSR_BUS_INFO_BLOCK+8,
 8,
 &NodeGuid,
 &ResponseCode,
 &AcknowledgeCode);
 switch (Status1394)
 {
 //-------------------------------------
 case STATUS_1394_SUCCESS:
 printf("GUID of Node %u.%u: %08X-%08X\n",
 (ULONG) a_NodeID.BusID,
 (ULONG) a_NodeID.PhysicalID,
 SwapEndian32(*((ULONG*) NodeGuid.Bytes)),
 SwapEndian32(*((ULONG*) &NodeGuid.Bytes[4])));
 break;

 //-------------------------------------
 case STATUS_1394_TIMEOUT:
 printf("Block Read Request timeout for Node %u.%u\n",
 (ULONG) a_NodeID.BusID,
 (ULONG) a_NodeID.PhysicalID);
 break;

 //-------------------------------------
 case STATUS_1394_NOT_FOUND:
 printf("No acknowledge from Node %u.%u\n",
 (ULONG) a_NodeID.BusID,
 (ULONG) a_NodeID.PhysicalID);
 break;

 //-------------------------------------
 case STATUS_1394_TRANSACTION_FAILED:
 printf("Transaction FAILED for Node %u.%u. Response code is %s\n",
 (ULONG) a_NodeID.BusID,
 (ULONG) a_NodeID.PhysicalID,
 C1394RespCodeString(ResponseCode));
 break;

 //-------------------------------------
 default:
 printf("Block Read FAILED for Node %u.%u with status %s\n",
 (ULONG) a_NodeID.BusID,
 (ULONG) a_NodeID.PhysicalID,
 C1394StatusString(Status1394));
 }
}

Page 20

FireAPI User Mode Interface Unibrain

//***
main(void)
{
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 C1394_NODE_ID NodeID;
 ULONG I;

 C1394Initialize();
 C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

 NodeID.BusID = LOCAL_1394_BUS_ID;

 for (I=0; I<63; I++)
 {
 NodeID.PhysicalID = (C1394_PHYSICAL_ID) I;
 ReadNodeGuid(C1394AdapterHandle, NodeID);
 }

 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

The usage of C1394ReadNode itself is quite simple. You must specify the adapter handle, the
destination NodeID, the 1394 address space offset, the number of bytes to read and the buffer into
which to read the data.
The function returns a status code that describes the result of the transaction, and optionally the
response code and acknowledge code (in the cases where the transaction has not completed
successfully).

Reading the GUID of bus nodes – Transaction Failures
With regards to the previous sample, there is more to be said about the handling of the unsuccessful
return values, rather than C1394ReadNode itself. There are a lot of error return-codes for all
asynchronous transaction request functions because there are a lot of things that can possibly go wrong
with a 1394 transaction request:

• The destination node is turned off and did not even acknowledge the request.
• The destination node is not present on the bus.
• The destination node acknowledges the request with ack_pending but never sends a response

packet. The transaction request will timeout.
• The destination node acknowledges the request but sends a response packet with a response code

other than resp_complete. This means that the destination node did not accept the transaction.
• The destination node acknowledges the request with ack_pending but a bus reset occurred before

the response packet was delivered.
• A bus reset occurred at the time that the transmission of the request packet was about to be

executed.
• A transmission error occurred.

Although it might at first appear a little bit puzzling that the code has to check for and handle all those
different errors codes, things are not difficult in practice. Usually the application knows which error
codes it has to expect from the node it communicates with and need only handle separately these codes,
and let the rest fall into the default case.

For example, it is quite unusual for a transaction to fail in a real application, or at least fail
unpredictably. Some reasons why a read transaction could fail are:
• An invalid/inaccessible 1394 offset was specified. This should cause a read response with the

resp_address_error response code.
• The target offset is valid, but does not support the requested transaction type.

For example, the register only supports quadlet reads and the application attempted a block read.
Depending on the type of the target device, it might either respond back with a response packet
that contains the response code resp_type_error, or directly acknowledge the transaction request
with ack_type_error.

Page 21

FireAPI User Mode Interface Unibrain

However this is an expected type of failure, so the code could be written to check for the returned
response code (resp_type_error) and retry the GUID read using 2 quadlet reads instead. OHCI
1394 host adapters as well as some other 1394 devices allow only quadlet reads in the
configuration ROM so this failure is not at all uncommon.

The program listed above will perform its intended operation only if no bus reset occurs during the read
loop. This is because the program does not call C1394AcknowledgeBusReset for the adapter it opens.
The sample code in section Enumerating the Devices on the 1394 Bus demonstrates how to enumerate
the bus correctly with regards to bus resets.

Reading the GUID of bus nodes – Transaction Timeouts
The above are strictly-speaking transaction failures. A timeout is another type of failure that is not
strictly speaking a failed transaction but an incomplete transaction. A transaction that failed for the
reasons listed above, will fail again and again no matter how many times you retry it. A transaction that
timed out will probably succeed if retried by the software.

The minimum timeout for 1394 transactions is 100 msec according to 1394a-2000. This is the default
value used by the Unibrain drivers. The Serial Bus Manager driver makes sure that all nodes on the bus
have the same value for their split transaction timeout (SPLIT_TIMEOUT register of 1394). This is
performed by default in a “passive” manner: if the SPLIT_TIMEOUT register is written on the node
where the currently active (elected) Bus Manager resides, then the Serial Bus Manager will
immediately proceed to write the SPLIT_TIMEOUT register of all nodes on the bus. However
immediately after a bus reset takes place the Serial Bus Manager will not try to rewrite the
SPLIT_TIMEOUT register of all nodes. To enable this behaviour you have to use the
SplitTimeoutOnBusReset registry setting.

Timeouts are not occuring often in practice and when they happen they are more likely to happen on
block read transactions. Applications that have to transfer big amounts of data usually perform unified
block writes, which are block write transactions that are directly acknowledged by the hardware with
ack_complete and have no response packet.

When communicating with a ‘simple’ device (a camera or some other embedded device that does not
have serious computational power) a timeout is usually an indication that the target node never actually
sent a response, rather than a response was sent late.
For example some digital 1394 cameras often fail to respond to configuration ROM reads when they
are running at resolution 640x480, YUV 4:2:2, at 30 fps. When they are running at lower resolutions or
lower frame rates this never occurs. At this rate however, the device transmits 18MB/sec, and it is so
busy performing its camera-tasks that it often fails to respond to control requests like configuration
ROM reads which are treated as ‘low-priority’ by the device.
Moreover such devices often get confused if they receive more than one transaction requests at the
same time, and end up not responding to any of the two. This should be taken into account especially
for post bus-reset processing, when many nodes may try to enumerate the bus at the same time.
For example the Class Driver uses a special policy when enumerating the bus after the bus reset in
order to prevent device saturation. Instead of starting from NodeID 0 and moving upwards, it starts
from its own NodeID, moves upwards towards the highest numbered present node, and then starts over
from zero moving up to its own NodeID. This way if more than one PCs are present on the bus,
chances are significantly reduced that they will be enumerating the same device at the same moment.

When communicating between PCs a timeout may occur if the target system is so busy with high
priority tasks, that the responding application did not get the chance to process its transaction requests
in time. However this is not very likely to happen in most systems.

There are 2 ways that application designers can deal with timeouts, if they found out that they indeed
occur in their ‘system’:
• Increase the SPLIT_TIMEOUT value, so that timeouts occur less often.
• Write code to retry transactions that were timed out.

Page 22

FireAPI User Mode Interface Unibrain

The first solution is better in the case of a heavily-loaded system that might need a bigger timeout value
in order to be able to successfully complete transactions in the first place. For example if the timeout is
100msec (the minimum allowed) a system with heavy CPU load may not be able to complete read
transactions in time at all.
The drawback of increasing the timeout value is that if timeouts still occur, then the application has to
wait longer for each operation that times out, and it might appear non-responsive to the user.

In general, when developing a system with FireAPI, the designers will find out whether there is any
issue with transaction timeouts, and if so decide which actions to take around their problem.

Reading the GUID of bus nodes – Various Notes
The sample program also implicitly demonstrates the loopback functionality provided by the API. The
code does not perform any checks so that it does not send a transaction to the local node. It simply
proceeds to read from the local node9 in the same way it does for remote nodes.

When a node sends a transaction to a non-existent node, then the transaction request is not
acknowledged at all. In 1394 terminology the “acknowledge is missing” situation is often described as
“ack_missing was received” or “the request was acknowledged with ack_missing”.
Transaction requests are acknowledged with ack_missing not only for transactions sent to non existent
nodes, but also for existent nodes whose link layer is not active.

The return of information for the response code and the acknowledge code is optional. In most cases
applications specify NULL in the last two parameters to C1394ReadNode.

Another point to keep in mind is that the previous sample obviously does not demonstrate the best way
to enumerate the GUID of bus nodes. In most cases the bus will have much less than 63 nodes present,
so attempting read transaction for all 63 nodes produces unnecessary traffic on the bus.
It might appear that a couple of dozens of extra requests are simply no big deal since the extra traffic
load they cause is practically zero compared to the capabilities of 1394. While this is certainly true,
there is another reason why unnecessary traffic should be avoided, that escapes new 1394 developers.
This has to do with the logical analysis of the output of 1394 bus analyzers. If each node performs
several unnecessary transactions then many more packets appear in the analyzer’s capture log, and it is
not long before it starts getting more and more difficult looking through these logs for the explanation
of why your system is not logically functioning as expected.

9 FireAPI also provides an alternative way to get the local node GUID, through the
C1394QueryInformation function.

Page 23

FireAPI User Mode Interface Unibrain

Determining the nodes connected to the 1394 Bus
The 1394 specification requires that each device connected to the 1394 bus should transmit its SelfID
packet after a bus reset in order to identify itself to the other nodes on the bus. The format of SelfID
packets is described in paragraph 4.3.4 of 1394-1995.

The information provided in the SelfID packet is quite limited, but is enough for many purposes. Each
SelfID packet among others contains the following:
• The physical ID of the node.
• The gap_count of the node.
• The LinkOn bit which indicates whether the node has its link layer activated (which means that it

can accept transactions).
• The Contender bit which indicates whether the node is a contender for the role of Isochronous

Resource Manager (IRM).
• The speed of the node.
• The state of each of its ports (disconnected, connected to parent, connected to child, non present).

FireAPI presents this information to applications in various ways.

For example a 64-bit mask is built, which has a bit set for each node physically present on the bus10. If
bit 7 is set, then there is a node on the bus whose physical ID (PhyID) is seven11. This mask is
available through function C1394QueryInformation with the OID_PHYSICAL_NODES identifier.

Similarly, another 64-bit mask is being built which has a bit set for each node on the bus that has the
LinkOn bit set in its SelfID packet. This mask is available through function C1394QueryInformation
with the OID_LINK_ON_NODES identifier.

The speed of a node can be determined by using the C1394GetNodeSpeed function.

The status of its ports can be determined through C1394QueryInformation with the
OID_BUS_TOPOLOGY identifier.

FireAPI includes other calls through which an application can find out how many nodes are on the bus,
and which of those have their link layers active, so that it can proceed to read only from them. Such a
method is demonstrated in the following sample:

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 ULONGLONG UPhysicalNodes;
 ULONGLONG ULinkOnNodes;
 ULONGLONG UContenderNodes;
 ULONG I;

 C1394Initialize();
 C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

10 These are the nodes that transmitted a selfID packet. A device that cannot not power its PHY chip
from the 1394 bus will not cause a bus reset when connected to the bus and will not transmit SelfID
packets after subsequent bus resets, so will not appear to be connected to the bus.
11 In 1394-1995 PhyIDs are contiguous, which means that if a node exists with PhyID x, then nodes
with PhyIDs from 0 to x-1 also exist on the bus. However there is a remote possibility that this might
change in the future when the power management procedures allow the creation of suspended domains.
For this reason FireAPI provides this information as a general purpose 64-bit mask, instead of returning
the number of nodes on the bus and implying the physical IDs.

Page 24

FireAPI User Mode Interface Unibrain

 // Get information about the nodes physically present on the local 1394 bus.
 *((PC1394_BUS_ID)&UPhysicalNodes) = LOCAL_1394_BUS_ID;
 C1394QueryInformation(C1394AdapterHandle,
 OID_PHYSICAL_NODES,
 &UPhysicalNodes,
 sizeof(UPhysicalNodes),
 NULL,
 NULL);

 printf("Physically Present:");
 for (I=0; I<63; I++)
 if ((((ULONGLONG)1)<<I) & UPhysicalNodes)
 printf("%3u", I);

 printf("\n");

 // Which nodes on the local 1394 bus have the LinkOn bit set?
 *((PC1394_BUS_ID)&ULinkOnNodes) = LOCAL_1394_BUS_ID;
 C1394QueryInformation(C1394AdapterHandle,
 OID_LINK_ON_NODES,
 &ULinkOnNodes,
 sizeof(ULinkOnNodes),
 NULL,
 NULL);

 printf("Link On Nodes :");
 for (I=0; I<63; I++)
 if ((((ULONGLONG)1)<<I) & ULinkOnNodes)
 printf("%3u", I);

 printf("\n");

 // Which nodes on the local 1394 bus have the Contender bit set?
 *((PC1394_BUS_ID)&UContenderNodes) = LOCAL_1394_BUS_ID;
 C1394QueryInformation(C1394AdapterHandle,
 OID_CONTENDER_NODES,
 &UContenderNodes,
 sizeof(UContenderNodes),
 NULL,
 NULL);

 printf("Contender Nodes :");
 for (I=0; I<63; I++)
 if ((((ULONGLONG)1)<<I) & UContenderNodes)
 printf("%3u", I);

 printf("\n");

 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

Keep in mind that depending on the power-up state of a 1394 device, it might be the case that the
device has its LinkOn bit set to one but not actually have its link layer active. This means that any
transaction requests sent to them will not be acknowledged (or in FireAPI terminology: acknowledged
with ack_missing).
For example consider a PC with a 1394 adapter that is connected to the 1394 bus, but not turned on.
The 1394 adapter powers it PHY chip from the 1394 bus, but not its link layer. Typically when a bus
reset occurs the LinkOn bit in the selfID packet of the adapter should be zero, but some adapters may
have it set to one. This might also occur with any other self-powered device that might be unpowered
but still connected to the 1394 bus.

Technically this is a violation of the 1394 specification, but developers should be prepared to meet this
condition in practice.

Page 25

FireAPI User Mode Interface Unibrain

Enumerating the Devices on the 1394 Bus
The sample code below demonstrates how to enumerate the devices on the bus in a bus-reset safe
manner. The delays in the execution are intentionally put into the code so that you can try the
behaviour of this program. Open up a window with CMD1394, start this program and while it is
executing the inner loop initiate a bus reset.

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 ULONGLONG UPhysicalNodes;
 ULONGLONG ULinkOnNodes;
 ULONGLONG UContenderNodes;
 C1394_GUID DeviceGuidArray[63];
 C1394_NODE_ID NodeID;
 STATUS_1394 Status1394;
 ULONG uDevicesFound, I;
 BOOLEAN bRestartLoop;

 C1394Initialize();
 C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);
 C1394AcknowledgeBusReset(C1394AdapterHandle);

 NodeID.BusID = LOCAL_1394_BUS_ID;

 do {
 bRestartLoop = FALSE;
 uDevicesFound = 0;

 *((PC1394_BUS_ID)&ULinkOnNodes) = LOCAL_1394_BUS_ID;
 C1394QueryInformation(C1394AdapterHandle,
 OID_LINK_ON_NODES,
 &ULinkOnNodes,
 sizeof(ULinkOnNodes),
 NULL,
 NULL);
 for (I=0; I<63; I++)
 if ((((ULONGLONG)1)<<I) & ULinkOnNodes)
 {
 printf("-L-");
 Sleep(500);

 NodeID.PhysicalID = (C1394_PHYSICAL_ID) I;

 Status1394 = C1394ReadNode(C1394AdapterHandle,
 NodeID,
 CSR_BUS_INFO_BLOCK+8,
 8,
 &DeviceGuidArray[uDevicesFound],
 NULL,
 NULL);
 switch (Status1394)
 {
 //-------------------------------------
 case STATUS_1394_SUCCESS:
 uDevicesFound++;
 break;
 //-------------------------------------
 case STATUS_1394_BUS_RESET:
 printf("
");
 C1394AcknowledgeBusReset(C1394AdapterHandle);
 bRestartLoop = TRUE;
 break;
 }

 if (bRestartLoop)
 break;
 }
 }
 while (bRestartLoop);

Page 26

FireAPI User Mode Interface Unibrain

 puts("");

 for (I=0; I<uDevicesFound; I++)
 {
 printf("Device found with GUID %08X-%08X\n",
 SwapEndian32(*((ULONG*) DeviceGuidArray[I].Bytes)),
 SwapEndian32(*((ULONG*)&DeviceGuidArray[I].Bytes[4])));
 }

 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

No matter when a bus reset will occur, the code will identify it and restart the enumeration loop.

Page 27

FireAPI User Mode Interface Unibrain

Non-blocking Calls
The call to C1394ReadNode is blocking, which means that the call returns only after the read
transaction has completed in one way or the other. However this involves many steps (sending a
request packet, checking the acknowledge, waiting for the response or timeout, etc), and an application
might have other important tasks to perform in the meanwhile.
For this reason FireAPI includes a non-blocking12 counterpart to each C1394xxxNode function, called
C1394xxxNodeAsynch.

The operating model of all non-blocking transaction request calls is as follows:
1. Make the non-blocking call, passing among the parameters a handle to an event object, and a

context value that means something to the application.
2. The call will return a handle to a non-blocking asynchronous transaction.
3. When the event is set make a call to C1394CompleteAsynch that will complete the operation and

return context information to the caller.

The sample function below demonstrates the usage of C1394ReadNodeAsynch.

void ReadNodeGuidAsynch(C1394_ADAPTER_HANDLE a_C1394AdapterHandle,
 C1394_NODE_ID a_NodeID)
{
 STATUS_1394 Status1394;
 C1394_GUID NodeGuid;
 C1394_ASYNCH_HANDLE AsynchHandle;
 HANDLE hEvent;
 void *Context;

 hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

 AsynchHandle = C1394ReadNodeAsynch(a_C1394AdapterHandle,
 a_NodeID,
 CSR_BUS_INFO_BLOCK + 8,
 8,
 &NodeGuid,
 &Status1394,
 NULL,
 NULL,
 (void*)0xABCDEF12,
 hEvent);
 if (NULL == AsynchHandle)
 {
 printf("The operation failed with status %s\n",
 C1394StatusString(Status1394));
 return;
 }

 printf("Non-blocking execution (status is %s).\n",
 C1394StatusString(Status1394));

 do
 {
 // Do some other processing.
 printf("*");
 }
 while (WAIT_TIMEOUT == WaitForSingleObject(hEvent, 0));

 printf("\n");

 // Complete the operation.
 Context = C1394CompleteAsynch(AsynchHandle);

 // Context returned is the context passed to the call.
 printf("INFO - Returned context is %X\n", Context);

12 Blocking and Non-Blocking are also known as Synchronous and Asynchronous, but using these terms
would certainly cause confusion with the 1394 meanings of Isochronous and Asynchronous.

Page 28

FireAPI User Mode Interface Unibrain

 // What happened with the operation?
 switch (Status1394)
 {
 //-------------------------------------
 case STATUS_1394_SUCCESS:
 printf("GUID of Node %u.%u: %08X-%08X\n",
 (ULONG) a_NodeID.BusID,
 (ULONG) a_NodeID.PhysicalID,
 SwapEndian32(*((ULONG*) NodeGuid.Bytes)),
 SwapEndian32(*((ULONG*) &NodeGuid.Bytes[4])));
 break;

 //-------------------------------------
 default:
 printf("Block Read Request for Node %u.%u failed with status %s\n",
 (ULONG) a_NodeID.BusID,
 (ULONG) a_NodeID.PhysicalID,
 C1394StatusString(Status1394));
 }
}

In the call to C1394ReadNodeAsynch the caller can optionally specify a context value that will be
returned by C1394CompleteAsynch when the operaton is competed. This can be either a value of
some sort or a pointer to a structure that contains information the caller maintains about the operation.
If there is nothing that the client wants to use as context information, then it can simply specify NULL
and ignore the return value of C1394CompleteAsynch.

Note, that if the do-while loop was replaced with this one:

 do
 {
 // Do some other processing.
 printf("*");
 }
 while (Status1394 == STATUS_1394_PENDING);

then we would have an infinite loop.

Status information about asynchronous command completion is only returned to user
mode when C1394CompleteAsynch is called.

Page 29

FireAPI User Mode Interface Unibrain

Write Transaction Requests
Write transaction requests through functions C1394WriteNode and C1394WriteNodeAsynch are
handled similarly to read requests. The sample below demonstrates how to send a broadcast write
transaction. Broadcast writes do not receive a response packet, neither get acknowledged. A successful
broadcast write is indicated by FireAPI with a return status of STATUS_1394_SUCCESS. In the case of
broadcast writes FireAPI returns the artificial acknowledge code ack_none.

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 C1394_NODE_ID NodeID;
 STATUS_1394 Status1394;
 C1394_RESPONSE_CODE ResponseCode;
 C1394_ACK_CODE AcknowledgeCode;
 UCHAR WriteBuffer[4] = {0x15, 0xF3, 0x72, 0x99};

 C1394Initialize); (
 C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

 NodeID.BusID = LOCAL_1394_BUS_ID;
 NodeID.PhysicalID = 63;

 Status1394 = C1394WriteNode(C1394AdapterHandle,
 NodeID,
 CSR_MAINT_UTILITY,
 4,
 &WriteBuffer,
 &ResponseCode,
 &AcknowledgeCode);
 switch (Status1394)
 {
 case STATUS_1394_SUCCESS:
 printf(ucceeded. Acknowledge is %s\n", "Broadcast write s
 C1394AckCodeString(AcknowledgeCode));
 break;

 default:
 printf("C1394WriteNode failed with status %s\n",
 C1394StatusString(Status1394));
 }

 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

Page 30

FireAPI User Mode Interface Unibrain

Lock Transaction Requests
Lock transactions are a little different than reads or writes because there are 6 different types of lock
functions that are implemented through a lock transaction. The transaction code is ‘Lock’, and the
extended transaction code identifies the function to be used.

Lock functions can be performed on 32-bit or 64-bit values, and take one or two 32-bit or 64-bit
arguments. These are called the arg_value and the data_value. In functions that take one argument,
only data_value is used.
The value at the destination 1394 offset immediately prior to performing the lock function is always
returned in the data of the lock response packet.

The list of lock functions, and their specification is shown in the table below.

Lock Function Args Update Action
mask_swap 2 new_value = (data_value & arg_value) |

 (old_value & ~arg_value);

compare_swap 2 if (old_value == arg_value)
 new_value = data_value;

fetch_add 1 New_value = old_value + data_value;

little_add 1 (little) new_value =
 (little) old_value + (little) data_value;

bounded_add 2 if (old_value != arg_value)
 new_value = old_value + data_value;

wrap_add 2 new_value = (old_value != arg_value) ?
 (old_value + data_value) : data_value;

Table 3. Lock Transaction Functions

Let us describe the operation of compare_swap which is the most commonly used lock function. As its
name indicates this is a function used to perform atomic compare & swap operations.
The sender transmits a lock transaction with the offset of a 1394 register that it wants to update
atomically. In this lock transaction packet, the sender includes the arg_value, which is the most recent
value that the sender know that the target register has, and the data_value, which is the new value that
the sender wishes to store in the register.
When the target node receives the lock request it will prepare a lock response packet with the
resp_complete response code that will contain the current value of the target register (referred to as
old_value).
Then it will compare the arg_value in the lock request packet against the current value of the register,
and if the values are equal, then the target node will store data_value as the new value of the register. If
they are not equal, no more actions will be taken.

When the sender of the lock request receives the lock response packet, it will compare the value
returned to him (old_value) against the arg_value that he sent in order to find out if the lock function
failed.

A common source of confusion is what is meant when we say that “a lock transaction failed”. Most
people take this to mean the same as the “lock function failed”, but we must be careful with this.
The description of compare_swap that was given above is deliberately incomplete in order to be able to
emphasize on this kind of error.
The first thing that the receiver of the lock response must check is whether the response code is
resp_complete. If it is not then the lock transaction has failed. If it is resp_complete, then
the lock transaction has succeeded but we don’t yet know whether the lock function has succeeded.
order to check for this, the comparison between old_value and data_value must be made.

 In

The lock functions, C1394LockNode and C1394LockNodeAsynch, return information about what
happened with the lock transaction. The result of the lock function itself should be checked by the

Page 31

FireAPI User Mode Interface Unibrain

caller. However, because compare-swap is a very common operation, FireAPI also includes for
convenience C1394CompareSwapNode, a wrapper function around C1394LockNode, so that it is
easier to perform this specific lock function.

The sample fragment code below demonstrates a possible implementation of
C1394CompareSwapNode.

STATUS_1394 C1394CompareSwapNode(
 IN C1394_ADAPTER_HANDLE a_C1394AdapterHandle,
 IN C1394_NODE_ID a_NodeID,
 IN C1394_OFFSET a_Offset,
 IN BOOLEAN a_32BitLock,
 IN ULONGLONG a_UArgValue,
 IN ULONGLONG a_UDataValue
)
{
 STATUS_1394 Status1394;
 UCHAR OldValue[8];

 Status1394 = C1394LockNode(a_C1394AdapterHandle,
 a_NodeID,
 a_Offset,
 COMPARE_SWAP,
 a_32BitLock ? 4 : 8,
 a_UArgValue,
 a_32BitLock ? 4 : 8,
 a_UDataValue,
 OldValue,
 NULL,
 NULL);

 // Did the lock-transaction fail in the first place?
 if (STATUS_1394_SUCCESS != Status1394)
 return Status1394;

 // Let us check whether the compare-swap succeeded as well.
 if (a_32BitLock)
 {
 if ((*(ULONG*)OldValue) != (ULONG)a_UArgValue)
 return STATUS_1394_LOCK_FAILED;
 }
 else
 {
 if ((*(ULONGLONG*)OldValue) != a_UArgValue)
 return STATUS_1394_LOCK_FAILED;
 }

 // The compare swap succeeded.
 return STATUS_1394_SUCCESS;
}

As it can be seen, depending on whether this is a 32-bit or 64-bit lock, in the comparison after the lock
transaction completes, the a_UArgValue parameter is either casted to ULONG or simply treated as a
ULONGLONG. Similarly depending on the size of the lock, both C1394LockNode and the check code
treat the OldValue variable as a pointer to a ULONG or to a ULONGLONG.

It is important to remember several things for C1394LockNode, C1394LockNodeAsynch and
C1394CompareSwapNode:
1. They always treat the target CSR as big endian.
2. They are the only functions that treat their input data in the native format of the host CPU, by

internally doing little-to-big endian conversions as necessary.
3. A failed lock also acts like a read operation. You don’t have to do a read after a failed lock, but

simply update the arg_value and data_value parameters and retry the call.

Page 32

FireAPI User Mode Interface Unibrain

Handle-Based Functions
The importance of device handles was discussed earlier in this document. Before ubCore 5.50, Device
Handles were implemented as a separate DLL (UB1394DH.DLL) in ubCore and a separate import
library (UB1394DH.LIB) in FireAPI.

As of ubCore/FireAPI 5.50 all the Device Handle functions have been moved into UB1394.DLL and
the import library that contains them is UB1394.LIB.
UB1394DH.DLL is still part of ubCore for backwards compatibility reasons. This DLL is a Forwarder
DLL that forwards all function calls to UB1394.DLL. The UB1394DH.LIB import library has been
removed from FireAPI 5.50 or later.

An application will be able to use C1394OpenDevice to open a handle to the nodes that it wants to
work with. Using this handle, the application can communicate with the node regardless of the current
physical ID that the node is using.

The class driver maintains a mapping between a device handle and the NodeID. Whenever a bus reset
occurs, the driver will “freeze” the handle (hold outgoing requests in a queue) and, once the bus reset is
completed, take actions to reestablish the mappings so that the application can continue its operation
using the same handles, completely unaware of the bus reset.

The class driver provides a completely transparent handling of bus resets. This includes the
automatic retransmission of pending requests that were queued for transmission but were cancelled
when the bus reset took place, and transaction requests that had been sent and acknowledged but a bus
reset occurred before the response had arrived.

Simply put, when an application uses a handle to a device it will never get a transaction aborted due to
a bus reset. This greatly simplifies the program code, because handling with such an error requires
complex procedures and involves many subtle issues.

If the device has been removed from the bus, then an attempt to send a transaction request to the device
returns STATUS_1394_DEVICE_NOT_FOUND. The device handle is not invalidated in this case. If the
device is reconnected to the bus then the application will be able to continue working with it.

The class driver internally maintains a map between GUIDs and NodeIDs that it updates by snooping
on read response packets that read the GUID portion of a device’s Configuration ROM.
By maintaining a cache with this data, the class driver significantly reduces bus traffic after a bus reset.
No matter how many applications run on the node, and how many device handles are open, each
FireAPI node will only read the configuration ROM of a given node once.

Page 33

FireAPI User Mode Interface Unibrain

Using Device Handles
The sample code below shows how to use device handles.

A couple of important items to mention prior to using device handle functionality:
• Each file that uses Device Handles must include the header file UB1394DH.H.
• You must add the directory where the above header file resides to your project’s include

directories.
• You must add the directory where UB1394.LIB file reside to your project’s library directories (as

appropriate for x86/x64 builds).
• You must add UB1394.LIB to the link libraries of your project (as appropriate for x86/x64 builds).

Here is a sample code using Device Handles to read the configuration rom of a node.

#include <stdio.h>
#include "FireAPI.h"
#include "UB1394DH.h"

int main()
{
 STATUS_1394 Status1394;
 C1394_ADAPTER_HANDLE AdapterHandle;
 C1394_NODE_ID NodeID;
 C1394_GUID DeviceGuid;
 DEVICE_HANDLE DeviceHandle;

 Status1394 = C1394Initialize();
 if (Status1394 != STATUS_1394_SUCCESS)
 {
 printf(ng 1394 Stack. Error code:%s.\n", "Error initializi
 C1394StatusString(Status1394));
 return -1;
 }

 Status1394 = C1394OpenAdapter(NULL,
 (CLIENT_ADAPTER_HANDLE) AdapterHandle,
 &AdapterHandle);

 if (Status1394 != STATUS_1394_SUCCESS)
 {
 printf(cal adapter. Error code:%s.\n", "Error opening lo
 C1394StatusString(Status1394));
 return -1;
 }

 // Get the GUID of node N=0 on the local bus.
 // We will assume it has LinkOn==1 so that it will respond to ROM reads.
 // Additionally we will assume it correctly implements the specs and can handle
 // an 8-byte block read in the Configuration ROM header area.
 NodeID.BusID = LOCAL_1394_BUS_ID;
 NodeID.PhysicalID = (C1394_PHYSICAL_ID)0;
 Status1394 = C1394ReadNode(AdapterHandle,
 NodeID,
 CSR_CONFIG_ROM+0xC,
 0x8,
 &DeviceGuid,
 NULL,
 NULL);

 if (Status1394 != STATUS_1394_SUCCESS)
 {
 printf("Error getting Device GUID. Error code:%s.\n",
 C1394StatusString(Status1394));
 return -1;
 }

 // Open a Device handle for that Guid
 Status1394 = C1394OpenDevice(AdapterHandle,
 &DeviceGuid,
 &DeviceHandle);

Page 34

FireAPI User Mode Interface Unibrain

 if (Status1394 != STATUS_1394_SUCCESS)
 {
 printf("Error opening handle for the device. Error code:%s.\n",
 C1394StatusString(Status1394));
 return -1;
 }

 // Read using the newly created device handle.
 Status1394 = C1394ReadDevice(DeviceHandle,
 CSR_CONFIG_ROM,
 24,
 Buffer,
 NULL,
 NULL);

 if (Status1394 != STATUS_1394_SUCCESS)
 {
 printf("Error reading device. Error code:%s.\n",
 C1394StatusString(Status1394));
 return -1;
 }

 C1394CloseDevice(DeviceHandle);
 C1394CloseAdapter(AdapterHandle);
 C1394Terminate();
 return 0;
}

• The code inside the UB1394.DLL tries 3 times to read the nodes’ GUID after a bus reset. The

reason for this is the following: When a bus reset occurs, all devices have to perform some kind of
post-bus-reset processing. This usually takes different amounts of time on each device, depending
on how fast it is, how long did it took to raise the bus reset interrupt, etc.
This in turn means that it might be possible that the application’s node has completed its bus reset
processing and started executing the relocation code before one or more other nodes on the bus.
This will result in the read transaction request being sent before the target node being ready to
process it. As a result the transaction might be acknowledged by the adapter hardware with
ack_pending but not get actually processed so response is ever sent and the request times out.
For this reason, it is in general suggested that either 1394 applications and drivers wait 10-20 msec
after a bus reset before they start sending any transactions or they are prepared to handle timeouts
on the first transaction(s) they send to a node13.

• Invalid bus topology. This is a very important issue.
You might get surprised to find out that there are occasions when the hardware does not work
according to the standards, even in basic things like sending the SelfID packets when a bus reset
occurs.
Two things can possibly go wrong when plugging or unplugging a device from the 1394 bus14:
(a) One or more adapters did not send their SelfID packets.
(b) A nested bus reset occurred and this causes the adapters to think that they have received no
SelfID packets at all.

In both cases the 1394 class driver (UB1394.SYS) does not have valid information about the bus
topology.

Usually these conditions get corrected if an additional, software generated bus reset is initiated.
Unibrain’s Serial Bus Manager driver (UBSBM.SYS) checks for these conditions and
automatically initiates a bus reset to correct them.

13 This kind of problem is more likely to occur in kernel mode drivers that use FireAPI, because they
get a notification callback called immediately when bus reset is complete. User mode Bus Reset
Complete notifications delay a little more because (a) all the kernel mode bus reset complete processing
code has to execute (b) it involves signalling an event object and then waiting for the thread to get
scheduled. However a user-mode thread on a tight-loop calling C1394IsBusResetInProgress can get
the chance to send a transaction very soon after the bus reset completes, especially if the application
runs on a multiprocessor system.
14 These conditions have been verified with a 1394 bus analyzer.

Page 35

FireAPI User Mode Interface Unibrain

1394 developers should keep this in mind, and be prepared to handle such conditions in their code
if they expect nodes to be added/removed to/from their 1394 bus while their system code is
running.
Usually the best way to handle this condition is to delay 2 seconds, until the SBM initiates the
software bus reset that should correct the situation.

• The code retrieves information from the class driver so that it identifies the link on nodes and only
attempts to locate the device among these nodes. Two things should be kept in mind:
(a) It can occur that a device that is ‘off’ has its LinkOn bit set to 1. This is attributed to either an
error or a limitation in the hardware design or a bug in the software15. Such nodes will not
acknowledge any transaction request sent to them, so the code must be prepared to receive
STATUS_1394_NOT_FOUND as the result of a transaction request.
(b) For the same reasons a device might be active and have its LinkOn bit set to zero. If you
encounter such a device then either modify the device’s firmware or the sample code.

• Unless someone has sent a forceroot configuration packet, a software initiated bus reset most
probably will not change the topology of the bus. The code takes this fact into consideration and
when relocating the node it first attempts to read from the previous NodeID.

Simplifications\ShortComings in this implementation:
• Not multithreaded-safe. If you want to be able to use a single handle from multiple threads then

you will have to use a synchronization object to prevent more than one threads from calling the
relocation code at the same time.

• In each call to C1394ReadDevice the code tries to relocate the device. If the device is removed
from the bus then there is no point in trying to relocate it unless a new bus reset occurs.
However keep in mind that a device might logically disappear from the bus because it is
rebooting, and it is unresponsive during the boot process. Such a device should initiate a bus reset
when its boot process completes16. If the device does not do a bus reset on power up, then an
implementation that does not attempt to relocate the device in each C1394ReadDevice call, will
not see that the device is ‘up’ again until a bus reset occurs.

• The code uses a serialized logic when it tries to relocate a device. This has two drawbacks:
(a) If one or more timeouts occur (even on unrelated nodes), then the total delay time of the
relocation procedure will be big. If the code issued all its transactions as non-blocking calls then it
would possibly locate its device much faster in the case that timeouts occur.
(b) Many devices17 can only accept 1 transaction request at a time. If a second request arrives
before they have sent the response to the first then they don’t respond to it, and a timeout will
occur.
If many applications on many nodes try all at the same time (after the bus reset) to relocate their
devices and the 1394 bus contains one or more nodes that can only process up to 1 transaction at a
time, then many timeouts will occur.

• It is suggested that applications try to optimize their logic18 and minimize the number of
transactions they attempt for the following reasons:
(a) Reduced traffic on the bus.
(b) Less transaction requests mean less points of failure in the code.
(c) Less traffic on the bus means easier to analyze traffic capture logs.

15 When a device shuts down its software should clear the linkOn bit. If not, then on some chips this
can stay one even after the device is shut down.
16 It is also suggested that it initiates a bus reset in the very last steps of its shutdown procedure, as the
last step of shutting down its 1394 subsystem.
17 For example 1394 digital cameras.
18 The sample code optimizes the relocation procedure by only looking at nodes that claim to be alive
(LinkOn bit set).

Page 36

FireAPI User Mode Interface Unibrain

Retrying transactions with C1394Retry functions
A new set of functions were added to ubCore 5.50 that are related to performing reliably asynchronous
transactions with devices on the 1394 bus.

To start with, asynchronous transactions are by definition “reliable” in the traditional meaning of the
term when talking about communication protocols. There is an acknowledge code that informs the
sender about the outcome of the physical transmission of the transaction request packet and then there
is a response code that informs the sender about the logical outcome of the operation.
This way the sender is immediately aware of any failures and may retry a failed operation as
appropriate, in essence building its own reliability layer on top of the reliability primitives provided by
the Firewire protocol.

Most 1394 devices are built by engineering teams with limited resources and pressing schedules and
thus do not always operate as expected. They may be fully within the 1394 specifications, but still may
appear to occasionally have some kind of capricious behavior. Simply put, in practice not all 1394
devices are always well-behaved.

Unibrain has dealt with a wide series of devices and has repeatedly written code that retries
transactions of one form or another. Unibrain’s experience has been encoded into a set of functions that
are readily available for use to all applications. These functions will be continuously improved and
fine-tuned as Unibrain’s experience grows further and as future additions are made to the Class Driver.

The C1394Retry functions contain two fundamental pieces of logic:

1. Precision timing of the device’s responses in order to automatically adjust the rate at which
transaction requests are sent to the device.

2. An algorithm that based on the transaction outcome and current retry status decides if the
transaction can and should be retried or not.

We have seen that a very reliable indicator about a 1394 device’s ability to accept a new transaction
request is how long it took to respond to the previous transaction (which is usually to the same
initiator).
The amount of time between sending the transaction request and receiving the transaction response is
in the order of 30-500 microsec. Delaying the next outgoing transaction request for that device by the
same amount of time yields a very smooth exchange between the PC and the device, with no timeouts
and no busy acknowledges or other conflicts.

The Windows operating system provides the High Resolution Performance Timer for precisely
measuring small amounts of elapsed time (of the order described above). Although the measurements
may be significantly affected by outside events (a context switch, an interrupt, etc), on the average they
can be quite reliable.
The major problem however is not measuring these small intervals, but introducing such small delays
in code execution before sending off the next transaction request, without causing excessive delays in
program execution or using excessively the CPU.

All the above have been embedded in the following functions:

Function Description
C1394MayRetryTransaction

Encodes the logic of whether or not it makes sense to retry a failed
transaction to a device.

C1394RetryReadNodeInQuads
Reads a block of memory using quadlet reads from a device given its
NodeID. Retries are performed on failed transactions as needed.

C1394RetryReadNodeExInQuads Ex variant of the previous function.

C1394RetryReadDeviceInQuads
Reads a block of memory using quadlet reads from a device given its
Device Handle. Retries are performed on failed transactions as needed.

C1394RetryWriteDeviceInQuads
Writes a block of memory using quadlet reads to a device given its
Device Handle. Retries are performed on failed transactions as needed.

Page 37

FireAPI User Mode Interface Unibrain

Performing Asynchronous Streaming transactions
Asynchronous streaming transactions in FireAPI are performed through the C1394TransmitPackets
function call. Asyncronous streaming packets have the same format and characteristics as the
isochronous packets. Asychronous stream packets are transmited at a user specified channel number
just like isochronous packets are. As opposed to normal asynchronous packets there is no acknowledge
or response code returned by the target node for asynchronous stream packets.

In order to perform an asynchronous streaming operation the user should prepare a
FIREAPI_TRANSACTION structure or an array of them and specify a transaction code of
TCODE_STREAM_DATA. The user should then fill the desired channel and sycode in this structure as well
as some other parameters and pass it to a call to C1394TransmitPackets.

For more information about the structure and format of asynchronous streaming packets the user
should consult the IEEE 1394 specification.

The sample source code below demonstrates how to perform an asynchronous stream transmition. The
transmition is performed at channel 1.

#define MAX_TRANSACTIONS 32

int main(int argc, char **argv)
{
 C1394_GUID AdapterGUID;
 STATUS_1394 Status1394;
 ULONG uAdapters;
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 PFIREAPI_TRANSACTION transArray[MAX_TRANSACTIONS];
 HANDLE hEvent;
 C1394_ASYNCH_HANDLE asynchHandle;
 PFIREAPI_TRANSACTION transaction;
 UINT i, j;
 ULONG fillValue;
 UINT transactionsNum = 5;
 UINT bufferSize = 0x200;
 C1394_CHANNEL channel = 1;
 C1394_TAG tag = 0;
 C1394_SY_CODE syCode = 0;

 // Initialize with 1394.
 if (STATUS_1394_SUCCESS != C1394Initialize())
 {
 puts("C1394Initialize Failed.");
 return -1;
 }

 // Get the number of adapters.
 uAdapters = C1394GetAdapters(&AdapterGUID, 1);

 // Try to open the adapter.
 Status1394 = C1394OpenAdapter(&AdapterGUID,
 (CLIENT_ADAPTER_HANDLE) &C1394AdapterHandle,
 &C1394AdapterHandle
);

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf("FAILED to open adapter. 1394 Status Code is %X\n",
 Status1394
);
 return -2;
 }

 // Initialize the array that holds the transactions
 ZeroMemory(transArray, MAX_TRANSACTIONS *
 sizeof(PFIREAPI_TRANSACTION)
);

 // Initialize the value that will be used to fill the packets
 fillValue = bufferSize / sizeof(QUADLET);

Page 38

FireAPI User Mode Interface Unibrain

 // Prepare the transactions that will be transmitted
 for (i = 0; i < transactionsNum; i++)
 {
 transaction = (PFIREAPI_TRANSACTION)HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY, sizeof(FIREAPI_TRANSACTION));

 if (transaction == NULL)
 {
 return -5;
 }

 transArray[i] = transaction;
 transaction->PacketHeader.uHeaderBytes = 0;
 transaction->PacketHeader.data_length = bufferSize;
 transaction->PacketHeader.TransactionCode = TCODE_STREAM_DATA;
 transaction->PacketHeader.Channel = channel;
 transaction->PacketHeader.Tag = tag;
 transaction->PacketHeader.SyCode = syCode;
 transaction->uBusResetCount =
 C1394GetBusResetCount(C1394AdapterHandle);
 transaction->TransmissionSpeed =
 C1394GetAdapterSpeed(C1394AdapterHandle);
 transaction->Status1394 = STATUS_1394_PENDING;
 transaction->Buffer.pBytes =
 HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, bufferSize);

 if (NULL == transaction->Buffer.pBytes)
 {
 printf("Memory allocation FAILED\n");
 return -3;
 }

 // Fill the memory with a specific pattern, so receiver can
 // check data integrity
 for (j = 0; j < bufferSize / sizeof(ULONG); j++)
 {
 *((PULONG)transaction->Buffer.pBytes + j) = fillValue++;
 }
 }

 // Create the event that will indicate that transmission is complete
 hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 if (hEvent == NULL)
 {
 return -4;
 }

 // Transmit the packets.
 asynchHandle = C1394TransmitPackets(C1394AdapterHandle,
 &transArray[0], transactionsNum,&Status1394, NULL, hEvent
);

 if (asynchHandle != NULL)
 {
 if (Status1394 == STATUS_1394_PENDING)
 {
 if (WaitForSingleObject(hEvent, 5000) == WAIT_OBJECT_0)
 {
 printf("Wait success...\n");
 }
 else
 {
 printf("Wait failure.\n");
 }
 C1394CompleteAsynch(asynchHandle);
 }

 // Check the status of each transaction
 for (i = 0; i < transactionsNum; i++)
 {
 Status1394 = transArray[i]->Status1394;
 printf("C1394TransmitPackets for transaction %d returned %s\n",

Page 39

FireAPI User Mode Interface Unibrain

 i, C1394StatusString(Status1394)
);
 }

 }
 else
 {
 printf("C1394TransmitPackets returned %s\n", C1394StatusString(Status1394));
 }

 // Free allocated memory
 for (i = 0; i < transactionsNum; i++)
 {
 if (transArray[i]->Buffer.pBytes != NULL)
 {
 HeapFree(GetProcessHeap(), 0, transArray[i]->Buffer.pBytes);
 }
 if (transArray[i] != NULL)
 {
 HeapFree(GetProcessHeap(), 0, transArray[i]);
 }
 }

 if (hEvent != INVALID_HANDLE_VALUE)
 {
 CloseHandle(hEvent);
 }

 // Officially close the adapter.
 C1394CloseAdapter(C1394AdapterHandle);

 // Cleanup 1394 support.
 C1394Terminate();
 return 0;
}

Page 40

FireAPI User Mode Interface Unibrain

Accepting Transactions from Remote Nodes
This involves making available address ranges in the 1394 address space of the local host (more
precisely on the 1394 address space of an adapter on the local host), so that remote nodes can perform
IEEE 1394 asynchronous read, write or lock transactions to these ranges.

The 1394 Address Space
According to this paragraph there are the following ranges:

• Low Address Space: 0 to physicalUpperBound. All write requests are immediately
acknowledged with ack_complete even if the write operation has not been yet completed.

• Middle Address Space: physicalUpperBound to FFFE_FFFF_FFFF. All transaction
requests are handled by software, but write requests with non-zero extended transaction code are
automatically acknowledged by the adapter hardware with ack_complete.

• Upper Address Space: FFFF_0000_0000 to FFFF_EFFF_FFFF. All transaction requests
are handled by software and an ack_pending acknowledge is automatically returned by the
adapter.

• CSR Space: FFFF_F000_0000 to FFFF_FFFF_FFFF. All transaction requests are forwarded
to software for processing with the exceptions of certain CSRs that are handled by the adapter. An
ack_pending acknowledge is automatically returned by the adapter for all requests.

The mechanism of the physicalUpperBound register is too limited to fully accommodate a secure
operating system like Windows NT. Providing NT host memory physical access to remote nodes could
only possibly occur to restricted ranges of physical pages, FireAPI does not currently implement direct
physical access.
This means that in the adapters where physicalUpperBound is configurable, it is set to zero, and in
those adapters that have a hardwired value, the feature is disabled and the class driver will not permit a
CSR below that value.

The applications should follow the following guidelines when using the node’s address ranges:
1. Read or write requests within the range 0 to FFFE_FFFF_FFFF (low and middle address spaces)

shall not have 1394 visible side-effects.

The term visible side-effect is used to denote an indirect action caused by a request or response which
results in the alteration of the contents or usage of host memory outside the address scope of the
request or response.

What the above means is that an application should only use the CSR Space when it wants to
implement Control and Status registers, i.e. registers whose manipulation through incoming 1394
transactions may alter the contents of other addresses in the 1394 address space.

Page 41

FireAPI User Mode Interface Unibrain

Address Ranges in the 1394 Address Space
The fundamental object required in order to accept incoming transactions is the Address Range.

The Address Range is an object that has a length, a request queue, optionally some associated memory
and a set of Mappings. An Address Range Mapping associates an Address Range with a specific
base-offset in the 1394 address space of one of the locally installed adapters.

This means that a single Address Range, can possibly have many mappings on the same adapter at
different offsets, or to more than one adapters.

The figure below illustrates the concept of Address Ranges & Mappings, displaying an address range
of size 1800 bytes, that is mapped at two different offsets on the first adapter, and on another offset on
the second adapter19.

Adapter

0000FFFF0000

001234567800

…

0

248-1

Adapter

Length: 1800 bytes
Processing routine: …
Flags: …
Backing memory:

Request
Queue

Address Range

Mapping

Mapping

Mapping

0111001000100
0010111101001
1001000010101
1000110100000
0110101001010
1011001001001
0001010001000

Each mapping is associated with a set of access-rights, which define which transaction codes will be
accepted through this mapping. The class driver automatically responds with resp_type_error to
transaction requests that specify a non-permitted transaction code on a mapping.
This way the application developer need only write code to handle the transaction requests that are of
interest to the application.

Similarly the application can specify which transaction requests are automatically serviced by the class
driver without bothering the application. For example an application could specify that it wants the
class driver to automatically respond to read requests by returning the data found in the memory
associated with the address range, and only pass to the application write and lock requests.

It is of primary importance to note that no matter how many mappings an Address Range has, incoming
transaction requests are queued by the class driver in a single request queue and a single Win32 event
object is used by the applications for processing.
All incoming transaction requests20 are stored in the address range’s request queue and are kept there
until the application proceeds to process them. The mechanism of operation provided by FireAPI
makes it much easier for applications to process incoming transaction requests because there is no

19 We are always talking about adapter installed in the local host.
20 The ones that are actually passed the access right checks.

Page 42

FireAPI User Mode Interface Unibrain

limitation as to how soon should the application process the packets, or what will happen if more than
one packets arrive before the application has the change to process the first packet.
A request always contains information about the mapping it was received from. Transaction responses
are automatically sent back through the adapter on which the mapping is allocated.

Allocating and Freeing an Address Range
A client can allocate a new memory range and at the same time map it in the adapter’s 48-bit 1394
address space by calling C1394MapAddressRange. The same function is used for re-mapping an
existing address range to another 1394 adapter, or to another offset on the same adapter.

An address range mapping can be removed with C1394UnmapAddressRange.

The sample below demonstrates how to create an address range of size 8192 bytes, that accepts read
transactions (block and quadlet) and quadlet write transactions, and maps it at a fixed offset value. The
application specifies that the class driver should automatically service any read requests and only pass
to the application any quadlet write requests.

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADDRESS_RANGE_CHARACTERISTICS arc;
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 C1394_RANGE_HANDLE C1394RangeHandle;
 HANDLE hStartProcessingEvent;
 STATUS_1394 Status1394;
 void *pMemory;

 // Initialize everything to NULL so that clean up is safe.
 C1394AdapterHandle = NULL;
 C1394RangeHandle = NULL;
 hStartProcessingEvent = NULL;
 pMemory = NULL;

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 Status1394 = C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

 if (STATUS_1394_SUCCESS != Status1394)
 goto Cleanup;

 pMemory = malloc(8192);

 if (NULL == pMemory)
 goto Cleanup;

 // Clear the structure.
 ZeroMemory(&arc, sizeof(arc));

 arc.BaseAddress = 0x800013941EEE;
 arc.uLength = 8192;
 arc.pAddressRangeMemory = pMemory;
 arc.fAccessRights = ACCESS_READ_REQUESTS | ACCESS_QUADLET_WRITE;
 arc.fClientTransactions = CLIENT_QUADLET_WRITE;
 arc.uMaxRequestQueueItems = 100;
 arc.ClientMappingHandle = NULL;
 C1394RangeHandle = NULL;

 Status1394 = C1394MapAddressRange(C1394AdapterHandle,
 &C1394RangeHandle,
 &hStartProcessingEvent,
 &arc);

Page 43

FireAPI User Mode Interface Unibrain

 // Did it fail ?
 if (STATUS_1394_SUCCESS != Status1394)
 {
 KdPrint(("C1394MapAddressRange FAILED with status %s\n",
 C1394StatusString(Status1394)));
 return -3;
 }

Cleanup:;
 if ndle) (NULL != C1394RangeHa
 C1394UnmapAddressRange(C1394AdapterHandle, C1394RangeHandle, 0x800013941EEE);

 if (NULL != pMemory)
 free(pMemory);

 if apterHandle) (NULL != C1394Ad
 C1394CloseAdapter(C1394AdapterHandle);

 C1394Terminate();
 return 0;
}

Page 44

FireAPI User Mode Interface Unibrain

Incoming Transaction Request Processing
The underlying support mechanism for processing incoming transactions provides an auto-reset Win32
event object that is associated with an address range. Whenever a 1394 transaction request arrives for
an address range mapping and the address range queue contains no requests, then the event object is set
by the class driver.
The application should wait on this event and when it finds it signalled (set), it should call
C1394GetNextRequest repeatedly, until a NULL pointer is returned. This is the indication that the
address range’s request queue is empty. Then the application can wait again on the event object until a
new request arrives for this address range.
See the description of C1394GetNextRequest for more information on this method.

The processing of asynchronous transactions can be conceptually split in two parts: The part performed
by the class driver, and the part performed by the application.

The class driver’s high-level logic for the processing of incoming asynchronous requests is depicted in
the following flowchart.

Accept Incoming Request

Locate Mapping

Valid? Drop
Packet

Access OK?

Queue the Request

Busy Flag?

Busy Flag = 1

Notify Client

resp_type_error

0

1

No

Yes

Located? resp_addr_error No

Yes

Incoming Transaction Request Processing Logic

From this flowchart we can see that the class driver does not check whether the request queue is empty,
but directly queues the request and then checks the address range’s Busy Flag. If the Busy Flag is set
then the class driver does not notify the application. If the Busy Flag is clear, then the class driver sets
it to 1 and notifies the application.

The Busy Flag is cleared in two occasions:
• When the address range is first created.
• When C1394GetNextRequest returns NULL.

Page 45

FireAPI User Mode Interface Unibrain

The internal logic of C1394GetNextRequest is depicted in the following flowchart.

C1394GetNextRequest Logic

The operating logic of C1394GetNextRequest guarantees several things:
• A request is returned to the application only when the application requests it.
• Some transaction types that the client requested get automatically serviced by the class driver

without being returned to the application. The response packet is also automatically generated and
sent.

• Requests that get automatically serviced get serviced from within C1394GetNextRequest.
This means that an auto-request will not get serviced at the moment it arrives, but it will be put in
the request queue and will be processed when its turn has arrived and the application is ready.
This way the application knows that NO transaction requests will be processed out of order, or
while the application is updating the memory that is associated with the address range.

This model of operation allow for maximum flexibility on the application side, since an application is
free to do the transaction processing in any way it finds suitable, either synchronous or asynchronous21
processing.
Whenever the application is ready to process a packet it makes a call to C1394GetNextRequest.
The application is not forced to respond to a request before calling C1394GetNextRequest again to
retrieve the next request from the queue.
For example an application can retrieve 2 requests from the queue, and respond to the 2nd before it
responds to the 1st.

It is also very important to note that a single request queue is maintained for an address range, no
matter how many mappings it has. This means that if for example an application has a register mapped
in two adapters, the ordering or transactions is automatically provided by FireAPI. If two different
request queues were used, and at one moment the application found 10 requests in each queue, then the
application could not infer the overall order in which the transactions were received but only the
relative order for each queue.

Additionally the application uses a single event object in order to get notified for either mapping, and a
single address range handle to retrieve the requests from either mapping. This makes the coding of the
application itself much simpler.

The client can use the translated packet header inside the packet structure to find out the exact
information regarding each transaction request (transaction code, offset, data size etc), and optionally
use the API provided functions to create the transaction responses. The client is completely free to
respond to the requests in any order that suits its needs, or even not respond at all.

21 That is immediate or deferred.

Q Empty?

Remove 1st rq from Queue

Service & Send Response

Auto?

No

Yes

Yes

Return request
to application

No

C1394GetNextRequest

Busy Flag = 0;
Return NULL;

Page 46

FireAPI User Mode Interface Unibrain

Application Control Flow
The flowchart below illustrates the most common way for an application to process the incoming
transaction requests for one of its address ranges.

WaitForSingleObject

NULL?

C1394GetNextRequest

No

Yes

Process
Transaction

Request

Application Transaction Request Processing Logic

Simple CSR Server Sample
The following sample demonstrates the implementation of a register that accepts write and read
transactions. Read transactions are automatically serviced by the class driver and write transactions are
retrieved and serviced by the application. The application simply prints out some information about
each write request and then services it by using function C1394ServiceTransactionRequest.
When the application receives a zero length block write transaction at offset 0x123456780050 then it
will exit its infinite processing loop.

#include <windows.h>
#include <stdio.h>
#include <ctype.h>
#include "FireAPI.h"

// The address of our register.
#define SIMPLE_CSR_OFFSET 0x123456780000
#define SIMPLE_CSR_SIZE 2048
#define SIMPLE_CSR_EXIT_OFFSET 0x50

UCHAR g_szMemory[SIMPLE_CSR_SIZE] =
 "FireAPI Simple CSR Server. Copyright Unibrain S.A. 1998-1999";

// A macro for producing printable characters out of a char value.
#define PRINTCHAR(a) (isprint(a) ? (a) : '.')

//**
main(void)
{
 STATUS_1394 Status1394;
 HANDLE hStartProcessingEvent;
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 C1394_RANGE_HANDLE C1394RangeHandle;
 PC1394_PACKET pPacket;

 C1394_ADDRESS_RANGE_CHARACTERISTICS arc;

Page 47

FireAPI User Mode Interface Unibrain

 // Initialize with 1394.
 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 // Open the default adapter.
 Status1394 = C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

 if (STATUS_1394_SUCCESS != Status1394)
 return -2;

 ///////////////////////////////////////
 // Map our register.
 ///////////////////////////////////////
 arc.BaseAddress = SIMPLE_CSR_OFFSET;
 arc.uLength = SIMPLE_CSR_SIZE;
 arc.pAddressRangeMemory = g_szMemory;
 arc.fAccessRights = ACCESS_READ_REQUESTS | ACCESS_WRITE_REQUESTS;
 arc.fClientTransactions = CLIENT_WRITE_REQUESTS;
 arc.uMaxRequestQueueItems = 100;

 // We don't need separate context information for each mapping,
 // because we are only going to have one on each adapter.
 arc.ClientMappingHandle = NULL;

 // Set this to NULL so that it actually allocates an address range.
 C1394RangeHandle = NULL;

 Status1394 = C1394MapAddressRange(C1394AdapterHandle,
 &C1394RangeHandle,
 &hStartProcessingEvent,
 &arc);
 // Did it fail ?
 if (STATUS_1394_SUCCESS != Status1394)
 return -3;

 // Service requests until a write is received.
 for (;;)
 {
 // Wait for the event to get signalled.
 WaitForSingleObject(hStartProcessingEvent, INFINITE);

 // Call C1394GetNextRequest until NULL is returned.
 for (;;)
 {
 pPacket = C1394GetNextRequest(C1394RangeHandle);

 // Did we empty the request queue ?
 if (NULL == pPacket)
 break;

 // Display some information about the incoming request.
 printf("---\n");
 printf("TCode : %s\n",
 C1394TCodeString(pPacket->PacketHeader.TransactionCode));
 printf("Offset : %#I64X\n", pPacket->PacketHeader.Offset);
 printf("Data Length : %u\n", pPacket->PacketHeader.data_length);

 // Is it the exit-write ?
 if ((0 == pPacket->PacketHeader.data_length) &&
 ((SIMPLE_CSR_OFFSET + SIMPLE_CSR_EXIT_OFFSET) ==
 pPacket->PacketHeader.Offset))
 {
 // Just send a response packet. This might not really be
 // necessary as the write request might have already been acknowledged
 // with ack_complete. However this will be checked by
 // C1394SendResponse, which will also complete the packet.
 C1394SendResponse(pPacket, RESP_COMPLETE, NULL, 0);
 goto FinishOperation;
 }

 // Service the request using the standard routine.
 // This will send the response to the adapter that originated the
 // request packet, and will also complete the packet.
 C1394ServiceTransactionRequest(pPacket);
 pPacket = NULL;
 } // inner for (;;)

Page 48

FireAPI User Mode Interface Unibrain

 } // outer for (;;)

FinishOperation:;
 C1394UnmapAddressRange(C1394AdapterHandle, C1394RangeHandle, SIMPLE_CSR_OFFSET);
 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

Incoming request processing is implemented as two nested loops. In the outer loop the application
waits for the event object to be signalled and once it gets signalled the application enters the inner loop
where it retrieves transaction requests until the C1394GetNextRequest returns NULL.

It is very important to note that the code should not loop until the request queue is emptied but until
C1394GetNextRequest returns NULL. For example, if an application knows that it expects 5 packets,
then after the event gets signalled it should call C1394GetNextRequest 6 times. If it only calls it 5
times, then the Busy Flag of the address range will not get cleared and the event object will not get
signalled again when a new request arrives.

Mapping an Address Range to more than one adapters
The DATETIME sample included with FireAPI demonstrates how to map an address range at the same
offset on more than one adapters, and how to process the incoming requests from these mappings. This
sample also registers two notifications and uses the Win32 function WaitForMultipleObjects so that it
can process all events using a single thread.

Performance Optimization for Incoming Requests
The 1394 stack provides a performance optimization that can seriously improve the performance of
applications that accept many asynchronous transaction requests. This section provides some extra
information on this issue so that application developers can fine-tune their applications and achieve
optimum performance.

The first important overhead of receiving an incoming transaction request is the fact that the packet has
to be transferred from kernel mode to user mode. For this to happen a call must be made to the kernel
mode portion of the 1394 stack. Each such call involves a user-mode to kernel-mode transition which is
an operation that involves a certain amount of overhead.

The 1394 stack reduces this overhead by transferring more than one packets in each call, provided of
course there are more than one packets available.

When an application calls C1394GetNextRequest the 1394 stack may transfer more than one
incoming transaction request packets to user mode. The next calls to C1394GetNextRequest will not
switch to kernel mode but will retrieve the packet from an internal queue maintained by UB1394.DLL
in user mode.
At some point this queue will be emptied and the next call to C1394GetNextRequest will switch to
kernel mode to check if there are any other packets available for transfer to user mode.

This way the number of user-to-kernel transitions is greatly reduced for address ranges that accept a
heavy load of packets. For address ranges that represent CSRs (control & status register) this makes no
difference. Usually such registers accept a small amount or requests per second so in most cases the
address range’s request queue only contains one packet.

The 1394 stack internally associates with each address range a maximum packet transfer count. This
counter indicates the maximum packets that may be transferred from kernel mode to user mode in a
single user-to-kernel transition.
The 1394 stack maintains for each application a global default value for this counter, the
default maximum packet transfer count, and uses this value in order to initialize the maximum packet
transfer count of newly created address ranges. The initial value that UB1394.DLL assigns to the
default maximum packet transfer count is 5, but applications can use C1394SetInformation with
OID_DEF_AR_PACKET_TRANSFER in order to modify this value.

Page 49

FireAPI User Mode Interface Unibrain

From the time an address range is created, the 1394 stack assigns to it its own maximum packet transfer
count. This is initialized from the value that the default maximum packet transfer count had when the
address range was created. Applications can modify this value for a specific address range by using
C1394SetInformation with the OID_AR_PACKET_TRANSFER identifier.

The maximum value that the maximum packet transfer count can take is 250.

The maximum packet transfer count of an address range does not only control the maximum number of
packets that may be transferred in one user-to-kernel transition but also another item that can be very
critical to performance.

As stated earlier when packets are transferred from kernel to user mode, they are cached by
UB1394.DLL in a user-mode packet queue. UB1394.DLL has to dynamically allocate C1394_PACKET
structures to populate this queue. These structures are freed when C1394CompletePacket is called for
each packet.
However it is well known that dynamic memory allocations are expensive operations, which can
present serious overhead to an application.

For this exact reason UB1394.DLL implements an additional performance optimization. Along with the
queue of C1394_PACKET structure, UB1394.DLL maintains for each address range a lookaside list
with C1394_PACKET structures.
A lookaside list is a list of available memory blocks of known size that can be used to greatly optimize
the performance of memory allocations. When C1394GetNextRequest allocates a C1394_PACKET
structure it first checks this lookaside list. If a block is available, then it retrieves it from this list with
minimal overhead. If a block is not available then a normal memory allocation is performed.

One of the parameters of a lookaside list is its maximum free list depth, which is the maximum number
of items that it will hold in its list of available memory blocks. When a block is to be freed
UB1394.DLL checks the free list depth. If it is equal to the maximum value, then the memory block is
normally freed, otherwise it is chained back to the free list and the depth of the free list is increased by
one.

The consequence of this mechanism is that an application that does not force the lookaside list to empty
completely will not be performing normal memory allocations, which have a lot of overhead, during its
execution. If the free list depth is exhausted then necessarily some normal memory allocations will take
place.

In the case of UB1394.DLL, the maximum free list depth of each address range is equal to its
maximum packet transfer count. An application will exhaust this free list if it calls
C1394GetNextRequest too many times without calling C1394CompletePacket in between. You can
picture this as follows:
The maximum free list depth is M. The variable Depth is increased by one with each call to
C1394GetNextRequest and decreased by one with each call to C1394CompletePacket. If Depth>M
then the application is not utilizing the lookaside list correctly, and should readjust the maximum packet
transfer count of the address range.

Page 50

FireAPI User Mode Interface Unibrain

Requests Spanning Address Ranges
The class driver will not permit an incoming request to span more than one mappings. If such a request
is received then the class driver will respond to it by sending a response packet with the
resp_address_error response code. This should be taken into consideration when designing an
application.

For example an application that has 10 quadlet registers that represent statistics counters should not
implement them as 10 address ranges of 4 bytes each, because then it would not be possible for a
remote node to read all of them with a single 40-byte block read request.
If on the other hand the application has 10 quadlet control registers, each implementing a different
operation, then it can choose between creating 10 distinct CSRs at successive addresses, or a single 40
byte CSR that only accepts quadlet transactions.

In general it is suggested to avoid creating more address ranges than necessary, because although this
makes things simpler for the application, it introduces more overhead to the system.

Receiving Asynchronous Streaming transactions
Asynchronous streaming packets have the same format and characteristics as isochronous stream
packets. A user can thus perform reception of incoming asynchronous streaming packets via the
FireAPI provided isochronous reception mechanisms. You can find a detailed explanation of the
isochronous receive mechanism provided with FireAPI at the Isochronous Operations chapter of this
manual. This chapter explains all about how to receive incoming packets at a specified channel and the
various available methods in FireAPI that allow the user to do so. You can also find a variety of source
samples that demonstrate reception of isochrounous data that can be used without a single modification
in order to receive incoming asynchronous streaming data.

Advantages of FireAPI Incoming Transaction Request Processing
Overall the advantages of incoming transaction request processing by FireAPI are:
• Queueing and storage of incoming requests by FireAPI.
• A single queue for requests from all mappings.
• Auto-cleanup of pending requests when range is freed.
• Transaction Filtering - Automatic Responses.
• Flexible client processing.
• Single notification for multiple requests.
• Processing when client is ready.
• One-by-One or Many-at-a-Time.
• In-Order or Out-of-Order responses.

Summary of Class Driver Transaction Processing functions
The functions provided by the class driver that can be used in transaction processing are:
1. C1394MapAddressRange: Creates a new address range or remaps an existing address range.
2. C1394UnmapAddressRange: Removes an address range mapping. The address range itself is

deleted when its last mapping is removed.
3. C1394GetNextRequest: Retrieves the next transaction request from an address ranges request

queue.
4. C1394ServiceTransactionRequest: Gets a pointer to an incoming transaction request packet and

the memory that backs the address range, and performs the actions required including memory
updates, response generation and transmission. This function is used when the request is legitimate
and can be executed (a resp_complete will be returned).

5. C1394SendResponse, C1394SendErrorResponse: Even if a client needs to access the requests
for some checks, it need not bother much with response generation. These two functions take all
the appropriate steps to create valid and correct response packets.

6. C1394CompletePacket, C1394CompletePackets: Completes processing of transaction request
packet that were not passed to any of C1394ServiceTransactionRequest, C1394SendResponse,
C1394SendErrorResponse.

Page 51

FireAPI User Mode Interface Unibrain

Common Errors in Transaction Processing
Developers working with address ranges should always keep the following things in mind:

• Each packet that is retrieved from the address range’s request queue with C1394GetNextRequest
must be completed with C1394CompletePacket.
C1394ServiceTransactionRequest, C1394SendResponse and C1394SendErrorResponse
internally call C1394CompletePacket so it would be an error to call C1394CompletePacket for a
packet after calling one of those functions for the same packet.

• Unless C1394GetNextRequest returns NULL, you should not wait on the address range’s event
object again. For example, if an application knows that it only expects 1 packet from its peer
application, then it must make 2 calls to C1394GetNextRequest otherwise the event object
associated with the address range will never be signalled again.

• Application developers should fully understand the significance of the uMaxRequestQueueItems
field of C1394_ADDRESS_RANGE_CHARACTERISTICS.
For example if this is set to 10, and an application sends 100 packets to this address range before
the application that owns the range has the chance to call C1394GetNextRequest, then only the
first 10 packets will be stored in the queue. The rest will be discarded by the class driver.
If these packets require a response then the class driver will put resp_type_error as the response
code, and the sender will eventually get a STATUS_1394_TRANSACTION_FAILED.
If however the packets are unified write transactions (acknowledged with ack_complete), then the
sender has no way of knowing that the receiver has not received these packets.

This flag is only a limit. It is not connected to how much memory will be allocated by the address
range, or how many packets can the address range request queue physically hold.
For example if an application sets this to 10000, then this will not mean that its request queue can
hold 10000 packets. Each incoming request packet consumes space in the asynchronous receive
buffer used by the 1394 stack. By default, the asynchronous receive buffer can hold 256 packets,
regardless of their size. If an application accepts 256 packets without retrieving them from their
request queue then the 1394 stack will not be able to receive any more packets until these packets
are retrieved from the request queue.
The size of the asynchronous receive buffer can be modified through the appropriate registry
settings. An application can find out about the size of the asynchronous receive buffer by using
C1394QueryInformation with the OID_RECEIVE_BUFFER_SIZE identifier.

Page 52

FireAPI User Mode Interface Unibrain

Event Notifications
FireAPI provides a way for applications to get notified about various types of 1394-related events that
occur during their course of operation.
Currently user mode applications can only be notified about bus reset start and bus reset complete
events.

When an application requests a notification for an event it calls function C1394RegisterNotification.
The application usually specifies an event handler that it wants to get called when this event occurs. An
application can specify different event handler routines for various events, or it can use a single event
handler for more than one notifications, as in the sample below.

When there is any notification for an application, the application’s notification event is being signalled.
An application gets a handle to this event by calling C1394GetAsynchEventHandle. When this event
gets signalled, the application should call C1394GetAsynchEvent until this function returns
STATUS_1394_NOT_FOUND, which means that there are no more notification events for the
application.
Usually applications specify handler routines for the event types that they register. These handler
routines get called from within C1394GetAsynchEvent. If the application has only registered
notifications with event handlers, then a single call to C1394GetAsynchEvent is enough to handle all
the events that were pending for the application at that moment. This is exactly what the sample code
below does.
This means that C1394GetAsynchEvent acts more or less like an event notification pump.

The parameters of an event handler routine include the CLIENT_ADAPTER_HANDLE that the
application specified when it opened the adapter with C1394OpenAdapter, the event type that is being
indicated, an optional pointer to an event-specific information structure, and an additional context
pointer that was specified into the call to C1394RegisterNotification.

When an application wants to stop receiving information about an event type, it should call
C1394UnregisterNotification.

Page 53

FireAPI User Mode Interface Unibrain

Registering a Bus Reset Notification
The sample code below, opens the first adapter and registers 2 notifications: Bus Reset Start and
Bus Reset Complete.
It specifies the same handler routine for both events. Inside the handler routine, it prints out a message
depending on the type of event being indicated. The main body of the program loops until 20 events are
indicated and then proceeds to exit, doing a proper resource cleanup procedure.

This application also demonstrates a practical use of the CLIENT_ADAPTER_HANDLE value that is
specified as a parameter to C1394OpenAdapter. The application maintains a structure
(APP_ADAPTER_INFO) with information about the adapter that it opened. This structure contains the
adapter’s GUID and the C1394_ADAPTER_HANDLE returned by C1394OpenAdapter.
The application speficies the pointer to the Info variable as its CLIENT_ADAPTER_HANDLE, and it is
this pointer that is being returned to it as the first parameter of the event handler routine.

#include <windows.h>
#include <stdio.h>
#include <FireAPI.h>

typedef struct
{
 C1394_GUID AdapterGuid;
 C1394_ADAPTER_HANDLE AdapterHandle;
 HANDLE hWaitEvent;
}
APP_ADAPTER_INFO, *PAPP_ADAPTER_INFO;

//**
void EventHandler(IN CLIENT_ADAPTER_HANDLE a_ClientAdapterHandle,
 IN C1394_EVENT_TYPE a_EventType,
 IN PC1394_EVENT_PARAMETERS_STRUCT a_pEventParameters,
 IN PVOID a_Context)
{
 PAPP_ADAPTER_INFO pInfo;

 pInfo = (PAPP_ADAPTER_INFO) a_ClientAdapterHandle;

 switch (a_EventType)
 {
 case EventPhyBusResetStart:
 printf(ResetStart on adapter %I64X : %s\n", "EventPhyBus
 SwapEndian64(*((ULONGLONG*) pInfo->AdapterGuid.Bytes)),
 a_Context);
 break;

 case EventPhyBusResetComplete:
 printf("EventPhyBusResetComplete on adapter %I64X : %s\n",
 SwapEndian64(*((ULONGLONG*) pInfo->AdapterGuid.Bytes)),
 a_Context);
 break;

 default:
 puts("This will not happen.\n");
 }
}

//**
main(void)
{
 APP_ADAPTER_INFO Info;
 STATUS_1394 Status1394;
 ULONG I;
 char szBRStartMsg[] = "Bus Reset START Event";
 char szBRCompleteMsg[] = "Bus Reset COMPLETE Event";

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 C1394GetAdapters(&Info.AdapterGuid, 1);

Page 54

FireAPI User Mode Interface Unibrain

 C1394OpenAdapter(&Info.AdapterGuid,
 (CLIENT_ADAPTER_HANDLE)&Info,
 &Info.AdapterHandle);

 // Set up a bus reset start and a bus reset complete handler.
 Status1394 = C1394RegisterNotification(Info.AdapterHandle,
 EventPhyBusResetStart,
 NULL,
 szBRStartMsg, // context
 EventHandler);
 // Did it fail? This should not happen.
 if (STATUS_1394_SUCCESS != Status1394)
 return -2;

 // Set up a bus reset start and a bus reset complete handler.
 Status1394 = C1394RegisterNotification(Info.AdapterHandle,
 EventPhyBusResetComplete,
 NULL,
 szBRCompleteMsg, // context
 EventHandler);
 // Did it fail? This should not happen.
 if (STATUS_1394_SUCCESS != Status1394)
 return -3;

 Info.hWaitEvent = C1394GetAsynchEventHandle(Info.AdapterHandle);

 for (I=0; I<20; I++)
 {
 WaitForSingleObject(Info.hWaitEvent, INFINITE);
 C1394GetAsynchEvent(Info.AdapterHandle, NULL);
 }

 C1394UnregisterNotification(Info.AdapterHandle, EventPhyBusResetStart);
 C1394UnregisterNotification(Info.AdapterHandle, EventPhyBusResetComplete);
 C1394CloseAdapter(Info.AdapterHandle);
 C1394Terminate();
 return 0;
}

Page 55

FireAPI User Mode Interface Unibrain

Using a separate thread for events
Applications can either use a separate thread to service all their notifications, or use a single thread that
uses the Win32 functions WaitForMultipleObjects or MsgWaitForMultipleObjects as appropriate.

If the application uses a separate thread, then this thread could possibly wait on 2 event objects, the
first being the event handle returned by C1394GetAsynchEventHandle and the other one created by
the application with the Win32 CreateEvent function. The second event should be used by the
application as the Exit Signal for the thread.

This is demonstrated by the sample code below, which is a variation of the previous sample and uses
two different handler functions.

#include <windows.h>
#include <stdio.h>
#include <FireAPI.h>

#define DBG_MSG_PREFIX "---Sample--- "

typedef struct
{
 C1394_ADAPTER_HANDLE AdapterHandle;
 HANDLE hWaitEvent;
 HANDLE hExitEvent;
}
APP_ADAPTER_INFO, *PAPP_ADAPTER_INFO;

//**
DWORD WINAPI EventThreadProc(void *Context)
{
 PAPP_ADAPTER_INFO pInfo;
 HANDLE WaitObjects[2];

 pInfo = (PAPP_ADAPTER_INFO)Context;

 WaitObjects[0] = pInfo->hWaitEvent;
 WaitObjects[1] = pInfo->hExitEvent;

 for (;;)
 {
 switch (WaitForMultipleObjects(2, WaitObjects, FALSE, INFINITE))
 {
 case WAIT_OBJECT_0:
 C1394GetAsynchEvent(pInfo->AdapterHandle, NULL);
 break;

 case WAIT_OBJECT_0+1:
 return 1;
 }
 }
}

//**
void BusResetStart(IN CLIENT_ADAPTER_HANDLE a_ClientAdapterHandle,
 IN C1394_EVENT_TYPE a_EventType,
 IN PC1394_EVENT_PARAMETERS_STRUCT a_pEventParameters,
 IN PVOID a_Context)
{
 PAPP_ADAPTER_INFO pInfo;

 pInfo = (PAPP_ADAPTER_INFO) a_ClientAdapterHandle;
 KdPrint((DBG_MSG_PREFIX "BusResetStart Handler\n"));
}

Page 56

FireAPI User Mode Interface Unibrain

//**
void BusResetComplete(IN CLIENT_ADAPTER_HANDLE a_ClientAdapterHandle,
 IN C1394_EVENT_TYPE a_EventType,
 IN PC1394_EVENT_PARAMETERS_STRUCT a_pEventParameters,
 IN PVOID a_Context)
{
 PAPP_ADAPTER_INFO pInfo;

 pInfo = (PAPP_ADAPTER_INFO) a_ClientAdapterHandle;
 KdPrint((DBG_MSG_PREFIX "BusResetComplete Handler\n"));
}

//**
main(void)
{
 APP_ADAPTER_INFO Info;
 ULONG I;
 HANDLE hEventThread;
 DWORD dwThreadID;

 if (STATUS_1394_SUCCESS != C1394Initialize())
 return -1;

 C1394OpenAdapter(NULL, (CLIENT_ADAPTER_HANDLE)&Info, &Info.AdapterHandle);

 // Set up a bus reset start and a bus reset complete handler.
 C1394RegisterNotification(Info.AdapterHandle,
 EventPhyBusResetStart,
 NULL,
 NULL,
 BusResetStart);

 // Set up a bus reset start and a bus reset complete handler.
 C1394RegisterNotification(Info.AdapterHandle,
 EventPhyBusResetComplete,
 NULL,
 NULL,
 BusResetComplete);

 Info.hWaitEvent = C1394GetAsynchEventHandle(Info.AdapterHandle);
 Info.hExitEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

 // Start our event thread.
 hEventThread = CreateThread(NULL, 4096, EventThreadProc, &Info, 0, &dwThreadID);

 if (NULL == hEventThread)
 {
 printf("CreateThread FAILED. Win32 error code is %u\n", GetLastError());
 return -4;
 }

 // Do our processing processing.
 for (I=0; I<20; I++)
 {
 puts("Processing...");
 Sleep(1000);
 }

 puts("Exiting...");

 // Time to exit, signal the event thread.
 SetEvent(Info.hExitEvent);

 // Wait until the event thread has exited.
 WaitForSingleObject(hEventThread, INFINITE);

 CloseHandle(hEventThread);

 C1394UnregisterNotification(Info.AdapterHandle, EventPhyBusResetStart);
 C1394UnregisterNotification(Info.AdapterHandle, EventPhyBusResetComplete);
 C1394CloseAdapter(Info.AdapterHandle);
 C1394Terminate();
 return 0;
}

Page 57

FireAPI User Mode Interface Unibrain

Notes on Bus Reset Processing
In the most usual case the bus reset start handler of an application will stop any operations that the
application is doing, cleanup any internal tables and return.
Then the application’s bus reset complete handler will read the bus topology, restore the information
that the application was using and restart the application’s operations.

Not all applications need bus reset handlers. An application can use C1394GetBusResetCount in
conjunction with the return values of various functions in order to find out whether a bus reset has
occurred.

Anyway, there are several important details to remember that are related to post bus reset processing:
• The post bus reset processing does not take the same amount of time to execute on all nodes. This

means that it is possible that the bus reset complete handler of an application running in PC-1 is
called while on PC-2 the bus reset complete event has not been indicated
(C1394IsBusResetInProgress still returns TRUE on PC-2).
This means that if PC-1 sends a transaction request to PC-2 from within a bus reset complete
handler, then the class driver on PC-2 will abort the packet because it has not still completed its
bus reset processing. As a consequence, the transaction request will timeout or get lost if we are
talking about a broadcast.
It is suggested that applications either delay their post bus reset processing by 10-20 msec, or be
prepared for the case of their requests timing out or their broadcasts getting lost.

• The class driver follows the requirement of P1394a 2.1 paragraph 9.13 (modification of P1394a
2.0 paragraph 9.10) and will not permit a bus reset to occur for 2 seconds after the last bus reset
occurred.

Page 58

FireAPI User Mode Interface Unibrain

Isochronous Operations

Adapter Channels & DMA Channels
The Adapter Channel is the abstraction the API presents to client applications that want to perform
Isochronous Stream Operations. Stream operations involve three kinds of activities: Isochronous
Receive, Isochronous Transmit and Asynchronous Stream Receive22.

It must be emphasized that the term Adapter Channel abstracts an actual DMA channel on the adapter
(a DMA context according to OHCI terminology). The Adapter Channel should not be confused with
the term isochronous channel or stream.

An isochronous stream is identified by an isochronous channel number that is used in the header of
each packet.
In this documentation the terms isochronous channel and isochronous stream refer to a sequence of
stream packets that appear on the cable and all use the same isochronous channel number.

An Adapter Channel is an abstraction of the DMA channel because it is possible (in OHCI 1.1 or later
chips) that the Class Driver uses the same DMA channel to service more than one Adapter Channels.
This means that there will not necessarily be a 1-to-1 correspondance between Adapter Channels and
DMA channels.

This concept is illustrated in the following figure.

Adapter Channels vs DMA Channels

Each DMA channel can either be a Receive DMA channel or a Transmit DMA channel. This means that
the DMA channels are neither generic nor interchangeable. Each 1394 chip has a given number of
DMA channels available for isochronous receive and transmit.

The OHCI specification for example requires a minimum of 4 and allows a maximum of 32 DMA
channels of each type. Typical 1394 adapter implementations provide 4 isochronous receive DMA

22 Asynchronous stream transmit is performed through the asynchronous transmit functions,
specifically C1394AsynchronousTransmit.

Adapter

 DMA
channel 0

 DMA
channel 1

 DMA
channel 2

Adapter
channel 0

Adapter
channel 1

Adapter
channel 2

Adapter
channel 3

Page 59

FireAPI User Mode Interface Unibrain

channels and 4 isochronous transmit DMA channels, while is it not very unusual to find an adapter
with 8 isochronous transmit DMA channels.

In most applications, what is important on the PC side is isochronous receive capability. Engineers and
system designers must have a clear picture of the 1394 chip capabilities and FireAPI provides
programmatic access to this information.

FireAPI defines the object identifiers OID_ISO_RECEIVE_DMA_CONTEXTS and
OID_ISO_TRANSMIT_DMA_CONTEXTS that can provide this information through the
C1394QueryInformation function.

This is the same information that the FireCommander tool reports through the ISO CAPS command:

An Adapter Channel can be used to perform any kind of stream operation on any isochronous
stream (channel numbers 0 to 63).

An Adapter Channel accepts stream requests23 and executes them. It is the stream request itself that
identifies the isochronous channel number(s) to be used in the actual execution of the operation. In fact
a stream request may involve more than one isochronous stream.

This gives complete flexibility to applications and allows them to implement any kind of design that
best suits their needs.

In the most usual case an application will only care to use an adapter channel in order to transmit or
receive a single isochronous stream.
In more complex designs an application can use a single adapter channel to transmit or receive
multiple isochronous streams. For example an application can pass to an adapter channel a buffer that
contains interleaved packets for 3 different outgoing isochronous streams.

However, these advanced capabilities are tightly connected to the capabilities of the actual adapter that
is being used. For example on adapters based on the PCILynx family of chips, adapter channels have
the capability to transmit packets for more than one isochronous stream on the same isochronous cycle.
Applications should take into consideration the supported behavior of each adapter and utilize it as
appropriate. For instance, a video server application could be designed so that instead of sending 3
packets of 200 bytes on each cycle (for 3 different isochronous streams), send one packet of 600 bytes
on each cycle, and have each isochronous stream appear every 3rd isochronous cycle.
This way an application can perform quite complex tasks using only a single adapter channel. As a
result the adapter resources, which are limited, are better utilized, and more than one applications can
perform isochronous operations at the same time.

23 Also referred to as isochronous requests, isochronous commands, stream commands or simply
commands.

Page 60

FireAPI User Mode Interface Unibrain

DMA Multiplexing
As stated earlier the mapping between Adapter Channels and DMA channels is not always 1-1. This
true only for isochronous receive DMA channels on 1394 adapters that use OHCI chips.

According to the OHCI specification each isochronous receive DMA channel can be programmed to
receive only one isochronous stream (isochronous channel number). This means that the maximum
number of isochronous streams that a software system can receive is determined by the number of
isochronous receive DMA contexts found on the 1394 adapter in use.

In several cases, designers implement systems with multiple 1394 adapters connected to the same 1394
bus simply for the purpose of getting more isochronous receive DMA contexts.

However, the OHCI specification allows for exactly one isochronous receive DMA context to be
configured as “shared”, that is to be set up in a way that it may receive isochronous packets from
multiple channel numbers. This way the software that controls the OHCI chip can overcome the
limitation imposed by the number of available isochronous receive DMA contexts.

Programming a DMA context in this “shared” mode is significantly more complex compared to the
“dedicated” DMA contexts, requiring delicate and timely handling, which is the main reason why
software vendors had not implemented this feature before.

Unibrain has finally made this feature available in ubCore 5.50 and FireAPI 5.50, in an absolutely
transparent way for applications. There is no special code required for an isochronous receive operation
to run on the “shared” MultiDMA context. The binary of the application will run in exactly the same
manner, regardless of whether it is running on a “dedicated” DMA context or on the “shared”
MultiDMA context.

Still the application developer can have control of where the isochronous receive operations execute
and thus configure the solution as desired. Currently the determining factor is the order in which
Adapter Channels are opened.
An Adapter Channel will run on a “dedicated” DMA context if:

1. There are at least two free isochronous receive DMA contexts.
2. There is only one free DMA context, but another DMA context is already operating in

“shared” mode.

At the moment of this writing there is no direct way to force an adapter channel to run on the “shared”
DMA context, although there are free DMA contexts. Unibrain is considering adding such a capability
in future versions of FireAPI.

Page 61

FireAPI User Mode Interface Unibrain

DMA Multiplexing Modes
In order to make ubCore 100% backwards compatible and not break existing code and running
systems, it is possible to operate the Firewire adapter in the “Only Dedicated DMA context” mode, in
fact this is the default mode of isochronous receive operation.

The Isochronous Receive DMA mode is now a configuration setting of ubCore. Actually it is not only
a registry setting that determines how the system operates at startup, but can also be changed
dynamically for easier testing.
The setting is actually named DMA Multiplexing Mode, as shown below in the ubTweak utility:

• Always use DMA Multiplexing: When this option is selected, then all isochronous receive
operations get executed on the “shared” DMA context, leaving the rest of the isochronous
receive DMA contexts inactive.
This option has been added primarily for testing reasons. It allows application designers to
easily stress test the DMA Multiplexing implementation of both the software and the
underlying 1394 adapter.

• Disable DMA Multiplexing: This is the default option after the installation of ubCore 5.50,
for reasons of backwards compatibility.
When this option is active then all isochronous DMA contexts are operated in “dedicated”
mode.

• DMA Multiplexing on the last context: When this option is selected then the operation of
MultiDMA is enabled. The option name actually describes the internal logic of isochronous
receive DMA programming.
When there are more than one available isochronous receive DMA contexts then a newly
opened isochronous adapter channel is operated in “dedicated” mode. When there is only one
available, the last free one, then the DMA context is operated in “shared” mode.
This of course means that if there are 4 isochronous receive DMA contexts available and the
application sets up isochronous receive on 4 channels, the fourth will be running on “shared”
mode, even though it will be the only one sharing the DMA context.
This is implemented this way because it is technically impossible to shift a DMA context from
“dedicated” to “shared” without disrupting isochronous receive on the context, which would
result in at least one failed isochronous operation for an application, simply because another
application tried to set up its own isochronous receive operations.
In practice however, solution designers usually know the number of isochronous operations
that will be running at one time, and if they require a maximum of 4 then they can simply
disable MultiDMA.

Changing the DMA Multiplexing Mode setting from ubTweak saves the new value in the registry and
optionally immediately applies it.

You can also use the MULTIDMA command in FireCommander to see and dynamically change the
current setting, without saving it in the registry.

Page 62

FireAPI User Mode Interface Unibrain

Type MULTIDMA /? to see the supported options as shown below:

Entering MULTIDMA without parameters displays the current setting.

The DMA Multiplexing Mode value can only be dynamically changed when there are no isochronous
receive adapter channels open. Doing a dynamic change of the operating mode is supported mainly for
testing reasons, but could theoretically be utilized in some specialized scenarios as well.

The object identifier defined for querying and controlling the DMA Multiplexing Mode through
C1394QueryInformation and C1394SetInformation is OID_MULTIDMA_MODE, which uses a
ULONG argument with values from the following enumeration:

 typedef enum
 {
 MultiDMAOnLastContext = 0,
 MultiDMADisabled = 1,
 MultiDMAForced = 2,
 }
 MultiDmaOperation;

Page 63

FireAPI User Mode Interface Unibrain

Opening an Adapter Channel
An application opens an Adapter Channel by calling C1394OpenAdapterChannel. Adapter Channels
have an associated type, which defines the type of operation they can be used for. This can be
Isochronous Receive, Isochronous Transmit or Asynchronous Stream Receive.

For each Adapter Channel the application should specify the maximum number of isochronous packets
that it intends to specify in a single isochronous request. This is indicated by specifying the
PACKETS_PER_REQUEST flag in the Adapter Channel options. For more information see the
description of C1394OpenAdapterChannel.

When an application has completed its use of an Adapter Channel, it should close it by calling
C1394CloseAdapterChannel.

The sample code below demonstrates how to open an Adapter Channel for isochronous receive on the
default adapter. The application indicates that it intends to use a maximum of 640 isochronous packets
in each isochronous request.

#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADAPTER_HANDLE AdapterHandle;
 C1394_CHANNEL_HANDLE ChannelHandle;
 HANDLE hStartProcessingEvent;
 STATUS_1394 Status1394;
 FIREAPI_CHANNEL_PARAMETERS ChannelParams;

 C1394Initialize();
 C1394OpenAdapter(NULL, NULL, &AdapterHandle);

 // Initialize the channel parameters structure.
 ChannelParams.Tag = TAG_FIREAPI_CHANNEL_PARAMETERS;
 ChannelParams.AdapterChannelType = ChannelIsochReceive;
 ChannelParams.IsochReceive.fAdapterChannelOptions = PACKETS_PER_REQUEST;
 ChannelParams.IsochReceive.uMaxPacketsPerRequest = 640;

 // Try to open the adapter channel.
 Status1394 = C1394OpenAdapterChannel(AdapterHandle,
 &ChannelHandle,
 &hStartProcessingEvent,
 NULL,
 &ChannelParams);

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf(Channel failed with status %s\n", "C1394OpenAdapter
 C1394StatusString(Status1394));
 return -1;
 }

 puts("Adapter channel opened.");

 C1394CloseAdapterChannel(AdapterHandle, ChannelHandle);

 C1394CloseAdapter(AdapterHandle);
 C1394Terminate();
 return 0;
}

Page 64

FireAPI User Mode Interface Unibrain

Enabling stream channel numbers for an Adapter Channel
After an application opens an Adapter Channel it has to inform the 1394 stack about which stream
channel numbers it intends to use through this adapter channel.

This is necessary so that the 1394 stack can:
• Make sure that the same channel number is not used on two different Adapter Channels on the

same PC.
• Perform parameter validation checks.

The 1394 stack maintains for each Adapter Channel a 64-bit mask which has a bit set for each stream
channel number that the application has enabled for the Adapter Channel. This is the called the
Channel Mask. An application can retrieve the current value of the channel mask for an adapter
channel by using C1394QueryInformation and specifying the OID_CHANNEL_MASK object
identifier.
Similarly the application can use C1394SetInformation with the OID_CHANNEL_MASK identifier in
order to set the value of the channel mask for an Adapter Channel.

The sample application below demonstrates how to use C1394SetInformation in order to enable the
channel number that it intends to use with its adapter channel.

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADAPTER_HANDLE AdapterHandle;
 C1394_CHANNEL_HANDLE ChannelHandle;
 HANDLE hStartProcessingEvent;
 STATUS_1394 Status1394;
 ULONG uChannelNumber;

 FIREAPI_CHANNEL_PARAMETERS ChannelParams;
 CHANNEL_MASK_STRUCT ChannelMaskStruct;

 srand(GetTickCount());

 C1394Initialize); (
 C1394OpenAdapter(NULL, NULL, &AdapterHandle);

 // Initialize the channel parameters structure.
 ChannelParams.Tag = TAG_FIREAPI_CHANNEL_PARAMETERS;
 ChannelParams.AdapterChannelType = ChannelIsochReceive;
 ChannelParams.IsochReceive.fAdapterChannelOptions = 0;

 // Try to open the adapter channel.
 Status1394 = C1394OpenAdapterChannel(AdapterHandle,
 &ChannelHandle,
 &hStartProcessingEvent,
 NULL,
 &ChannelParams);

 if (STATUS_1394_SUCCESS != Status1394)
 return -1;

 puts("Adapter channel opened.");

 // Select a random channel number other than 31.
 do
 uChannelNumber = (rand() % 64);
 while (uChannelNumber == 31);

Page 65

FireAPI User Mode Interface Unibrain

 // Enable a channel number for this adapter channel.
 ChannelMaskStruct.ChannelHandle = ChannelHandle;
 ChannelMaskStruct.UChannelMask = ((ULONGLONG)1) << uChannelNumber;

 Status1394 = C1394SetInformation(AdapterHandle,
 OID_CHANNEL_MASK,
 &ChannelMaskStruct,
 sizeof(ChannelMaskStruct));
 switch (Status1394)
 {
 case STATUS_1394_SUCCESS:
 printf("Enabled channel number %u for adapter channel.\n",
 uChannelNumber);
 break;

 case STATUS_1394_CONFLICT:
 printf("Channel number %u appears to be in use.\n",
 uChannelNumber);
 return -2;

 default:
 printf("C1394SetInformation failed with status %s\n",
 C1394StatusString(Status1394));
 return -2;
 }

 C1394CloseAdapterChannel(AdapterHandle, ChannelHandle);

 C1394CloseAdapter(AdapterHandle);
 C1394Terminate();
 return 0;
}

It is important to note the following:
• Enabling a channel number on an adapter channel is completely unrelated to allocating a channel

number from the IRM.
• In general applications should check for a return code of STATUS_1394_CONFLICT from

C1394SetInformation when trying to set the channel mask.
If this value is returned then it means that one or more of the channel numbers that the application
is trying to enable are already enabled by other adapter channel.

• When an adapter channel is closed, the channel numbers that were enabled for it are automatically
freed by the 1394 stack, so the application need not set the channel mask to all zeroes before
closing an adapter channel.

• In an application that has tested and debugged, C1394SetInformation(OID_CHANNEL_MASK)
will not return any other status than STATUS_1394_SUCCESS or STATUS_1394_CONFLICT.
All other return codes have to do with passing invalid parameters (like an invalid adapter handle,
or channel handle, an invalid OID etc), and will never be returned in an application that operates
correctly.

Using OID_CHANNEL_MASK makes things a little bit more complicated if an application wants to
enable or disable more than one channel numbers. This is because calling C1394SetInformation with
OID_CHANNEL_MASK replaces the channel mask which means that it possibly performs more than
one enable\disable actions at a time.
For example if an application has already enabled some channels, and at some point needs to enable
another 2 channel numbers, then using OID_CHANNEL_MASK it would have to retrieve the current
channel mask using C1394QueryInformation, OR-in the new channel numbers and set it back with
C1394SetInformation.

In order to make it easier for application writers to perform such tasks, FireAPI also includes two
OIDs24 in addition to OID_CHANNEL_MASK.
There are OID_CHANNEL_MASK_ENABLE and OID_CHANNEL_MASK_DISABLE.

24 OIDs is short for Object IDentifiers.

Page 66

FireAPI User Mode Interface Unibrain

OID_CHANNEL_MASK_ENABLE enables the channel numbers specified in the provided mask,
without affecting the other channel numbers that are possibly currently set into the channel mask of the
adapter channel.
Similarly OID_CHANNEL_MASK_DISABLE disables the channel numbers specified in the provided
mask, without affecting the other channel numbers that are possibly currently set into the channel mask
of the adapter channel.

The following sample demonstrates how to use OID_CHANNEL_ENABLE and
OID_CHANNEL_DISABLE to selectively enable and disable channel numbers for an adapter channel,
without having to retrieve the channel mask each time.

 for (I=0; I<5; I++)
 {
 // Select a random channel number other than 31.
 do
 uChannelNumber = (rand() % 64);
 while (uChannelNumber == 31);

 // Enable this channel number for the adapter channel.
 ChannelMaskStruct.ChannelHandle = ChannelHandle;
 ChannelMaskStruct.UChannelMask = ((ULONGLONG)1) << uChannelNumber;

 Status1394 = C1394SetInformation(AdapterHandle,
 OID_CHANNEL_MASK_ENABLE,
 &ChannelMaskStruct,
 sizeof(ChannelMaskStruct));
 switch (Status1394)
 {
 case STATUS_1394_SUCCESS:
 printf("Enabled channel number %u for adapter channel.\n",
 uChannelNumber);
 break;

 case STATUS_1394_CONFLICT:
 printf("Channel number %u appears to be in use.\n",
 uChannelNumber);
 return -2;

 default:
 printf("C1394SetInformation failed with status %s\n",
 C1394StatusString(Status1394));
 return -2;
 }
 }

Page 67

FireAPI User Mode Interface Unibrain

Adapter Channel Operating Models
In the kernel mode API there are 2 basic operating models that are supported by adapter channels:
Queued-Completion and Instant-Completion. Client drivers can use either one, and if necessary a
mixture of them.
In the user mode API, the operating model is a little more restricted, as there is no capability for direct
callback calls. An application necessarily uses the Queued-Completion model for ALL isochronous
requests, but can also associate an independent event handle with specific requests.

The application submits to the 1394 stack one or more isochronous requests for an adapter channel
and then these requests start executing one-by-one, ‘in the background’. This means that the 1394 stack
programs the 1394 adapter to execute these operations, and then lets the adapter execute them without
any CPU intervention.

Usually, applications queue more than one isochronous requests, so that the adapter channel can
continue executing the next isochronous request(s), while the application is processing the outcome of
the completion of a previous request.
This way, the application can ensure that no incoming isochronous packets are missed in the case of
isochronous receive, and no cycles remain idle25 in the case of isochronous transmit.

An application uses C1394IsochQueue in order to queue one or more isochronous requests for
execution by the adapter channel. The isochronous requests are being executed in the exact same order
in which they were submitted26 by the application.

When an isochronous request is submitted it gets stored into the adapter channel’s Request Queue.
When an isochronous request has completed its execution it is stored in the Completed-Request Queue,
from where the application can retrieve it by calling C1394GetNextCompleteRequest.

C1394IsochQueue C1394GetNextCompleteRequest

Request
Queue

Logical Structure of an Adapter Channel

25 Unintentionally idle. An application might specifically request for a number of idle cycles.
26 It is the responsibility of the application to submit isochronous requests in a serialized fashion. If the
application makes concurrent calls that submit isochronous requests for the same adapter channel, then
the relative order of the two sets of isochronous requests will be randomly selected depending on which
thread obtained some internal synchronization objects first.

Adapter
Channel

Executio
n

Engine

Completed
Request
Queue

Page 68

FireAPI User Mode Interface Unibrain

In principle different adapter channels operate completely indepently of one another.
However in actual hardware implementations DMA channels are not completely independent of one
another, but instead are prioritized and the operation of a higher priority channel can affect the
operation of a lower priority DMA channel.
This can happen if the higher priority DMA channel completely ties up the 1394 chip of the adapter
and the chip does not perform an internal context-switch to the lower priority channel in time to
complete the requested operations.

In general application developers should verify that the 1394 adapter that they intend to use can
perform the tasks that they have in mind, especially if they plan to use more than one adapter channels.

PCILynx-based adapters can handle total isochronous load of up to 4KB per isochronous cycle,
provided that the FIFO has been configured appropriately. In cases where a lot of isochronous traffic is
involved, application designers should also consider using two 1394 adapters in order to perform their
operations without heavy constraints on the FIFO sizes.

The sample code of FireAPI includes a sample application that can generate a constant stream of
isochronous traffic of a specified packet size27, and an application that can continuously receive an
isochronous stream of a specified packet size.
Using these two applications developers can simulate the demand that their system will put on the 1394
adapters and make sure that the hardware they use is suitable for the task they are after.

27 The packet size is specified on the command line.

Page 69

FireAPI User Mode Interface Unibrain

Queued-Completion Model
The Queued-Completion model closely resembles the operating model of an address range:
• Isochronous requests for an adapter channel are being submitted with calls to C1394IsochQueue.
• When a request is completed, then the 1394 stack will insert the completed request into the adapter

channel’s complete-request queue.
• Before the completed request is inserted in the queue the 1394 stack checks if the adapter

channel’s Completed-Request Queue is empty and its Busy Flag is clear. If this is the case then the
1394 stack notifies the application that there is at least one complete request for this adapter
channel, by setting event object associated with the adapter channel. At the same time the 1394
stack sets the Busy Flag for this adapter channel.

• The client can then repeatedly call C1394GetNextCompleteRequest in order to retrieve the
completed commands from the adapter channel’s Completed-Request Queue.

• When the Completed-Request Queue is emptied, C1394GetNextCompleteRequest returns NULL
and at the same time resets the adapter channel’s Busy Flag and the channel’s event object.

• If any other isochronous requests complete while the adapter channel’s Busy Flag is set (which
implies that the application is still in its processing loop), then the completed request will be
queued but the client’s event object will not be signalled again.

The Queued-Completion model of operation makes it much easier for clients to process the completed
requests, because it imposes an inherent serialization in the processing of completed request, and also
provides queueing of all completed isochronous requests.
The application need not provide any kind of management for its isochronous requests. It is not
necessary that the application maintains information on which requests are pending, which one are
completed and demand application-side processing, which ones have failed, etc. The 1394 stack takes
the complete responsibility for maintaining all this information, and presents to the application an
interface through which the application can find out about completed requests.

The operating logic of isochronous request completion is illustrated in the following flowchart.

Wait for
Isoch Complete

Enqueue in
Complete RQ

Busy
Flag ? Set Busy

Flag to 1
0

Signal
Adapter Channel

Event Object

1

Isochronous Request Queued-Completion Logic

When an isochronous request has completed, the adapter raises an interrupt and automatically starts
executing the next isochronous request. This is the reason why the action of starting the next
isochronous request is not shown anywhere in this flowchart.
The Busy Flag is zero-initialized, and is being reset to zero each time NULL is returned by
C1394GetNextCompleteRequest.

Page 70

FireAPI User Mode Interface Unibrain

Instant Completion Notification
The Queued-Completion model has a property that could be seen as a drawback for some kinds of
applications. Specifically, the application cannot be informed “timely” when a specific isochronous
command completed, unless it completely empties the complete-request queue each time it gets
notified.
Then it knows that it will get its event signalled immediately when the next request completes, but at
the same time loses another advantage that the Completed-Request Queue offers. Once it retrieves the
requests from the queue, then it has to manage these requests on its own (using a private queue, a table
or some other structure).

Because this “timely” notification might be critical for some applications, the 1394 stack provides a
method, through which the application can receive an immediate notification at the exact moment when
an specific isochronous command is completed. This is received through an event object, that can be
separately associated with each isochronous request.

However the request will still be queued in the adapter channel’s Completed-Request Queue28.

The flowchart below expands the logic of the previous page to include the Instant-Completion
processing logic.

Wait for
Isoch Complete

Isochronous Request Completion Logic

28 In kernel mode, the client has the option to directly retrieve this request, without having it stored into
the Completed-Request Queue.

Enqueue in
Complete RQ

Instant
Notify ?

Set Busy
Flag to 1

0

Signal
Adapter Channel

Event Object

1

Signal Request’s
Event Object

1

0

Busy
Flag ?

Page 71

FireAPI User Mode Interface Unibrain

Isochronous Request Types
FireAPI includes several different isochronous requests in order to provide developers with all the
functionality that they may need.

The list of supported isochronous requests and a short description of their functionality is shown in the
table that follows:

Title Description

Receive
Fixed

Packets

An isochronous receive operation, where complete isochronous packets
(header quadlet + data) are received in a virtually contiguous buffer.
A maximum size M (in quadlets) is specified for the isochronous packets to
be received. The Nth packet received in the buffer is stored at offset
(M+1)*4*N.
If a packet smaller that M quadlets is received, then simply a couple of bytes
stay unused29. If a packet larger than M quadlets appears on the isochronous
stream, then the packet will either be ignored or will be partially received
depending on the operation-specific flags set for this operation.

Receive
Fixed
Data

Similar to Receive Fixed Packets, with the difference that the headers and the
data are received into two separate buffers. This way the isochronous
payload data appear contiguously in memory.
A maximum size is specified for the isochronous packets to be received. The
caller can request that more than one quadlets of each packet are moved into
the header buffer. This way the caller can strip additional protocol headers
from each isochronous packet.

This method is known to present problems on some 64-bit machines with lots
of memory (data corruption during DMA) so in these cases it is suggested
that you either use the Receive Fixed Packets method or the Receive Fixed
Data No Headers method described below.

Receive
Fixed Data
No Headers

Similar to Receive Fixed Data, with the difference that the isochronous
packet header (1 quadlet) is discarded. The isochronous payload data is
received in a single buffer and appears contiguously in memory.
A maximum size is specified for the isochronous packets to be received.

Transmit
Fixed

Packets

An isochronous transmit operation, where complete isochronous packets
(header quadlet + data) are layed out in a virtually contiguous buffer, each
one starting at a multiple of a fixed offset.
A maximum size M (in quadlets) is specified for the isochronous packets to
be transmitted. The Nth packet is stored in the buffer at offset (M+1)*4*N.

Transmit
Packets

An isochronous transmit operation, where complete isochronous packets
(header quadlet + data) are layed out in a virtually contiguous buffer, one
after the other, with each packet starting at the next quadlet boundary after
the previous packet.

Transmit
Data

An isochronous transmit operation, where the caller provides two buffers.
The first is the header buffer, which can contain H≥1 quadlets for each
isochronous packet to be transmitted. The second is the data buffer which
contains the rest of the payload bytes for each packet.

Idle
Cycles

An operation that allows a client to request a certain number of idle cycles.
This is mostly useful for transmit channels, but it is also supported on receive
channels as well.

Table 4. FireAPI Isochronous Operations

29 Bytes stay unused between the end of the ‘small’ packet and the location where the next isochronous
packet will be stored.

Page 72

FireAPI User Mode Interface Unibrain

Any operation that contains the keyword “Packets” describes an operation that processes complete
isochronous packets, while operations that contain the keyword “Data” describe operations that
involve isochronous packets that are split in two parts, a ‘header’ part of 1 or more quadlets and a data
part.

Any operation that contains the keyword “Fixed” describes an operation where fixed values are used
for the boundaries where isochronous packets/data are/will be stored.
Such operations are best suited for applications that deal with isochronous streams which only contain
packets of a constant size. For example all formats of 1394 digital cameras30 that transmit
uncompressed data (YUV or RGB encoded) uses packets of fixed sizes.
However these operations also support streams whose packet size is variable, provided that the
maximum packet size is known in advance.

Operations that don’t contain the keyword “Fixed” describe operations where the boundaries where
packets/data are stored are not fixed, but the packets/data are contiguous.

Some examples are necessary in order to clarify all these concepts.

Example 1
Isochronous Request: Receive Fixed Data, Receive 400 isochronous packets, Fixed packet size is 160
quadlets, Header size is 5 quadlets.

This is a type of buffer-fill isochronous receive.

When isochronous packets will be received, the first 5 quadlets of each packet (1 header quadlet and 4
payload quadlets) will be received into the header buffer of this request, and the rest 155 quadlets (the
pure payload) will be received into the data buffer.
The ‘header’ of the Nth isochronous packet will be at byte offset 4*5*N in the header buffer, and the
rest of the payload will be at byte offset 4*155*N in the data buffer.

This command will be processed by the 1394 chip, and when 400 isochronous packets get received,
then a hardware interrupt will occur and the command will be indicated as complete. At the same time
the 1394 chip will automatically continue its isochronous operations by executing the next isochronous
request that is queued for the adapter channel.

If a packet whose size is 140 quadlets appears on the stream, then this packet will be received as well.
However since packets get received at fixed offsets, the pure payload off this packet will not fill the
155 quadlets that are ‘allocated’ for it, but only 135 quadlets.
The next packet will be received on the next 155-quadlet boundary, so a ‘hole’ will be created in the
data buffer.

Example 2
Transmit Data, 920 Packets, Header size is 1 quadlet.

In this case the header buffer only contains the header quadlet for each isochronous packet. The header
quadlet of the Nth packet is located at byte offset 4*N inside the header buffer. The size of the header
buffer is 4*920 bytes.

The amount of data that will be retrieved from the data buffer for each packet depends on the value of
the data_length field in the header quadlet of the packet.
The offset of the payload bytes of the Nth packet is not known beforehand. It is equal to the sum of the
data_length field of all previous packets.

When the 1394 chip finishes the transmission of the last packet for this request, it will raise an interrupt
in order to indicate the completion of this request, and automatically continue executing the next
command that is queued for the adapter channel.

30 Cameras that comply with the 1394-Based Digital Camera Specification, version 1.04 or 1.20.

Page 73

FireAPI User Mode Interface Unibrain

Why use ‘Packet’ or ‘Fixed’ operations?
It is obvious that Fixed operations are a subset of the functionality of non-Fixed operations. Moreover
Packet operations are less practical than Data operations, because the data are not contiguous.

However there is an important reason why these operations are included in FireAPI: Performance.

It is important to realize that isochronous operations are actually executed by the 1394 chip that is
found on the 1394 adapter. For example it is the 1394 chip that performs an isochronous receive and
splits an incoming packet in 2 buffers, by doing 2 DMA transfers31 per packet.

The drivers prepare a set of instructions that the 1394 chip will execute in order to perform the required
isochronous operations. Each of these instructions has to be transferred over the PCI bus to the 1394
chip, quadlet by quadlet, and get executed by the chip. By itself the execution time of each of those
commands is usually in the order of 10-40 microseconds, and to this we have to add the required
amount of time for transfer of the isochronous payload. For example a 2KB isochronous packet at S400
requires 40 microseconds to be received from the 1394 bus.

On the other hand the isochronous cycle is 125 microseconds, of which only the 100 microseconds are
available for isochronous traffic.

A simpler set of instructions for the 1394 chip means two things:
1. Less overhead on the PCI bus and on the system in general.
2. The 1394 chip has more ‘time’ per cycle to execute isochronous commands from other adapter

channels.

The more complex these instructions get, the more tied-up the 1394 chips become.

When an application performs a fixed packet receive the drivers prepare a simpler set of instructions for
the adapter to execute, because they know in advance the location where each packet should get
received into, and the adapter needs to fetch less instructions from main memory and only perform a
single logical DMA transfer per packet.
This would leave more free processing time to the 1394 chip which could use it to perform an
additional isochronous receive or transmit at the same time.

In an isochronous fixed data receive, the drivers once more know in advance the locations where
headers and data get stored. However this time they have to prepare a more complex set of instructions
because the chip needs to know two (address-length) pairs for each isochronous packet.

In isochronous transmit the differences between Fixed and non-Fixed operations are not that crucial,
because in all cases the drivers have in advance the headers of all the packets that will be transmitted in
a request, and so they can calculate the exact offset where each packet/payload starts.
However the difference between Packet and Data operations are the same; in Data operations the 1394
adapter will have to execute slightly more instructions and perform 2 DMA transfers instead of 1.

In conclusion, there is always a tradeoff. The simpler the set of instructions that the 1394 chip executes,
the more complex the processing that the application has to do gets. Application designers should study
the tradeoffs in conjunction with their system requirements, probably execute some simulation of their
system and then decide which operations to use.

In general, Unibrain suggests that relatively small software complexity is preferrable to over-loading
the 1394 chip.

• If an application can receive complete isochronous packets and process them in-place, without

having to copy the payloads to another memory location so that data becomes contiguous, then it
should opt for this design, unless there is too much extra coding complexity involved.

31 The actual number of DMA transfers performed on the PCI level might be more, depending on how
busy the system is. By saying 2 DMA transfers, we mean 2 logical transfers where a logical DMA
transfer is a destination address and a number of bytes to transfer to it.

Page 74

FireAPI User Mode Interface Unibrain

• If packet receive means that the application has to copy the data elsewhere in order to do its
processing, the stream bandwidth is quite big and the system is already heavily loaded, then
designers should probably opt for a data receive.

• If the application does not have to copy the data regardless of whether it uses packet receive or
data receive, and the target system will not be under heavy load, then data receive would be
preferable.

Design Examples
For example32, suppose that we have an application that wants to receive from the 1st 1394 adapter the
image of a 1394 camera, in the format [640x480, YUV 4:2:2, 30 fps], convert the image to RGB565,
and retransmit it through the 2nd 1394 adapter that is installed on the PC.

YUV 4:2:2 uses 16-bits per pixel, which is the same as RGB565. This means that the amount of
outgoing data is the same as the amount of incoming data. In turn this implies that the application can
perform the conversion in place, and not use a separate output buffer. This will improve locality of
reference and as a result improve performance.

The application has to convert each source pixel from the YUV format into the RGB format. This is
conceptually a pixel-by-pixel operation (in practice a quadlet by quadlet operation).

The size of the isochronous packets is 2560 bytes, which is an exact multiple of 4, that is 640 quadlets.
The number of isochronous packets per frame is 240. The data coming from the camera amounts to 18
MB/sec.

This is an example of a relatively loaded system, because the application has to perform a lot of
calculations and non-trivial data transfers. 18 Mb/sec have to be received from 1394, processed by the
CPU and then retransmitted from 1394.

Doing a fixed data receive, with each receive request specifying [1 header quadlet, 640 payload
quadlets, 240 packets], would make the processing of each frame a simple loop like:

 for (Quad=0; Quad<640*240; Quad++)
 ConvertQuad(&DataBuffer[Quad]);

In order to retransmit the stream, the application would then issue a data transmit request that would
specify as header buffer and data buffer the same data buffers that were used in receiving the frame.

Doing a fixed packet receive, with each receive request specifying [packet size 641 quadlets, 240
packets], we would have to use a nested loop like:

 PacketPayload = &PacketBuffer[1];

 for (Packet=0; Packet<240; Packet++)
 {
 for (Quad=0; Quad<640; Quad++)
 ConvertQuad(&PacketPayload[Quad]);

 PacketPayload += 641;
 }

In order to retransmit the stream, the application would then issue a fixed packets transmit request that
would specify as packet buffer the same packet buffer that was used in receiving the frame.

Even if the application wanted to support this conversion at smaller image resolutions and fps speeds,
the additional coding complexity in the second case is not that much, while there is the double
overhead saved in the 1394-to-PCI interactions.
In this case an application designer could use the packet receive and packet transmit methods in order
to lessen the overall system load.

32 This is from a real world application, not just a ficticious example.

Page 75

FireAPI User Mode Interface Unibrain

Let us now suppose that the application needs to process the image in 4x4 pixel blocks and perform
some internal calculations on the outcome. In this case using a packet receive coding would start
getting a little more complex, because the position of each pixel is a not only a function of its position
and the image size, but also a function of the fps (different fps use different number of packets per
frame).
This could be possibly written with relatively simple-looking code using a macro like
PIXEL_POS(X,Y,Width, Height, fps), but firstly the code would have to perform more actual
calculations to calculate the position of each pixel, and secondly it would not be as easy for the
application developer to optimize this code or write it in assembly language because more parameters
would have to be taken into consideration.
In this case, data receive would probably be preferable.

Page 76

FireAPI User Mode Interface Unibrain

Processing Isochronous Requests

Outline of Isochronous Processing Loop
In general, the processing of an application that uses a constant-flowing isochronous stream can be
described by the following pseudo-code:

 C1394OpenAdapterChannel(ChannelHandle, hChannelEvent);
 SetupIsochRequests(MyReqeustArray, APP_REQUESTS);
 C1394IsochQueue(ChannelHandle, MyReqeustArray, APP_REQUESTS);

 for (;;)
 {
 WaitForSingleObject(hChannelEvent, INFINITE);

 while (NULL != (pRequest = C1394GetNextCompleteRequest(ChannelHandle)))
 {
 ProcessRequest(pRequest);
 C1394IsochQueue(&pRequest, 1);
 }
 }

That is, the application uses C1394IsochQueue to queue an array of isochronous requests, so that it
can keep the adapter channel busy while it is processing a complete request, and then proceeds into the
processing loop.

In this loop it first waits for the adapter channel’s event object to be signalled. This would signal that
there is at least one isochronous request that has been completed.
Then the application goes into the inner processing loop, where it calls
C1394GetNextCompleteRequest, until this function returns NULL. At the point it knows it has to exit
the inner loop, and once more wait for the adapter channel’s event object to be signalled.

As you can see, the application need not keep track itself of which is the next isochronous request that
was completed. C1394GetNextCompleteRequest returns a pointer to this request, in order to simplify
the processing of the application.

Page 77

FireAPI User Mode Interface Unibrain

Queueing Isochronous Requests
The following sample code displays the steps that an application would go through in order to prepare
and queue a set of isochronous requests that will perform a fixed packet receive.

The application specifies the appropriate flags and buffer sizes so that each isochronous request is
synchronized with the isochronous packet that has the SyCode field in its header equal to 1.
Moreover the application specifies the BR_START_NEXT option which means that the 1394 stack
should abort the currently executing request when a bus reset occurs, and continue with the next
isochronous request.

 // Setup the isoch receive requests.
 for (I=0; I<RCV_COMMANDS; I++)
 {
 RtlZeroMemory(&g_IsochRequest[I], sizeof(FIREAPI_ISOCH_REQUEST));

 g_IsochRequest[I].Tag = TAG_FIREAPI_ISOCH_REQUEST;
 g_IsochRequest[I].uOperationCode = ISOCH_OP_RCV_FIXED_PKTS;
 g_IsochRequest[I].fOptions = BR_START_NEXT;

 g_IsochRequest[I].RcvFixedPkts.Tag = TAG_ISOCH_RCV_FIXED_PKTS;
 g_IsochRequest[I].RcvFixedPkts.PacketBuffer = IsochRcvBuffer[I];
 g_IsochRequest[I].RcvFixedPkts.uBufferBytes = uBufferSize;
 g_IsochRequest[I].RcvFixedPkts.ushMaxPayloadQuads = (USHORT) uPayloadQuads;
 g_IsochRequest[I].RcvFixedPkts.ChannelNumber = (UCHAR) uChannelNumber;

 // Sync with frame start
 g_IsochRequest[0].RcvFixedPkts.Flags = RCV_START_ON_SYCODE;
 g_IsochRequest[0].RcvFixedPkts.IsochSyCode = 1;

 pIsochRequestArray[I] = &g_IsochRequest[I];
 }

 Status1394 = C1394IsochQueue(AdapterHandle,
 ChannelHandle,
 pIsochRequestArray,
 RCV_COMMANDS);

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf("C1394IsochQueue FAILED with status %s.\n",
 C1394StatusString(Status1394));
 exit(-1);
 }

In this code fragment, the array of requests is supposed to have been globally declared (hence the ‘g_’
prefix) and are thus never out of scope until the application exits.

The IsochRcvBuffer variable is an array of pointers (either void* or UCHAR*) that has been earlier
initialized with code like this:

 for (I=0; I<RCV_COMMANDS; I++)
 {
 IsochRcvBuffer[I] = malloc(uPacketsPerRequest*(uPayloadQuads+1)*4);

 if (NULL == IsochRcvBuffer[I])
 {
 printf("Memory Allocation of %u bytes FAILED.\n", (uPayloadQuads+1)*4);
 exit(-1);
 }
 }

This means that each request will receive uPacketsPerRequest isochronous packets.

Applications should always check the return value of C1394IsochQueue. The most usual reason of
failure for this function is an incorrect setup of the request structures, which will be indicated with a
return code of STATUS_1394_INVALID_PARAMETER.
In debugged applications, C1394IsochQueue should not fail unless the system is so low in memory
that an internal memory allocation fails.

Page 78

FireAPI User Mode Interface Unibrain

Retrieving Complete Isochronous Requests
The code fragment below demonstrates the isochronous processing loop of an application. This is taken
from the same sample as the code fragments in the previous example.

 while (uRqIndex<uTotalIsochRequests)
 {
 WaitForSingleObject(ChannelStartProcessingEvent, INFINITE);

 while (NULL != (pIsochRequest = C1394GetNextCompleteRequest(ChannelHandle)))
 {
 if (STATUS_1394_SUCCESS == pIsochRequest->Status)
 ProcessRequest(pIsochRequest);
 else
 DisplayError(pIsochRequest);

 // Requeue this command if necessary.
 if (uTotalIsochRequests - uRqIndex > RCV_COMMANDS)
 {
 Status1394 = C1394IsochQueue(AdapterHandle,
 ChannelHandle,
 &pIsochRequest,
 1);

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf(IsochQueue FAILED with status %s.\n", "Requeueing C1394
 C1394StatusString(Status1394));
 exit(-1);
 }
 }

 uRqIndex++;
 }
 }

As you can see, the code that requeues an isochronous request structure need not change any of the
fields in the structure, provided of course that the operation’s characteristics (channel number, packet
sizes, etc) have not changed.

With regards to error handling it is important to notice once again that under normal circumstances
(valid handles, valid pointers, valid request parameters, available system memory, etc) the call to
C1394IsochQueue will not fail, so developers need not worry about writing too sophisticated error
handling code to handle this case.

What is more likely to happen, is an unsuccessful status on an isochronous request. For example an
isochronous receive can fail for various reasons, depending on the options that the caller specifies. The
sample code that queued the isochronous requests specified the BR_START_NEXT option which
instructs the 1394 stack to abort the currently running isochronous request with the
STATUS_1394_BUS_RESET status code when a bus reset occurs, and start the next isochronous
request in the queue.

Other common reasons for isochronous request failure are that developers should check for during the
development of their application are:
• FIFO underruns (for isochronous transmit).
• FIFO overruns (for isochronous receive)
• CRC check failures.

FIFO problems can occur if the system is very busy with other tasks (for example disk accesses), the
isochronous packets are relatively33 big and the adapter’s FIFOs are relatively small. Such errors are
usually indication that the PCI bus is very busy and as a result the 1394 adapter did not get access to
the PCI bus in time.

33 What relatively big means depends on the adapter.

Page 79

FireAPI User Mode Interface Unibrain

On some adapters (PCILynx based) it is usually possible to overcome FIFO problems by adjusting the
size of the isochronous and asynchronous FIFOs that the 1394 chip uses.

A bad CRC is usually an indication that the transmitter of the stream failed to transmit a packet
correctly (for example due to a FIFO underrun). If an isochronous packet with a bad CRC is received
then the current isochronous request is completed with the STATUS_1394_CRC_ERROR status code.

How many requests to queue?
A question that is often faced by application designers is how many isochronous requests to initially
queue and from then on circulate by processing and requeuing.

The answer to this basically depends on several factors:
• How many isochronous packets comprise the logical unit34 that the application processes?
• How long does it take the application to process its logical unit?
• What variations does the application wish to handle in the time it takes to process a frame?
• How critical is the data?
• What are the real-time requirements of the data?

For ease of understanding we will simply call the logical unit as frame. This however does not
necessarily mean that we are talking about digital camera applications.

What should be obvious is that if the application needs more time to process a frame, than the amount
of time between two successive frames, then the application will inevitably start losing frames, no
matter how many isochronous requests it queues35.
If the frame processing time is smaller than the inter-frame time then exactly 2 isochronous receive
requests are enough to do the job.

Things get more complicated if the frame processing time is varying, either due to a varying system
load or due to the nature of the image, and as a result it is sometime less than the inter-frame time and
sometime greater.

An application loses a frame if the adapter channel is at some moment left idle, while there are
isochronous packets transmitted on the bus for the specified channel number.
On the other hand an application may actively decide to drop a frame that it has successfully received,
because there are newer data that it should process instead.

Depending on the nature of the application, the application designer decides whether it is better for the
application to lose or drop frames.

Let us consider the example of a video display application that involves format conversion or frame
decompression with software. Software decoders/decompressors are usually much slower than their
hardware counterparts. Depending on the size of the frame, the level of code optimization in the
software, and the frame rate at which the video is transmitted, the time required to decode/decompress
a frame might be greater than the inter-frame time.

If the application designer decides to lose frames instead of dropping frames, then it means that the
application queues N isochronous receive requests, each corresponding to a video frame. When one
request gets completed the application it processes the request and when it’s done it requeues it.

If the application designer decides to drop frames, then this means that the application queues N
isochronous receive requests, each corresponding to a video frame. After displaying a frame the
application retrieves ALL completed requests. If the application retrieved M>1 request, then it

34 In the case of digital cameras, the logical unit is a video frame.
35 What may not be evident to beginning 1394 developers is that the time between 2 logical frames is
not necessarily the time it takes to transmit a frames. Many devices (for example 1394 digital cameras)
that perform isochronous transmissions leave some idle cycles between their frames.

Page 80

FireAPI User Mode Interface Unibrain

requeues the first (M-1) and keeps the last request (which is the newer frame). Then it proceeds to
process and display this frame.

If the frame processing time is greater than the inter-frame time, then the frame rate achieved in either
approach is practically independent of N!

In the lost frame approach, the greater N becomes, the greater the delay gets between the time a frame
was sent by the camera and the time it was displayed on screen.
In the drop frame approach, the greater N becomes, the smaller the delay is between the time a frame
was sent by the camera and the time it was displayed on screen. This delay at some point reaches a
lower bound.

However in both cases, the visual impression (the achieved frame rate) is the same. Indeed the drop
frame approach might even be worse as N is increased, because the system spends a lot of time
receiving data that it then discards. Since the system is CPU bound, receiving and discarding data
slows down the frame processing, thus making the overall achieved frame rate worse.

If the processing time of each frame varies, below and above the inter-frame time then the lost frame
approach can give some undesirable visual results (the picture is continuously left behind in time,
sometimes there are short fast-motion bursts, etc), but if N is small (<5) it can in general provide a
good impression without unnecessarily loading the system by receiving and discarding data.

If the processing time of each frame is smaller than the inter-frame time, then N should be 2 in which
case there is no difference between the two approaches.

The above however are true if we are talking about real-time video display. If our application has to do
with a monitoring and control application that monitors measurement data from devices, then the
application requirements might change. In this case it might not be desirable at all to drop any data,
because this way the system processes as many data values as possible.

In any case the application designer should carefully analyze the requirements of the target system and
design the appropriate strategy. For example in some cases of varying system load, it could make sense
that the system utilizes a modified drop strategy in which the application will drop the oldest frame if
the number of retrieved frames exceeds 3. This means that the application will drop a frame only if it
finds out that it starts to stay behind in its processing of incoming data.

Queueing ‘Small’ Requests
The isochronous cycle is 125 microsec, which means that more or less one isochronous packet appears
on the bus every 125 microsec (or 0.125 msec). If an application queues isochronous requests that
involve very few packets, then these request will complete very fast.
For example an isochronous receive request for 20 isochronous packets will complete at the 1394 level
in 2.5 msec. This is a very small amount of time and as a result there are some special considerations
that should be taken into account.

In order for an application to be notified about isochronous request completion, an interrupt has to be
raised, an interrupt handler routine has to be executed in order to acknowledge the interrupt and
schedule a DPC36, the DPC has to be scheduled, an event object has to be signalled, and the respective
user mode thread that is waiting on the object has to be scheduled for execution.

Depending on the load of the system, the amount of time between the actual completion of a request on
the hardware level, and the moment the application gets the chance to execute can be comparable to the
amount of time required for 1394 to complete more than one isochronous requests.

Even though the actual CPU processing that the application performs for each isochronous request
might be much faster, the application will stay behind. If the application has queued a small number of
such isochronous requests, then there will be small periods of time where the adapter channel would

36 DPC stands for Deferred Procedure Call, a high priority callback mechanism in NT.

Page 81

FireAPI User Mode Interface Unibrain

stay inactive, because it has completed executing all queued requests before the application had the
chance to process and requete some.

An application that is doing isochronous receive will start losing packets. The application will think
that it is missing some isochronous packets.
An application that is doing isochronous transmit will leave idle cycles on the bus without intending to
do so. As a result it will appear to it that its isochronous operations are slower than it should be (for
example it would take the application more than 1000 msec to send 8125 isochronous packets).

What such an application of this sort must do should be clear by now. If the application wants to queue
isochronous requests for very few isochronous packets each, then it should queue a sufficient number
of isochronous requests so that the adapter channel never stays idle.

Isochronous Options
FireAPI offers a variety of options that can help an application recover from problematic situations
with regards to isochronous operation.

The first major option is the timing of isochronous requests. What should happen to an isochronous
receive request, if the transmitter suddently stops transmitting the isochronous stream? The isochronous
request will never complete. The same thing will happen if for any reason the cycle master stops
sending cycle start packets. All isochronous talkers will stop transmitting their streams37.

An application can specify a timeout value in msec for each isochronous request. If the request has not
completed within the specified amount of time, the 1394 stack will abort it with
STATUS_1394_TIMEOUT and then continue the operation of the adapter channel in accordance with
the flags that the caller has specified.
The application can specify that the adapter channel should continue with the next request, or that it
should cancel all remaining queued requests.

This kind of timing provided by the 1394 stack relieves the application developer from having to write
complex code in order to handle such an event.

The second major set of options has to do with handling a bus reset that occurs during an isochronous
request. The application has the option of specifying that the current request is restarted, or the current
request gets aborted and the next one is started, or all queued isochronous requests get aborted.

This way the application can have full control of what will happen with its isochronous requests when a
bus reset occurs. For example an application could specify the BR_FLUSH_QUEUE flag so that when a
bus reset occurs, all queued requests get immediately cancelled. The application will then empty the
completed request queue by calling C1394GetNextCompleteRequest, then possibly proceed to
perform isochronous resource reallocation, possibly update the request structures and enable a different
channel number for the adapter channel, and finally requeue the requests with C1394IsochQueue.

Another important set of options has to do with controlling the number of isochronous packets that will
be transmitted in each isochronous cycle.

Finally the application has the flexibility to cancel one or more, or all its isochronous requests at any
point. This can be achieved with the C1394IsochCancel function. This makes it very easy for an
application to change its mode of processing at any time.
For example if an application that performs an isochronous receive wants to change channel number,
then it can call C1394IsochCancel with the IsochCancelAll flag, empty the completed request queue
using C1394GetNextCompleteRequest, if not already enabled then enable the new channel number
using C1394SetInformation, update the isochronous request structures and requeue them again with
C1394IsochQueue.

37 Some ‘buggy’ devices initiate bus resets if they have pending outgoing isochronous traffic and there
is no cycle start on the bus.

Page 82

FireAPI User Mode Interface Unibrain

For more specific details on the available options, see the documentation of the
FIREAPI_ISOCH_REQUEST structure and the isochronous request types later in this document.

Common Mistakes in Isochronous Processing
This section lists common mistakes that are made by developers who write code to handle isochronous
operations. All the traps mentioned below are described in the documentation of the respective
functions, but often developers cannot fully understand the consequences of some statements unless
they see what those statements mean in practice.

C1394GetNextCompleteRequest returns completion status to user mode

An application has to call C1394GetNextCompleteRequest in all cases, because it is the call that
returns status information about the completion of the isochronous operation to user mode.

Consider an application that wants to grap a single frame from a camera. The following code would not
work correctly:

 C1394IsochQueue(ChannelHandle, &MyReqeust, 1);
 WaitForSingleObject(hChannelEvent, INFINITE);

 if (STATUS_1394_SUCCESS == MyRequest.Status)
 {
 /* Do something */
 }

The value of pRequest->Status and other important fields inside the request structure are not updated
until C1394GetNextCompleteRequest is called. When C1394IsochQueue is called, the class driver
stores STATUS_1394_PENDING into the Status field of an isochronous request, and this is the value
that the application will ‘see’ in the if statement in the code above.

Another instance of this mistake is the following:

 C1394IsochQueue(ChannelHandle, &MyReqeust, 1);

 //Do some other processing until the command completes.
 while (STATUS_1394_SUCCESS != MyRequest.Status)
 {
 MyProcessing();
 }

 // Check out the results of the isochronous operation.
 ...

The Status field will never be updated, and the while loop will execute for ever.

If an application wants to perform a loop of the kind intended above, then it has two options:

 C1394IsochQueue(ChannelHandle, &MyReqeust, 1);

 //Do some other processing until the command completes.
 while (NULL == C1394GetNextCompleteRequest(ChannelHandle))
 {
 MyProcessing();
 }

 // Check out the results of the isochronous operation.
 ...

-OR-

Page 83

FireAPI User Mode Interface Unibrain

 C1394IsochQueue(ChannelHandle, &MyReqeust, 1);

 //Do some other processing until the command completes.
 while (WAIT_TIMEOUT == WaitForSingleObject(ChannelEvent, 0))
 {
 MyProcessing();
 }

 // We have to do this, remember?
 C1394GetNextCompleteRequest(ChannelHandle);

 // Check out the results of the isochronous operation.
 ...

Isochronous Requests execute in the background

This means that request variables must be available throughout the ‘lifetime’ of the operation, or
unpredictable behaviour will follow for the application. This means that an application can only use
local variables for the isochronous request structures that it passes to C1394IsochQueue, if these local
variables will stay ‘alive’ until the isochronous requests are completed.

The following pseudo code demonstrates this mistake.

void MyQueueRequest1(C1394_CHANNEL_HANDLE a_ChannelHandle)
{
 FIREAPI_ISOCH_REQUEST IsochRequest;

 // Initialize the isoch request structure.
 // ...

 // Queue it for execution.
 C1394IsochQueue(a_ChannelHandle, &IsochRequest, 1);
}

When the function returns, the IsochRequest variable is not available any more, and will be
overwritten by the stack of other function calls that the calling code of MyQueueRequest will make.

Rather than that, such code should be written as:

void MyQueueRequest2(C1394_CHANNEL_HANDLE a_ChannelHandle)
{
 PFIREAPI_ISOCH_REQUEST pIsochRequest;

 pIsochRequest = malloc(sizeof(FIREAPI_ISOCH_REQUEST));

 // Initialize the isoch request structure.
 // ...

 // Queue it for execution.
 C1394IsochQueue(a_ChannelHandle, &pIsochRequest, 1);
}

Of course the same kind restriction applies to the memory that will be used as the packet/data buffer in
the isochronous operation. This memory must stay valid until the isochronous operation completes.

Page 84

FireAPI User Mode Interface Unibrain

C1394IsochQueue accepts an array of pointers to isochronous request structures

This means that C1394IsochQueue accepts a pointer to a pointer to a FIREAPI_ISOCH_REQUEST
structure.

In the previous sample, MyQueueRequest1 is mistaken on this aspect as well, because it passes to
C1394IsochQueue the address of a FIREAPI_ISOCH_REQUEST structure.
MyQueueRequest1 is correct and demonstrates how to call C1394IsochQueue if you want to queue one
request structure and you have got a pointer to it.

The code below demonstrates how should an application proceed to queue an array of isochronous
request structures.

// Global Request Structures
FIREAPI_ISOCH_REQUEST MyRequestArray[APP_REQUESTS];

void QueueMyRequests(C1394_CHANNEL_HANDLE a_ChannelHandle)
{
 PFIREAPI_ISOCH_REQUEST PointerArray[APP_REQUESTS];
 ULONG I;

 for (I=0; I<APP_REQUESTS; I++)
 PointerArray[I] = &MyRequestArray[I];

 C1394IsochQueue(a_ChannelHandle, PointerArray, APP_REQUESTS);
}

The pointers are copied inside the 1394 stack data structures, and the array itself can be on the caller’s
stack and get out of scope as soon as C1394IsochQueue returns, exactly as shown on the code
fragment above.

Remember to empty the request queue when cancelling all pending isochronous requests

An application can cancel at any moment all its pending isochronous requests by calling
C1394IsochCancel. As a result all the pending requests of the adapter channel get immediately
completed with the status code STATUS_1394_ABORTED.
There requests as well are stored into the adapter channel’s completed request queue, and the
application must call C1394GetNextCompleteRequest before it queues any new requests in this
channel.

The steps that an application should take when it cancels all its pending requests are demonstrated in
the code fragment below:

 C1394IsochCancel(ChannelHandle, IsochCancelAll);

 // Empty the completed-request queue.
 while (NULL != (pRequest = C1394GetNextCompleteRequest(ChannelHandle)))
 {
 /* Do something with pRequest */
 }

Forgetting to empty the completed request queue is a mistake that can cause very funny behaviour to
the application if it continues to use the adapter channel:

• If the application frees the request structures, then the adapter channel’s complete request queue
will contain pointers to memory that has been freed. When the application calls
C1394GetCompleteRequest, the implementation of this function in UBUMAPI.SYS will try to
access this memory, and read/write status information to it.
 If this memory has been invalidated and is not accesible, then an access violation will occur in

kernel mode and STATUS_1394_DRIVER_INTERNAL_ERROR will be returned.
 If this memory is still accessible, but has been overwritten, then UBUMAPI.SYS will not

identify the pointer to the FIREAPI_ISOCH_REQUEST structure as valid, and will again
return STATUS_1394_DRIVER_INTERNAL_ERROR because it expects that UB1394.DLL has
given it a valid pointer.

Page 85

FireAPI User Mode Interface Unibrain

 Worse of all, if the memory is still accessible and has not been overwritten, UBUMAPI.SYS
will think the memory is still valid and write back status information to it. This can cause the
application to fail in completely unrelated pieces of code.

• If the application had used local variables for the request structures, and these variables are not any
more in scope, then inside the adapter channel’s complete request queue there will be pointers to
some place on the application’s stack. Unfortunately, the same scenarios as above apply.

• If the application has used global variables for the request structures, or local variables that are still
in scope, then sooner or later the application’s complete request queue will contain one or more
pointers two times. This can as well lead to wildly unpredictable behaviour.

You might wait again only after C1394GetNextCompleteRequest returns NULL

It has to be emphasized, is that an application should not wait again on the adapter channel’s event
object until C1394GetNextCompleteRequest returns NULL.
The following example is an actual bug that occurred during application development:

 HandleArray[0] = hChannelEvent;
 HandleArray[1] = RestartEvent;

 C1394IsochQueue(ChannelHandle, MyReqeustArray, APP_REQUESTS);

 for (;;)
 {
 WaitStatus = WaitForMultipleObjects(2, HandleArray, INFINITE);

 if (WAIT_OBJECT_0 == WaitStatus)
 {
 // There is a complete request.
 while (NULL != (pRequest = C1394GetNextCompleteRequest(ChannelHandle)))
 {
 ProcessRequest(pRequest);
 C1394IsochQueue(&pRequest, 1);
 }
 }
 else if ((WAIT_OBJECT_0+1) == WaitStatus)
 {
 // The user required us to restart in a new channel number.
 // Cancel all our requests, update them and requeue them.
 C1394IsochCancel(ChannelHandle, IsochCancelAll);

 // Empty the completed-request queue.
 fo) r (I=0; I<APP_REQUESTS; I++
 C1394GetNextCompleteRequest(ChannelHandle);

 UpdateRequests(MyRequestArray, APP_REQUESTS);
 C1394IsochQueue(ChannelHandle, MyReqeustArray, APP_REQUESTS);
 }
 }

The mistake in this code is that when the application empties the adapter channel’s completed request
queue, it did not make the call to C1394GetNextCompleteRequest that returns NULL. This means
that the 1394 stack did not reset the adapter channel’s Busy Flag to zero, and thus will not signal the
adapter channel’s event object when the next isochronous request gets completed.
This in turn means that the WaitForMultipleObjects call will never return (WAIT_OBJECT_0 + 1).

Instead of the for-loop the application should have used the following code:

 // Empty the completed-request queue.
 while (NULL != C1394GetNextCompleteRequest(ChannelHandle))
 /* Do Nothing */;

Page 86

FireAPI User Mode Interface Unibrain

FIREAPI_ISOCH_REQUEST.CompletionEventHandle is for special purposes only

Many programmers confuse the purpose of the CompletionEventHandle field of the
FIREAPI_ISOCH_REQUEST structure. This field is used as a complement to the event object
associated with the adapter channel.

An example of a possible use is the following: the application queues 10 isochronous requests and
wants to know when ALL 10 are completed. The event object associated with the adapter channel will
get signalled when the first request is completed. How can the application find out when all have
completed?

This is possible by associating another event object with the 10th isochronous request, and check the
status of this object. This is done by storing the handle of this object in the CompletionEventHandle
field of the 10th FIREAPI_ISOCH_REQUEST structure, and setting the COMPLETE_SET_EVENT flag
in the Flags field of the same structure.

When this event gets signalled the application knows that all 10 requests have completed, so it has to
call C1394GetNextCompleteRequest to remove them from the queue as explained in the previous
paragraphs.

Isochronous Operation Limits
In the current implementation of ubCore each isochronous request is programmed to the adapter as a
single DMA operation, meaning that the physical addresses of all pages in the data buffer are obtained
and given to the adapter so that the actual DMA transfers can occur.
This works without any limititation on 32-bit systems. The isochronous buffer in an isochronous
operation can be 5 or 10MB big without any problems. Actually there is a limit set by the operating
system, but on 32-bit systems this is close to 2GB, so almost any reasonable buffer size will work.

But with the advent of 64-bit systems things have changed. The operating system now, depending on
the hardware platform and the amount of available memory, puts a limit that is much more restricting
and is usually 1MB.
This means that on those systems you can’t queue isochronous requests that are bigger than 1MB in
size. You will have to break your original request in multiple smaller requests. It is suggested that you
break the requests in ((DMA_LIMIT/2)-4KB) bytes so that two requests can be programmed to the
adapter at a time. So when the first request completes, the adapter will be processing the second one
while the driver software will be preparing the third one, and so on. This way you don’t run the risk of
losing isochronous packets.

This method of breaking bigger logical requests into smaller isochronous requests has been
implemented in both Firei.DLL, in the FireiAPI ubCore interface, and in the ubCore DirectShow driver
(UBDCAM.SYS) and works without any problems.

Page 87

FireAPI User Mode Interface Unibrain

Isochronous Resource Allocation

Isochronous Timing
Isochronous operation on the physical level is clocked by the so called Cycle Start Packets. This is a
special kind of packet that is transmitted by the Cycle Master of the 1394 bus every 125 microsec. This
period of 125 microsec is also known as the Isochronous Cycle. There are 8000 isochronous cycles per
second.

At the hardware level, once a DMA context of the 1394 adapter transmits an isochronous packet then it
will not attempt to transmit the next isochronous packet until the next cycle start packet is received38.
This means that if the cycle master stops transmitting cycle start packets, then all isochronous traffic
will stop.

Only the root can be the Cycle Master, so the root must be a Cycle Master Capable node. All FireAPI
nodes are cycle master capable. Unibrain’s Serial Bus Manager driver (UBSBM.SYS) examines the bus
after each bus reset and makes certain that the root node is a cycle master capable node. If the root is
not cycle master capable, then UBSBM.SYS will designate a cycle master capable node as the root (by
sending a Configuration PHY packet) and then initiate a bus reset39.
In this way UBSBM.SYS guarantees that the bus itself will be isochronous capable.

You can observe this behaviour by using the CMD1394 utility in order to forceroot a device that is not
cycle master capable, for example a 1394 digital camera. Open the BUSVIEW utility to see the
topology of the bus, and then initiate a bus reset from CMD1394 with the BR command.
You will see in BUSVIEW that the camera has become the root node. In about 2-3 seconds
UBSBM.SYS will initiate another bus reset and the root node will change.

The Protocol
The 1394 specification describes a ‘protocol’ that applications should use in order to ensure proper
isochronous operation of the 1394 bus.

The central entity in this protocol is the Isochronous Resource Manager (IRM), which is one of the bus
nodes. The IRM is not exactly a ‘manager’ like the Serial Bus Manager (SBM), but rather acts like a
central, well-known location where information about available isochronous resources is maintained.

There are two isochronous resources:
• Isochronous Channel Numbers (CHANNELS_AVAILABLE 64-bit register)
• Isochronous Bandwidth Units (BANDWIDTH_AVAILABLE 32-bit register)

Each bit of the CHANNELS_AVAILABLE register corresponds to an isochronous channel number. If
the bit is set then the channel is available.
Isochronous Bandwidth Units (also referred to as Bandwidth Allocation Units) are defined as the time
required to send one quadlet of data at the S1600 data rate, roughly 20 nanoseconds.

Since S1600 is theoretically defined as being 4 times as fast as S400, then 1 bandwidth allocation unit
at S400 practically corresponds to the time taken to transmit 1 byte. In S200 it takes 2 bandwidth units
to transmit a byte, while in S100 four bandwidth units are required.

38 In cases of multi-channel transmissions it is possible to transmit 2 or more packets per cycle if they
belong to different channel numbers, but the driving software will have to specially program the chip
for this operation.
39 The UBSBM.SYS on the node that was elected as Serial Bus Manager will be the one to perform
these actions.

Page 88

FireAPI User Mode Interface Unibrain

In order to calculate the bandwidth units required to transmit an isochronous packet of a given size, the
transmission speed, the packet header, the header and data CRCs, possibly the payload padding and the
arbitration time should also be taken into consideration.
FireAPI provides the BANDWIDTH_UNITS macro so that applications can simply specify the payload
size in bytes and the transmission speed and get back the required bandwidth allocation units.

The ‘prototype’ of this macro is defined as shown below:

ULONG BANDWIDTH_UNITS(
 IN ULONG uPayloadBytes,
 IN C1394_SPEED_CODE TransmissionSpeed
);

It is the responsibility of the IRM to implement the CHANNELS_AVAILABLE and
BANDWIDTH_AVAILABLE registers according to the requirements of the 1394 specifications, and it
is the responsibility of applications to allocate isochronous resources from the IRM before they start
transmitting on the bus40. Resource allocations are performed with compare-swap lock transactions.

However, it must be noted that this protocol is simply a convention. The isochronous resource
allocations are performed on a ‘logical’ level, not in the physical level. This means that nothing can
physically prevent an adapter from transmitting on a channel number that is already in use, or transmit
without having allocated bandwidth first.

Also the same kind of convention applies to the total amount of bandwidth that can be used for
isochronous traffic. The 1394 specification mandates that the maximum isochronous traffic permitted is
about the 80% of an isochornous cycle (~100 out of 125 microsec), so as to leave some free time for
asynchronous traffic as well. This corresponds to 4915 bandwidth units, which is the initial value of the
BANDWIDTH_AVAILABLE register.

If some application needs to violate this limit then this is certainly possible. However this should only
be performed in dedicated environments, where the designer knows in advance the exact operating
conditions of the system. Such a violation should be avoided in general purpose applications.

Similarly it is equally feasible to violate the isochronous cycle duration, for example have 4
isochronous channels transmitting 2KB blocks each.
However this has much more serious side-effects:
• The cycle master will repeatedly not be able to transmit the cycle start packet in time and this will

result in total loss of isochronous timing. Simply put, an unknown number of cycle start packets
will be transmitted per second; however certainly less than 8000.
Since isochronous timing is lost, then there is no meaning in calling these transfers isochronous.

• In some cases it is possible for the 1394 chip to stop functioning (hang).

Note that the word repeatedly above is emphasized. An isochronous cycle will be violated every now
and then on a bus that has modest traffic. Most chips (if not all) are not sophisticated enough to be able
to calculate in real time whether the transmission of their next asynchronous packet will cause a cycle
start packet to be delayed.
So if often happens that an asynchronous packet might cause a cycle start packet to be delayed.
However the 1394 chips have logic that allows them to compensate for this situation by sending the
next cycle start packet sooner than 125 microsec so that the overall isochronous timing is maintained.

So you only need to worry about extensive and repetitive violations. These are the ones that can cause
trouble to the isochronous timing.

40 Sometimes the application does not transmit itself, but controls a device that transmits isochronously.
Such devices usually expect that their controlling application will perform all the necessary resource
allocations before starting the device.

Page 89

FireAPI User Mode Interface Unibrain

Bus Reset & Isochronous Resources
When a bus reset occurs, the IRM frees all isochronous resources and a new IRM might be elected if
the bus topology has changed. This means that applications should reidentify the IRM and reallocate
their isochronous resources after each bus reset. If an application fails to reallocate its resources then it
should stop its isochronous transmit operations.

The 1394 specification requires that applications perform all their isochronous resource reallocations
within 1 second after the bus reset. Only after 1 second has elapsed should an application attempt to
allocate new isochronous resources.

Identifying the IRM
The 1394 specification specifies that the IRM is the node with the greatest physical ID whose SelfID
packet has both the LinkOn and the Contender bits set.

In order for an application to allocate isochronous resources, it must identify the IRM. Although an
application could use the official definition in order to identify the IRM, FireAPI provides the
C1394GetIRMNodeID function for this purpose.

This function is prototyped as:

C1394_NODE_ID C1394GetIRMNodeID(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_BUS_ID BusID
);

For the time being applications should set the BusID parameter to LOCAL_1394_BUS_ID which is
defined as 102310 (3FF16).

Allocating a channel number using compare swap
The sample code below displays a way that an application could use to allocate a random channel
number between 0 and 30 from the IRM.

A couple of details should be kept in mind when allocating channel numbers:
• According to P1394a 2.1, channel number 31 should only be used by the Broadcast Channel

Manager (BCM).
• According to the 1394 specification, the CHANNELS_AVAILABLE register only supports

quadlet (32-bit) reads, but it is not clear whether it supports both 32-bit and 64-bit compare swap
or only the 32-bit.
 Software implementations of this register should always support the 32-bit compare swap, but not
necessarily the 64-bit compare swap. FireAPI’s CHANNELS_AVAILABLE implementation
supports 64-bit compare swaps as well.
It is suggested that applications that want to allocate channels from the IRM attempt to do so using
32-bit locks.

• The 1394 specification uses big endian and IEEE numbering of bits. This means that channels 0-31
are in the CHANNELS_AVAILABLE_HI register (offset CSR_CHANNELS_AVAILABLE) and
channels 32-63 in the CHANNELS_AVAILABLE_LO register
(offset CSR_CHANNELS_AVAILABLE+4).
Moreover bits are numbered left-to-right. This means bit 0 is the leftmost bit of
CHANNELS_AVAILABLE_HI (big endian 0x8000000), and bit 31 is the rightmost bit (big
endian 0x0000001).

• The register contains bits set to 1 for available channel numbers. When you allocate a channel
number you have to clear the respective bit. If you try to check whether a channel number is
allocated, then you have to check for a zero bit.
Although this sounds obvious, it is a common source of errors.

Page 90

FireAPI User Mode Interface Unibrain

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <FireAPI.h>

main(void)
{
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 C1394_NODE_ID IRMNodeID;
 STATUS_1394 Status1394;
 ULONG uChAvailNewValue, uChAvailOldValue;
 ULONG uChannelNumber, uArgValue;

 srand(GetTickCount());

 C1394Initialize); (
 C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

 // Let us find out who the IRM is.
 IRMNodeID = C1394GetIRMNodeID(C1394AdapterHandle, LOCAL_1394_BUS_ID);

 // Pick up a random channel number in 0-30 (31 is for use by the BCM).
 uChannelNumber = rand() % 31;

 // This is the last known value that we suppose the register has.
 uArgValue = 0xFFFFFFFF;

 // Set up the channel number we want to allocate.
 uChAvailNewValue = uArgValue & ~(((ULONG)1) << (31-uChannelNumber));

 for (;;)
 {
 Status1394 = C1394CompareSwapNode(C1394AdapterHandle,
 IRMNodeID,
 CSR_CHANNELS_AVAILABLE,
 Lock32,
 (ULONGLONG) uArgValue,
 (ULONGLONG) uChAvailNewValue,
 &uChAvailOldValue);

 if (STATUS_1394_SUCCESS == Status1394)
 {
 printf("Allocated channel number %u (ChAvailHi is %0#10X).\n",
 uChannelNumber,
 uChAvailNewValue);
 break;
 }
 else if (STATUS_1394_LOCK_FAILED == Status1394)
 {
 // Was it because we did not specify a good arg_value, or
 // because the channel number is busy?
 if (0 == ((((ULONG)1) << (31-uChannelNumber)) & uChAvailOldValue))
 {
 printf("Channel Number %u is NOT free.\n", uChannelNumber);
 break;
 }
 else if (uArgValue != uChAvailOldValue)
 {
 printf("Channel Number %u is FREE but arg_value is not valid.\n",
 uChannelNumber);

 uArgValue = uChAvailOldValue;
 uChAvailNewValue =
 uChAvailOldValue & ~(((ULONG)1) << (31-uChannelNumber));
 }
 else
 printf("This should never happen.\n");
 }
 else
 {
 printf("Return status is %s\n", C1394StatusString(Status1394));
 break;
 }
 }

 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

Page 91

FireAPI User Mode Interface Unibrain

The sample does not read the value of the CHANNELS_AVAILABLE register before attempting to
allocate the channel that it wants, but directly attempts the lock.
There are two reasons for that:
• A failed lock also acts like a read operation because the old value of the register is returned. This

way if the application is ‘lucky’ enough it can succeed with one transaction instead of two (a read
then a lock), thus minimizing network traffic.

• If the handling of lock requests for CHANNELS_AVAILABLE is implemented according to
paragraph 9.28 of P1394a 2.1, then if the channel number(s) are available, a lock with arg_value
set to 0xFFFFFFFF and the data_value as appropriate, will always succeed.
FireAPI is the first software implementation of this algorithm, indeed the algorithm itself was
proposed by Unibrain and adopted by P1394a 2.1.

The sample above treats the CHANNELS_AVAILABLE register as if it was in the CPUs native
format. If the program read the value of CHANNELS_AVAILABLE in order to initialize uArgValue
with the current value of the register instead of 0xFFFFFFFF, then the application would have to byte
swap the results of this read before continuing.
This is demonstrated in the code fragment below, that would replace the assignment of 0xFFFFFFFF to
uArgValue:

 // Read the current value of the register.
 Status1394 = C1394ReadNode(C1394AdapterHandle,
 IRMNodeID,
 CSR_CHANNELS_AVAILABLE,
 4,
 &uArgValue,
 NULL,
 NULL);

 if (STATUS_1394_SUCCESS != Status1394)
 {
 printf(iled with status %s\n", "C1394ReadNode fa
 C1394StatusString(Status1394));
 return -1;
 }

 SWAP_ENDIAN_32(uArgValue);

In this case the programmer knows that the program is executing on a little-endian platform, so after
reading the contents of CHANNELS_AVAILABLE into a ULONG variable it has to byte swap the
contents of this variable before proceeding to work with it.
FireAPI offers two ways for byte swapping a quadlet: the SwapEndian32 inline function and the
SWAP_ENDIAN_32 macro, which are both implemented with inline assembly instructions. See the
section on Endianess Swapping for more information.

Allocating bandwidth using compare swap
Similar considerations apply as in the case of allocating a channel number. The application can directly
attempt to do a compare swap, using 491510 as the old_value.
If the application attempts to read the BANDWIDTH_AVAILABLE register first, then it should keep
in mind that the quadlet it will read will be in big endian.

Freeing Isochronous Resources
When freeing an isochronous resource, typically the application must read the current value of the
target register from the IRM, keeping in mind that it reads big endian data, then add its own resources
to that value and attempt a compare swap. If the compare swap operation fails then the application
should add its resource to the old_value returned41 and retry the compare swap.

41 This is always presented to the application in its native endianess.

Page 92

FireAPI User Mode Interface Unibrain

VersaPHY Operations

VersaPHY Basics
This section of the documentation gives a brief overview of the VersaPHY standard. For the full details
and technical explanations please refer to the VersaPHY Additions to IEEE1394 1.0.pdf document
included in the FireAPI setup.

VersaPHY is a new standard technology in the IEEE1394 family of standards that is meant to support
the implementation of low cost devices, devices that don’t require a LINK chip (and usually an
associated IP core) to function.

VersaPHY devices do not perform the standard asynchronous transactions of IEEE1394 but instead
implement a new set of read and write transactions that are based on PHY packets (8-byte packets). In
the PHY packets used by the VersaPHY protocol the second quadlet is not the complement of the first
quadlet, thus all the 8 bytes are available for use.

The assignment of a physical ID (PhyID) to every node on the 1394 bus is one of the core elements in
the operation of the 1394 bus. Like all 1394 devices, VersaPHY devices also have a physical ID.
Physical IDs are of course temporary and can change after each bus reset. However a fundamental
departure that VersaPHY brings, is that VersaPHY devices can be assigned a permanent label, known
as VersaPHY label (or VPLabel for short), that is sticky across bus resets and possibly across power
cycles as well.

Thus VersaPHY devices have two addressing modes:

• PhyID based addressing PhyID transactions.
• VPLabel based addressing VPLabel transactions.

The basic operational model is that controller devices use PhyID transactions to discover (enumerate)
the VersaPHY devices, then assign them a VPLabel and from that point on communicate with them
solely using VPLabel transactions. Some VersaPHY devices may come with a preconfigured (static)
VPLabel, so they don’t require the discovery & setup phases.

A core point to the operation of VersaPHY is that all VersaPHY traffic is broadcast. Thus all nodes can
receive all the VersaPHY traffic on the bus and talk or listen to any device.
Since VersaPHY traffic is broadcast it is possible to use it as a notification-from-the-device
mechanism. When a device has something to tell the world about, it just sends an unsolicited response
packet and all nodes may receive and process this packet and thus get notified by the device.

VersaPHY Functions & Profiles
A VersaPHY device, like all 1394 devices, may implement one of more independent logical functions,
which are not surprisingly called VersaPHY functions. A VersaPHY function is basically a set of
registers that the device implements, that give access to some specific functionality. Most devices
implement just one VersaPHY functions, like most 1394 devices that have a single unit in their
configuration ROMs.

A device vendor may define its own VersaPHY functions (and resulting register sets), but some of the
well known behaviors have already been designed as register sets (GPIO, I2C, etc) and the resulting
definitions are called VersaPHY profiles.
So, saying that a VersaPHY device implements the GPIO profile is equivalent to saying that it
implements a VersaPHY function with the standard register set of GPIO behavior.

Page 93

FireAPI User Mode Interface Unibrain

VersaPHY Transactions
The behavior of VersaPHY transactions is not as strictly defined as that of 1394 transactions for two
reasons:

• Differences in implementation between 8-bit and 16-bit devices may cause an 8-bit device to
respond differently to the same PhyID-based transaction than a 16-bit device would.

• The transaction response behavior is heavily “profile-dependent” which means that
depending on the profile being implemented a read transaction may result in a different
number of response packets, depending on the register addressed and the data passed.

This means that the 1394 Class Driver has no certain way of knowing how many response packets to
expect for each VersaPHY transaction. However the application is supposed to know, since the
application knows what type of device it is talking to.

Thus, we have another departure from the standard 1394 transaction request functions: All the
VersaPHY transaction request functions provide as arguments the number of expected response
packets and a storage buffer where they should be put.

VersaPHY API Overview
The API provided by Unibrain implements the minimum required functionality so that higher level
modules can perform all the VersaPHY related activities like device discovery, label space annexing,
read/write transactions, etc.

The Unibrain API is logically split in two independent portions:

• PhyID based access.
• VersaPHY Label based access.

VersaPHY PhyID functions
The PhyID functions permit software to enumerate the devices connected to the bus on any 1394
adapter and discover the VersaPHY functions implemented by them.

The functions provided are:

• C1394VPReadNode
• C1394VPWriteNode
• C1394VPSendPacket

VersaPHY Label functions
Each VersaPHY label is represented as an object to which a handle must be opened. Any application
can open a handle to any VersaPHY label, at any time. VPLabel handles are not exclusive access.
This means that:

• Two or more applications on the same PC can have open handles to the same device. The
applications should act in a coordinated manner so as not to confuse each other and the device.
A usual scenario could be having one application control several devices while a different
application is monitoring the same devices.

• The 1394 Class Driver does not check at VPLabel-open time whether a device with that
VPLabel exists on the bus or not. It is the application’s responsibility to check whether the
VPLabel used actually corresponds to an existing device.

In essence, each VPLabel is treated by the 1394 Class Driver as a channel to which the application can
tune-in and then receive or send traffic through.

The VersaPHY label functions provided are:

• C1394VPChannelOpen
• C1394VPChannelClose
• C1394VPChannelGetNextPacket
• C1394VPChannelRead
• C1394VPChannelWrite

Page 94

FireAPI User Mode Interface Unibrain

VersaPHY Packet Structures
All 1394 packet structures are defined using big-endian memory layout. On the other hand PC
architecture is little-endian, which sometimes causes trouble when a packet structure has to be mapped
to a C structure definition that will be used in a little-endian programming environment. The goal is to
define a C structure in such a way that it accurately reflects the big-endian memory layout of the
packet, so that the programmer can manipulate the packet without first byte-swapping it.

This was a problem in the case of VersaPHY packet structures, because the VPLabel transaction
request/response packets cannot be nicely mapped in C structures for a little-endian programming
environment. Here nicely refers to the ability to map every field without breaking them apart in two
pieces. However, when there are fields crossing 8-bit boundaries in the big-endian memory layout it is
impossible to produce a proper mapping.
In these cases a little endian structure is defined and the packet has to be byte-swapped. In the case of
VersaPHY packets we are talking about 8-byte (2 quad) packets so the byte-swapping operation
involves no major CPU processing costs.

The table below lists all the defined VersaPHY packet structures and whether the respective packets
need swapping. Since all 1394 structures used in FireAPI so far correspond exactly to the big endian
layout, the suffix _LITTLE has been added to those structures that are defined as little endian.

Packet Structure Packet Needs Swapping
C1394_VERSAPHY_PACKET_PHYID_READ_REQUEST NO
C1394_VERSAPHY_PACKET_PHYID_READ_RESPONSE NO
C1394_VERSAPHY_PACKET_PHYID_WRITE_REQUEST NO
C1394_VERSAPHY_PACKET_PHYID_WRITE_RESPONSE NO
C1394_VERSAPHY_PACKET_VPLABEL_READ_REQUEST_LITTLE YES
C1394_VERSAPHY_PACKET_VPLABEL_READ_RESPONSE_LITTLE YES
C1394_VERSAPHY_PACKET_VPLABEL_WRITE_REQUEST_LITTLE YES
C1394_VERSAPHY_PACKET_VPLABEL_WRITE_RESPONSE_LITTLE YES

All incoming packets and all outgoing packets through C1394VPSendPacket are in big endian format.
This means that when an incoming packet is a VPLabel Response Packet you have to byte swap it
before assigning its buffer to a C1394_VERSAPHY_PACKET_VPLABEL_READ_RESPONSE_LITTLE pointer. But
how do you know what type the packet is so as to determine whether it needs byte swapping in the first
place?

Two functions have been defined for this purpose:

• C1394PHYPacketIsVersaPHY: This is a helper function to check whether a PHY packet is a
normal PHY packet or a VersaPHY packet.

• C1394VPGetPacketType: This helper function returns an enumeration value of type
VersaPhyPacketType that contains the exact type of the VersaPHY packet.

The VersaPhyPacketType enumeration is defined as shown below:

typedef enum
{
 VPInvalid=0,
 VPPhyIdWriteRequest,
 VPPhyIdWriteResponse,
 VPPhyIdReadRequest,
 VPPhyIdReadResponse,
 VPLabelWriteRequest,
 VPLabelWriteResponse,
 VPLabelReadRequest,
 VPLabelReadResponse,
}
VersaPhyPacketType;

The general rule is that if a VersaPHY API entry point takes a C1394_PHY_PACKET* as a parameter,
or returns such a pointer, then the packet data are in big endian format. Otherwise if the parameter is a
type ending in _LITTLE then the packet data are in little endian.

Page 95

FireAPI User Mode Interface Unibrain

VersaPHY Packet Initialization/Handling
Apart from the above two functions, more specialized BOOL functions exist, one for each packet type
as shown in the table below:

BOOL functions for VersaPHY Packet Type
C1394VPIsPhyIdReadRequestPacket

C1394VPIsPhyIdReadResponsePacket

C1394VPIsPhyIdWriteRequestPacket

C1394VPIsPhyIdWriteResponsePacket

C1394VPIsVPLabelReadRequestPacket

C1394VPIsVPLabelReadResponsePacket

C1394VPIsVPLabelWriteRequestPacket

C1394VPIsVPLabelWriteResponsePacket

Similarly, a set of helper macros have been defined so that the developer can initialize properly a raw
outgoing VersaPHY packet.

VersaPHY Packet Initialization Functions
VPInitPhyIdReadRequestPacket

VPInitPhyIdReadResponsePacket

VPInitPhyIdWriteRequestPacket

VPInitPhyIdWriteResponsePacket

VPInitVPLabelReadRequestPacket

VPInitVPLabelReadResponsePacket

VPInitVPLabelWriteRequestPacket

VPInitVPLabelWriteResponsePacket

Note that the transaction functions provided in the API internally take care of packet formatting, so in
most cases you only have to worry about endianess if you want to use C1394VPSendPacket.

VersaPHY Transaction Serialization
All VersaPHY PhyID transactions with the same target PhyID are serialized with one another. This
means that regardless of the originating application, they are all put on a separate, PhyID-specific,
execution queue and then executed one by one.

Although most VersaPHY devices respond using concatenated transactions, it is possible for future
devices to have to perform some internal processing before replying. Moreover, if there are multiple
response packets then there is the chance that the VersaPHY device receives a new transaction request
before it is done processing the current one. Most VersaPHY devices are expected to be low-cost
implementations and thus most likely unable to internally queue multiple incoming requests and handle
them properly.

In order to minimize the chances that this situation occurs (it would be extremely timing-sensitive and
thus very hard to troubleshoot), the 1394 Class Driver serializes the requests.

Exactly the same thing is done for VersaPHY labels. All outgoing transaction requests are serialized
through a separate execution queue for each VPLabel.

Page 96

FireAPI User Mode Interface Unibrain

However that it is impossible for the Class Driver to completely prevent this type of mistake:
• The Class Driver does not maintain information about the current PhyID of every VPLabel

that is in use, thus it is possible to send one PhyID transaction request at the same time as a
VPLabel transaction request to the same device.

• Different PCs may be on the same bus and try to talk to the same VersaPHY devices at the
same time. In this case higher level software is responsible for coordinating the actions of the
multiple agents.

VersaPHY Transaction Timeout
The VersaPHY standard does not make any mention as to the value that should be used for timing out
VersaPHY transactions. Thus the Unibrain implementation thought it would be reasonable to use the
same value used for normal 1394 transactions, which is the value contained by the SPLIT_TIMEOUT
register.

Page 97

FireAPI User Mode Interface Unibrain

Miscellaneous Topics
Endianess Considerations
The IEEE 1394 standard uses the big endian format for the representation of all 32-bit values involved
in the standard (packet headers, Control and Status Registers (CSRs), etc).
This means that the low byte of a 32-bit word occupies the highest byte address while the highest byte
the lowest address.
The following illustration demonstrates the practical difference between the little and big endian
schemes:

Little Endian Scheme

Address X+3 Address X+2 Address X+1 Address X

Byte 0 Byte 1 Byte 2 Byte 3

Big Endian Scheme

Address X Address X+1 Address X+2 Address X+3

Byte 0 Byte 1 Byte 2 Byte 3

Endianess is a slightly confusing concept because by talking about little and big endian one is driven
away from the heart of the matter, which is actually the way that data are going to appear in the target
host/device memory and how they are going to be interpreted there. While there are two ways to
interpret a quadlet as an unsigned long (little endian and big endian) there is only one way to interpret a
C-like ASCII string: The 1st character is at string_base, the 2nd character is at string_base+1, and so on
until you find a zero byte. If node A wants to transmit a string to node B, then it does not care about
CPU endianess. The string has to appear in the memory of node B, in exactly the same form as it
initially appears in node A’s memory.

If we are talking about sending an array of 32-bit long integers then necessarily we have to take the
issue of endianess into consideration. The convention that the 1394 stack follows is the one mandated
by the standard: quadlet data are always in big endian, and in general data are transmitted as they
appear in memory (low address byte is transmitted first, highest address byte is transmitted last).

In general an application that communicates with another peer is free to use any kind of endianess in its
data. However a server application for example that implements a 32-bit CSR that can accept lock
transactions from ANY application, should keep in mind that the 32-bit data value and argument value
in the lock transaction request packet is always in big endian format, and of course the 32-bit value in
the response packet should also be big-endian format.

Endianess Swapping
The following macros and functions have been defined to assist in endianess swapping. The
implementations are as optimized as possible for each platform (inline assembly for Intel, best direct
calculation for other platforms). All functions are declared as inline, but inline expansion must be
enabled for them to have the exact same performance as the respective macros.
All macros change their argument, while the functions return the swapped value and can be used in
assignments and also take expressions as their argument.

Macros
SWAP_ENDIAN_16(a) “a” should be an unsigned short
SWAP_ENDIAN_32(a) “a” should be an unsigned long
SWAP_ENDIAN_64(a) “a” should be an unsigned __int64

Functions
__inline unsigned short SwapEndian16(unsigned short Value);
__inline unsigned long SwapEndian32(unsigned long Value);
__inline unsigned __int64 SwapEndian64(unsigned __int64 Value);

Page 98

FireAPI User Mode Interface Unibrain

Additionally one more function is available to byte swap a whole buffer either in place or to another
buffer. The function is prototyped as follows:

void BlockSwapEndian32(void *buf, void *dest, unsigned int nquads);

If dest is the same as buf then byte swapping is performed in place. The function internally treats buf
as a ULONG array and swaps quadlets from the first quadlet in the array to the last. This means that it
is only safe to have the buffers pointed to by buf and dest overlap if dest≤buf.

NOTE: The SWAP_ENDIAN_xxx macros translate into inline assembly on x86 platforms. If the
argument contains a complex expression with operators that are not recognized by the assembler, then
a compilation error will occur.

Utility String Functions
This section lists several functions that can translate a value of some type to its equivalent string
representation, for example a 1394 status code to a string, an acknowledge code to a string, etc. These
functions are basically provided in order to allow developers to provide more user friendly messages.

These functions are prototyped as shown below:

TCHAR *C1394StatusString(STATUS_1394);
TCHAR *C1394AckCodeString(ULONG);
TCHAR *C1394RespCodeString(ULONG);
TCHAR *C1394TCodeString(ULONG);
TCHAR *C1394SpeedCodeString(ULONG);

An important restriction that these functions present is that they return a pointer to a static variable.
This means that the results of a function are valid until the next call to the same function. For example
a call like:

 printf("%s %s",
 C1394StatusString(STATUS_1394_SUCCESS),
 C1394StatusString(STATUS_1394_NOT_FOUND));

will print the same string twice. Each function uses its own static variable so mixing calls to different
routines presents no problem. The call shown below will produce the expected outcome.

 printf("%s %s",
 C1394StatusString ATUS_1394_SUCCESS), (ST
 C1394SpeedCodeString(S800));

NOTE: These functions were derived from the sample code found in file 1394Strings.C. In order to
make the life of developers easier, if a project defines the compilation flag
FIREAPI_OLD_STRING_FUNCTIONS, then the include file FireAPI.H also defines the original aliases
for each function (StatusString, AckCodeString, RespCodeString, TcodeString and SpeedString). This
way a project using 1394Strings.C can simply move to the new functions by removing this file from
the project, removing any #include “1394Strings.h” lines from any files and defining the
FIREAPI_OLD_STRING_FUNCTIONS preprocessor flag at the project settings. This has been done in
the CMD1394 project that is distributed with the sample code.

Page 99

FireAPI User Mode Interface Unibrain

64-bit Integer Arithmetic
Developers must be a little cautious when performing operations with 64-bit integers. These types are
usually compiler-specific or platform-specific extensions to ANSI C/C++.

In the Windows platform, the LONGLONG & ULONGLONG types are defined for signed and
unsigned 64 bit numbers. These are equivalent to the __int64 and unsigned __int64 types.
Some operations with 64-bit integers can cause unexpected results because usually the compiler by
default treats integer constants as signed integers and/or makes several more silent assumptions.

Consider the following examples (compiled with VC++ 5.0). In all cases the compiler treats the
constant 1 as a signed 32-bit integer and acts according to its beliefs of what it should do:
 ULONGLONG Value;
 Value = 1<<10; // Will yield the expected result.
 Value = 1<<38; // Will yield ZERO!!!

 K = 38;
 Value = 1<<K; // Will yield 0x0000000000000040 (equal to 1<<6)!!!

 K=31;
 Value = 1<<K; // Will yield 0xFFFFFFFF80000000!!!

 K=63;
 Value = 1<<K; // Will yield 0xFFFFFFFF80000000!!!

The correct way to do the operations shown above is to cast the constant 1 to ULONGLONG. For
example:
 Value = ((ULONGLONG)1)<<38; // Will yield 0x0000004000000000

 K = 38;
 Value = ((ULONGLONG)1)<<K; // Will yield 0x0000004000000000

 K=31;
 Value = ((ULONGLONG)1)<<K; // Will yield 0x0000000080000000

 K=63;
 Value = ((ULONGLONG)1)<<K; // Will yield 0x8000000000000000

The respective rule applies if Value was declared as LONGLONG. The constant will have to be casted
to LONGLONG before shifting .

Similar rules apply for the intermediate results of integer operations.
Consider the following sample program:

#include <windows.h>
#include <stdio.h>
main(void)
{
 unsigned __int64 Value;
 unsigned int I,K,M;

 I = 0x60000000;
 K=I;
 M=K;

 Value = I+K+M;
 printf("%I64X\n", Value);

 Value = ((ULONGLONG)I)+((ULONGLONG)K)+((ULONGLONG)M);
 printf("%I64X\n", Value);

 return 0;
}

The output of this program is
 0x20000000
 0x120000000

As you see, in the first case the intermediate results were bounded to 32-bits, while in the second they
were not.

Page 100

FireAPI User Mode Interface Unibrain

Path Speed Information
After each bus reset the class driver retrieves the self-ID packets and performs a structural and logical
analysis on them. If the self-ID packets contain no structural and logical errors, then the class driver
performs bus topology analysis.
If the self-ID packets indicate a valid topology then the class driver has complete topology information,
for example which node is the parent of each node, and which nodes are a given node’s children and so
on.

After the topology analysis, the class driver analyzes the tree and calculates the maximum transmission
rate between any two nodes on the bus. This rate is equal to the speed of the slowest device on the path
that connects the two nodes (since 1394 does not allow loops (cycles) in the bus topology, there is
exactly one such path). The results of these calculations are store in the class driver’s speed table.

The speed table is a virtual 63x64 table. Each entry of the form (m,63) represents the broadcast speed,
which is the speed of the slowest device on the bus.

The [0..62, 0..62] part of the speed table is obviously symmetric, since SPEED[A,B] equals
SPEED[B,A] for any A and B. The class driver takes advantage of this property in order to save
memory, and implements its speed table as a triangular array (the main diagonal is included).

The class driver stores the upper right half of the table, since the table has 64 columns but 63 rows.
The illustration below shows which items are actually stored by the class driver (marked with S) and
which items are infered from the stored items (marked with a dash):

 0000000000111111111122222222223333333333444444444455555555556666
 0123456789012345678901234567890123456789012345678901234567890123
00 SS
01 -SSS
02 --SS
03 ---SSS
04 ----SS
05 -----SSS
06 ------SS

…

58 --SSSSSS
59 ---SSSSS
60 --SSSS
61 ---SSS
62 --SS

The resulting table will have 64 elements in row 0, 63 elements in row 1, …, and 2 elements in row 62.
This sums to a total of 2+3+4+…+64=65*64/2 – 1=2079 elements.

The 2079 elements are stored in a single dimensional array and a formula is used to convert a pair
(A,B) which indexes the virtual 2-dimensional table, to a value which indexes the single dimensional
array.
The formula which performs the conversion from the 2-D indices to the linear index is given below (all
array indices are zero-based):

Linear Array Index of (m,n) where m≤n
(64+63+…+(64-(m-1))) + (n-m) =
64 + (64-1) + (64-2) + … + (64-(m-1)) + (n-m) =
m*64 – (1+2+3+… + (m-1)) + (n-m) =
m*64 – m(m-1)/2 + n – m =
m*(64-(m-1)/2) + n – m =
(m*(129-m))/2 + n – m =
(m*(127-m))/2 + n

Since the speed codes use 3-bits only, the class driver performs additional memory savings by packing
two speed codes in a single byte. Thus the size of the class driver’s speed table is 1040 bytes (defined
as SPEED_TABLE_BYTES). The high 4-bits contain the item with the even index, and the low 4-bits
the item with the odd index.

Page 101

FireAPI User Mode Interface Unibrain

For ease of use the following functions and macros are provided in order to access the elements of the
speed table.

SPEED_TABLE_LINEAR_INDEX(A, B) (macro)

Returns the linear index in the triangular array implementation of the conceptual
2-dimensional speed table item [A,B]

void C1394SetSpeedTableEntry(
 IN UCHAR SpeedTable[SPEED_TABLE_BYTES],
 IN C1394_PHYSICAL_ID PhyID1,
 IN C1394_PHYSICAL_ID PhyID2,
 IN C1394_SPEED_CODE SpeedCode
);

Stores the value SpeedCode in the appropriate place in the speed table pointed to by
SpeedTable. The first argument of this function is defined as shown above in order to have
stricter type checking.

SET_SPEED_TABLE_ENTRY(SpeedTable, PhyID1, PhyID2, SpeedCode) (macro)

Stores the value SpeedCode in the appropriate place in the speed table pointed to by
SpeedTable.

C1394_SPEED_CODE C1394GetSpeedTableEntry(
 IN UCHAR SpeedTable[SPEED_TABLE_BYTES],
 IN C1394_PHYSICAL_ID PhyID1,
 IN C1394_PHYSICAL_ID PhyID2
);

Returns the speed code for the pair (PhyID1, PhyID2). The first argument of this function is
defined as shown above in order to have stricter type checking.

GET_SPEED_TABLE_ENTRY(SpeedTable, PhyID1, PhyID2, pSpeedCode) (macro)

Store the speed code of the pair (PhyID1, PhyID2) into the variable pointed to by
pSpeedCode.

The functions are implemented as inline functions for faster execution. The macros are implemented
with the use of a helper variable. These two factors increase the memory used by an application at
run-time. If this is a consideration, developers are suggested to copy the implementation of these
functions/macros (file 1394Common.h) and implement them in their own projects as appropriate.

Any application can retrieve a copy of the class driver’s speed table by specifying the object identifier
OID_SPEED_TABLE in a call to function C1394QueryInformation. Currently this information is only
available for the local 1394 bus.
Note that in the table returned by the class driver, SPEED_CODE_INVALID is the speed code stored in
any entry which represents a non existent pair of nodes. This is defined as 0xF which is good enough
for 4-bit entries.

Page 102

FireAPI User Mode Interface Unibrain

Bus Topology Information
An application can retrieve the information that the 1394 stack has about the topology of a bus, by
calling C1394QueryInformation with the OID_BUS_TOPOLOGY object identifier. Currently topology
information is only available for the local 1394 bus.
The information retrieved is in the form of a C1394_BUS_TOPOLOGY_INFO structure. This structure
is defined as shown below:

typedef struct
{
 // The status of the topology information.
 STATUS_1394 TopologyStatus;

 // The IRM of that bus.
 C1394_NODE_ID IRMNodeID;

 // The maximum hop count of that bus.
 ULONG uMaxHopCount;

 // The node information array.
 C1394_NODE_INFO NodeInfoArray[63];
}
C1394_BUS_TOPOLOGY_INFO, *PC1394_BUS_TOPOLOGY_INFO;

In normal circumstances TopologyStatus is equal to STATUS_1394_SUCCESS, and all the information
in the structure is valid. If there was some error in the self-ID packets (which is an indication of a
malfunctioning device on the bus) then TopologyStatus is set to STATUS_1394_SELFID_ERROR and
the information is not valid.

Note: When calling C1394QueryInformation with the OID_BUS_TOPOLOGY identifier the caller
must specify the ID of the bus of interest. This information is written over the
C1394_BUS_TOPOLOGY_INFO structure that is passed to the function as the output buffer parameter.
For example the calling code sequence would be similar to what is shown below:

 C1394_BUS_TOPOLOGY_INFO TopologyInfo;
 STATUS_1394 Status1394;

 // We are interested in the local bus.
 *((C1394_BUS_ID *)&TopologyInfo) = LOCAL_1394_BUS_ID;

 // Make the call.
 Status1394 = C1394QueryInformation(ClassAdapterHandle,
 OID_BUS_TOPOLOGY,
 &TopologyInfo,
 sizeof(TopologyInfo),
 NULL,
 NULL);

Also note that the return value of C1394QueryInformation has nothing to do with the validity of the
information returned for this OID. For example in the code above, Status1394 might be
STATUS_1394_SUCCESS after the call, but the TopologyStatus field of the TopologyInfo variable
might be set to STATUS_1394_SELFID_ERROR.

C1394_NODE_INFO
The most important piece of information inside the C1394_BUS_TOPOLOGY_INFO structure is the
array of C1394_NODE_INFO structures. Each one contains all the information about a node on the bus
that is available to the class driver at the time of the call. Most of the information is filled in at bus reset
complete time (before the 1394 stack declares the bus reset to be completed), so it is practically
available to callers at all times when C1394IsBusResetInProgress would return FALSE.
Other information, like the contents of the node’s Configuration ROM become available a little later,
and they are associated with a separate event indication (not yet documented) so that applications can
know when to make their calls.

Page 103

FireAPI User Mode Interface Unibrain

The C1394_NODE_INFO structure is defined as shown below:

typedef struct
{
 // A set of flags that provide additional information about the node.
 union {
 ULONG uValue;
 struct {
 ULONG Present:1;
 ULONG IncorrectSelfID:1;
 ULONG IsRoot:1;
 ULONG LinkOn:1;
 ULONG Contender:1;
 ULONG IRM:1;
 ULONG Valid_Speed:1;
 ULONG Valid_MaxSpeedToNode:1;
 ULONG Valid_MaxPayloadToNode:1;
 ULONG Valid_bInitiatedBusReset:1;
 ULONG Valid_uchSelfIDPackets:1;
 ULONG Valid_uchTotalPorts:1;
 ULONG Valid_fChildrenPorts:1;
 ULONG Valid_fParentPort:1;
 ULONG Valid_fInactivePorts:1;
 ULONG Valid_PowerClass:1;
 ULONG Valid_gap_count:1;
 ULONG Valid_ParentNode:1;
 ULONG Valid_uchNumberOfChildren:1;
 ULONG Valid_fChildrenNodeIDs:1;
 ULONG Valid_BusInfoBlock:1;
 };
 } NodeFlags;

 // The PHY ID of the node.
 C1394_NODE_ID NodeID;

 // The maximum speed of the node.
 C1394_SPEED_CODE Speed;

 // The maximum transmission rate from our local node to that node.
 C1394_SPEED_CODE MaxSpeedToNode;

 // The maximum asynchronous payload from our local node to that node.
 ULONG MaxPayloadToNode;

 // Indicates whether this node thinks that it is the one to cause the bus reset.
 BOOLEAN bInitiatedBusReset;

 // The number of self ID packets that this node sent.
 UCHAR uchSelfIDPackets;

 // The number of ports that this node has.
 UCHAR uchTotalPorts;

 // The numbers of the active ports that are connected to childen nodes.
 // Each bit set indicates a port number.
 ULONG fChildrenPorts;

 // The numbers of the active ports that are connected to a parent node.
 // Each bit set indicates a port number. Only one bit should be set.
 ULONG fParentPort;

 // The numbers of the inactive (disabled, disconnected or suspended) ports.
 // Each bit set indicates a port number.
 ULONG fInactivePorts;

 // The power class of the node as reported in its self ID packet.
 C1394_POWER_CLASS PowerClass;

 // The node's gap_count as reported in the self ID packet.
 C1394_GAP_COUNT gap_count;

 // The physical ID of the parent of this node. If it is the root then
 // this has the value 63.
 C1394_PHYSICAL_ID ParentNode;

 // The number of children that this node has.
 UCHAR uchNumberOfChildren;

 // The PhyIDs of this node's children. Each bit that is set indicates a child.
 ULONGLONG fChildrenNodeIDs;

 // The node's configuration ROM.
 C1394_BUS_INFO_BLOCK BusInfoBlock;
}
C1394_NODE_INFO, *PC1394_NODE_INFO;

Page 104

FireAPI User Mode Interface Unibrain

The NodeID field is always valid. Obviously the information returned inside the NodeInfoArray
member of C1394_BUS_TOPOLOGY_INFO is in ascending NodeID order. That is NodeInfoArray[0]
is (1023,0), NodeInfoArray[1] is (1023,1) etc. The NodeID field was added to the
C1394_NODE_INFO structure mainly so that a pointer to the C1394_NODE_INFO structure can be
passed as a parameter to another routine without having to pass the NodeID as well.

NodeFlags.Present indicates whether the node whose 16-bit Node ID is equal to NodeID is physically
present on the bus. If NodeFlags.Present is zero, then NO OTHER field in the C1394_NODE_INFO
structure (except for NodeID) is valid. Applications should always check this field before proceeding
to do anything else with this structure.
NodeFlags.IncorrectSelfID indicates whether the selfID packet of this node has any problem.

NodeFlags.IsRoot is set to 1 for the root node, and to 0 for all other nodes.
NodeFlags.LinkOn is set to 1 for a node, if the node’s self ID packets had the link-on bit set to 1.
NodeFlags.Contender is set to 1 for a node, if the node’s self ID packets had the contender bit set to 1.
NodeFlags.IRM is set to 1 for the node who is the IRM on the bus, and to 0 for all other nodes.

The Valid_XXX fields of NodeFlags indicate whether the respective XXX field of the
C1394_NODE_INFO structure contains valid information.
The IS_NODE_INFO_FIELD_VALID macro can be used to conveniently test whether a specific field is
valid.

For example:

IS_NODE_INFO_FIELD_VALID(pNodeInfo, MaxSpeedToNode)

checks whether the MaxSpeedToNode field of the C1394_NODE_INFO structure pointed to by
pNodeInfo is valid.

See Also
C1394QueryInformation, OID_PHYSICAL_NODES, OID_LINK_ON_NODES,
OID_CONTENDER_NODES, OID_SPEED_TABLE, OID_NODE_COUNT, OID_HOP_COUNT

Page 105

FireAPI User Mode Interface Unibrain

SelfID Analysis Error Codes
The following flags are defined for indicating the errors detected during the selfID packet analysis that
the class driver performed after a bus reset. If the selfID analysis error code retrieved through
OID_SELFID_ANALYSIS_ERROR is not equal to SELFID_OK, then one or more of the flags described
below may be set.

Value Description
SELFID_OK There is no problem in the selfID packets.

SELFID_NO_PACKETS No self ID packets were received after the bus reset.

SELFID_NO_ROOT No root node was found among the self ID packets.

SELFID_DISCONTIGUOUS
The phyIDs in the self ID packets are discontiguous. This will
error will be indicated if after the selfID packet of node X follows
a selfID packet for node Y, with Y>(X+1).

SELFID_NO_PORTS_PRESENT A self ID packet was received that indicated that no ports were
present on a node.

SELFID_NO_PORTS_CONNECTED A self ID packet was received that indicated that a node had no
connected ports.

SELFID_DISCONNECTED_NONZERO_P
HYID The adapter is disconnected, but its PhyID is non zero.

SELFID_DUPLICATE More than one set of selfIDs was found with the same PhyID.

SELFID_OUT_OF_ORDER A selfID packet was received with a PhyID smaller than the
PhyID of the previous selfID packet.

SELFID_INCORRECT_ROOT_PACKET
Some node thinks (incorrectly) that it is connected only to child
nodes, but this cannot be the root node because there are more
selfID packets.

SELFID_TOO_MANY_NODES
63 nodes were identified, and there were more selfID packets.
This should not occur unless there is some problematic hardware
on the bus.

SELFID_EXPECTED_PCK_0 The next selfID packet was expected to be a selfID #0 packet, but
another type of selfID packet was found.

SELFID_EXPECTED_PCK_N The next selfID packet was expected to be a selfID #1,#2 or #3
packet, but another type of selfID packet was found.

SELFID_EXPECTED_PCK_4 A selfID packet #3 had the 'more' bit set.

SELFID_NO_MORE_PACKETS The last selfID packet of the block received after the bus reset, had
the 'more' bit set.

SELFID_INCORRECT_PHYID A selfID #1,2 or 3 packet did not have the same PhyID as the
respective #0 packet.

SELFID_MULTIPLE_PARENT_PORTS A selfID packet reported that more than one ports were connected
to a parent node.

SELFID_NO_LEAVES No leaf nodes were found in the selfID packets.

SELFID_PARENT_CHILD_IMBALANCE

The total number of parent ports is not equal to the total number of
child ports.

SELFID_UNEXPECTED_ERROR An unexpected error occurred.

NOTE: SelfID packet analysis is bus-specific. This means that in order to retrieve the selfID analysis
error through OID_SELFID_ANALYSIS_ERROR, you have to specify a bus number as the input
parameter to the C1394QueryInformation call.

Page 106

FireAPI User Mode Interface Unibrain

This can be done as shown in the code below:

 STATUS_1394 Status1394;
 ULONG uErrorCode;

 // We want information for the local bus.
 ((C1394_BUS_ID)&uErrorCode) = LOCAL_1394_BUS_ID;

 Status1394 = C1394QueryInformation(ClassAdapterHandle,
 OID_SELFID_ANALYSIS_ERROR,
 &uErrorCode,
 sizeof(ULONG),
 NULL,
 NULL);
 // Is everything OK?
 if (Status1394 != STATUS_1394_SUCCESS)
 {
 // This should not happen if all parameters are valid.
 }

Most of the errors shown in the table above will never occur, unless there is a problematic adapter on
the bus.
In practice some of these errors are occur momentarily when plugging or unplugging a device from the
bus. ‘Momentarily’ means that a simple software-initiated bus reset immediately solves the problem (in
the sense that after the bus reset there is no problem with the selfID packets).

The Serial Bus Manager driver is deemed responsible for recovering from these errors, and
UBSBM.SYS will initiate a bus reset to correct this situation whenever it occurs. Taking this into
consideration, applications should be able to handle such an error gracefully, and wait for the Serial
Bus Manager to correct the problem.

The following situations have been witnessed with hardware that is otherwise perfectly functional:

1. SELFID_NO_PACKETS
2. SELFID_NO_ROOT
3. SELFID_DISCONTIGUOUS
4. SELFID_OUT_OF_ORDER
5. SELFID_INCORRECT_ROOT_PACKET
6. SELFID_PARENT_CHILD_IMBALANCE

SELFID_DISCONTIGUOUS by itself occurs when an intermediate selfID packet (other than the root
node’s) is missing.
SELFID_DISCONTIGUOUS occurs together SELFID_OUT_OF_ORDER when an intermediate selfID
packet is found at the wrong position.
SELFID_NO_ROOT occurs if the selfID packet of the root node is missing or the selfID packet of the
root node incorrectly reports a port connected to a parent.
SELFID_INCORRECT_ROOT_PACKET occurs if an intermediate selfID packet is incorrectly
reporting the status of the node’s ports, or an intermediate selfID packet incorrectly appears after the
selfID of the root node.
SELFID_PARENT_CHILD_IMBALANCE obviously appears in all cases when a selfID packet is
missing. It has never occurred by itself.

Page 107

FireAPI User Mode Interface Unibrain

Topology Analysis Error Codes
The following flags are defined for indicating the errors detected during the topology analysis that the
class driver performed after a bus reset. Topology analysis is only attempted if there was no structural
or validity problem detected in the selfID analysis.
Topology analysis performs a higher level validation of the selfID packets to see if they are describing
a valid tree topology, according to the restrictions of the 1394 standard.
The topology analysis error code retrieved through OID_TOPOLOGY_ANALYSIS_ERROR. If the
value returned is not equal to TOPOLOGY_OK, then one or more of the flags described below may be
set (usually only one will be set).

Value Description

TOPOLOGY_OK
The selfID packets describe a valid tree topology. The class
driver has derived all the necessary information, and clients
can retrieve it through the OID_BUS_TOPOLOGY identifier.

TOPOLOGY_ANALYSIS_NOT_PERFORMED Topology analysis was not performed because an error was
detected in selfID analysis.

TOPOLOGY_TOO_MANY_CHILD_PORTS

A selfID packet incorrectly reported the state of its ports, by
reporting more ports connected to children nodes than actually
are.
This lead the topology analysis algorithm to a failure.

TOPOLOGY_PORT_STATUS

One or more selfID packets incorrectly reported the state of
their ports, and this fact made a subset of the nodes on the bus
to appear like they form a complete tree structure. However
this is not possible since there are additional nodes on the bus.

TOPOLOGY_INCONSISTENT
The node that was recognized as the root from topology
analysis, claims that it has a parent port. Either this information
is wrong or there should have been more selfID packets.

‘Real’ topology errors are very rare. A topology error other than
TOPOLOGY_ANALYSIS_NOT_PERFORMED, should practically never occur, unless there is a
problematic device on the bus.

NOTE: Topology analysis is bus-specific. This means that in order to retrieve the topology analysis
error through OID_TOPOLOGY_ANALYSIS_ERROR, you have to specify a bus number as the input
parameter to the C1394QueryInformation call.

This can be done as shown in the code below:

 STATUS_1394 Status1394;
 ULONG uErrorCode;

 // We want information for the local bus.
 ((C1394_BUS_ID)&uErrorCode) = LOCAL_1394_BUS_ID;

 Status1394 = C1394QueryInformation(ClassAdapterHandle,
 OID_TOPOLOGY_ANALYSIS_ERROR,
 &uErrorCode,
 sizeof(ULONG),
 NULL,
 NULL);
 // Is everything OK?
 if (Status1394 != STATUS_1394_SUCCESS)
 {
 // This should not happen if all parameters are valid.
 }

Page 108

FireAPI User Mode Interface Unibrain

Manipulating CYCLE_TIME timestamps
FireAPI provides the C1394GetCycleTime function to clients so that they can read the value of the
CYCLE_TIME register. An application can use the cycle time is order to perform very accurate
timestamping.

The return value of C1394GetCycleTime can be assigned to the uValue member of the
C1394_CYCLE_TIME_REGISTER structure, so that the structure bit fields can be used to parse the
information in the cycle timer. This structure is defined as shown below:

typedef union
{
 ULONG uValue;

 struct
 {
 ULONG CycleOffset:12;
 ULONG CycleCount:13;
 ULONG SecondCount:7;
 };
}
C1394_CYCLE_TIME_REGISTER, *PC1394_CYCLE_TIME_REGISTER;

The 12-bit CycleOffset field shall be updated on each tick of the local 24.576 MHz PHY clock, with the
exception that an increment from the value 3071 shall cause a wraparound to zero and shall carry into
the CycleCount field.
The value is the fractional part of the isochronous cycle of the current time, in units that are counts of
the 24.576 MHz clock.

The 13-bit CycleCount field shall increment on each carry from the CycleOffset field, with the
exception that an increment from the value 7999 shall cause a wraparound to zero and shall carry into
the second_count field.
The value is the fractional part of the second of the current time, in units of 125 microsec.

The 7-bit SecondCount field shall increment on each carry from the CycleCount field, with the
exception that an increment from the value 127 shall cause a wraparound to zero.

The sample below repeatedly calls the Win32 Sleep function and reads the CYCLE_TIME register
before and after the call and calculates the time difference.
The sample calculates correctly the difference, provided that no more than 128 seconds have elapsed
between the two timestamps.
Using this sample you can have a good estimate with regards to the accuracy, or rather the inaccuracy,
of the Sleep function.

Initially the sample performs a tight loop calling C1394GetCycleTime in order to provide you with an
estimate the overhead of this call on your system. On a test run on a PII-450, the program yielded about
225.000 calls to C1394GetCycleTime per second.
As you may find out, the overhead of calling this function is zero compared to the overhead of calling
printf inside the calculations loop42. This is why the program stores all numbers in an array, and
calculates and displays results after the measurements have completed.

42 This usually also involves the overhead of scrolling the console window output, an operation that is
very slow on many graphics adapters.

Page 109

FireAPI User Mode Interface Unibrain

#include <stdio.h>
#include <FireAPI.h>

ULONG CycleTimeDifference(ULONG a_Val2, ULONG a_Val1)
{
 ULONGLONG Offsets2, Offsets1;
 ULONG OffsetDiff;

 C1394_CYCLE_TIME_REGISTER CycleTime1;
 C1394_CYCLE_TIME_REGISTER CycleTime2;
 C1394_CYCLE_TIME_REGISTER CycleTimeDiff;

 CycleTime1.uValue = a_Val1;
 CycleTime2.uValue = a_Val2;

 Offsets1 = 8000*3072*CycleTime1.SecondCount +
 3072*CycleTime1.CycleCount +
 CycleTime1.CycleOffset;

 Offsets2 = 8000*3072*CycleTime2.SecondCount +
 3072*CycleTime2.CycleCount +
 CycleTime2.CycleOffset;

 // If the seconds' count have wrapped, then adjust it
 if (CycleTime2.SecondCount < CycleTime1.SecondCount)
 Offsets2 += 8000*3072*128;

 // Calculate the difference in cycle offsets.
 OffsetDiff = (ULONG) (Offsets2 - Offsets1);

 ///
 // Convert back into CYCLE_TIME format.
 ///

 // Cycle offsets
 CycleTimeDiff.CycleOffset =(ULONG) OffsetDiff % 3072;

 // Cycle counts
 OffsetDiff /= 3072;
 CycleTimeDiff.CycleCount =(ULONG) OffsetDiff % 8000;

 // Second counts.
 CycleTimeDiff.SecondCount = OffsetDiff/8000;

 return CycleTimeDiff.uValue;
}

#define DATA_ENTRIES 100
struct
{
 DWORD dwDelayMsec;
 C1394_CYCLE_TIME_REGISTER TimeStamp;
}
Data[DATA_ENTRIES];

#define TEST_CALLS 400000

main(void)
{
 C1394_ADAPTER_HANDLE C1394AdapterHandle;
 C1394_CYCLE_TIME_REGISTER Dif;
 STATUS_1394 Status1394;
 ULONG I;
 ULONG uStart, uEnd;
 C1394_CYCLE_TIME_REGISTER CyclDiff;

 srand(GetTickCount());

 C1394Initialize();
 C1394OpenAdapter(NULL, NULL, &C1394AdapterHandle);

Page 110

FireAPI User Mode Interface Unibrain

 ///
 // Make a bunch of calls to C1394GetCycleTime
 ///
 uStart = C1394GetCycleTime(C1394AdapterHandle);

 for (I=0; I<TEST_CALLS; I++)
 uEnd = C1394GetCycleTime(C1394AdapterHandle);

 CyclDiff.uValue = CycleTimeDifference(uEnd, uStart);

 printf("[%03x:%04x:%03x] <=> (%3u msec) for %u calls to C1394GetCycleTime\n\n",
 CyclDiff.SecondCount,
 CyclDiff.CycleCount,
 CyclDiff.CycleOffset,
 CyclDiff.SecondCount*1000 + (CyclDiff.CycleCount*125)/1000,
 TEST_CALLS);

 ///
 // Use C1394GetCycleTime to see how long Sleep takes.
 ///

 // Initialize the random wait times.
 for (I=0; I<DATA_ENTRIES; I++)
 Data[I].dwDelayMsec = 20+rand()%200;

 // Simply store the timestamp after each wait.
 for (I=0; I<DATA_ENTRIES; I++)
 {
 Data[I].TimeStamp.uValue = C1394GetCycleTime(C1394AdapterHandle);
 Sleep(Data[I].dwDelayMsec);
 }

 // Now calculate the differences.
 for (I=0; I<DATA_ENTRIES-1; I++)
 {
 CyclDiff.uValue = CycleTimeDifference(Data[I+1].TimeStamp.uValue,
 Data[I].TimeStamp.uValue);

 printf("[%03x:%04x:%03x]-[%03x:%04x:%03x] = [%03x:%04x:%03x] <=>"
 " (%3u msec) for Sleep(%3u)\n",
 Data[I+1].TimeStamp.SecondCount,
 Data[I+1].TimeStamp.CycleCount,
 Data[I+1].TimeStamp.CycleOffset,
 Data[I].TimeStamp.SecondCount,
 Data[I].TimeStamp.CycleCount,
 Data[I].TimeStamp.CycleOffset,
 CyclDiff.SecondCount,
 CyclDiff.CycleCount,
 CyclDiff.CycleOffset,
 (CyclDiff.CycleCount*125)/1000,
 Data[I].dwDelayMsec);
 }

 C1394CloseAdapter(C1394AdapterHandle);
 C1394Terminate();
 return 0;
}

The sample CycleTimeDifference routine, first converts the timestamps into the unit of Cycle Offsets,
calculates the difference in cycle offsets and then converts this back into cycle time format.
The program declares the Offsets1 and Offsets2 variables as ULONGLONG instead of ULONG in
order to avoid a possible overflow during the calculations.

As you might see by this sample, the Sleep function is rather inaccurate. If you need accurate timing,
then you can rely on C1394GetCycleTime to get rather accurate measurements, taking into
consideration that a PC system can perform more than 200.000 calls per second while the cycle count
portion of cycle time ‘only’ has 8000 counts per second.

Page 111

FireAPI User Mode Interface Unibrain

Application Reaction Time
Application developers may need to measure the reaction time of an application to an incoming
transaction request.

FireAPI provides the C1394GetCycleTime function that application can use to perform very accurate
timestamping, but this is not enough to give to an application information about the Reaction Time. The
Reaction Time can be defined as the amount of time between the moment a packet was received and
the time the application got it.

Obviously the Reaction Time will vary depending on what kind of activity is running on the system at
the same time.

The only way to accurately measure the reaction time of an application is to use a 1394 bus analyzer
and capture the request and response packets.
The difference in time between the request and the response packet is equal to the amount of time it
took the system to:
1. Raise an interrupt for the reception of a transaction request packet
2. Have the class driver process the packet and store it in the request queue of an address range.
3. Notify the application about the incoming packet by signalling the event object that is associated

with the address range.
4. Have the operating system wake and schedule the thread of the application that was waiting on the

event object.
5. Have the application call C1394GetNextRequest to retrieve the packet into user mode.
6. Process the packet and send a response packet using C1394SendResponse or another transaction

response function.

The above procedure however calculates the overall processing time which also includes the time
needed to send the response packet.

If we want to calculate the time from the moment the request packet was sent up to the moment the
application got it (the call to C1394GetNextRequest returned) then a slightly more complex setup is
required.

In this setup the receiving application must be run on the root node (which also acts as cycle master).
The receiving application will make a call to C1394GetCycleTime as soon as its call to
C1394GetNextRequest returns. Because the receiving application runs on the root node, the cycle
timer value read is from the same clock that is being used to put the cycle time in the cycle start
packets.
So combining the output of the program with the capture log of the analyzer will allow some to make
rather accurate measurements.

A sample program that performs this kind of operation is the REACT sample in the sample code. Note
that this sample keeps all timestamps in an internal array and only displays the results at the end. This
is done in order to put as little delay as possible in the timing. It is important to remember that console
output operations (like calls to printf) are very slow operations compared to what a CPU can do.
Putting printf statements between statements introduces considerable delay which makes sensitive
timing measurements be very inaccurate.

A portion of the output of this program for a sample run is listed below43. In this test run an instance of
CMD1394.EXE on a remote node executed a FILE command that sent a series of quadlet read requests
to the root node, where the REACT application was running. The delay between two successive reads
from the CMD1394.EXE was such that the receiving application always had the chance to empty the
request queue of the address range and fall back into the WaitForSingleObject call.

 073:0312:a85 073:0313:0bc 000:0000:237
 073:031d:155 073:031d:36e 000:0000:219

43 The receiving application was running on an otherwise idle system.

Page 112

FireAPI User Mode Interface Unibrain

The 1st timestamp is the value returned from C1394GetCycleTime when the WaitForSingleObject call
returns. The 2nd timestamp is the value returned from C1394GetCycleTime when the
C1394GetNextRequest call returns. The 3rd timestamp is the difference between the two.

The output of the application shows us that the application only needs between 220 and 240 cycle
offsets from the time it gets notified, until the time it gets the request packet. This is a very small
amount of time. 3072 cycle offsets are 125 microsec, so 240 cycle offsets are less than 10 microsec.

The corresponding packets from the capture of the 1394 bus analyzer are shown below:
____|___
12__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631202A) Timestamp(1CF9:9E2)
____|___
13__| S400 ReadDQ(lbl: 0) dest_ID(FFC5) src_ID(FFC2)
____| offset(0000: 00005150) ACK(pending) Timestamp(1CFA:2B5)
____|___
14__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631302A) Timestamp(1CFA:9E2)
____|___
15__| S400 RdRespDQ(lbl: 0) dest_ID(FFC2) src_ID(FFC5) rcode(complete)
____| quad_data(0x46697265) ACK(complete) Timestamp(1CFB:148)
____|___
16__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631402A) Timestamp(1CFB:9E2)
____|___
17__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631502A) Timestamp(1CFC:9E2)
____|___
18__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631602A) Timestamp(1CFD:9E2)
____|___
19__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631702A) Timestamp(1CFE:9E2)
____|___
20__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631802A) Timestamp(1CFF:9E2)
____|___
21__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631902A) Timestamp(1D00:9E2)
____|___
22__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631A02A) Timestamp(1D01:9E2)
____|___
23__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631B02A) Timestamp(1D02:9E2)
____|___
24__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631C02A) Timestamp(1D03:9E3)
____|___
25__| S400 ReadDQ(lbl: 0) dest_ID(FFC5) src_ID(FFC2)
____| offset(0000: 00005150) ACK(pending) Timestamp(1D04:6B2)
____|___
26__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631D02A) Timestamp(1D04:9E3)
____|___
27__| S400 RdRespDQ(lbl: 0) dest_ID(FFC2) src_ID(FFC5) rcode(complete)
____| quad_data(0x46697265) ACK(complete) Timestamp(1D05:3CD)
____|___
28__| S100 CycleSt(lbl: 0) dest_ID(FFFF) src_ID(FFC5)
____| offset(FFFF: F0000200) quad_data(time: 0xE631E02A) Timestamp(1D05:9E3)
____|___

Packet 12 is the cycle start packet for cycle 31216. It is in the same cycle that the application got the
notification that a request has been received.
Packet 13 was sent (1CFA:2B5 – 1CF9:9E2) =* C00+2B5-9E2 = 4D3 cycle offsets after the cycle start
packet, that is at cycle time 312:02A+ 000:4D3 = 312:4FD.
The application got signalled at 312:A85 which is A85-4FD = 588 cycle offsets later (24 microsec) and
got the packet at 313:0BC, which is C00+0BC-4FD =7BF cycle offsets later which is 81 microsec.

* C0016 is hex for 307210 which is the maximum value for cycle offsets.

Page 113

FireAPI User Mode Interface Unibrain

The response packet got sent at cycle time 313:02A+(1CFB:148-1CFA:9E2) which is A93 cycle
offsets (110 microsec) after the request packet was sent.

So, it took the application 24 microsec to get signalled, another 57 microsec to get the request and
another 29 microsec to transmit the response packet.

A similar analysis can be performed for the read request sent with packet 25.

The above results apply in the case where the application receives requests one by one44.
When more than one packets are received into the request queue, then the signalling overhead is only
paid once, and it takes the application less time to make additional calls to C1394GetNextRequest
because the first call cashes more than one packets in the application side, so the next calls don’t have
to switch to kernel mode in order to retrieve the request packets.

The same tests can be performed with kernel mode CSRs. Sample measurements that were performed
in Unibrain’s laboratory indicate that the same computer that needs 100-120 microsec to respond to a
quadlet read request, requires 80-90 microsec to respond to a 20 byte block read.

This is of course an expected result, since there is more overhead involved in interacting with user
mode. Another difference between a kernel mode CSR and a user mode CSR is that the reaction time
of kernel mode CSRs will not be affected by system load as much as the performance of a user mode
application, even if the application runs at high priority.
Asynchronous transaction requests in kernel mode are usually serviced in what is called Dispatch Level
which is a mode of execution that can only be interrupted by interrupts. No user mode thread can be
scheduled on a processor while the processor is executing code at Dispatch Level.

44 The first call to C1394GetNextRequest returns a packet and the next returns NULL.

Page 114

FireAPI User Mode Interface Unibrain

Accessing the Link Layer Registers
FireAPI provides a way for clients to access the adapter’s link registers. This is achieved with the use
of the OID_LINK_REGISTER_ACCESS object identifier in conjunction with C1394QueryInformation
for reading a Link Register or C1394SetInformation for writing a Link Register.

The structure used in combination with the OID_LINK_REGISTER_ACCESS object identifier is
C1394_LINK_REGISTER_ACCESS. This structure is defined as shown below:

typedef struct
{
 // Flags for the operation.
 USHORT Flags;

 // The byte offset at which to perform the operation.
 // This can be in the range 0..4095, and must be divisible by 4,
 // so it can only take values 0,4,8,...,4092.
 USHORT ushByteOffset;

 // On reads it contains the value that was read from the link register.
 // On writes it contains the value to be written to the link register.
 ULONG uValue;
}
C1394_LINK_REGISTER_ACCESS, *PC1394_LINK_REGISTER_ACCESS;

No flags have been defined yet for these operations, so the Flags field should be set to zero.

Direct access to the link registers has been permitted in order to facilitate the operation of diagnostic
applications and possibly allow some customization of the low level operational settings of an adapter
wherever that might be required (PCI latency, FIFO sizes etc).

WARNING: Writing to a link register can cause serious trouble to the operation of the 1394 stack,
which can mean anything from improper operation to a system crash. If you attempt this then you
assume all responsibility for the results of the operation.
Additionally, it is possible that although such an operation does not cause problem to a specific version
of the drivers, it might cause problems to later versions.
Please, refrain from accessing these registers unless you specifically know what you are doing.

Page 115

FireAPI User Mode Interface Unibrain

Changing the FIFO settings
The API provides a way for clients to get informed about and modify the FIFO settings of the adapter.
This is only supported on Lynx adapters. OHCI adapters have fixed FIFO settings.
This is achieved with the use of the OID_ADAPTER_FIFO object identifier in conjunction with
C1394QueryInformation for finding out the current settings and options, and C1394SetInformation
for modifying the current settings and options.

This functionality is only provided for fine-tuning or customizing the operation of the drivers for
specific applications, if the default settings are proved insufficient.
For example, an isochronous intensive application might set the size of the asynchronous transmit
FIFO to a small number if it knows that it will not produce asynchronous packets larger than 256 bytes.
This way it can leave more FIFO space for isochronous operations, which will lessen the probability of
FIFO underruns or DMA transfer errors due to PCI bus congestion.

The structure used in combination with the OID_ADAPTER_FIFO object identifier is
C1394_ADAPTER_FIFO_SETTINGS. This structure is defined as shown below:

typedef struct
{
 // Indicates which of the substructures should be used.
 ULONG FIFOType;

 union
 {
 struct
 {
 // Flags that describe the FIFO & driver settings,
 // and possibly control the operation.
 ULONG Flags;

 // The total size of the FIFO in bytes.
 ULONG uTotalSize;

 // The size used for the asynchronous and isochronous receive FIFO.
 ULONG ReceiveSize;

 // The size of the asynchronous transmit FIFO.
 ULONG AsynchXmitSize;

 // The size of the isochronous transmit FIFO.
 ULONG IsochXmitSize;
 }
 LynxFIFO;
 };
}
C1394_ADAPTER_FIFO_SETTINGS, *PC1394_ADAPTER_FIFO_SETTINGS;

The FIFOType field indicates which sub-structure is valid. FIFOType is filled by the 1394 stack upon
return of a C1394QueryInformation(OID_ADAPTER_FIFO) call, and it should be filled with that same
value by a client that calls C1394SetInformation(OID_ADAPTER_FIFO).
Each adapter only supports one of the defined codes for FIFOType.

Currently only one sub-structure is defined, that is used one Texas Instruments PCILynx based boards.
The value of FIFOType for this type of boards is FIFO_TYPE_LYNX.

The possible flags that can be set to the LynxFIFO.Flags field are explained in the table below.

Page 116

FireAPI User Mode Interface Unibrain

Value Description

FIFO_CAN_CHANGE_AT_RUNTIME

Indicates that the adapter and the drivers support changing the
FIFO settings while the drivers operate.
A client can call C1394SetInformation with OID_ADAPTER_FIFO
only if this bit is set in the information returned by
C1394QueryInformation(OID_ADAPTER_FIFO).
This flag is only meaningful in the information returned by
C1394QueryInformation. The drivers ignore it in the
C1394SetInformation call.

FIFO_SUPPORTS_AUTO_ZERO_ISO_XMIT

Indicates that the driver supports the feature whereby it
automatically manages the FIFO setup, zeroing the size of the
isochronous transmit FIFO when there are no adapter channels
open that perform isochronous transmit.

FIFO_AUTO_ZERO_ISO_XMIT

In the information returned by C1394QueryInformation it
indicates whether the driver has currently enabled or not the
automatic zeroing of the isochronous transmit FIFO.

In a C1394SetInformation call, if this bit is set to 1, then it
instructs the driver to enable auto-zeroing of the xmit FIFO.

FIFO_DISABLE_AUTO_ZERO_ISO_XMIT

This flag is only meaningful for a C1394SetInformation call.
If it is set to one, then it instructs the driver to disable
auto-zeroing of the isochronous transmit FIFO.
Only one of the FIFO_AUTO_ZERO_ISO_XMIT and
FIFO_DISABLE_AUTO_ZERO_ISO_XMIT flags can be
specified in a C1394SetInformation call. If none is specified,
then the current mode is retained.

FIFO_ISO_XMIT_ZEROED

This flag can only be applied in the information returned by a
C1394QueryInformation call.
If it is set, then it indicates that currently the isochronous
transmit FIFO is zeroed. This means that the value reported by
the IsochXmitSize field is currently used in the other FIFOs
according to the current policy.

FIFO_FAVOUR_RECEIVE
FIFO_FAVOUR_TRANSMIT
FIFO_FAIR_SPLIT

Indicates which is the current replacement policy of the 1394
stack when it zeroes the isochronous transmit stack.
FIFO_FAVOUR_RECEIVE_FIFO indicates that the size freed by
the isochronous transmit FIFO is added to the receive FIFO.
FIFO_FAVOUR_TRANSMIT_FIFO indicates that the size freed
by the isochronous transmit FIFO is added to the asynchronous
transmit FIFO.
FIFO_FAVOUR_TRANSMIT_FIFO indicates that the size freed
by the isochronous transmit FIFO is equally divided between the
asynchronous transmit FIFO and the receive FIFO.

Only one of these flags can be specified in a call to
C1394SetInformation, if the caller wants to change the
replacement policy. If none of these flags is specified then the
policy remains unchanged.

Page 117

FireAPI User Mode Interface Unibrain

FIFO_CHANGE_SETTINGS

Can only be specified in a C1394SetInformation call. It requests
the driver to read the values supplied and update the FIFO sizes
accordingly.

Note that the values supplied refer to that values to be used when
there are isochronous transmit channels open. Do not specify
less than 128 for any FIFO size.
If the sum of the partial FIFO sizes is less than the total available
FIFO then some FIFO space will simply get wasted. The sum of
the partial FIFO sizes cannot be larger than the total available
FIFO size.

For example, suppose that a call is made to C1394QueryInformation(OID_ADAPTER_INFO) and the
returned structure contains the following information:

FIFOType = FIFO_TYPE_LYNX;
LynxFIFO.Flags = FIFO_CAN_CHANGE_AT_RUNTIME |
 FIFO_SUPPORTS_AUTO_ZERO_ISO_XMIT |
 FIFO_AUTO_ZERO_ISO_XMIT |
 FIFO_FAVOUR_TRANSMIT;

LynxFIFO.uTotalSize = 4096;
LynxFIFO.ReceiveSize = 2048;
LynxFIFO.AsynchXmitSize = 1040;
LynxFIFO.IsochXmitSize = 1008;

This means that the adapter supports runtime FIFO changing and auto-zeroing the isochronous transmit
FIFO, auto-zeroing is enabled and the current policy is to favour the asynchronous transmit FIFO. The
total FIFO size is 4KB, and it is split into 2KB for receive, 1040 bytes for asynchronous transmit FIFO
and 1008 bytes for isochronous transmit FIFO.
If there is no adapter channel open for isochronous transmit, then the current size of the asynchronous
transmit FIFO is 2KB as well (1040+1008).

If a client wants to change the replacement policy to favour the receive FIFO, it has to make a
C1394SetInformation(OID_ADAPTER_FIFO) call and specify:

FIFOType = FIFO_TYPE_LYNX;
LynxFIFO.Flags = FIFO_FAVOUR_RECEIVE;

If a client wants both to change the replacement policy and the default FIFO sizes, it has to make a
C1394SetInformation(OID_ADAPTER_FIFO) call and specify:

FIFOType = FIFO_TYPE_LYNX;
LynxFIFO.Flags = FIFO_FAVOUR_RECEIVE | FIFO_CHANGE_SETTINGS;
LynxFIFO.ReceiveSize = new_value_1;
LynxFIFO.AsynchXmitSize = new_value_2;
LynxFIFO.IsochXmitSize = new_value_3;

The contents of the LynxFIFO.uTotalSize field are ignored in calls to C1394SetInformation.

The ability to control the FIFO size is very important and can be critical for high throughput
applications. Developers should keep the FIFO sizes in mind when designing their systems because this
will be a critical factor.

For example, by setting the receive fifo to 3.5 KB you will be able to receive at the same time two
isochronous streams, each with packet size of 2048 bytes45, from one 1394 adapter with no errors.
With the default setting of 2KB this would be impossible.

45 2*8000*2048 = 32.768.000 bytes/sec

Page 118

FireAPI User Mode Interface Unibrain

Similarly, by using the default setting for the isochronous transmit FIFO, which is 1KB, and trying to
transmit an isochronous stream with packets of 2KB, you may observe any of the behaviours described
below:
• There is no transmission error whatsoever, no matter what is the activity on the system.
• There is no transmission error while the system is idle, but if some disk activity occurs, then

transmission errors occur.
• There are random transmission errors while the system is idle (for example about 1-2 packets out

of 50-100 thousand packets), and many more if there is other activity as well.
• There are periodic transmission errors while the system is idle (for example 1 packet every 90

thousand packets), and many more, random errors if there is other activity as well.
• There are many transmission errors, even when the system is idle (for example more than 1 packet

fails every 500 packets).

Such patterns of behaviour have been actually observed using the same test program on different
computers that were equipped with the same type of 1394 adapters.
In ALL cases, when the isochronous transmit FIFO size was increased to 2KB no errors would occur,
even if the system was under severe stress (high disk and CPU activity).

Page 119

FireAPI User Mode Interface Unibrain

Part II
FireAPI Function Reference

Page 120

FireAPI User Mode Interface Unibrain

Initialization Functions

Page 121

FireAPI User Mode Interface Unibrain

C1394Initialize
Initializes 1394 support for the caller.

STATUS_1394 C1394Initialize(void);

Return Values
If the function is successful then it returns STATUS_1394_SUCCESS. Otherwise an appropriate error
status is returned according to the guidelines described in Status Codes Reference.

Remarks
An application must call this function before it calls any other C1394xxx function. If C1394Initialize is
not called first, then any other C1394xxx call will fail. The most probable reason why this function
could fail is that the 1394-class driver (UB1394.SYS) or the user mode API support driver
(UBUMAPI.SYS) are not loaded.

Calling this function more than once is meaningless, but if the first call is successful, then additional
calls will also return STATUS_1394_SUCCESS.

Page 122

FireAPI User Mode Interface Unibrain

C1394Terminate
Terminates 1394 support for the calling application.

void C1394Terminate(void);

Remarks
An application must call this function before termination in order to perform proper 1394 cleanup.
After having called this function, any other C1394xxx call will fail.

In Win32 environments, it is not strictly necessary to call this function when terminating, in the same
way that in Win32 it is not necessary to close all object handles when terminating. If a user application
terminates abnormally, then UBUMAPI.SYS will perform the appropriate resource cleanup and the
proper operation of the 1394 stack will be unaffected.

Page 123

FireAPI User Mode Interface Unibrain

C1394GetAdapters
Retrieves the GUIDs for the adapters installed on the system.

ULONG C1394GetAdapters(
 C1394_GUID AdapterGuidArray[],
 ULONG uMaxArrayItems
);

Parameters

AdapterGuidArray
A buffer where the GUIDs should be returned into.

uMaxArrayItems
The maximum number of items that can be stored in AdapterGuidArray.

Return Values
The number of GUIDs stored in the buffer.

Remarks
If this function returns zero, then this means that no 1394 miniport driver has been loaded.

If more than one adapters are installed on the system, and uMaxArrayItems is less than the number of
installed adapters, then only the adapters that appear first in the enumeration will be returned.
The actual results of this depend on the order in which the adapters were enumerated by the operating
system.

See Also
C1394OpenAdapter

Page 124

FireAPI User Mode Interface Unibrain

C1394OpenAdapter
Opens a handle to one of the adapter’s that have been registered by miniports to the class driver.

STATUS_1394 C1394OpenAdapter(
 IN PC1394_GUID pAdapterGuid,
 IN CLIENT_ADAPTER_HANDLE ClientAdapterHandle,
 OUT PC1394_ADAPTER_HANDLE pC1394AdapterHandle
);

Parameters
pAdapterGuid

A pointer to a variable of type C1394_GUID, that contains the GUID of the adapter to be
opened. If NULL then the default adapter is opened.

ClientAdapterHandle46
A handle that identifies the adapter to the application.

pC1394AdapterHandle
A pointer to a variable that receives the handle that identifies the adapter to the 1394 stack.

Return Values

Value Description
STATUS_1394_SUCCESS The operation was completed successfully.

STATUS_1394_NOT_FOUND
There is no adapter registered to the class driver with the GUID
that is specified by the pAdapterGuid parameter.

STATUS_1394_ALREADY_OPEN

The client driver has already opened the adapter. The variable
pointed to by pClassAdapterHandle receives the same
C1394_ADAPTER_HANDLE value as the original call for the
GUID that returned STATUS_1394_SUCCESS.

STATUS_1394_NO_MEMORY A required memory allocation failed.

STATUS_1394_INVALID_HANDLE
STATUS_1394_UNSUCCESSFUL

These return values indicate some kind of internal error or
inconsistency. They should never be returned under normal
circumstances.

Remarks
The class driver internally maintains a reference count for each adapter that an application opens. The
application must match each successful call to C1394OpenAdapter with a call to C1394CloseAdapter
if it wants to close the adapter correctly and release all associated resources.

For example consider the following scenario:
If modules A and B in an application both open the adapter with GUID X and register notifications,
and at a later point module A closes its class adapter handle, then the notifications it has registered are
not automatically cleared and the event handlers will still be called. In that case module A should take
care to release any resources it allocated on the adapter before closing its handle.

Adapter-related resources owned by the application, for example event notifications and address range
mappings, are automatically freed when an adapter is closed with C1394CloseAdapter. However it is
suggested as good programming practice for applications to first release all their resources on an
adapter before closing the adapter handle.

See Also
C1394CloseAdapter, C1394RegisterNotification, C1394UnregisterNotification,
C1394MapAddressRange, C1394UnmapAddressRange

46 All CLIENT_xxx_HANDLE types can be safely type-casted to and from the void* type.

Page 125

FireAPI User Mode Interface Unibrain

C1394CloseAdapter
Closes a handle to a 1394 adapter.

void C1394CloseAdapter(

IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies the adapter to the 1394 driver stack.

Remarks
C1394CloseAdapter actually decrements the reference count on the adapter. The adapter is closed
when the reference count drops to zero. If an application made multiple calls to C1394OpenAdapter,
then it must match each such call with a call to C1394CloseAdapter.

Adapter-related resources owned by the application, for example event notifications and address range
mappings, are automatically freed when an adapter gets closed (reference count drops to zero).
However it is suggested as good programming practice for applications to first release all their
resources on an adapter before closing the adapter handle.

See Also
C1394OpenAdapter, C1394RegisterNotification, C1394UnregisterNotification,
C1394MapAddressRange, C1394UnmapAddressRange

Page 126

FireAPI User Mode Interface Unibrain

Outgoing Asynchronous Transactions

Page 127

FireAPI User Mode Interface Unibrain

C1394ReadNode
Performs a read transaction request to the specified node ID at the specified offset. The operation is
performed synchronously, which means that when the function returns the 1394 transaction has been
completed.

STATUS_1394 C1394ReadNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the read request.

Destination
The 16-bit NodeID of the destination node.

Offset
The 48-bit offset for the read request.

uNumberOfBytes
The number of bytes to read.

Buffer
A buffer containing at least uNumberOfBytes available bytes that will receive the results of the
read transaction.

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Page 128

FireAPI User Mode Interface Unibrain

Return Values
The possible return values are listed below:

Value Description

STATUS_1394_SUCCESS

The transaction was completed successfully. This means that
the request transmission was acknowledged with ack_pending
and a response packet was received that contained the
resp_complete response code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which
indicated that the transaction did not complete successfully. If
the pAcknowledgeCode pointer is provided then ack_complete
is returned through it, and if the pResponseCode pointer is
provided the error response code found in the response packet
is returned through it.

STATUS_1394_INVALID_HANDLE
The handle specified by C1394AdapterHandle is invalid. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_INVALID_OFFSET

The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset). No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_PARAMETER

A parameter is invalid (invalid data buffer, or
acknowledge/response code pointers). No information is
returned through the pAcknowledgeCode and pResponseCode
pointers.

STATUS_1394_DRIVER_INTERNAL_ERROR

This error generally indicates some sort of serious problem
with the 1394 stack (unstable situation, internal bug etc), and
should normally never be returned.
If this error ever appears, then first make sure that the UB
drivers that you have installed are the correct version, before
checking for any other problem.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending
was returned but no response was received within the split
transaction timeout. If the pAcknowledgeCode pointer is
provided then ack_pending is returned through it. No
information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no
acknowledge was returned, so the miniport indicated the
ack_missing acknowledge code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry
protocol was executed. If the pAcknowledgeCode pointer is
provided then one of the ack_busy_X, ack_busy_A or
ack_busy_B acknowledge codes is returned through it. No
response code information will be returned.

Page 129

FireAPI User Mode Interface Unibrain

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some
acknowledge other than ack_complete, ack_none,
ack_pending, ack_busy_(XAB) and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function
will return the acknowledge code that has been received
through this pointer. No response code information will be
returned.

STATUS_1394_SPEED_LIMITATION

The size of the read request is too big for the response packet
to be received by the adapter at its maximum speed. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_SIZE_LIMITATION

The size of the read request is too big for the response to be
transmitted on the path from the destination node to the local
node. No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_REQUEST
A broadcast read was requested. Only write transactions can be
broadcasted.

STATUS_1394_BUS_RESET
The transaction request was cancelled due to a bus reset. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

Other

The transmission of the transaction request packet was not
completed successfully due to some error on the miniport
(hardware error, bus reset etc). The status returned is the same
status that the miniport returned. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Remarks
If the uNumberOfBytes parameter equals 4, and the destination offset is quadlet aligned, then a quadlet
read transaction is performed. Otherwise a block read transaction is performed.

Note that it is perfectly legal to transmit a read request of zero bytes. Some applications use such
requests and their response codes as a means of communicating commands and state information.

See Also
C1394ReadNodeAsynch, C1394WriteNode, C1394WriteNodeAsynch, C1394LockNode,
C1394LockNodeAsynch, C1394TransmitPackets

Page 130

FireAPI User Mode Interface Unibrain

C1394WriteNode
Performs a write transaction request to the specified node ID at the specified offset. The operation is
performed in a synchronous manner, which means that the function waits on an event object until the
transaction is completed.

STATUS_1394 C1394WriteNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the write request.

Destination
The 16-bit NodeID of the destination node. If a broadcast write is requested then the physical
ID should be set to 63.

Offset
The 48-bit offset for the write request.

uNumberOfBytes
The number of bytes to write. This parameter can be zero.

Buffer
A buffer containing uNumberOfBytes that will be written to the Destination at Offset. If the
uNumberOfBytes parameter is zero, then this pointer can be NULL.

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Page 131

FireAPI User Mode Interface Unibrain

Return Values
Value Description

STATUS_1394_SUCCESS

The transaction was completed successfully. This means that
either the request transmission was acknowledged with
ack_complete, or it was acknowledged with ack_pending and a
response packet was received that contained the resp_complete
response code, or it was a broadcast request and it was
transmitted successfully. No information is returned through
the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which
indicated that the transaction did not complete successfully. If
the pAcknowledgeCode pointer is provided then ack_complete
is returned through it, and if the pResponseCode pointer is
provided the error response code found in the response packet
is returned through it.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending
was returned but no response was received within the split
transaction timeout. If the pAcknowledgeCode pointer is
provided then ack_pending is returned through it. No
information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no
acknowledge was returned, so the miniport indicated the
ack_missing acknowledge code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry
protocol was executed. If the pAcknowledgeCode pointer is
provided then one of the ack_busy_X, ack_busy_A or
ack_busy_B acknowledge codes is returned through it. No
response code information will be returned.

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some
acknowledge other than ack_complete, ack_none,
ack_pending, ack_busy_(XAB) and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function
will return the acknowledge code that has been received
through this pointer. No response code information will be
returned.

STATUS_1394_INVALID_HANDLE
The handle specified by C1394AdapterHandle is invalid. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_SPEED_LIMITATION
The size of the write request is too big to be transmitted by the
adapter at its maximum speed. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_SIZE_LIMITATION
The size of the write request is too big to be transmitted on the
path to the destination node. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_OFFSET
The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset).

Page 132

FireAPI User Mode Interface Unibrain

STATUS_1394_INVALID_PARAMETER

A parameter is invalid (invalid data buffer, or
acknowledge/response code pointers). No information is
returned through the pAcknowledgeCode and pResponseCode
pointers.

STATUS_1394_BUS_RESET
The transaction request was cancelled due to a bus reset. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

other

The transmission of the transaction request packet was not
completed successfully due to some error on the miniport
(hardware error, bus reset etc). The status returned is the same
status that the miniport returned. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Remarks
If the uNumberOfBytes parameter equals 4, and the destination offset is quadlet aligned, then a quadlet
write transaction is performed. Otherwise a block write transaction is performed.

Note that it is perfectly legal to transmit a write request of zero bytes. Some applications use such
requests and their response codes as a means of communicating commands and state information.

The request packet is transmitted at the speed returned by C1394GetMaxSpeedToNode for the
specified destination. If a broadcast packet is being sent, then the transmission speed used is the
broadcast speed, which is defined as the speed of the slowest device on the bus. If a broadcast
transmission at a higher speed is required, then the function C1394TransmitPackets should be used.
See the remarks section of that function for more information on the related issues.

See Also
C1394ReadNode, C1394LockNode, C1394TransmitPackets

Page 133

FireAPI User Mode Interface Unibrain

C1394LockNode
Performs a lock transaction request to the specified node ID at the specified offset. The operation is
performed in a synchronous manner, which means that the function waits on an event object until the
response packet is received.

STATUS_1394 C1394LockNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN C1394_EXTENDED_TCODE ExtendedTcode,
 IN ULONG uArgSize,
 IN ULONGLONG UArgValue,
 IN ULONG uDataSize,
 IN ULONGLONG UDataValue,
 OUT void *DataBuffer ,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the lock request.

Destination
The 16-bit NodeID of the destination node.

Offset
The 48-bit offset for the lock request.

ExtendedTCode
The extended transaction code that describes the lock function to be performed.

uArgSize
The value of arg_ size to be used in the lock request. This can only be 0, 4 or 8 and the
permitted values also depend on the lock function to be executed. For more information see the
remarks section.

UArgValue
A 64-bit unsigned long that specifies the arg_value to be used in the lock request. If the value
of the uArgSize parameter is 4, then only the low 32-bits of UArgValue are used.

uDataSize
The value of data_ size to be used in the lock request. This can only be 0, 4 or 8 and the
permitted values also depend on the lock function to be executed. For more information see the
remarks section.

UDataValue
A 64-bit unsigned long that specifies the data_value to be used in the lock request. If the value
of the uDataSize parameter is 4, then only the low 32-bits of UDataValue are used.

DataBuffer
A pointer to a buffer of uDataSize bytes that receive the 32-bit or 64-bit data value returned in
the lock response. This pointer can be NULL.

Page 134

FireAPI User Mode Interface Unibrain

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Return Values
Value Description

STATUS_1394_SUCCESS

The lock transaction was completed successfully. This means
that the request transmission was acknowledged with
ack_pending and a response packet was received that
contained the resp_complete response code. No information is
returned through the pAcknowledgeCode and pResponseCode
pointers.

It is very important to note that a successful lock transaction
does not mean a successful lock function. A successful lock
transaction ONLY means that a lock response has been
received with the resp_complete response code, which in turn
implies that there is valid data in the response packet (the old
value of the target register). Depending on the lock function
requested, the application should compare the old value with
the argument value specified in the lock request in order to
determine whether the lock function actually succeeded.
On the other have a failed lock transaction implies a failed
lock function.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which
indicated that the transaction did not complete successfully. If
the pAcknowledgeCode pointer is provided then ack_complete
is returned through it, and if the pResponseCode pointer is
provided the error response code found in the response packet
is returned through it.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending
was returned but no response was received within the split
transaction timeout. If the pAcknowledgeCode pointer is
provided then ack_pending is returned through it. No
information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no
acknowledge was returned, so the miniport indicated the
ack_missing acknowledge code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry
protocol was executed. If the pAcknowledgeCode pointer is
provided then one of the ack_busy_X, ack_busy_A or
ack_busy_B acknowledge codes is returned through it. No
response code information will be returned.

Page 135

FireAPI User Mode Interface Unibrain

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some
acknowledge other than ack_complete, ack_none,
ack_pending, ack_busy_(XAB) and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function
will return the acknowledge code that has been received
through this pointer. No response code information will be
returned.

STATUS_1394_INVALID_HANDLE
The handle specified by C1394AdapterHandle is invalid. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_INVALID_OFFSET
The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset).

STATUS_1394_INVALID_PARAMETER

A parameter is invalid (invalid data buffer, or
acknowledge/response code pointers). No information is
returned through the pAcknowledgeCode and pResponseCode
pointers.

STATUS_1394_INVALID_REQUEST
A broadcast lock was requested. Only write transactions can be
transmitted as broadcasts.

STATUS_1394_BUS_RESET
The transaction request was cancelled due to a bus reset. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

other

The transmission of the transaction request packet was not
completed successfully due to some error on the miniport
(hardware error, bus reset etc). The status returned is the same
status that the miniport returned. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Page 136

FireAPI User Mode Interface Unibrain

Remarks
The values specified in the UArgValue and UDataValue parameters are always transmitted in big
endian format regardless of the endianess of the platform the class driver is running on. This means that
on little endian platforms, the caller does not have to byte swap these values before calling the function.
Similarly the data returned are automatically converted to little endian if necessary.
Anyway it is, the caller can always pass a ULONG pointer or a ULONGLONG pointer (depending on
whether the call performed a 32-bit or a 64-bit operation) as the DataBuffer parameter (possibly with a
typecast to void*), and when the function returns use normal arithmetic to compare the old value
returned with the arg_value provided in the call.

The code fragment below shows an example of this for a 32-bit compare-swap operation:
unsigned long uOldValue;
Status1394 = C1394LockNode(C1394AdapterHandle,
 Destination,
 0xFFFFF0000230, /* MAINT_UTILITY */
 COMPARE_SWAP,
 4,
 (ULONGLONG) 0xFF003215, /* arg_value */
 4,
 (ULONGLONG) 0xFF0032F0, /* data_value */
 (void*) &uOldValue,
 NULL,
 NULL);

/* We can only check the old value if the transaction request was successful. */
if (STATUS_1394_SUCCESS == Status1394)
{
 if (0xFF003215 == uOldValue)
 printf(“COMPARE_SWAP was successful.\n”);
}

If the host CPU on which the program is running is little endian, then in the lock request packet that
will be sent to the remote node, the 0xFF003215 and the 0xFF0032F0 values will be both byte swapped
so that they are transmitted in big endian format. The same thing will happen when the response packet
is received. The old value found in the packet is expected to be in big endian format, so the 1394 stack
will byte-swap it before it assigns it to the uOldValue variable. This way the application can do all its
comparison operations with the intended values, completely forgetting about the issue of endianess.

The following code fragment displays another useful technique that can be used to make both 32-bit or
64-bit lock function calls from a single code fragment depending on the value of the b64BitLock
control variable:

union
{
 UCHAR Value[8];
 ULONG uValue;
 ULONGLONG UValue;
}
Old;

ULONGLONG UArgValue, UDataValue;

// Assign values to all variables that are IN parameters to the function.
...

Status1394 = C1394LockNode(C1394AdapterHandle,
 Destination,
 Offset1394,
 COMPARE_SWAP,
 (b64BitLock ? 8 : 4),
 UArgValue,
 (b64BitLock ? 8 : 4),
 UDataValue,
 Old.Value,
 &AcknowledgeCode,
 &ResponseCode);

Page 137

FireAPI User Mode Interface Unibrain

if (STATUS_1394_SUCCESS == Status1394)
 if (b64BitLock)
 {
 if (Old.UValue == UArgValue)
 printf(“64-bit Lock Function Succeeded.”);
 }
 else if (Old.uValue == (ULONG)UArgValue)
 printf(“32-bit Lock Function Succeeded.”);

Note: Keep in mind though that the above data conversions are only performed when using functions
like C1394LockNode and C1394LockNodeAsynch. When implementing a CSR that accepts lock
transactions, the developer must always remember that the 32-bit or 64-bit values inside the lock
request packet are always in big endian.

Caution
Developers must take some care when converting signed 32-bit integer values to unsigned 64-bit
integers because the compiler might automatically perform sign extension, which might cause
undesirable results.

For example consider the following program (compiled with the MSVC compiler):

#include <stdio.h>

void test(unsigned __int64 x)
{
 printf("0x%I64x\n", x);
}

main(void)
{
 long N;
 unsigned long U;

 N = 0x80000000;
 U = 0x80000000;

 test(N);
 test(U);
 test(0x80000000);
 return 0;
}

The output of this program is:

0xffffffff80000000
0x80000000
0x80000000

It is suggested that developers keep this detail in mind when performing 64-bit operations so that they
won’t have results other than the intended.

See Also
C1394ReadNode, C1394WriteNode

Page 138

FireAPI User Mode Interface Unibrain

C1394CompareSwapNode
Performs a 32-bit or 64-bit compare swap operation.

STATUS_1394 C1394CompareSwapNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN BOOLEAN b32BitLock,
 IN ULONGLONG UArgValue,
 IN ULONGLONG UDataValue,
 OUT void * pOldValue
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the compare-swap
lock transaction request.

Destination
The 16-bit NodeID of the destination node.

Offset
The 48-bit offset for the lock request.

b32BitLock
TRUE when a 32-bit compare swap is requested, and FALSE when a 64-bit operation is
requested. The aliases Lock32 and Lock64 have been defined in order to make the code more
readable.

UArgValue
A 64-bit unsigned long that specifies the arg_value to be used in the lock request. If
b32BitLock is TRUE, then only the low 32-bits of UArgValue are used.

UDataValue
A 64-bit unsigned long that specifies the data_value to be used in the lock request. If
b32BitLock is TRUE, then only the low 32-bits of UDataValue are used.

pOldValue
A pointer to a buffer of 4 or 8 bytes that will receive the 32-bit or 64-bit data value returned in
the lock response as the old_value. This pointer can be NULL if the application does not need
this information.

Return Values
Value Description

STATUS_1394_SUCCESS
The lock transaction completed normally, and the
compare-swap operation was successful.

STATUS_1394_LOCK_FAILED
The lock transaction completed normally, but the
compare-swap operation failed.

Other
Same meaning as the respective return value of
C1394LockNode.

Page 139

FireAPI User Mode Interface Unibrain

Remarks
This function is simply a wrapper around C1394LockNode, in order to simplify the code that needs to
be written in order to perform a compare-swap function.

The function treats its arguments in the native format of the host system, but supposes that the target
register is implemented in big endian format. For more details see the description of C1394LockNode
and the sample code under Allocating a channel number using compare swap.

See Also
C1394LockNode

Page 140

FireAPI User Mode Interface Unibrain

C1394TransmitRaw
Transmits a raw packet through the adapter’s asynchronous transmitter. This function executes
synchronously, which means that the function waits on an event object until the transmission is
completed.

STATUS_1394 C1394TransmitRaw(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN void *RawPacketBuffer,
 IN ULONG RawPacketBytes,
 IN BOOLEAN bAddHeaderCRC,
 IN BOOLEAN bAddDataCRC,
 IN C1394_SPEED_CODE TransmissionSpeed
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which the specified mapping is active.

RawPacketBuffer
A pointer to a buffer containing the raw packet to be transmitted.

RawPacketBytes
The number of bytes contained in RawPacketBuffer.

bAddHeaderCRC
A flag indicating whether a header CRC should be calculated and added into the outgoing raw
packet.

bAddDataCRC
A flag indicating whether a data CRC should be calculated and added into the outgoing raw
packet.

TransmissionSpeed
The speed code identifying the transmission rate to be used for this packet.

Return Values
If the packet is transmitted successfully, then STATUS_1394_SUCCESS is returned. Otherwise the
function returns the error code indicated by the miniport.

Remarks
If either the header or data CRC should be added, then this CRC will overwrite the contents of the
buffer at the appropriate offset. This means that when a packet that contains CRCs is sent then
RawPacketBytes should contain 4 bytes for the header CRC at the appropriate offset, the necessary
number of zero padding bytes after the data payload (if any) and another 4 bytes for the data CRC.

It is important to note that the 1394 stack does not sniff packets sent with C1394TransmitRaw. This
means that if an application sends a valid block read request packet to a remote node, when the
response packet comes, the class driver will discard it, since it is completely unaware of the request that
was sent earlier. If this function is used to send a valid response to a request that was received by the
class driver, then the response will be received by the remote node appropriately, but the local class
driver will believe that the response has not been sent and thus it will eventually timeout the request.
This means that if another request arrives before the timeout from the same node, with the same
transaction label, then the class driver will reject it.

Page 141

FireAPI User Mode Interface Unibrain

This function is primarily provided for sending PHY packets and for being able to send invalid packets
to a device in order to test its proper operation. For example by using C1394TransmitRaw application
can test a device in the following manners:
• Send 2 read transaction requests with the same transaction label. The 2nd should be rejected by the

device’s 1394 stack.
• Send two read responses for a given read request.
• Send a read response with less data than those requested in the read request packet.
• Send a quadlet read response packet to a 4-byte block read request and vice versa.
• Send an unsolicited read response packet to the device to see how it reacts to it.
• Send an invalid packet (block write request with actual payload greater than what is reported in the

header, invalid header CRC, invalid data CRC, correct header CRC but corrupt header etc).

Practically almost any kind of test can be performed using this function.

An application can use the structures defined in the header file 1394UMAPI.H if it wants to create an
asynchronous primary packet of any type. (Beta 2 Note: The operation of C1394TransmitRaw with
these structures has not been yet fully tested at the time of the release, due to schedule pressure.
FireAPI Developers will be notified if any update to the drivers is required for these operations to work
correctly).

See Also
C1394TransmitPackets, C1394WriteNode, C1394WriteNodeAsynch, C1394ReadNode,
C1394ReadNodeAsynch, C1394LockNode, C1394LockNodeAsynch

Page 142

FireAPI User Mode Interface Unibrain

C1394ReadNodeAsynch
Performs a read transaction request to the specified node ID at the specified offset. The operation is
performed asynchronously, meaning that the function returns immediately after the read request packet
has been submitted to the 1394 stack for transmission.

C1394_ASYNCH_HANDLE C1394ReadNodeAsynch(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT STATUS_1394 *pStatus1394,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode,
 IN void *Context,
 IN HANDLE hEvent
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the read request.

Destination
The 16-bit NodeID of the destination node.

Offset
The 48-bit offset for the read request.

uNumberOfBytes
The number of bytes to read.

Buffer
A buffer containing at least uNumberOfBytes available bytes that will receive the results of the
read transaction.

pStatus1394
A pointer to a variable of type STATUS_1394 that will receive the status code of the read
operation. This pointer should always point to a valid address.

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Context
A context value that the application wishes to associate with the operation. This value will be
returned to the application by C1394CompleteAsynch when the operation is complete.

hEvent
The handle of the event object that should be signalled when the operation is complete.

Page 143

FireAPI User Mode Interface Unibrain

Return Values
If any of the parameters are invalid (adapter handle, read buffer, status pointer, ack/resp pointers etc),
then the function will immediately return NULL and the variable pointed to by pStatus1394 will be set
to one of the values listed below:

Value Description
STATUS_1394_INVALID_HANDLE The handle specified by C1394AdapterHandle is invalid.

STATUS_1394_INVALID_OFFSET
The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset).

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (invalid data buffer, or
acknowledge/response code pointers).

If any sort of unexpected error occurs inside the 1394 stack, then the function returns NULL, and stores
STATUS_1394_DRIVER_INTERNAL_ERROR in the variable pointed to by pStatus1394.
This error generally indicates some sort of serious problem with the 1394 stack (unstable situation,
internal bug etc), and should normally never be returned. If this error ever appears, then first make sure
that the UB drivers that you have installed are the correct version, before checking for any other
problem.

If the read request is successfully submitted to the 1394 stack for transmission, then the function
returns a non-NULL value of type C1394_ASYNCH_HANDLE that identifies the request, and also
stores STATUS_1394_PENDING to the variable pointed to by pStatus1394.
When the event object identified by the hEvent parameter is set, then the application should first call
C1394CompleteAsynch with the C1394_ASYNCH_HANDLE that was returned by
C1394ReadNodeAsynch in order to complete the operation. After that, the application can proceed
and check the variable pointed to by pStatus1394, which will be set to one of the values listed in the
table below:

Value Description

STATUS_1394_SUCCESS

The transaction was completed successfully. This means that
the request transmission was acknowledged with ack_pending
and a response packet was received that contained the
resp_complete response code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which
indicated that the transaction did not complete successfully. If
the pAcknowledgeCode pointer is provided then ack_complete
is returned through it, and if the pResponseCode pointer is
provided the error response code found in the response packet
is returned through it.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending
was returned but no response was received within the split
transaction timeout. If the pAcknowledgeCode pointer is
provided then ack_pending is returned through it. No
information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no
acknowledge was returned, so the miniport indicated the
ack_missing acknowledge code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Page 144

FireAPI User Mode Interface Unibrain

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry
protocol was executed. If the pAcknowledgeCode pointer is
provided then one of the ack_busy_X, ack_busy_A or
ack_busy_B acknowledge codes is returned through it. No
response code information will be returned.

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some
acknowledge other than ack_complete, ack_none,
ack_pending, ack_busy_(XAB) and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function
will return the acknowledge code that has been received
through this pointer. No response code information will be
returned.

STATUS_1394_SPEED_LIMITATION

The size of the read request is too big for the response packet
to be received by the adapter at its maximum speed. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_SIZE_LIMITATION

The size of the read request is too big for the response to be
transmitted on the path from the destination node to the local
node. No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_REQUEST
A broadcast read was requested. Only write transactions can be
broadcasted.

STATUS_1394_BUS_RESET
The transaction request was cancelled due to a bus reset. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

Other

The transmission of the transaction request packet was not
completed successfully due to some error on the miniport
(hardware error, bus reset etc). The status returned is the same
status that the miniport returned. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Remarks
If the uNumberOfBytes parameter equals 4, and the destination offset is quadlet aligned, then a quadlet
read transaction is performed. Otherwise a block read transaction is performed.
Note that it is perfectly legal to transmit a read request of zero bytes. Some applications use such
requests and their response codes as a means of communicating commands and state information.

Caution: When making any kind of call that executes asynchronously, then the memory pointed to by
pointers passed to this function must remain valid until the asynchronous operation completes. Make
certain that this restriction is not violated, otherwise the results may be unpredictable.

See Also
C1394CompleteNodeAsynch, C1394ReadNode, C1394WriteNode, C1394WriteNodeAsynch,
C1394LockNode, C1394LockNodeAsynch

Page 145

FireAPI User Mode Interface Unibrain

C1394WriteNodeAsynch
Performs a write transaction request to the specified node ID at the specified offset. The operation is
performed asynchronously, meaning that the function returns immediately after the write request
packet has been submitted to the 1394 stack for transmission.

C1394_ASYNCH_HANDLE C1394WriteNodeAsynch(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT STATUS_1394 *pStatus1394,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode,
 IN void *Context,
 IN HANDLE hEvent
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the write request.

Destination
The 16-bit NodeID of the destination node.

Offset
The 48-bit offset for the write request.

uNumberOfBytes
The number of bytes to write.

Buffer
A buffer containing at least uNumberOfBytes available bytes that contains the data to be sent in
the write request.

pStatus1394
A pointer to a variable of type STATUS_1394 that will receive the status code of the write
operation. This pointer should always point to a valid address.

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Context
A context value that the application wishes to associate with the operation. This value will be
returned to the application by C1394CompleteAsynch when the operation is complete.

hEvent
The handle of the event object that should be signalled when the operation is complete.

Page 146

FireAPI User Mode Interface Unibrain

Return Values
If any of the parameters are invalid (adapter handle, data buffer, status pointer, ack/resp pointers etc),
then the function will immediately return NULL and the variable pointed to by pStatus1394 will be set
to one of the values listed below:

Value Description
STATUS_1394_INVALID_HANDLE The handle specified by C1394AdapterHandle is invalid.

STATUS_1394_INVALID_OFFSET
The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset).

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (invalid data buffer, or
acknowledge/response code pointers).

If any sort of unexpected error occurs inside the 1394 stack, then the function returns NULL, and stores
STATUS_1394_DRIVER_INTERNAL_ERROR in the variable pointed to by pStatus1394.
This error generally indicates some sort of serious problem with the 1394 stack (unstable situation,
internal bug etc), and should normally never be returned. If this error ever appears, then first make sure
that the UB drivers that you have installed are the correct version, before checking for any other
problem. If the problem persists then please submit a bug report.

If the write request is successfully submitted to the 1394 stack for transmission, then the function
returns a non-NULL value of type C1394_ASYNCH_HANDLE that identifies the request, and also
stores STATUS_1394_PENDING to the variable pointed to by pStatus1394.
When the event object identified by the hEvent parameter is set, then the application should first call
C1394CompleteAsynch with the C1394_ASYNCH_HANDLE that was returned by
C1394WriteNodeAsynch in order to complete the operation. After that, the application can proceed
and check the variable pointed to by pStatus1394, which will be set to one of the values listed in the
table below:

Value Description

STATUS_1394_SUCCESS

The transaction was completed successfully. This means that
the request transmission was either directly acknowledged with
ack_complete or with ack_pending and then a response packet
was received that contained the resp_complete response code.
No information is returned through the pAcknowledgeCode
and pResponseCode pointers.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which
indicated that the transaction did not complete successfully. If
the pAcknowledgeCode pointer is provided then ack_complete
is returned through it, and if the pResponseCode pointer is
provided the error response code found in the response packet
is returned through it.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending
was returned but no response was received within the split
transaction timeout. If the pAcknowledgeCode pointer is
provided then ack_pending is returned through it. No
information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no
acknowledge was returned, so the miniport indicated the
ack_missing acknowledge code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Page 147

FireAPI User Mode Interface Unibrain

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry
protocol was executed. If the pAcknowledgeCode pointer is
provided then one of the ack_busy_X, ack_busy_A or
ack_busy_B acknowledge codes is returned through it. No
response code information will be returned.

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some
acknowledge other than ack_complete, ack_none,
ack_pending, ack_busy_(XAB) and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function
will return the acknowledge code that has been received
through this pointer. No response code information will be
returned.

STATUS_1394_SPEED_LIMITATION

The size of the write request is too big for the request packet to
be transmitted by the adapter at its maximum speed. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_SIZE_LIMITATION

The size of the write request is too big for the request packet to
be transmitted on the path from the local node to the
destination node. No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_BUS_RESET
The transaction request was cancelled due to a bus reset. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

Other

The transmission of the transaction request packet was not
completed successfully due to some error on the miniport
(hardware error, bus reset etc). The status returned is the same
status that the miniport returned. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Remarks
If the uNumberOfBytes parameter equals 4, and the destination offset is quadlet aligned, then a quadlet
write transaction is performed. Otherwise a block write transaction is performed.
Note that it is perfectly legal to transmit a write request of zero bytes. Some applications use such
requests and their response codes as a means of communicating commands and state information.

The request packet is transmitted at the speed returned by C1394GetMaxSpeedToNode for the
specified destination. If a broadcast packet is being sent, then the transmission speed used is the
broadcast speed, which is defined as the speed of the slowest device on the bus. If a broadcast
transmission at a higher speed is required, then the function C1394TransmitPackets should be used.
See the remarks section of that function for more information on the related issues.

Caution: When making any kind of call that executes asynchronously, then the memory pointed to by
pointers passed to this function must remain valid until the asynchronous operation completes. Make
certain that this restriction is not violated, otherwise the results may be unpredictable.

See Also
C1394CompleteAsynch, C1394ReadNode, C1394ReadNodeAsynch, C1394WriteNode,
C1394LockNode, C1394LockNodeAsynch, C1394TransmitPackets

Page 148

FireAPI User Mode Interface Unibrain

C1394LockNodeAsynch
Performs a read transaction request to the specified node ID at the specified offset. The operation is
performed asynchronously, meaning that the function returns immediately after the read request packet
has been submitted to the 1394 stack for transmission.

C1394_ASYNCH_HANDLE C1394LockNodeAsynch(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN C1394_EXTENDED_TCODE ExtendedTcode,
 IN ULONG uArgSize,
 IN ULONGLONG UArgValue,
 IN ULONG uDataSize,
 IN ULONGLONG UDataValue,
 OUT void *DataBuffer,
 IN OUT STATUS_1394 *pStatus1394,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode,
 IN void *Context,
 IN HANDLE hEvent
);

Parameters
C1394AdapterHandle

A handle identifying to the 1394 stack the adapter through which to transmit the read request.

Destination
The 16-bit NodeID of the destination node.

Offset
The 48-bit offset for the read request.

ExtendedTCode
The 48-bit offset for the read request.

uArgSize
The value of arg_ size to be used in the lock request. This can only be 0, 4 or 8 and the
permitted values also depend on the lock function to be executed. For more information see the
remarks section.

UArgValue
A 64-bit unsigned long that specifies the arg_value to be used in the lock request. If the value
of the uArgSize parameter is 4, then only the low 32-bits of UArgValue are used.

uDataSize
The value of data_ size to be used in the lock request. This can only be 0, 4 or 8 and the
permitted values also depend on the lock function to be executed. For more information see the
remarks section.

UDataValue
A 64-bit unsigned long that specifies the data_value to be used in the lock request. If the value
of the uDataSize parameter is 4, then only the low 32-bits of UDataValue are used.

DataBuffer
A pointer to a buffer of uDataSize bytes that receive the 32-bit or 64-bit data value returned in
the lock response. This pointer can be NULL.

Page 149

FireAPI User Mode Interface Unibrain

pStatus1394
A pointer to a variable of type STATUS_1394 that will receive the status code of the read
operation. This pointer should always point to a valid address.

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Context
A context value that the application wishes to associate with the operation. This value will be
returned to the application by C1394CompleteAsynch when the operation is complete.

hEvent
The handle of the event object that should be signalled when the operation is complete.

Return Values
If any of the parameters are invalid (adapter handle, data buffer, status pointer, ack/resp pointers etc),
then the function will immediately return NULL and the variable pointed to by pStatus1394 will be set
to one of the values listed below:

Value Description
STATUS_1394_INVALID_HANDLE The handle specified by C1394AdapterHandle is invalid.

STATUS_1394_INVALID_OFFSET
The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset).

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (invalid data buffer, invalid
acknowledge/response code pointers, invalid lock function
parameters).

If any sort of unexpected error occurs inside the 1394 stack, then the function returns NULL, and stores
STATUS_1394_DRIVER_INTERNAL_ERROR in the variable pointed to by pStatus1394.
This error generally indicates some sort of serious problem with the 1394 stack (unstable situation,
internal bug etc), and should normally never be returned.
If this error ever appears, then first make sure that the UB drivers that you have installed have the
correct version number combination, before checking for any other problem. If you have the correct set
of drivers installed and this problem persists then please submit a bug report.

If the lock request is successfully submitted to the 1394 stack for transmission, then the function
returns a non-NULL value of type C1394_ASYNCH_HANDLE that identifies the request, and also
stores STATUS_1394_PENDING to the variable pointed to by pStatus1394.
When the event object identified by the hEvent parameter is set, then the application should first call
C1394CompleteAsynch with the C1394_ASYNCH_HANDLE that was returned by
C1394ReadNodeAsynch in order to complete the processing of the operation.

Page 150

FireAPI User Mode Interface Unibrain

After that, the application can proceed and check the variable pointed to by pStatus1394, which will be
set to one of the values listed in the table below:

Value Description

STATUS_1394_SUCCESS

The lock transaction was completed successfully. This means that the
request transmission was acknowledged with ack_pending and a
response packet was received that contained the resp_complete
response code. No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

It is very important to note that a successful lock transaction does
not mean a successful lock function. A successful lock transaction
ONLY means that a lock response has been received with the
resp_complete response code, which in turn implies that there is valid
data in the response packet (the old value of the target register).
Depending on the lock function requested, the application should
compare the old value with the argument value specified in the lock
request in order to determine whether the lock function actually
succeeded.
On the other have a failed lock transaction implies a failed lock
function.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which indicated that
the transaction did not complete successfully. If the
pAcknowledgeCode pointer is provided then ack_complete is returned
through it, and if the pResponseCode pointer is provided the error
response code found in the response packet is returned through it.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending was
returned but no response was received within the split transaction
timeout. If the pAcknowledgeCode pointer is provided then
ack_pending is returned through it.
No information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no acknowledge
was returned, so the miniport indicated the ack_missing acknowledge
code. No information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry protocol
was executed. If the pAcknowledgeCode pointer is provided then one
of the ack_busy_X, ack_busy_A or ack_busy_B acknowledge codes is
returned through it. No response code information will be returned.

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some acknowledge
other than ack_complete, ack_none, ack_pending, ack_busy_(XAB)
and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function will
return the acknowledge code that has been received through this
pointer. No response code information will be returned.

STATUS_1394_INVALID_REQUEST
A broadcast lock was requested. Only write transactions can be
broadcasted.

STATUS_1394_BUS_RESET
The transaction request was cancelled due to a bus reset.
No information is returned through the pAcknowledgeCode and
pResponseCode pointers.

Page 151

FireAPI User Mode Interface Unibrain

Other

The transmission of the transaction request packet was not completed
successfully due to some error on the miniport (hardware error, bus
reset etc). The status returned is the same status that the miniport
returned. No information is returned through the pAcknowledgeCode
and pResponseCode pointers.

Remarks
Caution: When making any kind of call that executes asynchronously, then the memory pointed to by
pointers passed to this function must remain valid until the asynchronous operation completes. Make
certain that this restriction is not violated, otherwise the results may be unpredictable.

Please refer to the comments section of C1394LockNode for important information that also apply to
the usage of C1394LockNodeAsynch, and also some code fragments that demonstrate how to use this
function properly.

See Also
C1394CompleteNodeAsynch, C1394LockNode, C1394ReadNode, C1394ReadNodeAsynch,
C1394WriteNode, C1394WriteNodeAsynch, C1394TransmitPackets

Page 152

FireAPI User Mode Interface Unibrain

C1394PingNode
Performs a ping to the specified node ID.

STATUS_1394 C1394PingNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN OUT PC1394_PHY_PACKET *pPhyPacket,
 OUT ULONG *pResponseTime
);

Parameters
C1394AdapterHandle

A handle identifying to the 1394 stack the adapter through which to transmit the ping request.

Destination
The 16-bit NodeID of the destination node.

pPhyPacket
The phy packet returned by the destination node if the ping was successful. This parameter can
be NULL if the PHY packet is not desired.

pResponseTime
A pointer to a ULONG variable that is filled with the response time from the remote node in
49.152 MHz clock counts. This parameter can be NULL if the response time is not required.

Return Values
If the ping was successful STATUS_1394_SUCCESS is returned otherwise the function returns an
appropriate FireAPI error code.

Page 153

FireAPI User Mode Interface Unibrain

C1394ReadPHYRegister
Performs a remote PHY register access.

STATUS_1394 C1394ReadPHYRegister
(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_PHYSICAL_ID PhysicalID,
 IN UCHAR ReadType,
 IN UCHAR PageSelect,
 IN UCHAR PortSelect,
 IN UCHAR RegisterOffset,
 OUT UCHAR *pData
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to perform the remote PHY
register read.

PhysicalID
The 6-bit physical ID of the destination node that we wish to access.

ReadType
Identifies the type of remote register access. The supported types are Base PHY Register Read
(PHY_EXTENDED_READ_BASE_REGISTER) and Paged PHY Register Read
(PHY_EXTENDED_READ_PAGED_REGISTER).

PageSelect
When doing a Base PHY Register Read this parameter must be zero.
When doing a Paged PHY Register Read this parameter identifies the page number of the
register that is to be read.
This is a 3-bit field in the remote access PHY packet, so its permitted values are 0-7.

PortSelect
When doing a Base PHY Register Read this parameter must be zero.
When doing a Paged PHY Register Read this parameter identifies the port whose paged PHY
registers are going to be accessed.
This is a 4-bit field in the remote access PHY packet, so its permitted values are 0-15.

RegisterOffset.
Identifies the PHY register to access.
This is a 3-bit field in the remote access PHY packet, so its permitted values are 0-7.

pData
Pointer to a UCHAR variable that will receive the byte value of the requested PHY register.

Page 154

FireAPI User Mode Interface Unibrain

Return Values
Value Description

STATUS_1394_SUCCESS
The remote PHY register read was completed successfully and
the variable pointed to by pData is filled with the byte value
read from the remote PHY register.

STATUS_1394_TIMEOUT

The remote access PHY packet was sent but no reply packet
was received within the expected timeout (100msec). This is
the value returned for example when a remote PHY register
read is attempted for a PhysicalID that is not present on the
bus.

STATUS_1394_INVALID_HANDLE C1394AdapterHandle is invalid.

STATUS_1394_INVALID_PARAMETER

Α Base PHY Register Read is requested and PageSelect or
PortSelect are non-zero, or ReadType does not have one of the
supported values, or a Paged PHY Register Read is requested
and PageSelect is larger than 7 or PortSelect larger than 15.

Remarks
The PHY registers are separated into the Base PHY registers, which provide information about the
PHY chip as a whole, and the Paged PHY registers which provide information for each port separately.
Currently there are two pages defined with port information: The Port Status page (0) and the Vendor
Identification page (1).
The structure of the Base PHY registers and the Paged PHY registers is described in chapter 15 of the
IEEE1394b standard. The binary layout of the Base PHY registers is implemented in the
C1394_PHY_BASE_REGISTERS structure.

Register offsets and pages that are not defined by the IEEE1394b standard, read as zero.

Page 155

FireAPI User Mode Interface Unibrain

C1394QueryPhyBaseRegs
Performs a remote PHY base register query.

STATUS_1394 C1394QueryPhyBaseRegs
(
 IN C1394_ADAPTER_HANDLE a_C1394AdapterHandle,
 IN UCHAR a_BaseRegister,
 IN UCHAR a_CheckBitMask,
 IN UCHAR a_CompareValue,
 IN BOOLEAN a_bNonZeroMatch,
 OUT ULONGLONG *a_pMatchingPhyIDsMask
);

Parameters

a_C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to perform the remote PHY
base register query.

a_BaseRegister
The 8-bit register to query.

a_CheckBitMask
Identifies the 8-bit mask to check with the value of the register.

a_CompareValue
A byte value to compare the result of the above check.

a_bNonZeroMatch
If TRUE a_CompareValue becomes optional.

a_pMatchingPhyIDsMask
It is a 64-bit integer representing a mask where each bit corresponds to a single node.

Page 156

FireAPI User Mode Interface Unibrain

Return Values
Value Description

STATUS_1394_SUCCESS
The query was completed successfully and the variable pointed
to by a_pMatchingPhyIDsMask is a bit mask with each bit
representing a single node.

STATUS_1394_INVALID_HANDLE C1394AdapterHandle is invalid.

Remarks
.

Page 157

FireAPI User Mode Interface Unibrain

C1394QueryPhyPagedRegs
Performs a remote PHY paged register query.

STATUS_1394 C1394QueryPhyBaseRegs
(
 IN C1394_ADAPTER_HANDLE a_C1394AdapterHandle,
 IN UCHAR a_PagedRegister,
 IN UCHAR a_CheckBitMask,
 IN UCHAR a_CompareValue,
 IN BOOLEAN a_bNonZeroMatch,
 IN C1394_PORT_STATUS_ENUM a_PortStatus,
 OUT ULONG a_NodesMatchingPortMaskArray[63],
 OUT ULONG a_NodesConnectedPortMaskArray[63]
);

Parameters

a_C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to perform the remote PHY
paged register query.

a_PagedRegister
The 8-bit register to query.

a_CheckBitMask
Identifies the 8-bit mask to check with the value of the register.

a_CompareValue
A byte value to compare the result of the above check.

a_PortStatus
It is an enumerated value that can take these values:

ConnectedOnly
DisconnectedOnly
AllPorts

This is used in determining which ports will be scanned when running the query.

a_NodesMatchingPortMaskArray
It is a fixed-size array of unsigned long values each containing a bit mask signifying the port
number for which the above comparisons are true. See the remarks section for more
information.

a_NodesConnectedPortMaskArray
It is a fixed-size array of unsigned long values each containing a bit mask signifying the port
number that is connected. See the remarks section for more information.

Page 158

FireAPI User Mode Interface Unibrain

Return Values
Value Description

STATUS_1394_SUCCESS
The query was completed successfully and the two arrays
contain the requested masks.

STATUS_1394_SELFID_ERROR A critical error was found in the self ID packets.

STATUS_1394_UNSUCCESSFUL

There are no connected ports to process and
ConnectedOnly was selected or there are no
disconnected ports to process and DisconnectedOnly
was selected for the scan.

STATUS_1394_CRITICAL_ADAPTER_ERROR
Even though AllPorts was selected, no ports to scan
where found. Should never happen.

STATUS_1394_INVALID_HANDLE C1394AdapterHandle is invalid.

Remarks
The user is responsible for the memory allocation and deallocation of the two arrays.

Page 159

FireAPI User Mode Interface Unibrain

C1394TransmitPackets
Submits one or more transaction request/response packets for transmission to the 1394 stack.
The call is executed asynchronously, which means that the function returns immediately as soon as the
packets are passed to the 1394 stack. When the operation is competed, the application is notified
through an event object.

C1394_ASYNCH_HANDLE C1394TransmitPackets(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN PFIREAPI_TRANSACTION *pTransactionArray,
 IN ULONG uNumberOfPackets,
 OUT STATUS_1394 *pStatus1394,
 IN void *Context,
 IN HANDLE hEvent
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which to perform the operation.

pTransactionArray
An array of pointers to FIREAPI_TRANSACTION structures that contain the asynchronous
operations to be submitted to the 1394 stack.

uNumberOfPackets
The number of elements in pTransactionArray.

pStatus1394
A pointer to a variable of type STATUS_1394 that will receive the status code of the operation.

Context
A context value that will be returned to the application by C1394CompleteAsynch when the
asynchronous operation is completed.

hEvent
The handle to a Win32 event object that will be signalled when the operation has been
completed.

Page 160

FireAPI User Mode Interface Unibrain

Return Values
If the packets are successfully submitted to the 1394 stack, then STATUS_1394_PENDING is returned
through pStatus1394 and the return value is a non-NULL handle that identifies the asynchronous
operation.
If the operation is not successful (most usually because of some invalid parameter), then some other
1394 status code is returned through pStatus1394, and the return value of the function provides some
additional information as to where exactly the error originates from. In this case the return value can be
interpreted as shown in the table below:

Return Value Description

(C1394_ASYNCH_HANDLE) 0xFFFF
The error was detected by UB1394.DLL, before even
individually checking out the structures poined to by
pTransactionArray.

(C1394_ASYNCH_HANDLE) 0xFFF0 The error was detected by the UBUMAPI.SYS kernel driver.

(C1394_ASYNCH_HANDLE) 0xFFF1

An unexpected operating-system related error occurred. In the
Windows family of operating systems, calling the Win32
function GetLastError will return the operating system error
code.

Any other value.

When cast to a ULONG it reflects the index in
pTransactionArray of the FIREAPI_TRANSACTION structure
that caused the error. This error was detected in UB1394.DLL,
and the request was not passed to the kernel drivers at all.

Analytically, the possible 1394 status codes that can be returned on the 1st of the above occasions are:

1394 Status returned for
(C1394_ASYNCH_HANDLE) 0xFFFF Description
STATUS_1394_INVALID_HANDLE C1394AdapterHandle of hEvent are invalid.

STATUS_1394_INVALID_PARAMETER
uNumberOfPacket is zero, or the elements of
pTransactionArray are not accessible.

STATUS_1394_NO_MEMORY A required memory allocation failed.

STATUS_1394_INSUFFICIENT_RESOURCES

More than 256 packets were specified in the call. The
1394 stack will not allow more than 256 packets in one
call, in order to prevent uncontrolled operating system
resource consumption.

Only two 1394 error codes might be reported by UBUMAPI.SYS:

1394 Status returned for
(C1394_ASYNCH_HANDLE) 0xFFF0 Description
STATUS_1394_NO_MEMORY A kernel mode memory allocation failed.

STATUS_1394_INVALID_PARAMETER
One of the data buffers specified in the call was not
accessible.

Page 161

FireAPI User Mode Interface Unibrain

When the function returns (C1394_ASYNCH_HANDLE)0xFFF1, the returned 1394 status code is
STATUS_1394_DRIVER_INTERNAL_ERROR. This value should normally never be returned.

When a parameter specified in one of the FIREAPI_TRANSACTION structures is invalid, then the
following 1394 status codes might be returned by the UB1394.DLL:

1394 Status returned for
(C1394_ASYNCH_HANDLE) 0x0 to 0x100 Description

STATUS_1394_INVALID_PARAMETER

• The Nth element of pTransactionArray was an invalid
pointer.

• The transaction code found in the packet header was
invalid.

• The transmission rate was invalid.
• The pointer to the data buffer was invalid.

STATUS_1394_INVALID_REQUEST

• The transaction code found in the packet header
identifies a stream packet.

• The data_length field in the packet header contained
an invalid amount of data for the requested operation.

STATUS_1394_SPEED_LIMITATION
The transmission rate was higher than the adapter’s
maximum transmission rate.

STATUS_1394_SIZE_LIMITATION
The request block size was larger than the maximum
asynchronous payload for the requested transmission rate.

Remarks
C1394TransmitPackets can be used to transmit asynchronous request and response packets. It is
meant for use by high performance 1394 applications, that are able to produce a lot of data for
transmission, and are willing to make multi-packet calls to the 1394 stack, so that the 1394 bus can be
utilized as much as possible.
The 1394 bus is very fast, and when applications do not provide data to the 1394 stack fast enough,
then the bus remains idle, which means that available bandwidth remains unused, although applications
have data ready for transmission.

This is the exact reason why an application would care to use C1394TransmitPackets. This function
not only does it accept multiple packets (so that it can feed the 1394 stack with a lot of data), but it
executes asynchronously. This means that the function returns as soon as the request has been validated
and passed to the kernel mode 1394 drivers. As soon as the function returns the application is free to
prepare new data for transmission, while the 1394 stack still executes the previous request. This way
the application can achieve maximum utilization of the 1394 stack, since it will minimize the amount
of time that the stack does not have data to transmit (although the application has).

There is one important issue that developers should keep in mind. This is related to the transaction
label field (tl) in the 1394 packet header. This field is only six bits wide, so at any moment there is a
maximum of 64 asynchronous request packets that can be sent to a single destination node (without a
response coming back). This means that the 1394 stack will queue the packets and transmit them as
soon as transaction labels become available for a destination node.
This means that feeding the 1394 with more data will not improve performance indefinitely, but instead
it will lengthen the request queue for the destination node. Application developers should experiment
with various settings and then decide which operational settings are effective for their needs.

A call to C1394TransmitPackets is treated by the API as an single operation. The 1394 stack will set
the event object identified by the hEvent handle, in order to notify the application that such an
operation is complete when:
• The transmission of all response packets that were found in the pTransactionArray has been

completed.
• The transmission of all request packets that were found in the pTransactionArray has been

completed, and the response packets for these requests have been received.

Page 162

FireAPI User Mode Interface Unibrain

Conceptually C1394TransmitPackets can be considered as a function that scans pTransactionArray
and for each transaction response packet it calls C1394SendResponse and for each transaction request
packet it calls on of C1394WriteNode, C1394ReadNode or C1394LockNode. When the last item in
the array has been processed then the whole operation is considered complete.

The difference between the conceptual model described above and the actual implementation is that:
• The whole task is performed asynchronously by the 1394 drivers, while the application can

perform other operations.
• Each transaction request/response is also processed asynchronously by the 1394 stack, which

means that after the 1394 stack transmits a request packet it does not wait for its response packet to
arrive before proceeding to the next request packet.

It is obvious from the above that upon completion of the operation the application should check each
FIREAPI_TRANSACTION structure to find out the outcome of each transaction request. The semantics
that apply to the 1394 status, the acknowledge code and the response code associated with each
FIREAPI_TRANSACTION structure are the same as the one that applies to functions C1394WriteNode,
C1394ReadNode and C1394LockNode respectively.

For transaction response packets the application should only check the 1394 status to verify that the
transmission was carried out successfully.

The most usual reasons why a packet transmission might fail are bad/invalid parameters or a 1394 bus
reset. Applications should always check the outcome of transmit operations.

An application is notified about the completion of a multi-packet transmit operation, through the event
object identified by the hEvent parameter. When this event is set to the signalled state, the application
should call the C1394CompleteAsynch function with the C1394_ASYNCH_HANDLE returned by the
call to C1394TransmitPackets. This is the same procedure that is followed for the other asynchronous
functions as weel, and is necessary for 1394-stack internal housekeeping. C1394CompleteAsynch will
return the context value that has been associated by the application with the operation. This can be
helpful for applications in order to easily maintain separate context information for each operation.

Page 163

FireAPI User Mode Interface Unibrain

FIREAPI_TRANSACTION
The FIREAPI_TRANSACTION structure is defined as shown below (only the fields that are relevant to
applications are shown):
typedef struct
{
 // <USED EXCLUSIVELY BY THE APPLICATION>
 // This array can be used by applications to store extra context information.
 void *Context[4];

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // The packet header.
 IN C1394_PACKET_HEADER PacketHeader;

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // The buffer for the operation.
 /*
 WRITE REQUESTS & ALL RESPONSES
 If PacketHeader.data_length is less than or equal to 24, then the data
 to be sent are read from the 'Bytes' array.
 If PacketHeader.data_length is greater than 24 bytes, then the data
 buffer should be pointed to by the 'pDataBytes' field.

 READ REQUESTS
 If PacketHeader.data_length is less than or equal to 24, then the data returned
 in the read response is copied into the 'Bytes' array.
 If PacketHeader.data_length is greater than 24 bytes, then the data
 buffer should be pointed to by the 'pDataBytes' field.

 LOCK REQUESTS
 The 'Lock' field is used for the parameters of the lock-function .
 In this case the fields are treated in an endianess-neutral manner as in
 C1394LockNode: If running on a little endian processor, these values will
 be byte-swapped by the 1394 stack.
 In cases of 32 bit locks, the ULONGLONG fields are casted to/from ULONG values.
 The 1394 stack will understand if a 32-bit or 64-bit lock is requested, by checking
 the combination of data_length and ExtendedTCode in PacketHeader.
 */
 union
 {
 UCHAR Bytes[24];
 void *pBytes;

 struct
 {
 ULONGLONG UArgValue;
 ULONGLONG UDataValue;
 ULONGLONG UOldValue;
 }
 Lock;
 }
 Buffer;
 // <FILLED BY THE APPLICATION *ONLY* FOR RESPONSE PACKETS>
 // <USED BY THE 1394 STACK>
 // Ignored for transaction request packets.
 // It should be equal to the uBusResetCount value of the C1394_PACKET
 // to which this packet responds to.
 IN ULONG uBusResetCount;

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // The speed at which this packet will be transmitted.
 IN C1394_SPEED_CODE TransmissionSpeed;

 // <FILLED BY THE 1394 STACK >
 // <USED BY THE APPLICATION>
 // The request completion status.
 OUT STATUS_1394 Status1394;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE APPLICATION>
 // The acknowledge code returned when the packet was transmitted.
 OUT C1394_ACK_CODE AcknowledgeCode;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE APPLICATION>
 // The response code. This field is only filled in by the 1394 stack if
 // the packet is a transaction request and a response packet was received for it.
 OUT C1394_RESPONSE_CODE ResponseCode;
}
FIREAPI_TRANSACTION, *PFIREAPI_TRANSACTION;

Page 164

FireAPI User Mode Interface Unibrain

As stated earlier, the values returned for transaction request packets in the Status1394,
AcknowledgeCode and ResponseCode fields are the same as those returned through the pStatus1394,
pAcknowledgeCode and pResponseCode parameters of C1394WriteNode, C1394ReadNode and
C1394LockNode respectively, depending on the type of the request.
For response packets the Status1394 field indicates whether the response packet was transmitted
successfully or not.

When sending a lock transaction request, the old-value of the register is returned in the UOldValue
field. If it is a 32-bit value, then it is cast to the ULONGLONG type. The 1394 stack simplifies things for
the application by doing the appropriate endianess conversions so that the application can always
access the fields of the Lock structure in the native endianess of the CPU it is running on.
When sending a lock response packet, the application should use the Bytes field to store the 4 or 8
bytes of value to be returned in the response. In this case the value should be stored in big endian
format.
Please refer to the comments section of C1394LockNode for additional information one the use of lock
functions, and also some code fragments that demonstrate the issues that also affect
C1394TransmitPackets.

With regards to response packets it should be noted here that if C1394TransmitPackets is used to send
an unsolicited response packet (send a response for which the application has not received a request
packet), then this response packet will not be transmitted by the class driver, but it will be rejected with
the status code STATUS_1394_UNSOLICITED_RESPONSE.
If an application deliberately wants to send an unsolicited response packet, then it should use the
provided structures to construct the complete packet and send it with C1394TransmitRaw. See the
remarks section of C1394TransmitRaw for more information on this issue.

See the section that contains the description of the C1394_PACKET_HEADER structure for
information on the necessary fields/values for the various types of transactions.
In general it is suggested that an application fills the C1394_PACKET_HEADER structure with zeros
before proceeding to store other information in it. Thus even if the application forgets to set some
required field to zero, that will have been done implicitly.

C1394TransmitPackets is the only function that can perform a broadcast transmission at a speed
higher than the ‘official’ broadcast speed. This is defined by the class driver as the speed of the slowest
device on the bus, and is returned by C1394GetMaxSpeedToNode if the node ID passed as parameter
has its physical ID equal to 63.
This is done because 1394 boards cannot receive nor repeat a transmission at a rate higher than their
maximum capability, so transmitting a broadcast at a speed higher than that of the slowest device will
result in some nodes missing the broadcast. The nodes that will miss the packet depend on the actual
bus topology.
However there might be applications where the topology is well known, or the slower devices are
known to be leaves and/or they are not intended to receive the broadcast. In this case an application can
transmit a broadcast packet at a higher speed. By transmitting at a higher speed the application is
capable of transmitting more bytes in a single broadcast packet.

See Also
C1394CompleteAsynch, C1394ReadNodeAsynch, C1394WriteNodeAsynch,
C1394LockNodeAsynch, C1394ReadNode, C1394WriteNode, C1394LockNode,
C1394_PACKET_HEADER

Page 165

FireAPI User Mode Interface Unibrain

C1394AcknowledgeBusReset
Updates the internally maintained bus reset count that the 1394 stack associates with each adapter an
application opens.

void C1394AcknowledgeBusReset(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which to perform the operation.

Remarks
The first time ever this function is called for an adapter it enables the behaviour implemented in
FireAPI 1.4 and later with regards to bus resets and asynchronous transaction requests, by making the
update of the adapter’s bus reset count manual.

See Also

Page 166

FireAPI User Mode Interface Unibrain

C1394CompleteAsynch
Completes the processing of an asynchronous API operation, that was initiated with a call to
C1394ReadNodeAsynch, C1394WriteNodeAsynch, C1394LockNodeAsynch or
C1394TransmitPackets.

void *C1394CompleteAsynch(C1394_ASYNCH_HANDLE AsynchHandle);

Parameters

AsynchHandle
A handle that identifies an asynchronous API operation, that was returned by a previous call to
one of C1394ReadNodeAsynch, C1394WriteNodeAsynch, C1394LockNodeAsynch or
C1394TransmitPackets.

Return Values
The return value is the context value that the application had specified in the AsynchContext parameter
in the call to one of the asynchronous functions. If AsynchHandle is invalid then the return value is
NULL.

Remarks
After the event object associated with an asynchronous API operation has been signalled the
application should call C1394CompleteAsynch in order to conclude with the processing of the
operation and and also perform some housekeeping internal to the 1394 stack.
After this function has returned the application can proceed to check the results of the operation.

See Also
C1394ReadNodeAsynch, C1394WriteNodeAsynch, C1394LockNodeAsynch,
C1394TransmitPackets

Page 167

FireAPI User Mode Interface Unibrain

Incoming Asynchronous Transactions

Page 168

FireAPI User Mode Interface Unibrain

C1394MapAddressRange
Creates a new address range and maps it to an adapter or maps an already existing address range to a
new adapter.

STATUS_1394 C1394MapAddressRange(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN OUT PC1394_RANGE_HANDLE pC1394RangeHandle,
 OUT HANDLE *pStartRequestProcessingEvent,
 IN PC1394_ADDRESS_RANGE_CHARACTERISTICS pAddressRangeChars
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which to map the address range.

pC1394RangeHandle
A pointer to a variable of type C1394_RANGE_HANDLE that holds or will receive a handle
that will identify the address range mapping on the adapter. If the destination variable contains
the NULL handle value, then the class driver creates a new address range, maps it on the
adapter and returns the newly created range handle to the variable pointed to by
pC1394RangeHandle.

pStartRequestProcessingEvent
Pointer to a handle variable that will receive the handle of an event that is signaled when the
first packet for this address range arrives.

pAddressRangeChars
A pointer to a structure of type C1394_ADDRESS_RANGE_CHARACTERISTICS that contains
information on the address range. If the handle pointed to by pC1394RangeHandle is not
NULL, then this structure should contain the same address range size as the size that was
specified when the address range was first created.

Return Values

Value Description
STATUS_1394_SUCCESS The mapping was successfully created.

STATUS_1394_INVALID_HANDLE
C1394AdapterHandle is invalid or ClassDriverHandle is
invalid, or the contents of pC1394RangeHandle are
invalid

STATUS_1394_CONFLICT
A mapping already exists that overlaps in the 1394
address space with the requested mapping.

STATUS_1394_NO_MEMORY A required memory allocation failed.

STATUS_1394_INVALID_PARAMETER
A pointer is invalid or one of the values specified in the
C1394_ADDRESS_RANGE_CHARACTERISTICS
structure are invalid

Page 169

FireAPI User Mode Interface Unibrain

Remarks
When first creating an address range, don’t forget to set to NULL the contents of the variable pointed
to by pC1394RangeHandle, otherwise the function will fail.

The C1394_ADDRESS_RANGE_CHARACTERISTICS characteristics structure is defined as shown
below:

typedef struct
{
 //
 // The base address where the address range is to be mapped.
 // Can be different for different mappings.
 // The combination of BaseAddress and uLength must not span the
 // upper space OHCI boundary (UPPER_OHCI_SPACE_BASE = 0xFFFF00000000),
 // nor the CSR space base (CSR_SPACE_BASE = 0xFFFFF0000000).
 // Obviously BaseAddress+uLength must be less or equal to 0xFFFFFFFFFFFF.
 //
 C1394_OFFSET BaseAddress;

 //
 // The address range length in bytes. Minimum value is 4.
 // The length must be the same in all mappings.
 //
 ULONG uLength;

 //
 // Pointer to the buffer that backs the address range.
 // This can only be non-NULL when the address range is created.
 // If it is NULL in that occasion too, then the fClientTransactions
 // is ignored and all transactions that pass the access rights test
 // are returned to the application through C1394GetNextRequest.
 //
 PVOID pAddressRangeMemory;

 //
 // Access Rights.
 // A binary OR of some of the ACCESS_xxx flags defined above.
 // The access rights can be different for different mappings.
 // When an additional mapping is created zero specifies access rights
 // that were specified when the range was created.
 //
 ULONG fAccessRights;

 //
 // Client Transaction Flags.
 // They describe which requests should be returned to the application
 // through C1394GetNextRequest, instead of being handled automatically
 // by the 1394 stack.
 // These flags are only specified when the address range is created.
 // Additional mappings should specify zero.
 //
 ULONG fClientTransactions;

 //
 // The maximum request queue length.
 // This is only taken into account when the range is created.
 //
 ULONG uMaxRequestQueueItems;

 //
 // The context value that will be stored inside the miniport packet
 // so that the client can find out from which mapping the request
 // came in.
 // This is usually different for each mapping.
 //
 CLIENT_MAPPING_HANDLE ClientMappingHandle;
}
C1

394_ADDRESS_RANGE_CHARACTERISTICS, *PC1394_ADDRESS_RANGE_CHARACTERISTICS;

Page 170

FireAPI User Mode Interface Unibrain

The rules governing the type of access that is required to the memory pointed by
pAddressRangeMemory are as follows:
• If only block read and/or quadlet read transactions are allowed on the range, then the memory

pointed to by pAddressRangeMemory and for a length of uLength is checked for read access.
• If write or lock transactions are allowed, then the memory is checked for write access.

Upon successful return, pStartRequestProcessingEvent points to an auto-reset event that is used to
notify the application each time that a new packet has arrived. The application should then repeatedly
call C1394GetNextRequest to retrieve packets, until the function returns NULL. Note that this event is
set only upon the first incoming request, so if the application waits on it again before
C1394GetNextRequest has returned NULL, then the wait operation will either timeout or last
forever47.
This event object is created by C1394OpenAdapter and deleted by C1394CloseAdapter, so the
application should not call the Win32 function CloseHandle with its handle, unless it has called the
Win32 function DuplicateHandle first. Otherwise it will not be able to receive a notification about
received request packets.

The value of the uMaxRequestQueueItems member is not used as a hard limit due to performance
considerations. Under various circumstances this limit might be slightly exceeded, but this should not
affect any application since this is intended only to prevent excessive memory usage in case some
application is slow or something else goes wrong inside the class driver.

The possible values for fAccessRights can be a binary OR of the following constants:

Access Flag Description
ACCESS_QUADLET_READ Allows a quadlet read transaction request.

ACCESS_BLOCK_READ Allows a block read transaction request.

ACCESS_QUADLET_WRITE Allows a quadlet write transaction request.

ACCESS_BLOCK_WRITE Allows a block write transaction request.

ACCESS_QUADLET_LOCK Allows a lock transaction request with arg_size equal to 4.

ACCESS_OCTLET_LOCK Allows a lock transaction request with arg_size equal to 8.

ACCESS_READ_REQUESTS Binary OR of ACCESS_QUADLET_READ and ACCESS_BLOCK_READ.

ACCESS_WRITE_REQUESTS Binary OR of ACCESS_QUADLET_WRITE and ACCESS_BLOCK_WRITE.

ACCESS_LOCK_REQUESTS Binary OR of ACCESS_QUADLET_LOCK and ACCESS_OCTLET_LOCK.

ACCESS_ALL_REQUESTS
Binary OR of ACCESS_READ_REQUESTS and
ACCESS_WRITE_REQUESTS and ACCESS_LOCK_REQUESTS.

ACCESS_OLD_UNIFIED_WRITES
Allows the delivery of a write request that was immediately
acknowledged with ack_complete (unified transaction), even if
that packet was received before the last bus reset.

ACCESS_BROADCAST

Allows broadcast requests to be delivered to the mapping. By
default broadcast requests are not delivered to a mapping.
This flag can only be specified if one or both of
ACCESS_QUADLET_WRITE and ACCESS_BLOCK_WRITE are also
specified.

ACCESS_BROADCAST_LOOPBACK

Allows loopbacked broadcast requests to be delivered to the
mapping. By default loopbacked broadcast requests are not
delivered to a mapping (see note below).
This flag can only be specified if ACCESS_BROADCAST is also
specified.

47 Depending on the timeout value specified in the call to the Win32 functions WaitForSingleObject
or WaitForMultipleObjects (or any other wrapper to these functions).

Page 171

FireAPI User Mode Interface Unibrain

NOTE
In FireAPI broadcast transmissions are automatically loopbacked by the 1394 stack. This means that
the node that is sending a broadcast packet will also receive this packet.
Often applications use broadcasts to locate or identify themselves to their peers. However it is often the
case that the peer application can be running on the same node.

Broadcast loopback can be controlled on a per address range basis. The default access rights of an
address range do not allow it to accept loopbacked broadcasts. Applications must specify the
ACCESS_BROADCAST_LOOPBACK flag in order to be able to receive loopbacked broadcasts.

The possible values for fClientTransactions can be a binary OR of the following constants:

Flag Description
CLIENT_QUADLET_READ Passes quadlet read transaction requests.

CLIENT_BLOCK_READ Passes block read transaction requests.

CLIENT_QUADLET_WRITE Passes quadlet write transaction requests.

CLIENT_BLOCK_WRITE Passes block write transaction requests.

CLIENT_QUADLET_LOCK Passes a lock transaction request with arg_size equal to 4.

CLIENT_OCTLET_LOCK Passes a lock transaction request with arg_size equal to 8.

CLIENT_READ_REQUESTS Binary OR of CLIENT_QUADLET_READ and CLIENT_BLOCK_READ.

CLIENT_WRITE_REQUESTS Binary OR of CLIENT_QUADLET_WRITE and CLIENT_BLOCK_WRITE.

CLIENT_LOCK_REQUESTS Binary OR of CLIENT_QUADLET_LOCK and CLIENT_OCTLET_LOCK.

CLIENT_ALL_REQUESTS
Binary OR of CLIENT_READ_REQUESTS and
CLIENT_WRITE_REQUESTS and CLIENT_LOCK_REQUESTS.

See Also
C1394UnmapAddressRange

Page 172

FireAPI User Mode Interface Unibrain

C1394UnmapAddressRange
Removes an address range mapping from an adapter, and if that was the last mapping for the address
range, also destroys the address range.

void C1394UnmapAddressRange(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_RANGE_HANDLE C1394RangeHandle,
 IN C1394_OFFSET BaseOffset
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which the specified mapping is active.

C1394RangeHandle
A handle identifying to the class driver an address range.

BaseOffset
A base offset to which the address range is mapped.

Remarks
There are some serious issues to be taken care of by the class driver when removing an address range.
First of all the application should not have any pending transaction requests that belong to the mapping,
because these requests hold a reference on the mapping object.

If an application unmaps an address range while it holds pending transaction requests then the class
driver makes the address range mapping inactive but does not remove it until the application has
completed the requests.

See Also
C1394MapAddressRange

Page 173

FireAPI User Mode Interface Unibrain

C1394GetNextRequest
Pops the next application-handled request packet from an address range’s request queue.

PC1394_PACKET C1394GetNextRequest(

IN C1394_RANGE_HANDLE C1394RangeHandle
);

Parameters

C1394RangeHandle
A handle identifying to the class driver the address range whose queue should be checked.

Return Values
If the queue is empty or does not contain any items that the application should handle, the return value
is NULL. Otherwise the first application-handled packet is removed and a pointer to it is returned.

Remarks
If the request is found on top of the queue that should be automatically handled by the class driver, this
is done and then the next request in the queue is checked, until either the queue empties or a
application -handled request is found.

It is important to note that this function will not return a packet that was queued before the last bus
reset. The uBusResetCount field is compared against the value returned by C1394GetBusResetCount
and will immediately complete a request packet that does not match the current bus reset count.
The only exception to this rule can be for write requests that have already been acknowledged with
ack_complete. If the application specified the ACCESS_OLD_UNIFIED_WRITES flag when creating
the mapping. In that case such packet are delivered regardless of their bus reset count. This might be
useful in applications where the information found inside the packet is bus-reset independent and it is
enough for the receiving node to correctly process the packet.

The C1394_PACKET structure is defined as follows:
typedef struct
{
 // The translated packet header.
 C1394_PACKET_HEADER PacketHeader;

 // The class adapter handle.
 C1394_ADAPTER_HANDLE ClassAdapterHandle;

 // The client mapping handle, that identifies the mapping
 // through which the packet was received.
 CLIENT_MAPPING_HANDLE ClientMappingHandle;

 // The Bus Reset Count at the time the packet was received.
 ULONG uBusResetCount;

 // The amount of data in the whole packet.
 ULONG uByteCount;

 // The acknowledge code of the packet.
 C1394_ACK_CODE AcknowledgeCode;

 // The total size of the packet buffer in bytes.
 // VALID: INCOMING & OUTGOING packets.
 ULONG uPacketBufferSize;

 // The buffer that contains the packet.
 // This contains both the header and payload.
 // VALID: INCOMING & OUTGOING packets.
 UCHAR *PacketBuffer;
}
C1394_PACKET, *PC1394_PACKET;

Page 174

FireAPI User Mode Interface Unibrain

The C1394_NODE_ID structure is defined as follows:

typedef union
{
 USHORT Value;

 struct
 {
 USHORT PhysicalID:6;
 USHORT BusID:10;
 };
}
C1394_NODE_ID, *PC1394_NODE_ID;

The C1394_TIMESTAMP structure is defined as follows:

typedef union
{
 unsigned short Value;

 struct
 {
 unsigned short Counts:13;
 unsigned short Seconds:3;
 };
}
C1394_TIMESTAMP, *PC1394_TIMESTAMP;

The C1394_OFFSET data type is a 64-bit unsigned integer type. In Windows NT this is typedefed as
ULONGLONG, so that 64-bit integer arithmetic can be used to conviently perform any kind of
operations with 1394 address space offsets.

See Also
C1394ServiceTransactionRequest, C1394CompletePackets

Page 175

FireAPI User Mode Interface Unibrain

C1394SendErrorResponse
Generates and transmits a response packet for a transaction request with a given error response code.

void C1394SendErrorResponse(

IN PC1394_PACKET pPacket,
IN C1394_RESPONSE_CODE ResponseCode

);

Parameters

pPacket
The transaction request packet for which to send a response. This is used so that the class driver
can find out information necessary to create the response, like the destination node, transaction
label etc.

ResponseCode
The response code to put in the response packet.

Remarks
This function calls C1394SendResponse with a NULL data buffer and a data byte count of 0.
The C1394_PACKET structure contains the adapter handle from which the packet was received, and
C1394SendResponse uses it to send the response packet.

See Also
C1394SendResponse

Page 176

FireAPI User Mode Interface Unibrain

C1394SendResponse
Generates and transmits a response packet for a transaction request with a given response code and data
buffer for the response data.

void C1394SendResponse(

IN PC1394_PACKET pPacket,
IN C1394_RESPONSE_CODE ResponseCode,
IN void *pResponseDataBuffer,

 IN ULONG uResponseDataBytes
);

Parameters

pPacket
The transaction request packet for which to send a response. This is used so that the class driver
can find out information necessary to create the response, like the destination node, transaction
label etc.

ResponseCode
The response code to put in the response packet.

pResponseDataBuffer
A pointer to a buffer containing uResponseDataBytes number of bytes that will be put in the
response packet. If uResponseDataBytes is zero, then this parameter can be NULL.

uResponseDataBytes
The number of bytes that will be put in the data payload of the response packet.

Remarks
This function will also complete the packet pointed to by pPacket, by calling C1394CompletePacket,
after it has prepared the appropriate response packet.

The memory pointed to by pResponseDataBuffer is available as soon as this function returns.

See Also
C1394SendErrorResponse

Page 177

FireAPI User Mode Interface Unibrain

C1394ServiceTransactionRequest
Performs on address range memory the actions that are necessary for this request and produces and
transmits the appropriate response packet. This function can only be called for address ranges whose
backing memory is non-NULL (when the address range was created the pAddressRangeMemory field
of the C1394_ADDRESS_RANGE_CHARACTERISTICS structure was not NULL).

void C1394ServiceTransactionRequest(
 IN PC1394_PACKET pPacket
);

Parameters

pPacket
A pointer to a C1394_ PACKET structure that should be serviced by the class driver.

Remarks
C1394ServiceTransactionRequest will do any necessary updates to the address range memory, and
then it will generate and transmit a response packet. It will also complete the received packet by calling
C1394CompletePacket.

See Also
C1394MapAddressRange

Page 178

FireAPI User Mode Interface Unibrain

C1394CompletePacket
Completes the processing of a received packet, and frees any associated resources allocated by the
1394-stack.

void C1394CompletePacket(IN PC1394_PACKET pPacket);

Parameters

pPacket
The received packet whose processing has been completed.

C1394CompletePackets
Completes the processing of one or more received packets, and frees any associated resources allocated
by the 1394-stack.

void C1394CompletePackets(

IN PC1394_PACKET *pPacketArray,
IN ULONG uPacketsCompleted

);

Parameters

pPacketArray
An array of pointers to received packets for which processing has been completed.

uPacketsCompleted
The number of miniport packet pointers in pPacketArray.

Remarks
After calling this function, the caller should not use the packet pointers again.

C1394CompletePacket is actually a function that calls C1394CompletePackets with the
uPacketsCompleted parameter set to 1. This was made as a function instead of a macro because it had
to be exported from UB1394.DLL and be available to languages other than C/C++.
However FireAPI.h defined the C1394CompletePacket_ macro as a call to C1394CompletePackets
so C/C++ programmers can use this instead of the C1394CompletePacket function.

See Also
C1394GetNextRequest, C1394SendResponse

Page 179

FireAPI User Mode Interface Unibrain

Device Handle Functions

Page 180

FireAPI User Mode Interface Unibrain

C1394OpenDevice
Opens a handle to one of the 1394 devices on the local bus.

STATUS_1394 C1394OpenDevice(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_GUID *pC1394Guid,
 OUT DEVICE_HANDLE *pDeviceHandle
);

Parameters

C1394AdapterHandle
A handle that identifies the 1394 stack the adapter on which to try and open the device handle.
Basically it identifies the 1394 bus where the device is physically located. All read and write
asynchronous transactions to the device will be sent through this adapter.

pC1394Guid
A pointer to a C1394_GUID variable containing the GUID of the device the caller wants to
open.

pDeviceHandle
A pointer to a DEVICE_HANDLE variable that will receive the handle to the device if the
function call completes successfully.

Return Values

Value Description
STATUS_1394_SUCCESS The operation was completed successfully.

STATUS_1394_DEVICE_NOT_FOUND There is no device with the specified GUID on the local network.

STATUS_1394_NO_MEMORY A required memory allocation failed.
STATUS_1394_INVALID_HANDLE
STATUS_1394_INVALID_PARAMETER At least one of the provided parameters is invalid.

STATUS_1394_DRIVER_INTERNAL_ERROR
This should not happen unless there is a problem or bug in the
Class Driver

Remarks
If more than one 1394 adapters are installed in the computer and each one of them is connected to a
different 1394 bus then the C1394AdapterHandle parameter provided to this function identifies the
1394 bus where the device of interest is located.
If the 1394 adapters are connected to the same local bus, then any of the adapter handles can be used to
open the device. All asynchronous traffic to the device will be routed through the adapter that was
selected.

Additionally, the Class Driver will not automatically relocate the device handle to a different adapter in
case the single 1394 bus is partiotioned by disconnecting some of the cables.
For example, assume there are two 1394 adapters, adapter A and adapter B, connected directly to each
other, and two cameras, C connected to adapter A and D connected to adapter B. We open a device
handle to camera D from adapter A. If we break the single 1394 bus by disconnecting adapter A from
B, then camera D is not accessible from A, but it is accessible from B. The Class Driver will not
perform an automatic relocation of the device handle from adapter A to adapter B.

See Also
C1394CloseDevice

Page 181

FireAPI User Mode Interface Unibrain

C1394CloseDevice
Closes a handle to a previously opened device.

void C1394CloseDevice(
 IN DEVICE_HANDLE DeviceHandle,
);

Parameters

DeviceHandle
A variable of type DEVICE_HANDLE containing the handle to be closed.

Remarks
C1394CloseDevice closes the device handle and releases any internally allocated resources. Passing an
invalid value for DeviceHandle will not crash the application.

See Also
C1394OpenDevice

Page 182

FireAPI User Mode Interface Unibrain

C1394ReadDevice
Sends a read transaction request to the specified device at the specified offset. The operation is
performed synchronously, which means that when the function returns the 1394 transaction has been
completed.

STATUS_1394 C1394ReadDevice(
 IN DEVICE_HANDLE DeviceHandle,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters

DeviceHandle
A handle identifying to the 1394 stack the device to read data from.

Offset
The 48-bit target offset for the read request.

uNumberOfBytes
The number of bytes to read.

Buffer
A buffer containing at least uNumberOfBytes writable bytes of memory that will receive the
data in the read response.

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Page 183

FireAPI User Mode Interface Unibrain

Return Values
The possible return values are listed below:

Value Description

STATUS_1394_SUCCESS

The transaction was completed successfully. This means that
the request transmission was acknowledged with ack_pending
and a response packet was received that contained the
resp_complete response code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which
indicated that the transaction did not complete successfully. If
the pAcknowledgeCode pointer is provided then ack_complete
is returned through it, and if the pResponseCode pointer is
provided the error response code found in the response packet
is returned through it.

STATUS_1394_INVALID_HANDLE
The handle specified by C1394AdapterHandle is invalid. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_INVALID_OFFSET

The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset). No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_PARAMETER

A parameter is invalid (invalid data buffer, or
acknowledge/response code pointers). No information is
returned through the pAcknowledgeCode and pResponseCode
pointers.

STATUS_1394_DRIVER_INTERNAL_ERROR

This error generally indicates some sort of serious problem
with the 1394 stack (unstable situation, internal bug etc), and
should normally never be returned.
If this error ever appears, then first make sure that the UB
drivers that you have installed are the correct version, before
checking for any other problem.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending
was returned but no response was received within the split
transaction timeout. If the pAcknowledgeCode pointer is
provided then ack_pending is returned through it. No
information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no
acknowledge was returned, so the miniport indicated the
ack_missing acknowledge code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_DEVICE_NOT_FOUND The specified device does not exist on the local bus anymore.

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry
protocol was executed. If the pAcknowledgeCode pointer is
provided then one of the ack_busy_X, ack_busy_A or
ack_busy_B acknowledge codes is returned through it. No
response code information will be returned.

Page 184

FireAPI User Mode Interface Unibrain

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some
acknowledge other than ack_complete, ack_none,
ack_pending, ack_busy_(XAB) and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function
will return the acknowledge code that has been received
through this pointer. No response code information will be
returned.

STATUS_1394_SPEED_LIMITATION

The size of the read request is too big for the response packet
to be received by the adapter at its maximum speed. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_SIZE_LIMITATION

The size of the read request is too big for the response to be
transmitted on the path from the destination node to the local
node. No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_REQUEST
A broadcast read was requested. Only write transactions can be
broadcasted.

Other

The transmission of the transaction request packet was not
completed successfully due to some error on the miniport
(hardware error, bus reset etc). The status returned is the same
status that the miniport returned. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Remarks
If the uNumberOfBytes parameter equals 4, and the destination offset is quadlet aligned, then a quadlet
read transaction is performed. Otherwise a block read transaction is performed.

Note that it is perfectly legal to transmit a read request of zero bytes. Some applications use such
requests and their response codes as a means of communicating commands and state information.

See Also
C1394ReadNode, C1394WriteDevice

Page 185

FireAPI User Mode Interface Unibrain

C1394WriteDevice
Sends a write transaction request to the specified device at the specified offset. The operation is
performed synchronously, which means that when the function returns the 1394 transaction has been
completed.

STATUS_1394 C1394WriteDevice(
 IN DEVICE_HANDLE DeviceHandle,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters

DeviceHandle
A handle identifying to the 1394 stack the device to write data to.

Offset
The 48-bit target offset for the write request.

uNumberOfBytes
The number of bytes to write.

Buffer
A buffer containing uNumberOfBytes bytes of data that will be written to the Destination at
Offset. If the uNumberOfBytes parameter is zero, then this pointer can be NULL.

pAcknowledgeCode
An optional pointer to a variable that will receive the acknowledge code that was returned when
the transaction request packet was transmitted. The acknowledge code is only returned if the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

pResponseCode
An optional pointer to a variable that will receive the response code contained in the response
packet. The response code is only returned if a response packet was received and the
transaction did not complete successfully. This pointer can be NULL if the caller is not
interested in this information.

Page 186

FireAPI User Mode Interface Unibrain

Return Values
The possible return values are listed below:

Value Description

STATUS_1394_SUCCESS

The transaction was completed successfully. This means that
the request transmission was acknowledged with ack_pending
and a response packet was received that contained the
resp_complete response code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_TRANSACTION_FAILED

The transmission of the transaction request was completed
successfully, and a response packet was received which
indicated that the transaction did not complete successfully. If
the pAcknowledgeCode pointer is provided then ack_complete
is returned through it, and if the pResponseCode pointer is
provided the error response code found in the response packet
is returned through it.

STATUS_1394_INVALID_HANDLE
The handle specified by C1394AdapterHandle is invalid. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_INVALID_OFFSET

The 1394 address space offset specified or the offset +
argument size are invalid (greater than the highest 48-bit
offset). No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_PARAMETER

A parameter is invalid (invalid data buffer, or
acknowledge/response code pointers). No information is
returned through the pAcknowledgeCode and pResponseCode
pointers.

STATUS_1394_DRIVER_INTERNAL_ERROR

This error generally indicates some sort of serious problem
with the 1394 stack (unstable situation, internal bug etc), and
should normally never be returned.
If this error ever appears, then first make sure that the UB
drivers that you have installed are the correct version, before
checking for any other problem.

STATUS_1394_TIMEOUT

The transmission was completed successfully, ack_pending
was returned but no response was received within the split
transaction timeout. If the pAcknowledgeCode pointer is
provided then ack_pending is returned through it. No
information is returned through the pResponseCode pointer.

STATUS_1394_NOT_FOUND

The transmission was completed successfully, but no
acknowledge was returned, so the miniport indicated the
ack_missing acknowledge code. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_DEVICE_NOT_FOUND The specified device does not exist on the local bus anymore.

STATUS_1394_DEVICE_BUSY

The transmission was completed successfully, but a busy
acknowledge code was returned even after the specified retry
protocol was executed. If the pAcknowledgeCode pointer is
provided then one of the ack_busy_X, ack_busy_A or
ack_busy_B acknowledge codes is returned through it. No
response code information will be returned.

Page 187

FireAPI User Mode Interface Unibrain

STATUS_1394_UNSUCCESSFUL

The transmission was completed successfully, but some
acknowledge other than ack_complete, ack_none,
ack_pending, ack_busy_(XAB) and ack_missing was indicated.
If the pAcknowledgeCode pointer is provided then the function
will return the acknowledge code that has been received
through this pointer. No response code information will be
returned.

STATUS_1394_SPEED_LIMITATION

The size of the read request is too big for the response packet
to be received by the adapter at its maximum speed. No
information is returned through the pAcknowledgeCode and
pResponseCode pointers.

STATUS_1394_SIZE_LIMITATION

The size of the read request is too big for the response to be
transmitted on the path from the destination node to the local
node. No information is returned through the
pAcknowledgeCode and pResponseCode pointers.

STATUS_1394_INVALID_REQUEST
A broadcast read was requested. Only write transactions can be
broadcasted.

Other

The transmission of the transaction request packet was not
completed successfully due to some error on the miniport
(hardware error, bus reset etc). The status returned is the same
status that the miniport returned. No information is returned
through the pAcknowledgeCode and pResponseCode pointers.

Remarks
If the uNumberOfBytes parameter equals 4, and the destination offset is quadlet aligned, then a quadlet
write transaction is performed. Otherwise a block write transaction is performed.

Note that it is perfectly legal to transmit a write request of zero bytes. Some applications use such
requests and their response codes as a means of communicating commands and state information.

The request packet is transmitted at the speed returned by C1394GetMaxSpeedToNode for the
specified destination. If a broadcast packet is being sent, then the transmission speed used is the
broadcast speed, which is defined as the speed of the slowest device on the bus. If a broadcast
transmission at a higher speed is required, then the function C1394TransmitPackets should be used.
See the remarks section of that function for more information on the related issues.

See Also
C1394WriteNode, C1394ReadDevice

Page 188

FireAPI User Mode Interface Unibrain

C1394GetDeviceNodeId
Returns the current NodeID of a device.

STATUS_1394 C1394GetDeviceNodeId(
 IN DEVICE_HANDLE DeviceHandle,
 OUT C1394_NODE_ID *pDeviceNodeId
);

Parameters

DeviceHandle
A handle identifying the destination device to the 1394 stack.

pDeviceNodeId
A pointer to a C1394_NODE_ID variable that will receive the current NodeID of the device.

Return Values

Value Description
STATUS_1394_SUCCESS The operation was completed successfully.

STATUS_1394_DEVICE_NOT_FOUND There is no device with the specified GUID on the local network.

STATUS_1394_INVALID_HANDLE At least one of the provided parameters are invalid.

STATUS_1394_DRIVER_INTERNAL_ERROR
This should not happen unless there is a problem or bug in the
class Driver

See Also
C1394OpenDevice

Page 189

FireAPI User Mode Interface Unibrain

Retry Functions

Page 190

FireAPI User Mode Interface Unibrain

C1394MayRetryTransaction
Returns whether it makes sense to retry a failed transaction to a device.

BOOL C1394MayRetryTransaction(
 IN const C1394_NODE_ID Destination,
 IN const C1394_OFFSET Offset,
 IN const STATUS_1394 Status1394,
 IN C1394_RESPONSE_CODE RespCode
);

Parameters

Destination
The Node ID of the device that was the target of the failed transaction. This is used only for
debugging purposes (for generating useful debugging messages in the debug version of
UB1394.DLL).

Offset
The target offset of the failed transaction. This is used only for debugging purposes (for
generating useful debugging messages in the debug version of UB1394.DLL).

Status1394
The status code of the failed transaction.

RespCode
The response code of the failed transaction, if available.

Remarks
The logic behind this function is indepent of the adapter, the target node and the type of transaction.
For example, if a transaction fails with the error code STATUS_1394_NOT_FOUND then there is
absolutely no conceivable way that a retry could succeed.

The C1394MayRetryTransaction function does not keep internally track of any retry counters for the
destination nodes and does not base its results on some number of failed retries. The number of retries
is decided by the callers of C1394MayRetryTransaction. The only thing that
C1394MayRetryTransaction returns is whether it technically makes sense to retry the failed
transaction.

Page 191

FireAPI User Mode Interface Unibrain

C1394RetryReadNodeInQuads
Reads a number of bytes from a device using quadlet read operations with automatically adjusted
micro-delays between successive transactions.

STATUS_1394 C1394RetryReadNodeInQuads
(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters
Same as the parameters of C1394ReadNode, with the restrictions that:

• uNumberOfBytes must be a multiple of quadlet size (4 bytes).
• Offset must be quadlet aligned.

Return Values
Same as the return values of C1394ReadNode.

Remarks
The C1394RetryReadNodeInQuads function inserts micro-delays between successive calls to
C1394ReadNode in order to minimize the number of failed transaction requests due to busy
acknowledges or resource conflicts. The micro-delays are dependent on the time it took the device to
respond to the previous transaction request.

Page 192

FireAPI User Mode Interface Unibrain

C1394RetryReadNodeExInQuads
Reads a number of bytes from a device using quadlet read operations with automatically adjusted
micro-delays between successive transactions.

STATUS_1394 C1394RetryReadNodeExInQuads
(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN ULONG uClientBusResetCount,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters
Same as the parameters of C1394ReadNodeEx, with the restrictions that:

• uNumberOfBytes must be a multiple of quadlet size (4 bytes).
• Offset must be quadlet aligned.

Return Values
Same as the return values of C1394ReadNodeEx.

Remarks
The C1394RetryReadNodeExInQuads function inserts micro-delays between successive calls to
C1394ReadNodeEx in order to minimize the number of failed transaction requests due to busy
acknowledges or resource conflicts. The micro-delays are dependent on the time it took the device to
respond to the previous transaction request.

Page 193

FireAPI User Mode Interface Unibrain

C1394RetryReadDeviceInQuads
Reads a number of bytes from a device using quadlet read operations with automatically adjusted
micro-delays between successive transactions.

STATUS_1394 C1394RetryReadDeviceInQuads(
 IN DEVICE_HANDLE DeviceHandle,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters
Same as the parameters of C1394ReadDevice, with the restrictions that:

• uNumberOfBytes must be a multiple of quadlet size (4 bytes).
• Offset must be quadlet aligned.

Return Values
Same as the return values of C1394ReadDevice.

Remarks
The C1394RetryReadDeviceInQuads function inserts micro-delays between successive calls to
C1394ReadDevice in order to minimize the number of failed transaction requests due to busy
acknowledges or resource conflicts. The micro-delays are dependent on the time it took the device to
respond to the previous transaction request.

Page 194

FireAPI User Mode Interface Unibrain

C1394RetryWriteDeviceInQuads
Writes a number of bytes to a device using quadlet write operations with automatically adjusted
micro-delays between successive transactions.

STATUS_1394 C1394RetryWriteDeviceInQuads(
 IN DEVICE_HANDLE DeviceHandle,
 IN C1394_OFFSET Offset,
 IN ULONG uNumberOfBytes,
 IN void *Buffer,
 IN OUT C1394_ACK_CODE *pAcknowledgeCode,
 IN OUT C1394_RESPONSE_CODE *pResponseCode
);

Parameters
Same as the parameters of C1394WriteDevice, with the restrictions that:

• uNumberOfBytes must be a multiple of quadlet size (4 bytes).
• Offset must be quadlet aligned.

Return Values
Same as the return values of C1394WriteDevice.

Remarks
The C1394RetryWriteDeviceInQuads function inserts micro-delays between successive calls to
C1394WriteDevice in order to minimize the number of failed transaction requests due to busy
acknowledges or resource conflicts. The micro-delays are dependent on the time it took the device to
respond to the previous transaction request.

Page 195

FireAPI User Mode Interface Unibrain

Isochronous Processing

Page 196

FireAPI User Mode Interface Unibrain

C1394OpenAdapterChannel
Requests the class driver to setup a new DMA channel on the adapter for use in stream operations.

STATUS_1394 C1394OpenAdapterChannel(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 OUT C1394_CHANNEL_HANDLE *pC1394ChannelHandle,
 OUT HANDLE *pStartProcessingEvent,
 IN CLIENT_CHANNEL_HANDLE ClientChannelHandle,
 IN FIREAPI_CHANNEL_PARAMETERS *pChannelParameters
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter on which to try to open a DMA channel.

pC1394ChannelHandle
A pointer to a variable that will receive the handle that will identify the adapter channel to the
1394 stack, if the operation is successful. This pointer should point to a valid memory location,
otherwise the function will fail.

pStartProcessingEvent
A pointer to a handle variable that will receive the event object handle that will be used to
notify the application when requests are completed. This pointer should point to a valid
memory location, otherwise the function will fail.

ClientChannelHandle
A handle that will be identifying the adapter channel to the application, if the operation is
successful.

pChannelParameters
A pointer to a structure that describes the type of operations that this DMA channel will be
used for, and also specifies various related parameters.

Return Values

Value Description

STATUS_1394_SUCCESS

The 1394 stack has a free DMA channel on the adapter
that it can allocate for isochronous operations, and the
channel has been allocated.
The variable pointed to by pC1394ChannelHandle will
be filled with a handle value that will identify the adapter
channel to the 1394 stack.

STATUS_1394_INSUFFICIENT_RESOURCES There are no free DMA channels on the adapter.

STATUS_1394_NO_MEMORY A necessary memory allocation failed.

STATUS_1394_NOT_SUPPORTED The required functionality is not available on the adapter.

STATUS_1394_NOT_IMPLEMENTED
The required functionality is supported by the adapter but
not yet implemented by drivers.

STATUS_1394_INVALID_HANDLE ClassAdapterHandle is invalid.

STATUS_1394_INVALID_PARAMETER

Either pClassChannelHandle or pChannelParameters is
an invalid pointer, or the values specified in the
FIREAPI_CHANNEL_PARAMETERS structure are
invalid.

Page 197

FireAPI User Mode Interface Unibrain

STATUS_1394_DRIVER_INTERNAL_ERROR An unexpected error occurred.

Remarks
Depending on the capabilities of the adapter, the class driver will check whether any DMA channels
are available, and if so reserve one and set it up for the type of operation requested by the user.

The FIREAPI_CHANNEL_PARAMETERS structure is defined as shown below:

typedef struct
{
 // Identification tag. Must be set to TAG_FIREAPI_CHANNEL_PARAMETERS
 ULONG Tag;

 // The type of adapter channel to open.
 ULONG AdapterChannelType;

 // The type-specific parameters.
 union
 {
 ////////////////////////////////////
 // Isochronous Receive Channel.
 struct
 {
 // Flags that affect the operation of this adapter-channel.
 ULONG fAdapterChannelOptions;

 // The maximum number of packets per isochronous request.
 // Used if the PACKETS_PER_REQUEST flag is specified in
 // fAdapterChannelOptions.
 ULONG uMaxPacketsPerRequest;
 }
 IsochReceive;

 ////////////////////////////////////
 // Isochronous Transmit Channel.
 struct
 {
 // Flags that affect the operation of this adapter-channel.
 ULONG fAdapterChannelOptions;

 // The maximum number of packets per isochronous request.
 // Used if the PACKETS_PER_REQUEST flag is specified in
 // fAdapterChannelOptions.
 ULONG uMaxPacketsPerRequest;
 }
 IsochTransmit;
 };
}
FIREAPI_CHANNEL_PARAMETERS, *PFIREAPI_CHANNEL_PARAMETERS;

The Tag field must always be set to TAG_FIREAPI_CHANNEL_PARAMETERS otherwise the call will
fail immediately and return STATUS_1394_INVALID_PARAMETER.
The possible values for AdapterChannelType are ChannelIsochReceive and ChannelIsochTransmit.
Depending on the value of this field the appropriate sub-structure of the union is being used.

Page 198

FireAPI User Mode Interface Unibrain

The currently defined values for the fAdapterChannelOptions field are:

Value Description

PACKETS_PER_REQUEST

The value found in the uMaxPacketsPerRequest should be used in
order to specify the maximum number of packets per request that
the client intends to use on this adapter channel.
If this flag is not specified, then the class driver will use the
default value. An application can find out about this value by
specifying the OID_ISO_REQUEST_PACKETS object identifier
in a call to C1394QueryInformation48.
There is a hard limit on the maximum value of
uMaxPacketsPerRequest, that can be configured from the registry.
Clients can find out about this value by specifying the
OID_MAX_ISO_REQUEST_PACKETS object identifier in a call
to C1394QueryInformation.

ALLOCATE_MAX_REQUESTS

When this flag is specified, the miniport will try to allocate the
maximum number of requests to use for isochronous operations, if
the memory is limited and the miniport fails to allocate the
required memory C1394OpenAdapterChannel will fail with status
STATUS_1394_NO_MEMORY. By default, if the
ALLOCATE_MAX_REQUESTS flag is not specified and the
miniport cannot allocate the memory required for maximum
number of requests, it will try to operate by decreasing the number
of requests. Currently the maximum number of requests used by
FireAPI is 25.

The 1394 stack needs to allocate a certain amount of memory in order to be able to prepare an
isochronous request for execution.
It is suggested that applications use the PACKETS_PER_REQUEST flag to specify the maximum
number of isochronous packets per request they are going to use, so that the 1394 stack can only
allocate the necessary amount of memory.

If a client specifies a very big value in the uMaxPacketsPerRequest field, then the memory allocation
may fail and C1394OpenAdapterChannel will return STATUS_1394_NO_MEMORY.

If an application queues a request for the adapter channel that involves more isochronous packets than
the value specified when opening the adapter channel, then the call to C1394IsochQueue will fail with
STATUS_1394_INVALID_REQUEST.

See Also
C1394CloseAdapterChannel, C1394IsochQueue, C1394GetNextCompleteRequest,
FIREAPI_ISOCH_REQUEST

48 By default FireAPI uses default=1024, max=8000.

Page 199

FireAPI User Mode Interface Unibrain

C1394CloseAdapterChannel
Frees an adapter channel that was previously allocated with a successful call to
C1394OpenAdapterChannel.

void C1394CloseAdapterChannel(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_CHANNEL_HANDLE C1394ChannelHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter on which the DMA channel is open.

C1394ChannelHandle
A handle that identifies to the 1394 stack the adapter channel to be freed.

Remarks
It is suggested that the owner of an adapter channel does not have any pending commands to the
adapter channel when it closes it. If there are pending operations for an adapter channel when
C1394CloseAdapterChannel is called for it, then the class driver will make an implicit call to
C1394IsochCancel and cancel all the currently pending operations.
After the call to C1394CloseAdapterChannel returns, C1394ChannelHandle is invalidated so the
application cannot call C1394GetNextCompleteRequest in order to retrieve any requests that were
cancelled.

Only the application that opened an adapter channel is allowed to close it. The C1394AdapterHandle
parameter used in the call to C1394CloseAdapterChannel must be the one used in the call to
C1394OpenAdapterChannel that opened the adapter channel.

See Also
C1394OpenAdapterChannel, C1394IsochQueue, C1394IsochCancel,
C1394GetNextCompleteRequest

Page 200

FireAPI User Mode Interface Unibrain

C1394IsochQueue
Submits to the class driver one or more isochronous operation requests for an adapter channel.

STATUS_1394 C1394IsochQueue(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_CHANNEL_HANDLE C1394ChannelHandle,
 IN PFIREAPI_ISOCH_REQUEST *pIsochRequestArray,
 IN ULONG uNumberOfRequests
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter on which the adapter channel is open.

C1394ChannelHandle
A handle that identifies to the 1394 stack the adapter channel on which to queue the request.

pIsochRequestArray
An array of pointers to structures of type FIREAPI_ISOCH_REQUEST, that describe the
operations to queue for the specified adapter channel.

uNumberOfRequests
The number of elements in the pC1394IsochRequestArray.

Return Values
Value Description

STATUS_1394_SUCCESS
The requests have been successfully queued in the
adapter channel’s operation queue.

STATUS_1394_NO_MEMORY
The operation could not be completed because a memory
allocation failed.

STATUS_1394_INSUFFICIENT_RESOURCES
The class driver failed to queue the operations due to a
lack of resources other than memory.

STATUS_1394_INVALID_HANDLE A handle specified in the call was invalid.

STATUS_1394_INVALID_PARAMETER
One of the structures in the pC1394IsochRequestArray
was invalid.

STATUS_1394_INVALID_REQUEST

One of the requests queue is not of the type allowed on
the adapter channel. For example an isochronous receive
command was requested on a channel opened with the
IsochTransmit channel type.

STATUS_1394_DRIVER_INTERNAL_ERROR An unexpected error occurred.

Page 201

FireAPI User Mode Interface Unibrain

Remarks
If the function fails, then none of the requests has been queued for execution. That is, if any one of the
requests is invalid for the specified channel, then the whole bunch is rejected.

The array pointed to by pC1394IsochRequestArray is returned to the caller as soon as the call returns.
This means that this array can reside on the caller’s stack.

The class driver will not accept operation requests for a given adapter channel that are not compatible
with the channel’s type. The table below lists the allowed requests for each type of adapter channel.

Adapter Channel Type Allowed Operations

ChannelIsochReceive
ISOCH_OP_RCV_FIXED_PKTS
ISOCH_OP_RCV_FIXED_DATA
ISOCH_OP_RCV_FIXED_DATA_NH

ChannelIsochTransmit
ISOCH_OP_XMIT_FIXED_PKTS
ISOCH_OP_XMIT_PKTS
ISOCH_OP_XMIT_DATA

If an incompatible request is submitted to an adapter channel, then the C1394IsochQueue call fails
with STATUS_1394_INVALID_REQUEST.

The Tag field of all FIREAPI_ISOCH_REQUEST structures must be set to TAG_ISOCH_REQUEST,
otherwise C1394IsochQueue will fail with STATUS_1394_INVALID_PARAMETER.
For more information on the FIREAPI_ISOCH_REQUEST structure, see the respective section later in
this document.

IMPORTANT NOTE: When a C1394IsochQueue call is successful and the requests are queued for

execution, then if there were no other commands in the queue the first of the new requests
may start executing immediately, before C1394IsochQueue actually returns to its caller.
This means that if the the first request(s) complete very fast (a small request or due to a bus
reset), they might even complete before C1394IsochQueue returns.
Applications should in general be prepared to deal with this situation. If another thread is
blocked waiting on the channel’s event object, then that thread might get unblocked and start
executing before C1394IsochQueue returns (provided that C1394IsochQueue is about to
return STATUS_1394_SUCCESS).

See Also
C1394IsochCancel

Page 202

FireAPI User Mode Interface Unibrain

C1394GetNextCompleteRequest
Retrieves the next completed request from an adapter channel’s Completed Request queue.

PFIREAPI_ISOCH_REQUEST C1394GetNextCompleteRequest(
 IN C1394_CHANNEL_HANDLE C1394ChannelHandle
);

Parameters

ClassChannelHandle
A handle that identifies to the class driver the adapter channel on which to perform the
operation.

Return Values
If the handle is invalid, or the adapter channel does not use a complete request queue (the
COMPLETE_DO_NOT_QUEUE flag was set in the call to C1394OpenAdapterChannel), or there are
no more completed requests in the queue, then the function returns NULL.
Otherwise the function returns a pointer to the next FIREAPI_ISOCH_REQUEST structure that is
completed.

Remarks

See Also
C1394IsochQueue

Page 203

FireAPI User Mode Interface Unibrain

C1394IsochCancel
Cancels one or more isochronous operations that have been queued for a specific adapter channel.

void C1394IsochCancel(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_CHANNEL_HANDLE C1394ChannelHandle,
 IN ULONG fCancelOptions,
 IN ULONG uRequestIndex
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter on which the adapter channel is open.

C1394ChannelHandle
A handle that identifies to the 1394 stack the adapter channel on which to perform the
operation.

fCancelOptions
A 32-bit value that identifies various options for the operation. See the notes below for the
supported options.

uRequestIndex
A request index (uRequestIndex field of FIREAPI_ISOCH_REQUEST) needed for the
operation.

Remarks
Currently the only defined flag for fCancelOptions is IsochCancelAll.

If the flag IsochCancelAll is specified, then the class driver immediately aborts all queued isochronous
operations on the adapter channel. The value of the uRequestIndex parameter is ignored in this case.

See Also
C1394IsochQueue

Page 204

FireAPI User Mode Interface Unibrain

VersaPHY Functions

Page 205

FireAPI User Mode Interface Unibrain

C1394VPReadNode
This function is analogous to the C1394ReadNode function that is provided for standard asynchronous
1394 transactions.

STATUS_1394 C1394VPReadNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_VERSAPHY_BUS_ID VPBusID,
 IN C1394_PHYSICAL_ID PhysicalID,
 IN C1394_TRANSACTION_LABEL TLabel,
 IN BYTE BlockNum,
 IN BYTE PRegOff,
 IN BYTE BytesToRead,
 IN ULONG ExpectedResponsePackets,
 IN OUT void *ResponsePacketBuffer
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the read request.

VPBusID
The 6-bit BusID of the destination node. C1394_VPLOCAL_BUSID is defined as zero. A value
different than zero specifies a remote 1394 bus (not currently supported).

PhysicalID
The 6-bit PhysicalID of the destination node.

TLabel
The 6-bit transaction label to be used for the read request.
The values 0 to 63 can be used if the application wants to manage the TLabel itself.
The value C1394_VPANY_TLABEL lets the Class Driver select the transaction label that will
be used. The Class Driver will increment the TLabel from 0 to 63 and then back to zero in a
circular fashion.
The value C1394_VPPHYID_TLABEL is defined so that the adapter’s PhyID is used as the
transaction label. This will help facilitate debugging/tracing, since the VersaPHY transaction
request packets do not contain the id of the originating node, but only that of the destination.

BlockNum
The 8-bit block number that will be specified in the Blk_Number field of the VersaPHY read
request packet.

PRegOff
The 4-bit block offset that will be specified in the PReg_Off field of the VersaPHY read request
packet.

BytesToRead
The number of bytes to read (8-bit value).

ExpectedResponsePackets
The number of response packets that are expected for this transaction. This may depend on the
type of VersaPHY device, that is if it is 8-bit or 16-bit, and the value of PRegOff.

ResponsePacketBuffer
A buffer containing at least ExpectedResponsePackets*sizeof(C1394_PHY_PACKET) available
bytes that will receive the read response packets for the read transaction.

Page 206

FireAPI User Mode Interface Unibrain

Return Values
The possible return values are listed below:

Value Description
STATUS_1394_SUCCESS The transaction was completed successfully.

STATUS_1394_INVALID_HANDLE The handle specified by C1394AdapterHandle is invalid.

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (invalid data buffer, or BusID>63, or
PhysicalID>62, or TLabel>63, or pRegOff>15).

STATUS_1394_INVALID_REQUEST
The request targets the local bus and the node identified by
PhysicalID has the LinkOn bit set to 1, so it can’t be a
VersaPHY device.

STATUS_1394_TIMEOUT
The transmission was completed successfully, but the expected
responses were not received within the allotted amount of time.

STATUS_1394_BUS_RESET
The transaction request was cancelled because a bus reset
occurred before all the expected responses had been received.

Remarks
One request packet may have multiple response packets depending on the value of BytesToRead the
value of PRegOff and the type of VersaPhy device (8-bit or 16-bit).

If the TLabel parameter equals C1394_PHYID_TLABEL then the sending node's PhyID is specified as
the TLabel. This is done in order to facilitate debugging/tracing when examining 1394 bus analyzer
logs, since the VersaPhy packets only contain the physical ID of the target device and not the source.
Putting the source physical ID in the transaction label makes it easier to analyze the VersaPhy traffic on
the bus, especially if more than one PCs are connected to it.

Read/Write requests to a given Physical ID are serialized. If multiple threads/apps try to send a
VersaPHY PhyID request to the same Physical ID then the requests are queued and sent one by one
after each transaction completes (all expected responses come in or there is a timeout).
This is done so that independent applications on the same PC don’t accidentally target the same device
with concurrent transactions at the same time. It is expected that most VersaPHY devices will not be
able to handle multiple concurrent transaction requests.

When a transaction response arrives the Class Driver performs matching based solely on the following
fields of the response packet:

• BusID
• Physical ID of the VersaPhy device
• Transaction label

With regards to parameter validation, the value of BlockNum in the response packets is ignored at this
time, since PRegOff+BytesToRead is allowed to exceed 16 and in this case the behavior of the devices
with regards to the BlockNum value they insert in the response packets is not clearly defined yet.
With regards to parameter validation, the value of PRegOff in the response packets is ignored at this
time, due to possible differences in implementation between 8-bit and 16-bit devices.

When the Class Driver receives ExpectedResponsePackets matching packets it will consider the
transaction successful and the function call will return.

The value of the standard SPLIT_TIMEOUT register is used for timing out. The transaction is
considered to timeout if the expected number of response packets is not received within the allotted
amount of time.

Page 207

FireAPI User Mode Interface Unibrain

The buffer pointed to by ResponsePacketBuffer will be zero-filled upon entry to the function and each
incoming response will be copied as it arrives. So when a transaction times out the application can
check the contents of the ResponsePacketBuffer and discover the number of response packets that were
actually received.

The data being read are allowed to cross a 16-byte block boundary, that is PRegOff+Bytes may be
larger than 16.

When a bus reset occurs all pending VersaPhy physical ID transactions (the one being executed and all
others that are possibly queued for the same physical ID) are canceled and completed with the status
code STATUS_1394_BUS_RESET.

Page 208

FireAPI User Mode Interface Unibrain

C1394VPWriteNode
This function is analogous to the C1394WriteNode function that is provided for standard asynchronous
1394 transactions.

STATUS_1394 C1394VPWriteNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_VERSAPHY_BUS_ID VPBusID,
 IN C1394_PHYSICAL_ID PhysicalID,
 IN C1394_TRANSACTION_LABEL TLabel,
 IN BYTE BlockNum,
 IN BYTE PRegOff,
 IN USHORT WriteData,
 IN ULONG ExpectedResponsePackets,
 IN OUT void *ResponsePacketBuffer
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the write request.

VPBusID
The 6-bit BusID of the destination node. C1394_VPLOCAL_BUSID is defined as zero. A value
different than zero specifies a remote 1394 bus.

PhysicalID
The 6-bit PhysicalID of the destination node.

TLabel
The 6-bit transaction label to be used for the read request.
The values 0 to 63 can be used if the application wants to manage the TLabel itself.
The value C1394_VPANY_TLABEL lets the Class Driver select the transaction label that will
be used. The Class Driver will increment the TLabel from 0 to 63 and then back to zero in a
circular fashion.
The value C1394_VPPHYID_TLABEL is defined so that the adapter’s PhyID is used as the
transaction label. This will help facilitate debugging/tracing, since the VersaPHY transaction
request packets do not contain the id of the originating node, but only that of the destination.

BlockNum
The 8-bit block number that will be specified in the Blk_Number field of the VersaPHY write
request packet.

PRegOff
The 4-bit block offset that will be specified in the PReg_Off field of the VersaPHY write
request packet.

WriteData
A 16-bit data value that will be written to the device. This value is provided in native
(little-endian) format and will be formatted appropriately before sending to the device.
This means that (WriteData>>8) will be transmitted at byte 5 of the VersaPhy packet and
(WriteData & 0xFF) will be transmitted at byte 6.

ExpectedResponsePackets
The number of response packets that are expected for this transaction. This may depend on the
type of VersaPHY device, that is if it is 8-bit or 16-bit, and the value of PRegOff.

Page 209

FireAPI User Mode Interface Unibrain

ResponsePacketBuffer
A buffer containing at least ExpectedResponsePackets*sizeof(C1394_PHY_PACKET) available
bytes that will receive the write response packets for the write transaction.

Return Values
The possible return values are listed below:

Value Description
STATUS_1394_SUCCESS The transaction was completed successfully.

STATUS_1394_INVALID_HANDLE The handle specified by C1394AdapterHandle is invalid.

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (invalid data buffer, or BusID>63, or
PhysicalID>62, or TLabel>63, or PRegOff>15, or
ExpectedResponsePackets is zero).

STATUS_1394_INVALID_REQUEST
The request targets the local bus and the node identified by
PhysicalID has the LinkOn bit set to 1, so it can’t be a
VersaPHY device.

STATUS_1394_TIMEOUT
The expected response packets were not received within the
allotted amount of time.

STATUS_1394_BUS_RESET
The transaction request was cancelled because a bus reset
occurred before the expected response packets were received.

Remarks
If the TLabel parameter equals C1394_VPPHYID_TLABEL then the sending node's PhyID is specified
as the TLabel. This is done in order to facilitate debugging/tracing when examining 1394 bus analyzer
logs, since the VersaPhy packets only contain the physical ID of the target device and not the source.
Putting the source physical ID in the transaction label makes it easier to analyze the VersaPhy traffic on
the bus, especially if more than one PCs are connected to it.

Read/Write requests to a given Physical ID are serialized. If multiple threads/apps try to send a
VersaPHY PhyID request to the same Physical ID then the requests are queued and sent one by one
after each transaction completes (all expected responses come in or there is a timeout).
This is done so that independent applications on the same PC don’t accidentally target the same device
with concurrent transactions at the same time. It is expected that most VersaPHY devices will not be
able to handle multiple concurrent transaction requests.

When a transaction response arrives the Class Driver performs matching based solely on the following
fields of the response packet:

• BusID
• Physical ID of the VersaPhy device
• Transaction label
• Block Number

With regards to parameter validation, the value of PRegOff in the response packets is ignored at this
time, due to possible differences in implementation between 8-bit and 16-bit devices.

When the Class Driver receives ExpectedResponsePackets matching packets it will consider the
transaction successful and the function call will return.

The value of the standard SPLIT_TIMEOUT register is used for timing out. The transaction is
considered to timeout if the expected number of response packets is not received within the allotted
amount of time.

Page 210

FireAPI User Mode Interface Unibrain

The buffer pointed to by ResponsePacketBuffer will be zero-filled upon entry to the function and each
incoming response will be copied as it arrives. So when a transaction times out the application can
check the contents of the ResponsePacketBuffer and discover the number of response packets that were
actually received.

When a bus reset occurs, all pending VersaPhy physical ID transactions (the one being executed and all
others that are possibly queued for the same physical ID) are completed with the status code
STATUS_1394_BUS_RESET.

Page 211

FireAPI User Mode Interface Unibrain

C1394VPSendPacket
This function is analogous to the C1394TransmitRaw function.

STATUS_1394 C1394VPSendPacket(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN void *VPPacketBuffer
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter through which to transmit the VersaPhy
packet.

VPPacketBuffer
A buffer containing a properly formatted VersaPhy packet (8 bytes) that is to be transmitted on
the bus.

Remarks
This function permits the sender to send any VP packet to the bus.
The following apply:

• No validity checks are performed on the packet contents.
• The CRC, if valid, is expected to be already calculated by the sender using function

C1394CalculateCRC8.
• The 8-byte data are expected in big-endian format (ready for transmission).

Page 212

FireAPI User Mode Interface Unibrain

C1394VPChannelOpen
This function connects the application to the VersaPhy channel specified by the VersaPHY label so that
the application can listen to traffic from/for this channel.

STATUS_1394 C1394VPChannelOpen(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_VERSAPHY_LABEL VersaPhyLabel,
 IN C1394_VPCHANNEL_OPTIONS *pVPChannelOptions,
 OUT HANDLE *pStartProcessingEventHandle,
 OUT C1394_VPCHANNEL_HANDLE *pC1394VPChannelHandle
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which to open the VersaPhy channel.

VersaPhyLabel
The 14-bit VersaPhy label that the application wants to listen to.
Applications have to perform device discovery themselves in order to discover the VersaPhy
labels of devices on the 1394 bus. There is no API provided function that performs this task.

pVPChannelOptions
A pointer to a structure that contains the operational options for this VersaPHY channel.

pStartProcessingEventHandle
A pointer to an event handle where the StartProcessing event for this channel will be returned.
This is an auto-reset event. The handle will be closed by the 1394 stack when the VersaPhy
channel is closed.

pC1394VPChannelHandle
A pointer to a variable that will receive the handle of the VersaPhy channel.

Return Values
The possible return values are listed below:

Value Description
STATUS_1394_SUCCESS The operation was completed successfully.

STATUS_1394_INVALID_HANDLE The handle specified by C1394AdapterHandle is invalid.

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (VersaPhyLabel>14-bit, or
pStartProcessingEventHandle is invalid, or
pC1394VPChannelHandle is invalid).

STATUS_1394_OUT_OF_MEMORY A memory allocation failed.

Remarks
The processing model for VersaPhy channels follows the one defined for address ranges and
isochronous channels.

Initially the channel is considered Not Busy. When the first VersaPhy packet arrives then the channel is
marked as Busy and the StartProcessing event is signaled (this is an auto-reset event). The application
is then expected to wake and start calling C1394VPChannelGetNextPacket until the function returns

Page 213

FireAPI User Mode Interface Unibrain

FALSE which means there are no more packets to process. Then the channel is marked as Not Busy
again and the next packet that will arrive will cause the StartProcessing event to get signaled and the
cycle to start over.
If a packet arrives while the channel is Busy then the packet is simply added at the end of the queue and
the StartProcessing event is not signaled as the application is already awake and active doing
processing.

The channel that receives all VersaPHY traffic will be referred to as the Master Channel while all other
channels will be referred to as VPLabel Channels.

VPLabel Channels
Each VPLabel channel is private to the application that opened it. This means that multiple applications
can open the same channel and then listen to and process the same traffic. Every VPLabel channel gets
its own private queue with incoming packets, so the speed of processing by one application does not
affect the others that might be listening on the same VPLabel channel.

A separate kernel buffer is allocated from non-paged pool for the packet queue of each VPLabel
channel. VersaPHY packet reception in this buffer occurs in round-robin fashion and when the queue
gets full new incoming packets are discarded.
The size of the reception buffer for a VPLabel channel is controlled through the pVPChannelOptions
parameter.

In the following paragraph a pattern is suggested for processing the VersaPHY packets from user mode
applications as efficiently as possible.

Suggested User Mode VersaPHY Packet Processing
To improve the chances of not dropping packets applications can use the following pattern:

• Start a high priority thread that listens to the channel.
• When the StartProcessingEvent gets signaled the thread starts a tight loop that pumps

VersaPHY packets from the kernel queue into a process-owned queue in user space, until the
kernel queue is empty.

• This high-priority listener thread should do NO processing on these packets, but instead signal
another worker thread to start processing the process-owned queue.

Given the above pattern and the fact that VersaPhy devices are usually not very intensive in producing
unsolicited VersaPHY packets, the value of 4 (1024 packets) as the queue size should be enough for
most applications.
Needless to say the user mode application should also set a limit on its queue size, but this can be rather
big (several MB). Alternatively the application can store the packets to disk using a memory mapped
file that uses a sliding window and thus never have problems with memory allocation.

VPLabel Read/Write Transactions
All VPLabel read/write transactions for the same VPLabel value are internally routed through a single
queue in the Class Driver, no matter which application they are originating from. This is done in order
to prevent concurrent transactions requests from being sent to the VersaPHY device, since most
devices may be of a simple nature and thus unable to handle multiple concurrent transactions correctly.

When a VPLabel response packet is received, it is checked against the currently pending transaction for
this VPLabel and all related processing takes place before the Class Driver starts to examine the
VPLabel channel queues that are currently open on this VPLabel. This means that the pending
VPLabel read/write transactions will always be properly processed, even if the VPLabel channel queue
is full.

Each application opening a VPLabel channel handle has control over the following options:

• Should outgoing VPLabel transaction requests and their matching responses (if any)
originating from the VPLabel handle itself be recorded to the VPLabel channel queue?

• Should outgoing VPLabel transaction requests and the matching responses (if any) from other
VPLabel handles on the same VPLabel value be recorded to the VPLabel channel queue?

• Should packets with bad CRC be inserted in the queue?
• The size of the kernel packet receive queue.

Page 214

FireAPI User Mode Interface Unibrain

If the application does not wish to record outgoing VPLabel transactions then the VPLabel channel
packet queue will only record unsolicited responses from the VersaPHY device.
However, if there are other PCs on the same 1394 bus communicating with the VersaPHY device then
the VPLabel channel packet queue will record their VPLabel transactions.

C1394_VPLABEL_CHANNEL_OPTIONS
This structure contains the parameters that control the operation of a VPLabel channel. The structure is
defined as follows:

typedef struct
{
 // Identification tag. Must be set to TAG_VPLABEL_CHANNEL_OPTIONS
 ULONG Tag;

 // Should outgoing transactions from the VPLabel handle be recorded?
 UCHAR bRecordOutgoingFromSelf;

 // Should outgoing transactions from handles on the same VPLabel value be
recorded?
 UCHAR bRecordOutgoingToVPLabel;

 // Should packets with bad CRC be accepted?
 UCHAR bRecordPacketsWithBadCRC8;

 // The size of the kernel packet queue in packets.
 // It will be rounded up to the next 4K page boundary.
 USHORT ushMaxPacketsInQueue;
}
C1394_VPLABEL_CHANNEL_OPTIONS, *PC1394_VPLABEL_CHANNEL_OPTIONS;

Please note that the kernel buffer for the VPLabel channels gets allocated from non-paged memory
which is a precious system resource and should not be abused because then the overall performance of
the operating system will be degraded.
Do not use big values for ushMaxPacketsInQueue just because they seem to work fine; take the time to
optimize your application so that it pulls the VersaPHY packets to user mode efficiently and then
experiment until you find the minimum safe value for ushMaxPacketsInQueue.

The maximum value for the queue size of a VPLabel channel is MAX_VPLABEL_QUEUE_LENGTH
which is defined as 64K which gives a 1MB buffer.

Page 215

FireAPI User Mode Interface Unibrain

C1394VPChannelClose
This function disconnects the application from the specified VersaPhy channel.

void C1394VPChannelClose(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_VP_CHANNEL_HANDLE C1394VPChannelHandle
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which the VersaPhy channel is open.

C1394VPChannelHandle
A handle identifying to the 1394 stack the VersaPhy channel.

Remarks
All VersaPhy channels opened by an application are automatically closed if the application crashes or
calls C1394Terminate.

Page 216

FireAPI User Mode Interface Unibrain

C1394VPChannelGetNextPacket
This function retrieves the next VersaPhy packet from the specified VersaPhy channel.

BOOL C1394VPChannelGetNextPacket(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_VPCHANNEL_HANDLE C1394VPChannelHandle,
 IN C1394_VERSAPHY_PACKET_INFO *pVPPacketInfo
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which the VersaPhy channel is open.

C1394VPChannelHandle
A handle identifying to the 1394 stack the VersaPhy channel.

pVPPacketInfo
A pointer to a buffer that will receive information about the next VersaPhy packet.

Remarks
FALSE is returned to indicate that the queue is empty and there are no more packets to process. As is
the case with address ranges and isochronous channels, this will clear the channel’s Busy flag, so that
the event associated with the channel will be signaled again when the next packet arrives.

For reasons of simplicity this function does not return a status code. If the specified VersaPhy channel
handle or VersaPhy packet buffer are invalid then FALSE will be returned and a debug message will be
written to the kernel debugger.

The C1394_VERSAPHY_PACKET_INFO structure is defined as shown below:

typedef struct
{
 C1394_PHY_PACKET VersaPhyPacket;

 // The high performance counter ticks in 100 nsec units and is 64-bit.
 // To come to the point to use the high bits several thousands of years
 // must pass, so we will use the high bits to encode any extra information
 // we want to return.
 union
 {
 ULONGLONG TimeStamp:62;
 ULONGLONG bValidCRC8:1;
 ULONGLONG bIncoming:1;
 };
}
C1394_VERSAPHY_PACKET_INFO, *PC1394_VERSAPHY_PACKET_INFO;

All packets are returned in big endian format. To find out about the type of each packet use the
C1394VPGetPacketType function.
To swap a big-endian packet so that you can use one of the _LITTLE structures, use code as shown
below:
PC1394_VERSAPHY_PACKET_VPLABEL_WRITE_REQUEST_LITTLE pPacketLE;
ULONGLONG OctletLE = *(ULONGLONG*)pPhyPacket->Bytes;
SWAP_ENDIAN_64(OctletLE);
pPacketLE = (PC1394_VERSAPHY_PACKET_VPLABEL_WRITE_REQUEST_LITTLE) &OctletLE;

Page 217

FireAPI User Mode Interface Unibrain

C1394VPChannelRead
This function performs a read transaction using VersaPhy Label addressing.

STATUS_1394 C1394VPChannelRead(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_VPCHANNEL_HANDLE C1394VPChannelHandle,
 IN C1394_TRANSACTION_LABEL TLabel,
 IN UCHAR LRegOff,
 IN ULONG Data,
 IN UCHAR NumResponses,
 IN void *VPPacketBuffer
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which the VersaPhy channel is open.

C1394VPChannelHandle
A handle identifying to the 1394 stack the VersaPhy channel.

TLabel
The 6-bit transaction label to be used for the read request. The value
C1394_VPPHYID_TLABEL is defined so that the adapter’s PhyID is used as the transaction
label. This will help facilitate debugging/tracing.

LRegOff
The 4-bit value to be used in the LReg_Off field of the read request.

Data
The 24-bit value to be used in the Profile_Defined_Addr/Data field of the read request. Data is
specified in native (little-endian) 32-bit format.

NumResponses
The number of read response packets to expect for this transaction request.

VPPacketBuffer
Pointer to a buffer where a maximum of NumResponses VersaPhy packets will be stored.

Return Values
The possible return values are listed below:

Value Description
STATUS_1394_SUCCESS The operation was completed successfully.

STATUS_1394_INVALID_HANDLE The handle specified by C1394VPChannelHandle is invalid.

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (TLabel>6-bit, or LRegOff>4-bit, or
Data>24-bit or VPPacketBuffer is invalid).

STATUS_1394_TIMEOUT
The expected number of responses was not received before the
timeout period expired.

Page 218

FireAPI User Mode Interface Unibrain

Remarks
This function transmits the requested read transaction targeting the VP Label of the channel.
Since the operation of read/writes with VersaPhy Label addressing is dependent upon the specific
profile being implemented by the device, these functions provide a generic interface for managing this
kind of transactions.
The application issuing the read is expected to be aware of the profile being implemented so it should
know what the value passed in the Data parameter means and thus the number of responses that are
expected.
The function will block on the VersaPhy channel, waiting for the specified number of response packets
to arrive from the given VersaPhy label and with the specified transaction label.
If the SPLIT_TIMEOUT period elapses before the responses are received then the operation will return
with a timeout status code. If this is a condition that is expected to occur often, then the application
should zero fill the memory pointed to by VPPacketBuffer and then manually detect the number of
VersaPhy packets that were received by checking the packets for non-zero contents.

The VersaPhy packets that form the reply to the read transaction will not be inserted to the VersaPhy
Label queue and thus:

1. The StartProcessing event object will not be signaled (user mode).
2. The matching response packets will not be returned through the

C1394VPChannelGetNextPacket function.

In similarity to PhyID operations, all read/write transactions using VersaPhy Label addressing that
target the same VPLabel are serialized and executed one after the other.

Page 219

FireAPI User Mode Interface Unibrain

C1394VPChannelWrite
This function performs a write transaction using VersaPhy Label addressing.

STATUS_1394 C1394VPChannelWrite(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_VPCHANNEL_HANDLE C1394VPChannelHandle,
 IN C1394_TRANSACTION_LABEL TLabel,
 IN UCHAR LRegOff,
 IN ULONG Data,
 IN UCHAR NumResponses,
 IN void *VPPacketBuffer
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which the VersaPhy channel is open.

C1394VPChannelHandle
A handle identifying to the 1394 stack the VersaPhy channel.

TLabel
The 6-bit transaction label to be used for the read request. The value
C1394_VPPHYID_TLABEL is defined so that the adapter’s PhyID is used as the transaction
label. This will help facilitate debugging/tracing.

LRegOff
The 4-bit value to be used in the LReg_Off field of the read request.

Data
The 24-bit value to be used in the Profile_Defined_Addr/Data field of the read request. Data is
specified in native (little-endian) 32-bit format.

NumResponses
The number of write response packets to expect for this transaction request.

VPPacketBuffer
Pointer to a buffer where a maximum of NumResponses VersaPhy packets will be stored.

Return Values
The possible return values are listed below:

Value Description
STATUS_1394_SUCCESS The operation was completed successfully.

STATUS_1394_INVALID_HANDLE The handle specified by C1394VPChannelHandle is invalid.

STATUS_1394_INVALID_PARAMETER
A parameter is invalid (TLabel>6-bit, or LRegOff>4-bit, or
Data>24-bit or VPPacketBuffer is invalid).

STATUS_1394_TIMEOUT
The expected number of responses was not received before the
timeout period expired.

Remarks
See C1394VPReadNode.

Page 220

FireAPI User Mode Interface Unibrain

Control & Information Functions

Page 221

FireAPI User Mode Interface Unibrain

C1394BusReset
Issues a software initiated long or short bus reset.

STATUS_1394 C1394BusReset(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN BOOLEAN bShortReset
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter on which to initiate the bus reset.

bShortReset
Indicates whether a short or long bus reset should be initiated.

Return Values
If the operation is completed successfully, then STATUS_1394_SUCCESS is returned.
If a bus reset has occurred in the last 2 seconds then STATUS_1394_TIMEOUT is returned. If a short
bus reset is required and the adapter is not capable of this operation then
STATUS_1394_INVALID_REQUEST is returned.
If the adapter handle is invalid then STATUS_1394_INVALID_HANDLE is returned.
Otherwise the appropriate error status should be returned according to the guidelines described in
Status Code Reference.

Remarks
If there are any transmit requests pending at the time the function is called, then they are aborted with
the STATUS_1394_BUS_RESET status.

The 1394 standard specifies that at least 2 seconds should elapse after a bus reset before a node can
initiate a bus reset through software (P1394a 2.1 paragraph 9.13 (modification of P1394a 2.0 paragraph
9.10)). The 1394 class driver checks for this condition and when it occurs it returns
STATUS_1394_TIMEOUT.

Moreover the 1394 class driver makes certain that two or more independent applications do not request
a bus reset in less than 2 seconds apart from each other. If this happens, only the first call to
C1394BusReset will be actually performed, while the others will return STATUS_1394_TIMEOUT.

See Also
C1394IsBusResetInProgress, C1394GetBusResetCount

Page 222

FireAPI User Mode Interface Unibrain

C1394IsBusResetInProgress
Indicates whether a bus reset is in progress on the specified adapter.

BOOLEAN C1394IsBusResetInProgress(
 C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter for which to return the bus reset count.

Return Values
If the handle provided is invalid, then FALSE is returned.

Remarks
This function can be used in combination with C1394GetBusResetCount in order to synchronize with
bus reset events. See the remarks section of C1394GetBusResetCount for more details.

See Also
C1394BusReset, C1394GetBusResetCount

Page 223

FireAPI User Mode Interface Unibrain

C1394GetBusResetCount
Returns the number of bus resets that have occurred on the specified adapter.

ULONG C1394GetBusResetCount(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter for which to return the bus reset count.

Return Values
If the adapter handle is invalid then 0xFFFFFFFF is returned.

Remarks
An application uses this function as a help to determine whether a bus reset has occurred while a piece
of code that is affected by bus resets is executing.

Before entering the critical piece of code the application should get the bus reset count and then call
C1394IsBusResetInProgress. If FALSE is returned the application can enter the critical code. When
this code is exited the application should call C1394GetBusResetCount once more. If the count
returned is different than the original count then a bus reset occurred while the code was executing and
it might still be in progress.

Applications can also register a bus reset notification, but this is not quite as suitable for critical checks,
because there is inevitably a small delay between the time the bus reset occurs and the time the
application’s notification handler is called.

See Also
C1394BusReset, C1394IsBusResetInProgress

Page 224

FireAPI User Mode Interface Unibrain

C1394QueryInformation
Returns information about the adapter’s capabilities, characteristics and operational settings.

STATUS_1394 C1394QueryInformation(

IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
IN OID_1394 ObjectIdentifier1394,
IN OUT PVOID Buffer,
IN ULONG uBufferLength,
OUT ULONG *puBytesWritten OPTIONAL,
OUT ULONG *puBytesRequired OPTIONAL

);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose information is to be queried.

ObjectIdentifier1394
The identifier of the information item that is to be queried.

Buffer
A buffer where information is returned. In a few cases it also contains input parameters.

uBufferLength
The size in bytes of the memory pointed to by Buffer.

puBytesWritten
An optional pointer to a ULONG variable that receives the size in bytes of the data returned. If
the caller does not care for this information it can set this parameter to NULL.

puBytesRequired
An optional pointer to a ULONG variable that receives the required size in bytes of Buffer for
the call to succeed. If this information is not needed then the caller can set this parameter to
NULL. This information is returned only if the pointer is not NULL and the call fails due to the
buffer size being too small.

Return Values
If the call is completed successfully then STATUS_1394_SUCCESS is returned. Otherwise the
appropriate error status should be returned according to the guidelines described in the Status Code
Reference.

Remarks
The object identifiers defined are listed in the table below. The type assumed for Buffer for each
identifier is listed in another table that follows.

Object Identifier Description

Adapter Capabilities Group

OID_ISOCHRONOUS_CAPABLE Indicates whether the adapter is capable of isochronous
operations.

OID_CYCLE_MASTER_CAPABLE Indicates whether the adapter is capable of being the
cycle master.

Page 225

FireAPI User Mode Interface Unibrain

OID_CYC_CLK_ACC

Specifies the adapter’s master clock accuracy in parts
per million. A value between 0 and 100 is returned.

If the cmc bit is set in Bus_Info_Block, then this value is
copied into the cyc_clk_acc field of Bus_Info_Block.
Otherwise that field contains all 1’s.

OID_POWER_MANAGEMENT_CAPABLE Indicates whether the adapter is capable of power
management.

OID_SHORT_BUS_RESET_CAPABLE Indicates whether the adapter’s PHY is capable of
performing an arbitrated (short) bus reset.

OID_PING_CAPABLE Indicates whether the adapter is capable of performing
ping operations.

OID_BYTE_ALIGNMENT_CAPABLE Indicates whether the adapter is capable of accepting
requests for 1394 offsets aligned on byte boundaries.

OID_WORD_ALIGNMENT_CAPABLE
Indicates whether the adapter is capable of accepting
requests for 1394 offsets aligned on word (2-bytes)
boundaries.

OID_MAP_PHYSICAL_ADDRESS_CAPABLE Indicates whether the adapter is capable of supporting
physical address range mappings.

OID_ISO_RECEIVE_DMA_CONTEXTS Indicates the number of isochronous receive DMA
contexts available in the adapter.

OID_ISO_TRANSMIT_DMA_CONTEXTS Indicates the number of isochronous transmit DMA
contexts available in the adapter.

Bus_Info_Block Group

OID_CONFIGURATION_ROM

Returns the contents of the 20 bytes that comprise the
Bus_Info_Block, starting at offset FFFFF000040016.
The contents are returned as if they were transmitted on
the cable in big endian and then possibly byte swapped
upon reception according to the setting specified by
OID_BYTE_SWAP.

OID_CONFIG_ROM_CRC_CONTROL

Returns the contents of the quadlet found at address
FFFFF000040016. This quadlet contains the info_length,
crc_length and rom_crc_value fields, which are
described in paragraph 8.3.2.5.3. of 1394-1995.

The contents are returned as if they were transmitted on
the cable in big endian and then possibly byte swapped
upon reception according to the setting specified by
OID_BYTE_SWAP.

OID_ISOCHRONOUS_CAPABLE_BIT Returns the value of the isc bit.

OID_CYCLE_MASTER_CAPABLE_BIT Returns the value of the cmc bit.

OID_IRM_CAPABLE_BIT Returns the value of the irmc bit.

OID_SERIAL_BUS_MANAGER_CAPABLE_BIT Returns the value of the bmc bit.

OID_POWER_MANAGEMENT_CAPABLE_BIT Returns the value of the pmc bit.

OID_GENERATION_COUNT Returns the value of the generation field.

Page 226

FireAPI User Mode Interface Unibrain

OID_MAX_REC

Returns the value of the max_rec field (4-bits). The
maximum asynchronous payload that can be accepted
by this node in a block write transaction request or sent
in a block read response is 2max_rec+1.
The value of zero means that the maximum payload is
not specified, and the values E16 and F16 are reserved.

Control & Operational Settings

OID_ADAPTER_CHECK_FOR_HUNG
Indicates whether the adapter appears to be hung. If the
adapter is hung then TRUE is returned in the output
buffer, otherwise FALSE is returned.

OID_ADAPTER_FIFO

Returns information about the current FIFO settings of
the adapter. This information describes the total amount
of FIFO available on the adapter, and the way into
which is partitioned between receive, transmit,
asynchronous and isochronous operations.
These settings can be configured dynamically through a
call to C1394SetInformation. For more information see
the Changing FIFO settings section at the end of the
document.

OID_DATA_CRC_INDICATED

Indicates whether the data CRC is included in the
received packets (which have data payload) that the
class driver is indicating to applications. If it is included
then it is the last quadlet of the indicated packet.

OID_HEADER_CRC_INDICATED

Indicates whether the header CRC is included in the
received packets that the class driver is indicating to
applications. If not, then the data payload (if any)
follows immediately after the header quadlets in the
receive buffer (see 1394-1995 paragraph 6.2.1 for the
general format of primary packets).

OID_PCI_LATENCY

Returns the current PCI latency value for the 1394
adapter. PCI latency can range from 0 to 255.
This value is configurable, both at run-time through
C1394SetInformation and at boot-time through the
appropriate registry setting.

OID_QUERY_SW_BYTE_SWAP

Indicates whether the miniport driver will have to do a
software byte swap if the class driver asks for a data
buffer to be transmitted normally or byte-swapped.
Upon calling C1394QueryInformation the Buffer
parameter should contain a BOOLEAN value49. This
value is TRUE if the data buffer would be transmitted
byte-swapped and FALSE if it would be transmitted
normally.
This item helps an application check if the adapter that
it is using is of limited capability and cannot support per
packet byte-swap settings (for asynchronous packets).
In that case the application might want to select to
transmit the data in the form that will not cause extra
overhead due to the software-performed byte swapping.
Note that if the adapter hardware supports per-packet
transmit byte-swap settings, then FALSE is always
returned in the output buffer, since software byte swaps
are never needed.

49 *((BOOLEAN *)Buffer) must be either TRUE or FALSE.

Page 227

FireAPI User Mode Interface Unibrain

OID_RECEIVE_BUFFER_SIZE

Returns the size in bytes of the reception buffer that the
miniport uses for receiving asynchronous traffic.
This value is registry configurable, and is read by the
1394 stack at load time.

OID_DEF_AR_PACKET_TRANSFER

Returns the default maximum number of asynchronous
packets that will be transferred from kernel mode to
user mode in each call to C1394GetNextRequest.
New address ranges are initialized with this value.
Applications can either modify the global setting or
modify this setting separately for specific address
ranges by using C1394SetInformation and the
OID_AR_PACKET_TRANSFER identifier.

OID_AR_PACKET_TRANSFER

Returns the current value of the maximum number of
asynchronous packets that will be transferred from
kernel mode to user mode in each call to
C1394GetNextRequest for the specific address range.

OID_BUS_RESET_EXCEPTIONS

Maintained after the release of ubCore 5.50 for
backwards compatibility reasons.

Always indicates that UB1394.DLL will NEVER raise a
SEH exception when a transaction request fails because
of a bus reset.

OID_ISO_REQUEST_PACKETS

Return the default maximum number of isochronous
packets that an adapter channel will be able to accept
with a single isochronous request.
This value is the one that the class driver will use by
default if a client does not specify the
PACKETS_PER_REQUEST flag when opening an
adapter channel.
This value is registry configurable, and is read by the
1394 stack at load time.

OID_MAX_ISO_REQUEST_PACKETS

Retuns the overall maximum number of isochronous
packets that an adapter channel can accept in a single
request.
Clients that specify the PACKETS_PER_REQUEST
flag when opening an adapter channel, cannot put a
greater value in the uMaxPacketsPerRequest field.
This value is registry configurable, and is read by the
1394 stack at load time.

OID_DMA_LIMIT

Returns the maximum size in bytes of a single DMA
operation that the operating system can perform on the
current hardware platform.
This is usually around 2GB for 32-bit systems, and may
get limited to 1MB for 64-bit systems.
This value is a hard limit on the size of an isochronous
operation. If you want to transmit/receive more bytes
that that you will have to use multiple isochronous
requests, so that each is less than the DMA limit.

Page 228

FireAPI User Mode Interface Unibrain

OID_MULTIDMA_MODE

Returns the current DMA Multiplexing Mode.
Supported values are:
typedef enum
{
 MultiDMAOnLastContext = 0,
 MultiDMADisabled = 1,
 MultiDMAForced = 2,
}
MultiDmaOperation;

See the documentation in the isochronous operations
section for more details.

Identification Information Group

OID_GUID
The adapter’s GUID. The C1394_GUID type is defined
as a structure containing a string with 8 bytes, so
effectively the GUID is returned in big endian.

OID_PRODUCT_ID

The adapter’s Product ID. The C1394_PRODUCT_ID
type is defined as a structure containing a string with 3
bytes, so effectively the product ID is returned in big
endian.

OID_VENDOR_ID

The adapter’s Vendor ID. The C1394_VENDOR_ID
type is defined as a structure containing a string with 3
bytes, so effectively the product ID is returned in big
endian.

OID_1394_COMPLIANCE

Returns whether the adapter is 1394-1995 or P1394a
compliant. The possible return values are:
• COMPLIANCE_NONE
• COMPLIANCE_1394_1995
• COMPLIANCE_1394A
• COMPLIANCE_1394B

OID_OHCI_VERSION

The OHCI version to which the adapter complies. The
major version is in the high word and the minor version
is in the low word.
COMPLIANCE_NONE indicates a non
OHCI-compliant adapter.
COMPLIANCE_PARTLY_OHCI (defined as
0xFFFFFFFF) indicates an adapter that only supports a
subset of the OHCI standard.

Link Layer Information Group

OID_LINK_SPEED

Returns the maximum speed capability of the LINK on
this adapter. This information is made available to
remote nodes by the class driver, through the link_spd
field in Bus_Info_Block (P1394a p9.18).

The possible return values are {S100, S200, S400,
S800, S1600, S3200}.

OID_LINK_LAYER_ENABLE_STATUS

Indicates whether the link layer is enabled on the
adapter.
This corresponds to bit linkEnable in the HCControl
registers (OHCI paragraph 5.7).

OID_ISOCHRONOUS_ENABLE_STATUS Indicates whether the adapter has enabled isochronous
operations.

Page 229

FireAPI User Mode Interface Unibrain

OID_POSTED_WRITES_ENABLE_STATUS

Indicates whether the adapter has enabled posted writes
(OHCI paragraph 3.3.3).
This corresponds to bit postedWriteEnable in the
HCControl registers (OHCI paragraph 5.7).
Note: In the Windows™ implementation physical writes are not
enabled at all, so this should return 0.

OID_LPS_BIT

Indicates whether the communication between the Link
and the PHY is enabled.
This corresponds to bit LPS in the HCControl register
(OHCI paragraphs 5.7, 5.7.3).

OID_ABDICATE_BIT
Returns the value of the abdicate bit in the bus_depend
field of the STATE_CLEAR register (P1394a
paragraph 9.23).

OID_BYTE_SWAP

Indicates whether data should be byte swapped by the
adapter upon reception of asynchronous transaction
requests/responses. The byte swap setting for incoming
channel data is specified separately for each channel.
See the discussions at the beginning of this document
for a description of the issues involved with byte
swapping.
This corresponds to the reverse of the noByteSwapData
bit in the HCControl register (OHCI paragraphs 5.7,
5.7.1).
The start up default for all adapters is not to byte swap
data; the miniport driver should by default assume a big
endian representation. The endianess setting is
controlled through the class driver’s registry settings.

OID_LINK_REGISTER_ACCESS

Reads a quadlet value from one of the standard registers
of the link layer.
For more information on this capability see the section
Changing the Link Registers of this document.

OID_CYCLE_START_AVAILABLE

Returns whether there is any cycle start activity on the
bus. This means that either the adapter is generating
these cycle start packets itself (which means it is root
and cycle master), or it is receiving cycle start packets
from the bus.
When the adapter is the root node on its bus, the
identifier OID_CYCLE_MASTER_STATUS can be used
to find out whether the adapter is also acting as the
cycle master or not.

OID_DUAL_PHASE_RETRY_SUPPORTED Indicates whether the adapter supports the dual phase
retry protocol.

OID_CURRENT_RETRY_PROTOCOL

Returns the current retry protocol in use on the adapter.
The possible return values are:
• SINGLE_PHASE _RETRY_PROTOCOL
• DUAL_PHASE _RETRY_PROTOCOL

OID_DUAL_PHASE_RETRY_TIMEOUT Returns the timeout used in the dual phase retry
protocol (if it is supported by the adapter).

Page 230

FireAPI User Mode Interface Unibrain

OID_SINGLE_PHASE_RETRY_COUNTS

Returns the single phase retry counts:
1. Asynchronous Response Retries
2. Asynchronous Request Retries

This information is found in the ATRetries register
(OHCI 1.0 Paragraph 5.4). If the adapter is not OHCI
compliant then the equivalent information is returned.

PHY Information Group

OID_NODE_ID

Returns the 16-bit Node ID of the adapter. The value is
returned using the C1394_NODE_ID structure which
uses bit fields over a USHORT. So the value returned is
always in the native endianess of the machine that the
driver runs on.

OID_ROOT_STATE
Indicates whether the adapter is the root node on its
attached network. This can be found at the R bit in the
standard PHY registers (P1394a Paragraph 6.1).

OID_FORCE_ROOT Returns the value of the force_root variable for the
adapter.

OID_GAP_COUNT
Returns the value of the gap_count variable for the
adapter. This can be found as the Gap_count field in the
standard PHY registers (P1394a Paragraph 6.1).

OID_POWER_STATUS_BIT
Returns the value of the PS bit (cable power active) in
the standard PHY registers (P1394a Paragraphs 6.1,
7.3).

OID_ROOT_HOLD_OFF_BIT Returns the value of the RHB bit in the standard PHY
registers (P1394a Paragraph 6.1).

OID_SELF_ID_PACKETS

Returns a copy of the self-ID packets that the adapter
received during the last bus reset. These self-ID packets
will always contain the self-ID packet(s) of the local
adapter.

OID_CONTENDER_BIT

Returns the value that the adapter will use for the c bit
in its self-ID packets it is going to transmit after the
next bus reset.
This is available as the Contender bit in the extended
PHY registers (P1394a Paragraph 6.1).

OID_CYCLE_MASTER_STATUS

Indicates whether the node is performing cycle master
tasks. This is indicated through the cmstr bit in the
STATE_CLEAR.bus_depend field (1394-1995
Paragraph 8.3.2.2.1).

OID_PHY_ENHANCEMENTS_ENABLE_STATUS

Returns the value of the aPHYEnhanceEnable bit in the
HCControl register (OHCI 1.0 Paragraph 5.7).
It indicates whether the PHY enhancements are
enabled.

OID_PHY_SPEED
Returns the maximum speed capability of the PHY on
this adapter. The possible return values are {S100,
S200, S400, S800, S1600, S3200}.

OID_MAX_REPEATER_DELAY

Returns the value of the Delay field in the extended
PHY registers (P1394a Paragraph 6.1), which indicates
the worse case repeater delay expressed as:

144+Delay*20 nsec

Page 231

FireAPI User Mode Interface Unibrain

OID_JITTER

Returns the value of the Jitter field in the extended
PHY registers (P1394a Paragraph 6.1), which indicates
the difference between the fastest and the slowest
repeater delay expressed as:

(Jitter+1)*20 nsec

OID_POWER_CLASS

Returns the power class of the adapter. This is the value
transmitted in the adapter’s self-ID packets. It is also
located in the Pwr field of the extended PHY registers
(P1394a Paragraph 6.1).

OID_ARBITRATION_ACCELERATION_STATUS
Returns the value of the Enab_accel bit in the extended
PHY registers (P1394a Paragraph 6.1), which indicates
whether the arbitration accelerations are enabled.

OID_MULTI_SPEED_PACKET_CONCATENATE_STATUS
Returns the value of the Enab_multi bit in the extended
PHY registers (P1394a Paragraph 6.1), which indicates
that multi speed packet concatenation is enabled.

OID_PHY_REGISTER_PAGE

Returns the contents of the requested PHY register
page. These registers are accessible through the
Page_Select and Port_Select fields of the extended
PHY register map (P1394a Paragraph 6.1).

OID_SUSPEND_RESUME_FAULT
Indicates whether the Fault bit in the Port Status
register page (PHY Register Page 0) for the specified
port is set.

OID_TOTAL_PORTS
Returns the number of ports found on the adapter. This
is available as the Total_ports field in the extended
PHY registers (P1394a Paragraph 6.1).

OID_PORT_STATUS

Returns the status of the specified port. |The possible
values returned through OutputBuffer are:
• PortStatusInvalid: The port number is not valid on

this adapter.
• PortStatusUnknown: The miniport cannot

provide per port status information.
• PortStatusConnected: The port is connected.
• PortStatusDisconnected: The port is

disconnected.
• PortStatusDisabled: The port is disabled.
• PortStatusSuspended: The port is suspended.

OID_CHILD_PORT
Indicates whether the specified port is a child port. If
the port specified is invalid then the function should
return STATUS_1394_INVALID_PARAMETER.

OID_PORT_NEGOTIATED_SPEED Returns the maximum speed negotiated between this
PHY port and its immediately connected port.

OID_ASYNCHRONOUS_REQUEST_FILTER_STATUS
Returns in OutputBuffer the contents of the
AsynchRequestFilter register (OHCI 1.0 Paragraph
5.13.1).

OID_ADAPTER_CONNECTED

Indicates whether any of the adapter’s ports are
physically connected. Although this information can be
derived by examining the port status information, some
adapter’s may not be able to provide that kind of
information, while they might be able to indicate
whether or not any port at all is connected.

Page 232

FireAPI User Mode Interface Unibrain

Channel Information Group

OID_CHANNEL_MASK

Returns the current value of the channel mask
associated with an adapter channel (used for stream
operations).
This 64-bit mask informs the drivers about the
isochronous channel numbers that the client intends to
use through the adapter channel. The class driver will
only allow receive/transmit requests for the channel
numbers set in this mask.
Clients can control this mask by specifying the
OID_CHANNEL_MASK oid in a call to
C1394SetInformation.

OID_CHANNEL_REQUEST_INDEX Returns the value that will be used as the request index
for the next request to be submitted to the class driver.

Core CSR Registers Group

OID_CSR_BUS_MANAGER_ID
Returns the contents of the BUS_MANAGER_ID
register (1394-1995 paragraph 8.3.2.3.6).
See note below for OID_CSR_xxx.

OID_CSR_CYCLE_TIME
Returns the contents of the CYCLE_TIME register
(1394-1995 paragraph 8.3.2.3.1).
See note below for OID_CSR_xxx.

OID_CSR_BANDWIDTH_AVAILABLE

Returns the contents of the
BANDWIDTH_AVAILABLE register (1394-1995
paragraph 8.3.2.3.7).
See note below for OID_CSR_xxx.

OID_CSR_CHANNELS_AVAILABLE
Returns the contents of the CHANNELS_AVAILABLE
register (1394-1995 paragraph 8.3.2.3.8).
See note below for OID_CSR_xxx.

OID_CSR_BUS_TIME
Returns the contents of the BUS_TIME register (1394-
1995 paragraph 8.3.2.3.2).
See note below for OID_CSR_xxx.

OID_CSR_BUSY_TIMEOUT
Returns the contents of the BUSY_TIMEOUT register
(1394-1995 paragraph 8.3.2.3.5).
See note below for OID_CSR_xxx.

Bus Topology Information Group

OID_NODE_COUNT
Returns the number of nodes that are connected to the
bus.
NOTE: Requires the bus number as input parameter.

OID_PHYSICAL_NODES
Returns a 64-bit value indicating the physical IDs of the
nodes that are physically present on the specified bus.
NOTE: Requires the bus number as input parameter.

OID_LINK_ON_NODES

Returns a 64-bit value indicating the physical IDs of the
nodes on the specified bus that have their link layer
active. These are the nodes that had the L-bit set in the
self-ID packets that were transmitted after the last bus
reset.
NOTE: Requires the bus number as input parameter.

OID_CONTENDER_NODES

Returns a 64-bit value indicating the physical IDs of the
nodes on the specified bus that had the c-bit (contender)
set in the self-ID packets that were transmitted after the
last bus reset.
NOTE: Requires the bus number as input parameter.

OID_HOP_COUNT
Returns the bus hop count (the maximum distance
between any two nodes) .
NOTE: Requires the bus number as input parameter.

Page 233

FireAPI User Mode Interface Unibrain

OID_SPEED_TABLE

Returns a copy of the class driver’s speed table for the
specified bus. This table contains the maximum
transmission rate between any pair of nodes on that bus.
NOTE: Requires the bus number as input parameter.

OID_SELFID_ANALYSIS_ERROR

Returns a mask with the error codes that were detected
by the class driver during the selfID packet analysis.
When there is no problem, the value returned is equal to
SELFID_OK.
For a complete list of the defined flags, see section
SelfID Analysis Errors at the end of this document.
NOTE: Requires the bus number as input parameter.

OID_TOPOLOGY_ANALYSIS_ERROR

Returns a mask with the error codes that were detected
during the topology analysis by the class driver.
When there is no problem, the value returned is equal to
TOPOLOGY_OK.
For a complete list of the defined flags, see section
Topology Analysis Errors at the end of this document.
NOTE: Requires the bus number as input parameter.

OID_BUS_TOPOLOGY
Returns information about the node on the bus,
including information on the tree structure of the bus.
NOTE: Requires the bus number as input parameter.

Statistics Group

OID_STATISTICS_ENABLE_STATUS Indicates whether statistics collection is enabled on the
adapter.

OID_ASYNCHRONOUS_STATISTICS Returns the adapter’s asynchronous statistics.

OID_STREAM_STATISTICS Returns the adapter’s stream statistics (totals for all
channels, both asynchronous and isochronous).

OID_CHANNEL_STATISTICS Returns the adapter’s statistics for the specified channel.
OID_PHY_STATISTICS Returns the adapter’s PHY statistics.

Note that the OIDs in the Core CSR Registers Group have been introduced solely for the purpose of
making possible synchronous access to these registers if they are available on the local host.

Page 234

FireAPI User Mode Interface Unibrain

The output parameter requirements for each type are listed in the table that follows.

Object Identifier Buffer UBufferLength
OID_ABDICATE_BIT
OID_ARBITRATION_ACCELERATION_STATUS
OID_ADAPTER_CHECK_FOR_HUNG
OID_ADAPTER_CONNECTED
OID_BYTE_ALIGNMENT_CAPABLE
OID_BYTE_SWAP
OID_CHILD_PORT
OID_CYCLE_MASTER_CAPABLE
OID_CYCLE_MASTER_CAPABLE_BIT
OID_CYCLE_MASTER_STATUS
OID_CYCLE_START_AVAILABLE
OID_CONTENDER_BIT
OID_DATA_CRC_INDICATED
OID_DUAL_PHASE_RETRY_SUPPORTED
OID_FORCE_ROOT
OID_HEADER_CRC_INDICATED
OID_IRM_CAPABLE_BIT
OID_ISOCHRONOUS_CAPABLE
OID_ISOCHRONOUS_CAPABLE_BIT
OID_ISOCHRONOUS_ENABLE_STATUS
OID_LINK_LAYER_ENABLE_STATUS
OID_LPS_BIT
OID_MULTI_SPEED_PACKET_CONCATENATE_STATUS
OID_PHY_ENHANCEMENTS_ENABLE_STATUS
OID_PING_CAPABLE
OID_POSTED_WRITES_ENABLE_STATUS
OID_POWER_MANAGEMENT_CAPABLE
OID_POWER_MANAGEMENT_CAPABLE_BIT
OID_POWER_STATUS_BIT
OID_ROOT_HOLD_OFF_BIT
OID_ROOT_STATE
OID_SERIAL_BUS_MANAGER_CAPABLE_BIT
OID_SHORT_BUS_RESET_CAPABLE
OID_STATISTICS_ENABLE_STATUS
OID_WORD_ALIGNMENT_CAPABLE
OID_MAP_PHYSICAL_ADDRESS_CAPABLE

BOOLEAN * sizeof(BOOLEAN)

OID_1394_COMPLIANCE
OID_CONFIG_ROM_CRC_CONTROL
OID_CURRENT_RETRY_PROTOCOL
OID_CYC_CLK_ACC
OID_CYCLE_TIME_CHANGE_THRESHOLD
OID_DEF_AR_PACKET_TRANSFER
OID_DMA_LIMIT
OID_JITTER
OID_GAP_COUNT
OID_GENERATION_COUNT
OID_HOP_COUNT
OID_ISO_RECEIVE_DMA_CONTEXTS
OID_ISO_REQUEST_PACKETS
OID_ISO_TRANSMIT_DMA_CONTEXTS
OID_LINK_SPEED
OID_MAX_ISO_REQUEST_PACKETS
OID_MAX_REC
OID_MAX_REPEATER_DELAY
OID_MULTIDMA_MODE
OID_NODE_COUNT
OID_OHCI_VERSION
OID_PCI_LATENCY
OID_PHY_SPEED
OID_POWER_CLASS
OID_PORT_STATUS
OID_RECEIVE_BUFFER_SIZE
OID_SELFID_ANALYSIS_ERROR
OID_TOTAL_PORTS

ULONG * sizeof(ULONG)

OID_PHYSICAL_NODES
OID_LINK_ON_NODES
OID_CONTENDER_NODES

ULONGLONG * sizeof(ULONGLONG)

OID_SPEED_TABLE void * SPEED_TABLE_SIZE

OID_BUS_TOPOLOGY PC1394_BUS_
TOPOLOGY_INFO sizeof(C1394_BUS_TOPOLOGY_INFO)

OID_BUS_RESET_EXCEPTIONS PC1394_BR_
EXCEPTION_STATUS sizeof(C1394_BR_EXCEPTION_STATUS)

OID_CONFIGURATION_ROM void * 20 bytes

OID_NODE_ID PC1394_NODE_ID sizeof(C1394_NODE_ID)

OID_GUID PC1394_GUID sizeof(C1394_GUID)

Page 235

FireAPI User Mode Interface Unibrain

OID_PRODUCT_ID PC1394_PRODUCT_ID sizeof(C1394_PRODUCT_ID)

OID_VENDOR_ID PC1394_VENDOR_ID sizeof(C1394_VENDOR_ID)

OID_DUAL_PHASE_RETRY_TIMEOUT PC1394_DUAL_
PHASE_TIMEOUT sizeof(C1394_DUAL_PHASE_TIMEOUT)

OID_SINGLE_PHASE_RETRY_COUNTS PC1394_SINGLE_
PHASE_RETRIES

sizeof(C1394_SINGLE_PHASE_RETRIE
S)

OID_SELF_ID_PACKETS void * variable

OID_ASYNCHRONOUS_REQUEST_FILTER_STATUS PREGISTER_64 sizeof(REGISTER_64)

OID_CSR_BUS_TIME
OID_CSR_BANDWIDTH_AVAILABLE
OID_CSR_BUS_MANAGER_ID
OID_CSR_BUSY_TIMEOUT
OID_CSR_CYCLE_TIME

PREGISTER_32 sizeof(REGISTER_32)

OID_CSR_CHANNELS_AVAILABLE PREGISTER_64 sizeof(REGISTER_64)

OID_ASYNCHRONOUS_STATISTICS Not defined yet Not defined yet

OID_STREAM_STATISTICS Not defined yet Not defined yet

OID_PHY_STATISTICS Not defined yet Not defined yet

The following object identifiers use the OutputBuffer parameter to point to a structure that contains
parameters that C1394QueryInformation should use. The function results are stored in this same
structure.

Object Identifier Buffer UbufferLength
OID_PORT_STATUS
OID_CHILD_PORT
OID_SUSPEND_RESUME_FAULT
OID_PORT_NEGOTIATED_SPEED

PC1394_PORT_INFORMATION sizeof(C1394_PORT_INFORMATION)

OID_BUS_TOPOLOGY
OID_CONTENDER_NODES
OID_HOP_COUNT
OID_LINK_ON_NODES
OID_NODE_COUNT
OID_PHYSICAL_NODES
OID_SELFID_ANALYSIS_ERROR
OID_SPEED_TABLE

PC1394_BUS_ID sizeof(C1394_BUS_ID)

OID_AR_PACKET_TRANSFER C1394_AR_PACKET_TRANSFER sizeof(C1394_AR_PACKET_TRANSFER)

OID_QUERY_SW_BYTE_SWAP BOOLEAN * sizeof(BOOLEAN)

OID_LINK_REGISTER_ACCESS PC1394_LINK_REGISTER_ACCESS sizeof(C1394_LINK_REGISTER_ACCESS)

OID_PHY_REGISTER_PAGE PC1394_PHY_REGISTER_PAGE sizeof(C1394_PHY_REGISTER_PAGE)

OID_ADAPTER_FIFO PC1394_ADAPTER_FIFO_SETTINGS sizeof(C1394_ADAPTER_FIFO_SETTINGS)

OID_CHANNEL_MASK PCHANNEL_MASK_STRUCT sizeof(CHANNEL_MASK_STRUCT)

OID_CHANNEL_REQUEST_INDEX PCHANNEL_RQ_INDEX_INFO sizeof(CHANNEL_RQ_INDEX_INFO)

OID_CHANNEL_STATISTICS Not yet defined. Not yet defined.

Note: Some of the object identifiers listed earlier might correspond to items that are not directly
available on an adapter, for example fields in the extended PHY register map. If the miniport driver can
obtain equivalent information in some other adapter-specific way, then it will provide support for that
object identifier (in essence emulate the feature).

Note: There are some pairs of OIDs in the form XXX_CAPABLE and XXX_CAPABLE_BIT. This is
done in order to allow maximum flexibility. For example the adapter might be XXX_CAPABLE but an
application might want it to temporarily turn off the XXX_CAPABLE_BIT in the Bus_Info_Block.

Many of the object identifiers listed above, are for simple data types, like BOOLEAN and ULONG.
For ease of use an application can use the C1394QueryULONGInformation and
C1394QueryBooleanInformation functions to query any item of ULONG or BOOLEAN type that
does not need input information. These functions are actually calling C1394QueryInformation with the
appropriate parameters and return status code checks.

Page 236

FireAPI User Mode Interface Unibrain

See Also
C1394QueryULONGInformation, C1394QueryBooleanInformation

Page 237

FireAPI User Mode Interface Unibrain

C1394QueryBooleanInformation
Wraps a call to C1394QueryInformation for any information item which returns a BOOLEAN value.

BOOLEAN C1394QueryBooleanInformation(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN OID_1394 Oid1394
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose information is to be queried.

Oid1394
The identifier of the information item that is to be queried.

Return Values
If the internal call to C1394QueryInformation is successful, then the data value returned by
C1394QueryInformation is also returned by this function. If the call to C1394QueryInformation fails
for any reason (invalid parameter, item not supported, invalid data type) then the value returned is
FALSE.

Remarks
This function is provided for convenience when calling C1394QueryInformation for standard object
identifiers that are known to be supported/available. In that case the call to C1394QueryInformation
never fails (provided the parameters are OK), so an application can use this function in order to
simplify its code.

Since this function returns no status code, it has no way to indicate an error. For that reason if the call
to C1394QueryInformation fails then FALSE is returned.

Note that this function does not check if the object identifier provided is one that returnes BOOLEAN
information, but simply passes it on to C1394QueryInformation. It is the responsibility of the caller to
provide one of the BOOLEAN information object identifiers.

See Also
C1394QueryInformation

Page 238

FireAPI User Mode Interface Unibrain

C1394QueryULONGInformation
Wraps a call to C1394QueryInformation for any information item which returns a ULONG.

ULONG C1394QueryULONGInformation(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN OID_1394 Oid1394,
 IN ULONG ErrorReturnValue
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose information is to be queried.

Oid1394
The identifier of the information item that is to be queried.

ErrorReturnValue
The identifier of the information item that is to be queried.

Return Values
If the internal call to C1394QueryInformation is successful, then the data value returned by
C1394QueryInformation is also returned by this function. If the call to C1394QueryInformation fails
for any reason (invalid parameter, item not supported, invalid data type) then the value specified by the
ErrorReturnValue parameters is returned.

Remarks
This function is provided for convenience when calling C1394QueryInformation for standard object
identifiers that are known to be supported/available. In that case the call to C1394QueryInformation
never fails (provided the parameters are OK), so an application can use this function in order to
simplify its code.

Since this function returns no status code, the only way to indicate an error is by returning a special
value.

Note that this function does not check if the object identifier provided is one that returnes ULONG
information, but simply passes it on to C1394QueryInformation. It is the responsibility of the caller to
provide one of the ULONG information object identifiers.

IMPORTANT NOTE: This function will most probably fail for any object identifiers that require
input parameters (OID_NODE_COUNT, OID_HOP_COUNT, etc), because the caller has no way of
specifying these parameters (which means that most probably a random value would be used). For such
OIDs use C1394QueryInformation.

See Also
C1394QueryInformation

Page 239

FireAPI User Mode Interface Unibrain

C1394SetInformation
This function is used to control various operational settings of the drivers.

STATUS_1394 C1394SetInformation(
 IN C1394_ADAPTER_HANDLE ClassAdapterHandle,
 IN OID_1394 ObjectIdentifier1394,
 IN PVOID InputBuffer,
 IN ULONG uInputBufferLength
)
;

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter on which to perform the operation.

ObjectIdentifier1394
The identifier of the information item that is to be set.

InputBuffer
A pointer to a structure that is going to be used as the input buffer to the operation.

uInputBufferLength
The size of the input buffer in bytes.

Return Values
Value Description
STATUS_1394_SUCCESS The operation was completed successfully.

STATUS_1394_INVALID_HANDLE
Either ClassAdapterHandle or a handle specified in the
oid-specific parameters is invalid.

STATUS_1394_INVALID_BUFFER_SIZE
The uInputBufferLength parameter is smaller than
required for the operation.

STATUS_1394_INVALID_PARAMETER
On of the ObjectIdentifier1394, InputBuffer, or
uInputBufferLength parameters, or an oid-specific
parameter is invalid.

STATUS_1394_NO_MEMORY A necessary memory allocation failed.

STATUS_1394_CONFLICT
The operation failed because there was a logical conflict
(for example an attempt to enable a channel number that
is already enable on a different adapter channel).

STATUS_1394_NOT_SUPPORTED The required functionality is not available on the adapter.

STATUS_1394_NOT_IMPLEMENTED
The required functionality is supported by the adapter but
not yet implemented by drivers.

STATUS_1394_DRIVER_INTERNAL_ERROR An unexpected error occurred.

Depending on the semantics associated with each object identifier, there might be additional return
values that only apply to the particular identifier. These are described in the remarks section.

Page 240

FireAPI User Mode Interface Unibrain

Remarks
The object identifiers defined are listed in the table below. The type assumed for Buffer for each
identifier is listed in another table that follows.

Object Identifier Description

Bus_Info_Block Group

OID_SERIAL_BUS_MANAGER_CAPABLE_BIT Sets the value of the bmc bit, as this appears in the
configuration ROM.

OID_POWER_MANAGEMENT_CAPABLE_BIT Sets the value of the pmc bit.

Link Layer Information Group

OID_LINK_REGISTER_ACCESS

Writes a quadlet value to one of the standard registers
of the link layer.
For more information on this capability see the section
Changing the Link Registers of this document.

Control & Operational Settings

OID_ADAPTER_FIFO

Sets the current FIFO settings of the adapter. This can
control the total amount of FIFO used on the adapter,
and the way into which is partitioned between receive,
transmit, asynchronous and isochronous operations.
For more information see the Changing FIFO settings
section at the end of the document.

OID_PCI_LATENCY

Sets the current PCI latency value for the 1394 adapter.
PCI latency can range from 0 to 255.
This value is configurable, both at run-time through
C1394SetInformation and at boot-time through the
appropriate registry setting of the miniport driver.

OID_DEF_AR_PACKET_TRANSFER

Sets the default maximum number of asynchronous
packets that will be transferred from kernel mode to
user mode in each call to C1394GetNextRequest.
New address ranges are initialized with this value.
Applications can modify this setting separately for
specific address ranges by using the identifier
OID_AR_PACKET_TRANSFER.

OID_AR_PACKET_TRANSFER

Sets the maximum number of asynchronous packets
that will be transferred from kernel mode to user mode
in each call to C1394GetNextRequest for a specific
address range.

OID_BUS_RESET_EXCEPTIONS Not Supported after the release of ubCore 5.50.

OID_MULTIDMA_MODE

Sets the current DMA Multiplexing Mode. Supported
values are:
typedef enum
{
 MultiDMAOnLastContext = 0,
 MultiDMADisabled = 1,
 MultiDMAForced = 2,
}
MultiDmaOperation;

See the documentation in the isochronous operations
section for more details on each more.
The current MultiDMA mode can only be changed
when there are no active adapter channels.

Page 241

FireAPI User Mode Interface Unibrain

Channel Information Group

OID_CHANNEL_MASK

Set the current value of the channel mask associated
with an adapter channel (used for stream operations).
This 64-bit mask informs the drivers about the
isochronous channel numbers that the client intends to
use through the adapter channel. The class driver will
only allow receive/transmit requests for the channel
numbers set in this mask.

OID_CHANNEL_MASK_ENABLE

Enables for use with an adapter channel the bits
specified in the channel mask provided. The channel
numbers that correspond to bits that are zero in the
provided mask will not be affected.
Effectively this OID does a binary OR of the provided
mask and the current value of the adapter channel’s
channel mask.
This OID is meant for easier control of the channel
mask.

OID_CHANNEL_MASK_DISABLE

Disables for use with an adapter channel the bits
specified in the channel mask provided. The channel
numbers that correspond to bits that are zero in the
provided mask will not be affected.
Effectively this OID does a binary AND of the provided
mask’s complement and the current value of the adapter
channel’s channel mask.
This OID is meant for easier control of the channel
mask.

The input parameter requirements for each OID are listed in the table that follows.

Object Identifier InputBuffer Buffer Length
OID_POWER_MANAGEMENT_CAPABLE_BIT
OID_SERIAL_BUS_MANAGER_CAPABLE_BIT BOOLEAN * sizeof(BOOLEAN)

OID_ADAPTER_FIFO PC1394_ADAPTER_FIFO_SETTINGS sizeof(C1394_ADAPTER_FIFO_SETTINGS)

OID_PCI_LATENCY ULONG * sizeof(ULONG)

OID_LINK_REGISTER_ACCESS PC1394_LINK_REGISTER_ACCESS sizeof(C1394_LINK_REGISTER_ACCESS)

OID_DEF_AR_PACKET_TRANSFER ULONG * sizeof(ULONG)

OID_MULTIDMA_MODE ULONG * sizeof(ULONG)

OID_AR_PACKET_TRANSFER C1394_AR_PACKET_TRANSFER sizeof(C1394_AR_PACKET_TRANSFER)

OID_CHANNEL_MASK CHANNEL_MASK_STRUCT sizeof(CHANNEL_MASK_STRUCT)

OID_CHANNEL_MASK_ENABLE CHANNEL_MASK_STRUCT sizeof(CHANNEL_MASK_STRUCT)

OID_CHANNEL_MASK_DISABLE CHANNEL_MASK_STRUCT sizeof(CHANNEL_MASK_STRUCT)

The power management capable bit and the serial bus manager capable bit are “sticky”. Once set, they
remain set until they are cleared, and they are not affected by 1394 bus resets, or the termination of the
application that set them.
Additionally, these is no way to prevent another client driver or application from setting/clearing these
bits. They are meant for use by 1394 management software and are not intended for general application
use.

The CHANNEL_MASK_STRUCT type is defined as shown below:

typedef struct
{

Page 242

FireAPI User Mode Interface Unibrain

 // The handle of the adapter channel.
 C1394_CHANNEL_HANDLE ChannelHandle;

 // The 64-bit mask containing the channel numbers to enable for this channel.
 ULONGLONG UEnabledChannelNumbers;
}
CHANNEL_MASK_STRUCT, *PCHANNEL_MASK_STRUCT;

The mask set with the channel applies to the specified adapter channel, and are also ORed-in the mask
of enabled channel numbers that the class driver maintains for all the adapter channels. A given
isochronous channel number can only be enabled for a single adapter channel.
The channel numbers that are enabled for an adapter channel, are not cleared by bus resets. They are
only cleared when either the application explicitly requests so with another C1394SetInformation call
or when the adapter channel is closed.

If the UEnabledChannelNumbers field contains a 1 in bit position N (0..63), then channel N is enabled
for this adapter channel. This means that the application can queue isochronous requests to the adapter
channel that use this channel number.

For example, to enable channel numbers 0, 11 and 39 the UEnabledChannelNumbers field should be
set to the value shown below:

(((ULONGLONG)1)<<0) | (((ULONGLONG)1)<<11) | (((ULONGLONG)1)<<39)

Note that enabling and disabling channel numbers is performed through a single operation. This means
that if you have enabled channels 0, 11 and 39 as shown above, and later on you also want to enable
42, then you will have to specify the value:

(((ULONGLONG)1)<<0) | (((ULONGLONG)1)<<11) | (((ULONGLONG)1)<<39) | (((ULONGLONG)1)<<42)

If you only specify the value (((ULONGLONG)1)<<42), then 0, 11 and 39 would become disabled.

Additionally note that, enabling/disabling channel numbers can only be performed when there are no
pending isochronous requests on an adapter channel. Otherwise the operation will fail, and
C1394SetInformation will return STATUS_1394_DEVICE_BUSY.

The reason for doing this is that a change in the channel mask only affects any new isochronous
requests that get submitted to the class driver after the channel mask is set.
For example, if channel 0 is enabled and there are 5 queued requests for isochronous receive with this
channel number, then if the application disables channel 0 and enables another channel number, the
pending requests for channel number 0 will not be cancelled by the 1394 stack.
If at that time, another application tries to enable channel zero for transmit/receive on another adapter
channel, and queues a request, then the adapter hardware may get confused over this situation and even
hung.

See Also
C1394QueryInformation, C1394OpenAdapterChannel, C1394IsochCancel

Page 243

FireAPI User Mode Interface Unibrain

C1394GetAdapterMaxRec
Returns the value of the max_rec field in the Bus_Info_Block of the specified adapter.

ULONG C1394GetAdapterMaxRec(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose max_rec value is requested.

Return Values
If the adapter handle is invalid then the return value is 0xFFFFFFFF.

Remarks
The max_rec field in the Bus_Info_Block of configuration ROM puts an additional limit to the
maximum payload size of incoming block write requests, and outgoing block read responses. The
maximum data payload is equal to 2max_rec+1 bytes, and the maximum values are shown in the table
below (copied from P1394A 2.1, paragraph 9.23 (P1394a 2.0 paragraph 9.18)).

max_rec Maximum Payload (bytes)
0 Not Specified
1 4
2 8
3 16
4 32
5 64
6 128
7 256
8 512
9 1024

A16 2048
B16 4096
C16 8192
D16 16384

E16 and F16 Reserved

Note that this limit applies only to asynchronous payloads. Isochronous operations are not affected by
the max_rec field.
The value of max_rec can be also derived by calling C1394QueryInformation, and specifying the
OID_MAX_REC object identifier. The C1394GetAdapterMaxRec function is available for ease of use,
since the class driver has this information cached for each adapter, and can return it even if there is a
bus reset on the adapter at the time of the call. Additionally this function yields better performance as it
avoids making passing the call to the miniport who is controlling the adapter.

See Also
C1394QueryInformation, C1394GetAdapterSpeed, C1394GetMaxPayloadForMaxRec,
C1394GetMaxPayloadForSpeed, C1394GetMaxSpeedToNode

Page 244

FireAPI User Mode Interface Unibrain

C1394GetAdapterGUID
Retrieves the GUID of the specified adapter.

void C1394GetAdapterGUID(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 OUT PC1394_GUID pGUID
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose GUID is requested.

pGUID
A pointer to a C1394_GUID structure where the GUID will be stored.

Return Values
If the memory pointed to by pGUID is not accessible then the function will fail silently, that is it will
return without performing any actions.
If the adapter handle is invalid then the GUID returned will be all zeros.

Remarks
The function retrieves the adapter’s GUID without a switch to kernel mode, so it is a more efficient
way to retrieve the GUID of an adapter handle than calling C1394QueryInformation with OID_GUID.

See Also
C1394QueryInformation

Page 245

FireAPI User Mode Interface Unibrain

C1394GetAdapterNodeID
Returns the current NodeID of the specified adapter.

C1394_NODE_ID C1394GetAdapterNodeID(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose current NodeID is requested.

Return Values
If the adapter handle is invalid or there is a bus reset in progress then the NodeID returned has its BusID
field equal to 1023 and the PhysicalID field equal to 63 (which results in NodeID.Value being equal to
(unsigned short)0xFFFF).

Remarks
Calling this function is functionally equivalent to calling C1394QueryInformation with the
OID_NODE_ID object identifier, but using C1394GetAdapterNodeID is easier to use and yields better
performance since the class driver maintains this information and does not have to pass the call to the
miniport driver that controls the adapter.

See Also
C1394QueryInformation, C1394IsBusResetInProgress

Page 246

FireAPI User Mode Interface Unibrain

C1394GetAdapterSpeed
Returns the maximum transmission speed of the specified adapter.

C1394_SPEED_CODE C1394GetAdapterSpeed(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose maximum transmission speed is
requested.

Return Values
If the adapter handle is invalid then the return value is SPEED_CODE_INVALID.

Remarks
The function returns the minimum of the adapter’s link and PHY speed. The same information can be
derived by calling C1394QueryInformation twice, specifying the OID_LINK_SPEED and
OID_PHY_SPEED object identifiers, and taking the minimum of the returned values.
This function is available for ease of use, since the class driver has this information cached for each
adapter, and additionally it yields better performance as it avoids making any calls to the miniport who
is controlling the adapter.

See Also
C1394QueryInformation, C1394GetAdapterMaxRec, C1394GetMaxPayloadForSpeed,
C1394GetMaxSpeedToNode

Page 247

FireAPI User Mode Interface Unibrain

C1394GetCycleTime
Returns the value of the CYCLE_TIME register.

ULONG C1394GetCycleTime(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter whose cycle timer value is requested.

Return Values
If C1394AdapterHandle is an invalid adapter handle then 0 is returned. Otherwise the cycle timer value
is returned as a ULONG in the machine’s native endianess.

Remarks
The structure of the CYCLE_TIME register is described in 1394-1995 paragraph 8.3.2.3.1.

The return value can be assigned to the uValue member of the C1394_CYCLE_TIME_REGISTER
structure, so that the structure bit fields can be used to parse the information in the cycle timer. This
structure is defined as shown below:

typedef union
{
 ULONG uValue;

 struct
 {
 ULONG CycleOffset:12;
 ULONG CycleCount:13;
 ULONG SecondCount:7;
 };
}
C1394_CYCLE_TIME_REGISTER, *PC1394_CYCLE_TIME_REGISTER;

The 12-bit CycleOffset field shall be updated on each tick of the local 24.576 MHz PHY clock, with the
exception that an increment from the value 3071 shall cause a wraparound to zero and shall carry into
the CycleCount field.
The value is the fractional part of the isochronous cycle of the current time, in units that are counts of
the 24.576 MHz clock.

The 13-bit CycleCount field shall increment on each carry from the CycleOffset field, with the
exception that an increment from the value 7999 shall cause a wraparound to zero and shall carry into
the second_count field.
The value is the fractional part of the second of the current time, in units of 125 microsec.

The 7-bit SecondCount field shall increment on each carry from the CycleCount field, with the
exception that an increment from the value 127 shall cause a wraparound to zero.

For information on how to calculate the difference between two values of the CYCLE_TIME register
see the related sample in the introductory section of this document.

See Also

Page 248

FireAPI User Mode Interface Unibrain

C1394GetIRMNodeID
Returns the 16-bit node identifier of the node currently elected as the Isochronous Resource Manager
(IRM).

C1394_NODE_ID C1394GetIRMNodeID(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_BUS_ID BusID
);

Parameters

C1394AdapterHandle
A handle that identifies to the class driver the adapter through which to look for the bus
specified.

BusID
The 10-bit bus identifier of the bus of interest.

Return Values
If the bus specified is unknown, or its IRM is unknown to the class driver or there is no IRM on the bus
then the node ID (1023,63) is returned (RetVal.Value==0xFFFF). The same value is returned if
C1394AdapterHandle is invalid.

Remarks
The node selected as the IRM is the node with the greater physical ID that had its contender bit set in
the self ID packets sent after the last bus reset.

Unless there was some error in the self ID packets, the class driver always has accurate information for
the local 1394 bus (BUS_ID==1023). Since the class driver is IRM-capable, and always sets the
contender bit in the local node’s self ID packets, there will always be an active IRM on the bus.
A return value of (1023,63) for the local 1394 bus identifier, indicates that there was some serious error
in the self ID packets, which prevented the class driver from determining which node is the IRM.

See Also
C1394GetAdapterNodeID, C1394GetRootNodeID

Page 249

FireAPI User Mode Interface Unibrain

C1394GetRootNodeID
Returns the 16-bit node identifier of the node currently elected as the Isochronous Resource Manager
(IRM).

C1394_NODE_ID C1394GetRootNodeID(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_BUS_ID BusID
);

Parameters

C1394AdapterHandle
A handle that identifies to the class driver the adapter through which to look for the bus
specified.

BusID
The 10-bit bus identifier of the bus of interest.

Return Values
If the bus specified is unknown, or its root node is unknown to the class driver then the node ID
(1023,63) is returned (RetVal.Value==0xFFFF). The same value is returned if C1394AdapterHandle is
invalid.

Remarks
Unless there was some error in the self ID packets, the class driver always has accurate information for
the local 1394 bus (BUS_ID==1023). A return value of (1023,63) for the local 1394 bus identifier
(LOCAL_1394_BUS_ID), indicates that there was some serious error in the self ID packets, which
prevented the class driver from determining which nodes are present on the bus.

See Also
C1394GetAdapterNodeID, C1394GetIRMNodeID

Page 250

FireAPI User Mode Interface Unibrain

C1394GetMaxPayloadForMaxRec
Returns the maximum payload that can be transmitted with an asynchronous packet to a node that has
the specified max_rec value in its configuration ROM.

ULONG C1394GetMaxPayloadForMaxRec(ULONG max_rec);

Parameters

max_rec
The value to calculate the payload for.

Return Values
If max_rec is 0, E16 or F16 (reserved values), or any other invalid value, then 0 is returned.

Remarks
This function is actually implemented as a macro for better performance.

See Also
C1394GetMaxPayloadForSpeed

Page 251

FireAPI User Mode Interface Unibrain

C1394GetMaxPayloadForSpeed
Returns the maximum payload that can be transmitted with an asynchronous packet at the specified
speed.

ULONG C1394GetMaxPayloadForSpeed(C1394_SPEED_CODE SpeedCode);

Parameters

SpeedCode
The speed code to calculate the result for.

Return Values
If a speed code other than S100, S200, S400, S800, S1600 or S3200 is specified, then the return value
is 0.

Remarks
This function is actually implemented as a macro for better performance.

Page 252

FireAPI User Mode Interface Unibrain

C1394GetMaxSpeedBetweenNodes
Returns the maximum transmission rate that can be used in transmissions between any of the nodes
specified, through the adapter specified.

C1394_SPEED_CODE C1394GetMaxSpeedBetweenNodes(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID *Nodes,
 IN ULONG uNumberOfNodes
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter through which to make the calculation.

Nodes
An array containing the 16-bit node identifiers of the nodes among which to calculate the
maximum transmission speed. If NULL, then all nodes present on the local 1394 bus are
implied. If non-NULL, then this array should contain at least one item.

uNumberOfNodes
The number of items in the Nodes array. The minimum legal value is 1. If Nodes is NULL then
this parameter is ignored.

Return Values
Any node that does not belong to the local 1394 bus is ignored in the calculations50.
Any destination 16-bit node ID, identifying a device on the local 1394 bus that is not physically
present, will also be ignored.
If the adapter handle specified is invalid, or there is a bus reset in progress on the adapter, or the
number of items that will be used in the calculation are zero, then SPEED_CODE_INVALID is returned.
Otherwise the maximum transmission rate that can be used between any two devices in the Nodes array
is returned.

Remarks
This function is usually called in order to calculate the transmission speed of an isochronous channel
that should be received by all nodes in a given set.
Calculating the maximum speed between a subset of the nodes on the local bus is not an expensive
operation because the class driver already has calculated the maximum transmission rate between all
pairs of nodes. Since the bus topology is a tree (no loops) the maximum speed between a set of nodes is
calculated using the formula below:

MaxSpeedBetween{N1, N2, …, Nm} = Min{ Speed(N1,N2), Speed(N1,N3), …, Speed(N1,Nm)}

If a client wants to find the maximum transmission speed from the local node to another node on the
bus, then it should better use the C1394GetMaxSpeedToNode function for better performance.

If C1394GetMaxSpeedBetweenNodes is called with a single argument then it returns the actual speed
capabilities of the specified node on the bus. This is the same value that C1394GetNodeSpeed returns.

See Also
C1394GetMaxSpeedToNode, C1394GetMaxPayloadForMaxRec, C1394GetMaxPayloadForSpeed,
C1394GetAdapterSpeed

50 This behaviour will be refined in future releases, when the 1394 bus bridge proposal achieves a more
complete and stable status.

Page 253

FireAPI User Mode Interface Unibrain

C1394GetMaxSpeedToNode
Returns the maximum transmission speed that can be used in a transmission to the destination node
through the adapter specified.

C1394_SPEED_CODE C1394GetMaxSpeedToNode(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID Destination
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter through which to make the calculation.

Destination
The 16-bit node identifier of the destination node for which to return the maximum
transmission speed.

Return Values
If the adapter handle specified is invalid, or there is a bus reset in progress on this adapter, or the
destination node is on a remote 1394 bus51, or the destination node is not physically present on the
local 1394 bus, then SPEED_CODE_INVALID is returned.

If the destination node is on the local 1394 bus, then the class driver will return the speed code of the
slowest device on the path from the local node to the destination node.

Remarks
If an application wants to calculate the maximum payload that it can physically transmit to a
destination node then it should use the return value of this function as a parameter to
C1394GetMaxPayloadForSpeed.

However this refers to maximum physical transmission capability. The destination node may not be
able to handle maximum sized packets in its transaction layer. The maximum payload that a node can
accept (provided that it can be physically transmitted to it) is defined by the value of the max_rec field
in its configuration ROM. This value is supposed to stay constant between bus resets52 so applications
can cache this value for various destination nodes, once they have retrieved it.

The result of this function can also be calculated by calling C1394GetMaxSpeedBetweenNodes using
an array containing the node identifier of the local node and the destination node. However this would
be extremely inefficient, since C1394GetMaxSpeedBetweenNodes has to run a relatively complex
graph algorithm in order to return its results.
The maximum speed between the local node and each other node on the local bus, is a piece of
information that will be requested too often, so the class driver performs this calculation after each bus
reset and caches these results for better performance.

See Also
C1394GetMaxPayloadForMaxRec, C1394GetMaxPayloadForSpeed, C1394GetAdapterSpeed

51 This behaviour will be refined in future releases, when the 1394 bus bridge proposal achieves a more
complete and stable status.
52 A change to any value in the configuration ROM should be followed by a bus reset.

Page 254

FireAPI User Mode Interface Unibrain

C1394GetNodeSpeed
Returns the speed code of the maximum transmission rate that a node is capable of achieving.

C1394_SPEED_CODE C1394GetNodeSpeed(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_NODE_ID NodeID
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter from which to retrieve the information.

NodeID
The 16-bit node identifier of the node whose transmission rate capabilities are being queried.

Return Values
If C1394AdapterHandle is invalid or the node specified by NodeID is not present on the bus, then
SPEED_CODE_INVALID is returned. Otherwise the class driver looks up the node’s information in its
internal speed table and returns the speed code of the node’s maximum transmit rate.

Remarks
The speed capabilities of a node on the bus might differ from the transmission rate at which the local
node can communicate with that node, because slower devices might be on the path between the two
nodes. Use the C1394GetMaxSpeedToNode function to retrieve that information.

C1394GetNodeSpeed is meant simply for convinience and clarity of code. It simply calls
C1394GetMaxSpeedBetweenNodes with a single argument.

See Also
C1394GetMaxSpeedBetweenNodes, C1394GetMaxSpeedToNode

Page 255

FireAPI User Mode Interface Unibrain

C1394GetPhyPacketType
Returns the exact type of the specified PHY packet.

C1394_PHY_PACKET_TYPE C1394GetPhyPacketType(
 PC1394_PHY_PACKET pPhyPacket
);

Parameters

pPhyPacket
A pointer to a PHY packet whose type is to be determined.

Return Values
The return values are taken from the C1394_PHY_PACKET_TYPE enumeration. See the remarks
section for more details.

Remarks
The C1394_PHY_PACKET_TYPE is defined as shown below:

typedef enum
{
 PhyPacketInvalid,
 PhyPacketSelfID0,
 PhyPacketSelfID1,
 PhyPacketSelfID2,
 PhyPacketSelfID3,
 PhyPacketLinkOn,
 PhyPacketConfiguration,
 PhyPacketPing,
 PhyReadBaseRegister,
 PhyReadPagedRegister,
 PhyBaseRegisterContents,
 PhyPagedRegisterContents,
 PhyPacketRemoteCommand,
 PhyPacketRemoteConfirmation,
 PhyPacketResume
}
C1394_PHY_PACKET_TYPE;

For each possible PHY packet type, C1394GetPhyPacketType will make certain that it has the correct
structure (the second quadlet is the complement of the first) and that all (if any) reserved fields have a
zero value. If any field is not valie then PhyPacketInvalid is returned.

This function correctly identifies all the extended PHY packet types defined by P1394A.

See Also
C1394TransmitRaw

Page 256

FireAPI User Mode Interface Unibrain

C1394GetTransactionType
A useful macro that returns the generic transaction type (request, response, stream, none, invalid) of the
specified transaction code.

ULONG C1394GetTransactionType(

C1394_TRANSACTION_CODE TransactionCode
);

Parameters

TransactionCode
The transaction code whose type is to be determined.

Return Values
The return values are shown in the table below:

Return Value Description
TRANSACTION_TYPE_NONE Invalid or reserved transaction code.

TRANSACTION_TYPE_REQUEST
Request packet transaction code (block write request,
quadlet write request, lock request, block read request,
quadlet read request)

TRANSACTION_TYPE_RESPONSE
Response packet transaction code (write response, lock
response, block read response, quadlet read response)

TRANSACTION_TYPE_STREAM Stream packet.

Remarks
This macro is useful for quick switching depending on the generic type of the transaction request in
hand. It is the most efficient way of deciding the generic transaction type since it is implemented using
an internal lookup table.

See Also
C1394GetExpectedResponseCode, C1394IsTransactionCodeLegal, C1394IsResponseCodeLegal

Page 257

FireAPI User Mode Interface Unibrain

C1394GetExpectedResponseCode
Returns the expected transaction response code for a transaction request.

C1394_TRANSACTION_CODE C1394GetExpectedResponseCode(
 IN C1394_TRANSACTION_CODE TransactionRequestCode
);

Parameters

TransactionRequestCode
The transaction request code for which to return the appropriate transaction response code.

Return Values
If TransactionRequestCode is a valid transaction code and indeed a transaction request code, then the
appropriate transaction response code is returned. Otherwise 0xFF is returned.

Remarks
This macro should be used when generating response packets, so that the response code is the correct
for the transaction request in question.
It is the most efficient way of determining the correct response code, since it is implemented using an
internal lookup table.

See Also
C1394GetTransactionType, C1394IsTransactionCodeLegal, C1394IsResponseCodeLegal

Page 258

FireAPI User Mode Interface Unibrain

C1394IsResponseCodeLegal
Indicates whether the value passed as a parameter is a valid transaction code.

BOOLEAN C1394IsResponseCodeLegal(

IN C1394_RESPONSE_CODE ResponseCode
);

Parameters

ResponseCode
The value to be checked for validity.

Return Values
If ResponseCode specifies a valid response code, then the return value is TRUE, otherwise it is
FALSE.

Remarks
This macro is the most efficient way for checking the validity of a response code value, since it is
implemented using an internal lookup table.

See Also
C1394GetExpectedResponseCode, C1394GetTransactionType, C1394IsTransactionCodeLegal

Page 259

FireAPI User Mode Interface Unibrain

C1394IsTransactionCodeLegal
Indicates whether the value passed as a parameter is a valid transaction code.

BOOLEAN C1394IsTransactionCodeLegal(

IN C1394_TRANSACTION_CODE TransactionCode
);

Parameters

TransactionCode
The value to be checked for validity.

Return Values
If TransactionCode specifies a valid transaction code, then the return value is TRUE, otherwise it is
FALSE.

Remarks
This macro is the most efficient way for checking the validity of a transaction code value, since it is
implemented using an internal lookup table.

See Also
C1394GetExpectedResponseCode, C1394GetTransactionType, C1394IsResponseCodeLegal

Page 260

FireAPI User Mode Interface Unibrain

Event Notification Functions

Page 261

FireAPI User Mode Interface Unibrain

C1394RegisterNotification
Registers a notification for the specified 1394-event type.

STATUS_1394 C1394RegisterNotification(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_EVENT_TYPE EventType,
 IN PVOID pNotificationSettings,
 IN PVOID Context,
 IN C1394_EVENT_INDICATION_HANDLER EventIndicationHandler
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which to register the notification.

EventType
The code of the 1394-event of interest.

pNotificationSettings
A pointer to an event type specific structure that contains additional parameters for the
registration of the notification.

Context
A pointer value that will be passed as additional caller-specified context to the event
notification handler.

EventIndicationHandler
A callback function that can be called to handle this event. This function pointer can be NULL.

Return Values
If the function is successful, then STATUS_1394_SUCCESS is returned. Otherwise the appropriate
error code is returned and *pNotificationHandle is set to NULL.

Remarks
Applications receive 1394-event notifications, through a Win32 event object. Each application that has
called C1394Initialize has an associated auto-reset event object. When a 1394-event should be
indicated to the application and the application’s 1394-event queue is empty, then the Win32 event
object is set. The application should test this object, and when it finds that it is signalled, then it should
repeatedly call C1394GetAsynchEvent until STATUS_1394_NOT_FOUND is returned. This is the
indication that there are no more 1394-event notifications for this application.

If the application has specified a valid function pointer in the EventIndicationHandler parameter then
C1394GetAsynchEvent will automatically call this function when it retrieves a 1394-event of the
associated type, without returning to the application. If NULL is specified as the
EventIndicationHandler then C1394GetAsynchEvent returns STATUS_1394_SUCCESS and an
information record is returned to the application. The application should then act upon this event as it
needs to, and then call C1394GetAsynchEvent again until STATUS_1394_NOT_FOUND is returned.

Note that the Win32 event object used for asynchronous notification signalling is auto-reset and is set
only upon the first 1394-event to be inserted in the queue. This means that once this event is signalled,
the application should not wait on it again until C1394GetAsynchEvent returns
STATUS_1394_NOT_FOUND. Otherwise the waiting thread will either timeout, or wait for ever53.

53 Depending on the timeout value specified in the call to the Win32 functions WaitForSingleObject
or WaitForMultipleObjects (or any other wrapper to these functions).

Page 262

FireAPI User Mode Interface Unibrain

An application can get the handle of the asynchronous notification event object by calling function
C1394GetAsynchEventHandle. This event object is created by C1394Initialize and deleted by
C1394Terminate, so the application should not call the Win32 function CloseHandle with its handle,
unless it has called the Win32 function DuplicateHandle first. Otherwise it will not be able to receive
asynchronous event notifications.

The C1394_EVENT_INDICATION_HANDLER type is defined as follows:

typedef void (*C1394_EVENT_INDICATION_HANDLER)(
 IN CLIENT_ADAPTER_HANDLE ClientAdapterHandle,
 IN C1394_EVENT_TYPE EventType,
 IN PC1394_EVENT_PARAMETERS_STRUCT pEventParameters,
 IN PVOID Context
);

Each application can only have a single notification handler for each 1394-event type. If
C1394RegisterNotification is called twice for the same 1394-event type, then the second call overrides
the settings of the first call.

The possible values for EventType that applications can specify, together with their meanings are
shown in the table that follows.

NOTE: In the current version of FireAPI only the EventPhyBusResetStart,

EventPhyBusResetComplete and EventMiniportAdapterRemoved events are enabled for user
mode applications.

EventType Meaning

EventPhyBusResetStart A bus reset has started on the local network or a remote
network.

EventPhyBusResetComplete The bus reset on the local network has completed.

EventMiniportAdapterRemoved
The 1394 adapter has been removed from the system. This can
happen if the 1394 driver stack is unloaded for a specified
adapter.

EventPhyConfigTimeout The network topology includes a loop and a configuration
timeout has occurred.

EventPhyCablePowerFail There is loss of cable power.

EventPhyPortStatusChanged

There is a change in the status of some port. A separate
indication is provided for each port whose status has changed.
If the port is being resumed on a boundary node then that node
should cause a bus reset soon so that the new bus topology is
discovered. In that case the port status change notification is
delivered prior to the bus reset notification.
As stated in P1394a paragraph 3.5.4 in some occasions
resumption of a suspended port causes all other suspended
ports to be also resumed. In that case the notifications for each
port are provided separately.
Not all miniport drivers support this feature, so trying to install
a notification for this event type might return
STATUS_1394_NOT_SUPPORTED.

EventPhyPortSuspendResumeFault

There was a fault generated during a port suspend/resume
handshake. This corresponds to the Fault field in the PHY
register page 0 (P1394a paragraph 6.1 – Table 6.2).

Not all miniport drivers support this feature, so trying to install
a notification for this event type might return
STATUS_1394_NOT_SUPPORTED.

Page 263

FireAPI User Mode Interface Unibrain

EventPhyPHYPacket

A PHY packet has been received. This is the indication that
clients drivers should use to perform remote PHY register
reads and remote commands. They should register an event
notification with C1394RegisterNotification and then use
C1394TransmitRaw or its wrapper,
C1394TransmitPHYPacket, to queue the packet for
transmission. When the packet is actually transmitted and the
response PHY packet arrives, then the event notification
callback will be called to process the response.
The PhyPHYPacket indication is not provided during the bus
reset phase, when self-ID packets are being sent.

EventPhyPingResponse

A response to a ping request has arrived. Although this is a
self-ID packet that will be indicated with the PhyPHYPacket
event, the PhyPingResponse indication contains the time that it
took the self-ID packet to arrive in response to the ping PHY
packet that was sent by a previous call to C1394PingNode.

EventLinkCycleTooLong
The last isochronous cycle was too long. More than
ISOCHRONOUS_CYCLE_TIME passed and a subaction gap
was not detected.

EventLinkCycleStart

A cycle start packet is received. This event should only be
indicated for the first cycle start packet that is received after a
cycle lost event, or the first cycle start packet that is ever
received.

EventLinkCycleLost
A cycle start packet was not received in the expected time.
Note: Many adapters may indicate this condition as an interrupt on each
cycle. This event is only indicated the first time it occurs after a cycle start
packet is received.

EventLinkDuplicateChannel
More than one isochronous packets with the same channel
number were detected on the network during the last
isochronous cycle.

EventLinkBusOccupancyViolation A node held control of the bus for too long.

EventLinkUnknownTransactionCode A valid packet (CRC-wise) was received with an unknown
transaction code.

EventLinkHeaderCRCError A packet was received that did not pass the header CRC check.

EventMiniportAdapterHardwareError A recoverable hardware error occurred on the adapter.

EventMiniportAdapterHung An unrecoverable error has occurred on the adapter and its
operation has stopped.

EventMiniportAdapterReset The miniport has reset the adapter in order to recover from
some serious error condition.

EventConfigGapCountChange A PHY configuration packet was received that changed the
current value of gap_count.

EventConfigCycleMasterActivated The adapter has been activated as the cycle master.

EventConfigCSRChange A CSR or an address range has been changed.

EventConfigGUIDsResolved
The class driver has completed the resolution of GUIDs for the
specified bus, which means that clients can proceed and call
the C1394ResolveGUID and C1394GetNodeGUID functions.

EventConfigDeviceRemoval A device to which there was an open handle has been removed
from the bus.

EventIrmChannelAllocated A channel has been allocated.

EventIrmChannelFreed A channel has been freed.

Page 264

FireAPI User Mode Interface Unibrain

EventIrmBandwidthAllocated Bandwidth has been allocated.

EventIrmBandwidthFreed Bandwidth has been freed.

EventIrmUnexpectedChannel An isochronous packet was received for a channel that is free
in the CHANNELS_AVAILABLE register.

See Also
C1394OpenAdapter, C1394CloseAdapter, C1394UnregisterNotification

Page 265

FireAPI User Mode Interface Unibrain

C1394UnregisterNotification
Unregisters a notification that was registered with a previous call to C1394RegisterNotification.

void C1394UnregisterNotification (
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 IN C1394_EVENT_TYPE EventType
);

Parameters

C1394AdapterHandle
A handle identifying to the 1394 stack the adapter on which the operation should take place.

EventType
The code of the 1394-event of interest.

Remarks
All registered 1394-event notifications are automatically freed when an application closes an adapter
handle with C1394CloseAdapter (in the same way that address range mappings also get freed).
However it is suggested as the proper practice to unregister all notifications from an adapter before
closing its handle.

Applications are assured that they will no more receive notifications about a given 1394-event from the
moment the call to C1394UnregisterNotification returns, even if an instance of the 1394-event had
already been queued in the application’s 1394-event queue before the application called
C1394UnregisterNotification.

See Also
C1394RegisterNotification, C1394GetAsynchEventHandle, C1394GetAsynchEvent,
C1394CloseAdapter

Page 266

FireAPI User Mode Interface Unibrain

C1394GetAsynchEvent
Returns information about an asynchronous 1394 event notification and/or calls the associated event
callbacks that the application has installed with C1394RegisterNotification.

STATUS_1394 C1394GetAsynchEvent(
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle,
 OUT PC1394_EVENT_PARAMETERS_STRUCT pEventInformation
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter from which to retrieve the next
asynchronous event notification.

pEventNotification
A pointer to a structure of type C1394_EVENT_PARAMETERS_STRUCT that will be filled
with information about the event, like the event code, and possibly other information if
available.

Return Values
If there is an event notification in the application’s event queue for this adapter, then the function
returns STATUS_1394_SUCCESS.
If there are no more events, then the function returns STATUS_1394_NOT_FOUND.
Otherwise the function returns an error code according to the guidelines specified in Status Code
Reference.

Remarks
Applications retrieve their asynchronous 1394-event notifications in a similar fashion to the processing
of transaction requests for address ranges. When the first event is queued, the application’s event object
for this adapter’s asynchronous events, is set.
Then the application should repeateadly call C1394GetAsynchEvent until
STATUS_1394_NOT_FOUND is returned.

See function C1394RegisterNotification for more information.

In cases where the application installs event notification callbacks for all the asynchronous events that
it has registered, then C1394GetAsynchEvent will always return STATUS_1394_NOT_FOUND.
However it must be called because it internally performs a loop that empties the asynchronous event
queue and calls the appropriate callbacks.

NOTE: While developing you might have successfully called C1394RegisterNotification for an event,
but your event callback never gets called. This symptom is a common error, and it is the result of
forgetting to call C1394GetAsynchEvent.

See Also
C1394GetAsynchEventHandle, C1394RegisterNotification, C1394UnregisterNotification

Page 267

FireAPI User Mode Interface Unibrain

C1394GetAsynchEventHandle
Returns the handle to the Win32 event object that is used for notifying an application about the
asynchronous 1394-events of its interest.

HANDLE C1394GetAsynchEventHandle(

IN C1394_ADAPTER_HANDLE C1394AdapterHandle
);

Parameters

C1394AdapterHandle
A handle that identifies to the 1394 stack the adapter from which to retrieve the Win32 event
handle.

Return Values
If the parameter is valid, then a non-NULL handle is returned. Otherwise NULL is returned.

Remarks
Applications retrieve their asynchronous 1394-event notifications in a similar fashion to the processing
of transaction requests for address ranges. When the first 1394-event notification is queued, the
application’s event object for this adapter’s asynchronous events is set. This is precisely the Win32
event object returned by C1394GetAsynchEventHandle.

See function C1394RegisterNotification for more information.

See Also
C1394GetAsynchEvent, C1394RegisterNotification, C1394UnregisterNotification

Page 268

FireAPI User Mode Interface Unibrain

C1394GetAddAdapterEventHandle
Returns the handle to the Win32 event object that is used for notifying an application about the addition
of a 1394 adapter in the system.

HANDLE C1394GetAddAdapterEventHandle(void);

Parameters

none

Return Values
The function always returns a valid handle.

Remarks
The event returned is set when a new adapter is added to the system. WDM drivers can be loaded and
unloaded on demand by the user without a reboot of the system. User mode FireAPI applications
should use this event in order to be signaled when an adapter is added to the system. 1394 pci adapters
are added to the system at boot time and are not removed or added again unless there is a specific
request by the user for the drivers to be unloaded and reloaded. If the 1394 adapter is not added and
removed from the system frequently for some other reasons there is not an imperative need to listen to
this event.

The event is created by C1394Initialize and if its creation fails then C1394Initialize also fails. That’s
why C1394GetAddAdapterEventHandle always returns a valid handle, as long as FireAPI has been
initialized. The event handle is closed by C1394Terminate so there is no need for the user to close this
handle.

The event is initially not signalled. When an application starts up it should open all available adapters
and then monitor this event for the addition of new adapters. When the event is signalled the
application should retrieve all adapters by calling C1394GetAdapters and then compare the GUIDs
reported to the GUIDs of the adapters that it has already opened and find out which are the new
adapters. You can easily retrieve the GUID of any open adapter handle by calling
C1394GetAdapterGUID.

The reason that notifications for new adapters do not use the standard mechanism provided by
C1394RegisterNotification is that in order to call C1394RegisterNotification you need to have an
adapter handle available, and you obviously can’t have an adapter handle for an adapter that has not yet
been added to the system.

See Also
C1394GetAsynchEvent, C1394RegisterNotification, C1394UnregisterNotification

Page 269

FireAPI User Mode Interface Unibrain

Miscellaneous Functions

Page 270

FireAPI User Mode Interface Unibrain

C1394AddBigEndian32
C1394AddBigEndian64
Adds two big endian values and returns the 32-bit or 64-bit result in big endian.

void C1394AddBigEndian32(
 OUT void *pResult,
 IN void *pOp1,
 IN void *pOp2
);

void C1394AddBigEndian64(
 OUT void *pResult,
 IN void *pOp1,
 IN void *pOp2
);

Parameters

pResult
Pointer to a 32-bit or 64-bit variable that will receive the result in big endian format.

pOp1
Pointer to a 32-bit or 64-bit variable that contains the first operand (in big endian).

pOp2
Pointer to a 32-bit or 64-bit variable that contains the second operand (in big endian).

Remarks
Both operands are assumed to already be in big endian format when this function is called.

See Also
SwapEndian32, SwapEndian64, BlockSwapEndian32

Page 271

FireAPI User Mode Interface Unibrain

C1394CalculateCRC16
Runs the CRC-16 algorithm and calculates a 16-bit CRC value for the specified data.

void C1394CalculateCRC16(
 IN void *pData,
 IN ULONG uDoublets,
 OUT UCHAR CRC[2]
);

Parameters

pData
A pointer to the memory area containing the data over which to calculate the CRC value.

uDoublets
The size of the data expressed in doublets (1 doublet = 16-bits = 2 bytes).

CRC
An array of two bytes into which the 16-bit CRC value will be returned.

Remarks
The CRC-16 algorithm is implemented as described in clause 8.1.5 in the CSR Architecture IEEE
standard.

Both the input data and the resulting 16-bit CRC are treated as big endian. This is the reason why the
CRC parameter is declared as a 2-byte array, and not an unsigned short integer (who would be
platform-endianess dependent).

If uDoublets is zero, then the resulting CRC will also be zero.

See Also
C1394CalculateLinkCRC

Page 272

FireAPI User Mode Interface Unibrain

C1394CalculateCRC8
Runs the CRC-8 algorithm over a block of memory and calculates an 8-bit CRC value.

BYTE C1394CalculateCRC8(
 IN void *Buffer,
 IN ULONG Bytes
);

Parameters

Buffer
A pointer to the memory area containing the data over which to calculate the CRC-8 value.

Bytes
The number of bytes to include in the calculation.

Remarks
The CRC-8 algorithm is implemented as described in annex C of the VersaPhy 1.0 standard.

This function expects the Buffer parameter to be valid and accessible for at least Bytes bytes. If this is
not true then an access violation will occur in user mode applications and a zero CRC will be returned
for kernel mode applications (kernel breakpoint if the debug drivers are being used).

When used to calculate the CRC of a VersaPhy packet, the packet must be in big-endian format and the
value of Bytes specified must be 7.

Page 273

FireAPI User Mode Interface Unibrain

C1394CalculateLinkCRC
Runs the 32-bit CRC algorithm that is used by the 1394 Link Layer in the generation and checking of
header and data CRCs.

void C1394CalculateLinkCRC(
 IN void *pData,
 IN ULONG uQuadlets,
 OUT UCHAR CRC[4]
);

Parameters

pData
A pointer to the memory area containing the data over which to calculate the CRC value.

uQuadlets
The size of the data expressed in quadlets (1 quadlet = 32-bits = 4 bytes).

CRC
An array of 4 bytes into which the 32-bit CRC value will be returned.

Remarks
The CRC algorithm is implemented as described in clause 6.4 of IEEE 1394-1995.

Both the input data and the resulting 32-bit CRC are treated as big endian. This is the reason why the
CRC parameter is declared as a 4-byte array, and not an unsigned long integer (who would be
platform-endianess dependent).

If uQuadlets is zero, then the resulting CRC will also be zero.

See Also
C1394CalculateCRC16

Page 274

FireAPI User Mode Interface Unibrain

C1394DebugPrint
Sends a formatted string to the kernel debugger.

void C1394DebugPrint(char *format, ...);

Parameters

format
A printf-like format specifier.

Remarks
This function is an intelligent wrapper around the Win32 function OutputDebugString. If you would
like to include the kernel debugger messages only in debug builds, then use the KdPrint macro which
resolves to C1394DebugPrint if _DEBUG is defined, and to a no-op otherwise.

See Also

Page 275

FireAPI User Mode Interface Unibrain

Part III
FireAPI Structures & Macros Reference

Page 276

FireAPI User Mode Interface Unibrain

C1394_PACKET_HEADER
The C1394_PACKET_HEADER structure is defined as follows:

typedef struct
{
 // Valid in all cases.
 ULONG uHeaderBytes;
 ULONG data_length;
 C1394_TRANSACTION_CODE TransactionCode;

 // Valid for asynchronous primary packets.
 C1394_NODE_ID Source;
 C1394_NODE_ID Destination;
 C1394_OFFSET Offset;
 C1394_EXTENDED_TCODE ExtendedTCode;
 C1394_TRANSACTION_LABEL TransactionLabel;
 C1394_RESPONSE_CODE ResponseCode;

 // Valid only for stream packets.
 C1394_CHANNEL Channel;
 C1394_TAG Tag;
 C1394_SY_CODE SyCode;
}
C1394_PACKET_HEADER, *PC1394_PACKET_HEADER;

Incoming Packets & C1394_PACKET_HEADER
For each type of packet that can be indicated by the class driver to applications, the fields of this
structure that will be filled by the class driver are described below:

Read Request for Data Quadlet
uHeaderBytes: Either 12 or 16, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Will be 4.
TransactionCode: TCODE_QUADLET_READ_REQUEST
Source, Destination: Will be filled in.
Offset: Will be filled in.
TransactionLabel: Will be filled in.

Read Response for Data Quadlet
uHeaderBytes: Either 16 or 20, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Will be 4.
TransactionCode: TCODE_QUADLET_READ_RESPONSE
Source, Destination: Will be filled in.
TransactionLabel: Will be filled in.
ResponseCode: Will be filled in.

Page 277

FireAPI User Mode Interface Unibrain

Read Request For Data Block
uHeaderBytes: Either 16 or 20, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Must be filled in from the packet’s data_length field.
TransactionCode: TCODE_BLOCK_READ_REQUEST
Source, Destination: Will be filled in.
Offset: Will be filled in.
ExtendedTCode: Zero.
TransactionLabel: Will be filled in.

Read Response for Data Block
uHeaderBytes: Either 16 or 20, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Will be filled in from the packet’s data_length field.
TransactionCode: TCODE_BLOCK_READ_RESPONSE
Source, Destination: Will be filled in.
ExtendedTCode: Zero.
TransactionLabel: Will be filled in.
ResponseCode: Will be filled in.

Write Request for Data Quadlet
uHeaderBytes: Either 16 or 20, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Will be 4.
TransactionCode: TCODE_QUADLET_WRITE_REQUEST
Source, Destination: Will be filled in.
Offset: Will be filled in.
TransactionLabel: Will be filled in.

Write Request for Data Block
uHeaderBytes: Either 16 or 20, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Will be filled in from the packet’s data_length field.
TransactionCode: TCODE_BLOCK_WRITE_REQUEST
Source, Destination: Will be filled in.
Offset: Will be filled in.
ExtendedTCode: Zero.
TransactionLabel: Will be filled in.

Write Response
uHeaderBytes: Either 12 or 16, depending on whether the adapter is also

indicating the header CRC quadlet.
TransactionCode: TCODE_WRITE_RESPONSE
Source, Destination: Will be filled in.
TransactionLabel: Will be filled in.
ResponseCode: Will be filled in.

Page 278

FireAPI User Mode Interface Unibrain

Lock Request
uHeaderBytes: Either 16 or 20, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Must be filled in from the packet’s data_length field.
TransactionCode: TCODE_LOCK_REQUEST
Source, Destination: Will be filled in.
Offset: Will be filled in.
ExtendedTCode: Zero.
TransactionLabel: Will be filled in.

Lock Response
uHeaderBytes: Either 16 or 20, depending on whether the adapter is also

indicating the header CRC quadlet.
data_length: Will be filled in from the packet’s data_length field.
TransactionCode: TCODE_LOCK_RESPONSE
Source, Destination: Will be filled in.
ExtendedTCode: Will be filled in.
TransactionLabel: Will be filled in.
ResponseCode: Will be filled in.

Stream Block
uHeaderBytes: Either 4 or 8, depending on whether the adapter is also indicating

the header CRC quadlet.
data_length: Will be filled in from the packet’s data_length field.
TransactionCode: TCODE_STREAM_BLOCK
Channel: Will be filled in.
Tag: Will be filled in.
SyCode: Will be filled in.

Outgoing Packets & C1394_PACKET_HEADER
For each type of packet that can be passed to the class driver by an application, the fields of this
structure that must be filled by the application are described below:

Read Request for Data Quadlet
TransactionCode: TCODE_QUADLET_READ_REQUEST
data_length: Must be 4.
Source, Destination: Must be filled in.
Offset: Must be filled in.
TransactionLabel: Either filled in automatically by the class driver, or by the

application if it is using a pre-allocated label.

Read Response for Data Quadlet
TransactionCode: TCODE_QUADLET_READ_RESPONSE
data_length: Must be 4.
Source, Destination: Must be filled in.
TransactionLabel: Must be filled in.
ResponseCode: Must be filled in.

Page 279

FireAPI User Mode Interface Unibrain

Read Request For Data Block
data_length: Must be filled with the value that should go into the packet’s

data_length field.
TransactionCode: TCODE_BLOCK_READ_REQUEST
Source, Destination: Must be filled in.
Offset: Must be filled in.
ExtendedTCode: Must be filled in with zero.
TransactionLabel: Either filled in automatically by the class driver, or by the

application if it is using a pre-allocated label.

Read Response for Data Block
data_length: Must be filled with the value that should go into the packet’s

data_length field.
TransactionCode: TCODE_BLOCK_READ_RESPONSE
Source, Destination: Must be filled in.
ExtendedTCode: Must be filled in with zero.
TransactionLabel: Must be filled in.
ResponseCode: Must be filled in.

Write Request for Data Quadlet
TransactionCode: TCODE_QUADLET_WRITE_REQUEST
data_length: Must be 4.
Source, Destination: Must be filled in.
Offset: Must be filled in.
TransactionLabel: Either filled in automatically by the class driver, or by the

application if it is using a pre-allocated label.

Write Request for Data Block
data_length: Must be filled with the value that should go into the packet’s

data_length field.
TransactionCode: TCODE_BLOCK_WRITE_REQUEST
Source, Destination: Must be filled in.
Offset: Must be filled in.
ExtendedTCode: Must be filled in with zero.
TransactionLabel: Either filled in automatically by the class driver, or by the

application if it is using a pre-allocated label.

Write Response
TransactionCode: TCODE_WRITE_RESPONSE
Source, Destination: Must be filled in.
TransactionLabel: Must be filled in.
ResponseCode: Must be filled in.

Page 280

FireAPI User Mode Interface Unibrain

Lock Request
data_length: Must be filled with the value that should go into the packet’s

data_length field.
TransactionCode: TCODE_LOCK_REQUEST
Source, Destination: Must be filled in.
Offset: Must be filled in.
ExtendedTCode: Must be filled in.
TransactionLabel: Either filled in automatically by the class driver, or by the

application if it is using a pre-allocated label.

Lock Response
data_length: Must be filled with the value that should go into the packet’s

data_length field.
TransactionCode: TCODE_LOCK_RESPONSE
Source, Destination: Must be filled in.
ExtendedTCode: Must be filled in.
TransactionLabel: Must be filled in.
ResponseCode: Must be filled in.

Stream Block
data_length: Must be filled with the value that should go into the packet’s

data_length field.
TransactionCode: TCODE_STREAM_BLOCK
Channel: Must be filled in.
Tag: Must be filled in.
SyCode: Must be filled in.

Page 281

FireAPI User Mode Interface Unibrain

FIREAPI_ISOCH_REQUEST
This structure describes an isochronous operation request that should be executed by the 1394 stack on
an adapter channel.

typedef struct
{
 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // Identification tag. Must be set to TAG_FIREAPI_ISOCH_REQUEST.
 IN ULONG Tag;

 // <FILLED BY THE APPLICATION>
 // <USED BY THE MINIPORT>
 // The op-code of the operation to execute.
 IN ULONG uOperationCode;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE APPLICATION>
 // The completion status of the request. Initially it contains the value
 // STATUS_1394_PENDING.
 OUT STATUS_1394 Status;

 // <FILLED BY THE 1394 STACK>
 // The adapter handle on which the request will be executed.
 IN C1394_ADAPTER_HANDLE C1394AdapterHandle;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE APPLICATION UPON COMPLETION OF THE COMMAND>
 // The client channel handle of the channel. This is filled by the
 // 1394 stack inside C1394IsochQueue. Any value stored by the client
 // will be overwritten upon entry to C1394IsochQueue.
 IN CLIENT_CHANNEL_HANDLE ClientChannelHandle;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE 1394 STACK>
 // The channel handle of the channel on which the request will be executed.
 IN C1394_CHANNEL_HANDLE C1394ChannelHandle;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE APPLICATION AND THE 1394 STACK>
 // This value contains a unique id for each request submitted to the miniport.
 // The first operation has ID zero, and the rest get the ID of the previous
 // request plus one. At some point in space & time this will wrap.
 // This ID can be only be used by applications after they retrieve
 // the structure from C1394GetNextCompleteRequest.
 OUT ULONG uRequestIndex;

 // <USED EXCLUSIVELY BY APPLICATIONS>
 // Space for context information used by the application.
 void *Context[4];

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // Command options that should be handled by the 1394 stack.
 // This involves both timeout and bus reset related options.
 IN ULONG fOptions;

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // The event object to be signalled when this command completes.
 // This is used only when the COMPLETE_SET_EVENT flag is set in fOptions.
 IN HANDLE CompletionEventHandle;

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // The timeout value in msec for this command.
 // Receive commands may time out because the sender stopped sending data.
 // Transmit commands may time out because the cycle master stopped sending
 // cycle starts.
 // A value of zero means that no timeout is used for this command.
 IN USHORT ushTimeoutMsec;

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // If the number of bus resets that occur while this command is running
 // exceeds this number, then the command is aborted.
 IN UCHAR uchBusResetLimit;

Page 282

FireAPI User Mode Interface Unibrain

 // <FILLED BY THE APPLICATION>
 // <USED BY THE 1394 STACK>
 // If the number of cycle lost event that occur while this command is running
 // exceeds this number, then the command is aborted.
 IN UCHAR uchCycleLostLimit;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE APPLICATION>
 // The number of bus resets that occurred while this command was running.
 OUT UCHAR uchBusResets;

 // <FILLED BY THE 1394 STACK>
 // <USED BY THE APPLICATION>
 // The number of cycle lost events that occurred while this command was running.
 OUT UCHAR uchCyclesLost;

 // A union of structures describing the operation-specific parameters
 // of all supported operations.
 union
 {
 C1394_ISOCH_XMIT_DATA XmitData;
 C1394_ISOCH_XMIT_PKTS XmitPkts;
 C1394_ISOCH_XMIT_FIXED_PKTS XmitFixedPkts;

 C1394_ISOCH_RCV_PKTS RcvPkts;
 C1394_ISOCH_RCV_FIXED_PKTS RcvFixedPkts;
 C1394_ISOCH_RCV_FIXED_DATA RcvFixedData;
 C1394_ISOCH_RCV_FIXED_DATA_NH RcvFixedDataNH;

 C1394_ISOCH_IDLE_CYCLES IdleCycles;
 };
}
FIREAPI_ISOCH_REQUEST, *PFIREAPI_ISOCH_REQUEST;

The Tag field must be filled by applications with the value TAG_FIREAPI_ISOCH_REQUEST. This is
used by the 1394 stack as a first means of validating a pointer to a FIREAPI_ISOCH_REQUEST
structure.

The possible values for the uOperationCode field are shown in the table that follows in the next page.

Page 283

FireAPI User Mode Interface Unibrain

Value Description

ISOCH_OP_RCV_FIXED_PKTS

An isochronous receive operation, where complete isochronous packets
(header quadlet + data) are received in a virtually contiguous buffer.
A maximum size M (in quadlets) is specified for the isochronous
packets to be received. The Nth packet received in the buffer is stored at
offset (M+1)*4*N.
If a packet smaller that M quadlets is received, then simply a couple of
bytes stay unused. If a packet larger than M quadlets appears on the
isochronous stream, then the packet will either be ignored or will be
partially received depending on the operation-specific flags set for this
operation. For more details see the description of the
C1394_ISOCH_RCV_FIXED_PKTS structure below.
When this code is specified, then the operation-specific parameters are
found in the RcvFixedPkts field.

ISOCH_OP_RCV_FIXED_DATA

Similar to ISOCH_OP_RCV_FIXED_PKTS, with the difference that the
headers and the data are received into two separate buffers. This way
the data appear contiguously in memory.
A maximum size is specified for the isochronous packets to be
received. For more details see the description of the
C1394_ISOCH_RCV_FIXED_DATA structure below.
When this code is specified, then the operation-specific parameters are
found in the RcvFixedData field.

This method is known to present problems on some 64-bit machines
with lots of memory (data corruption during DMA). It is suggested that
the ISOCH_OP_RCV_FIXED_DATA_NH method is used instead.

ISOCH_OP_RCV_FIXED_DATA_NH

Similar to ISOCH_OP_RCV_FIXED_DATA, with the difference that
there is no header buffer. The isochronous packet header (1 quadlet) is
discarded and the data are received into the data buffer. The data
appear contiguously in memory.
A maximum size is specified for the isochronous packets to be
received. For more details see the description of the
C1394_ISOCH_RCV_FIXED_DATA_NH structure below.
When this code is specified, then the operation-specific parameters are
found in the RcvFixedDataNH field.

ISOCH_OP_XMIT_DATA

An isochronous transmit operation, where the caller provides two
buffers. The first is the header buffer, which can contain H≥1 quadlets
for each packet. The second is the data buffer which contains the rest
of the payload bytes for each packet. For more details see the
description of the C1394_ISOCH_XMIT_DATA structure below.
When this code is specified, then the operation-specific parameters are
found in the XmitData field.

ISOCH_OP_XMIT_FIXED_PKTS

An isochronous transmit operation, where complete isochronous
packets (header quadlet + data) are layed out in a virtually contiguous
buffer, each one starting at a multiple of a fixed offset.
A maximum size M (in quadlets) is specified for the isochronous
packets to be transmitted. The Nth packet is stored in the buffer at offset
(M+1)*4*N. For more details see the description of the
C1394_ISOCH_XMIT_FIXED_PKTS structure below.
When this code is specified, then the operation-specific parameters are
found in the XmitFixedPkts field.

Page 284

FireAPI User Mode Interface Unibrain

ISOCH_OP_XMIT_PKTS

An isochronous transmit operation, where complete isochronous
packets (header quadlet + data) are layed out in a virtually contiguous
buffer, one after the other, with each packet starting at the next quadlet
boundary. For more details see the description of the
C1394_ISOCH_XMIT_PKTS structure below.
When this code is specified, then the operation-specific parameters are
found in the XmitPkts field.

Table 5. FireAPI Isochronous Operation Codes

Request Index
The uRequestIndex field is a per-adapter-channel unique value, assigned by the 1394 stack to each
request being queued for an adapter channel.
The value assigned for a request is the value of the previous request incremented by one (wrapping
back to zero after 232 operations). This value is used as an extra identifier for an isochronous request,
and it is used in implementing various operations that are synchronization-sensitive (like cancelling or
timing out queued operations).

Note that this value is stored in the structure by the 1394 stack, and the value used for the first
command of each adapter channel is zero.

Any value written in that field by an application will be overwritten by the 1394 stack.

Applications should either keep track of the number of requests that they have so far submitted to the
1394 stack, or specify OID_CHANNEL_RQ_INDEX in a call to C1394QueryInformation in order to
find out the value that will be used by the class driver for the next isochronous command that will be
submitted.

Request Timeouts
Timing-out is requested for an isochronous operation if the ushTimeoutMsec field is non zero. This
field is expressed in milliseconds. This value identifies an upper limit in the amount of time that it
should take for the command to execute. If this interval elapses and the command is not complete, then
the 1394 stack completes this command with the status STATUS_1394_TIMEOUT.

There are a number of reasons why a command could time out:

• The cycle master hungs and stops generating cycle start packets. This will cause all isochronous
talkers to stop transmitting.

• An isochronous talker hungs and stops generating isochronous traffic.
• An isochronous talker was physically removed from the bus.

If timing is requested for an isochronous request, then the related flags in the fOptions field are shown
in the table below. These flags are mutually exclusive (only one of them can be specified). The default
timeout option is TIMEOUT_START_NEXT54.

If ushTimeoutMsec is zero then the related bits are cleared by the 1394 stack.

54 If ushTimeoutMsec is non-zero and no TIMEOUT_xxx flag is specified, then the 1394 stack will OR
the TIMEOUT_START_NEXT flag in the fOptions field of the request.

Page 285

FireAPI User Mode Interface Unibrain

Value Description

TIMEOUT_START_NEXT
Cancel the current request with status STATUS_1394_TIMEOUT
and immediately continue with the next one.

TIMEOUT_START_NEXT_NO_TIMING

Cancel the current request with status STATUS_1394_TIMEOUT
and immediately continue with the next one, but without timing
it out (assume ushTimeoutMsec is zero).
Request timing will resume after the next request is completed.

TIMEOUT_FLUSH_QUEUE
Cancel all remaining requests. If any new requests get submitted
for this channel, then time them accordingly to their
TimeoutOptions.

Table 6. Isochronous Request Timeout Options

Page 286

FireAPI User Mode Interface Unibrain

Bus Reset Handling
Another issue, also related to timing, that has to be faced by the 1394 stack is what happens to an
isochronous request when a bus reset occurs. A bus reset causes a temporary disruption in isochronous
traffic, which may in some cases be longer than anticipated, and cause an isochronous operation to
timeout. Similarly it could be desirable for an application to cancel or restart an isochronous command
if a bus reset occurs while it is executing.

The options that can be specified in the fOptions field with regards to bus reset handling are shown in
the table below. These flags are mutually exclusive (only one of them can be specified). The default
option is BR_START_NEXT55.

Value Description

BR_FLUSH_QUEUE
Cancel all requests in the queue, with status
STATUS_1394_BUS_RESET.

BR_START_NEXT
Cancel the current request with status STATUS_1394_BUS_RESET
and start the next (if there is one) as soon as the bus reset completes.
This is the default option if no BR_xxx flag is specified.

BR_RESTART

Restart the current operation anew, after the bus reset completes,
possibly overwriting any data received so far.
The value of the uchBusResets field will be incremented by one,
regardless of whether the BUS_RESET_LIMIT flag is specified or not.
If a non-zero value is specified in ushTimeoutMsec then timing is
restarted as well.

BR_CONTINUE

Do nothing. Continue with the current request and continue timing as
if nothing happened (only applicable if a non-zero value is specified
in ushTimeoutMsec).
The value of the uchBusResets field will be incremented by one,
regardless of whether the BUS_RESET_LIMIT flag is specified or not.

BR_RESTART_TIMING

Continue with the current request but restart the timing of the
operation anew, as soon as bus reset completes (only applicable if a
non-zero value is specified in ushTimeoutMsec).
The value of the uchBusResets field must be incremented by one,
regardless of whether the BUS_RESET_LIMIT flag is specified or not.

Table 7. Isochronous Request Bus Reset Options

55 If no BR_xxx flag is specified, then the 1394 stack will OR the BR_START_NEXT flag in the
fOptions field of the request.

Page 287

FireAPI User Mode Interface Unibrain

Other Options
The following flags can also be specified in the fOptions field of an isochronous request:

Value Description
COMPLETE_SET_EVENT Set the associated event object when this command is completed.

BUS_RESET_LIMIT

If the number of bus resets that occurred during the processing of this
command exceeds the value specified by the field uchBusResetLimit
then abort the command with status STATUS_1394_BR_LIMIT.
This flag can not be used in combination with BR_FLUSH_QUEUE or
BR_START_NEXT.

CYCLE_LOST_LIMIT56

If the number of cycle lost interrupts that occurred during the
processing of this command exceeds the value specified by the field
uchCycleLostLimit then abort the command with status
STATUS_1394_CYCLOST_LIMIT.

56 This flag will be implemented in future versions of FireAPI.

Page 288

FireAPI User Mode Interface Unibrain

Isochronous Completion Status
The Status field reflects the completion status of the request. When the request is submitted with
C1394IsochQueue this field is set to STATUS_1394_PENDING. Upon return it is set as follows:

Value Description

STATUS_1394_SUCCESS

The requested operation was completed successfully, without
any errors.
This status code will only be returned when there was no error
during the execution of the request.

STATUS_1394_ABORTED
The operation was aborted prematurely due to a class driver
request.

STATUS_1394_BUS_RESET

The operation was aborted because a bus reset occurred and
either the request had specified the flag BR_START_NEXT in
the fOptions field, or a previous request had the
BR_FLUSH_QUEUE flag set.

STATUS_1394_BR_LIMIT
The operation was aborted because the number of bus resets
exceeded the number specified by uchBusResetLimit.

STATUS_1394_DMA_LIMIT
The operation was aborted by the 1394 stack because it
exceeds the maximum size of DMA operations as set by the
operating system.

STATUS_1394_TIMEOUT The operation was completed due to a timeout.

STATUS_1394_DUPLICATE_CHANNEL
The channel number specified in the operation-specific
parameters is already used by another adapter channel for the
same type of activity (transmit or receive).

STATUS_1394_NO_MEMORY
The operation could not be completed because a memory
allocation failed.

STATUS_1394_CRC_ERROR The reception of one or more packets failed with a CRC error.

STATUS_1394_FIFO_OVERRUN

The DMA channel failed to receive one or more packets
because of a FIFO overrun.
This situation may occur on very busy systems, when the
adapter did not have the chance to move data from the
isochronous receive FIFO into main memory fast enough. As a
result the receive FIFO was completely filled and incoming
data was lost.
Note that this operation is done automatically by the 1394
adapter on the PCI so it has little to do with interrupt latency
and interrupt handling. The most likely cause of this error is a
PCI bus that is too loaded with traffic.
Note that OHCI adapters cannot distinguish between a FIFO
overrun error (which means that the data_length in the header
of the received packet does not match the received packet size)
and a data CRC error. This means that if there is an actual data
CRC error (usually one or more corrupted iso packets on the
bus) you will still get the same error code.
If you are troubleshooting this type of error you are advised to
use a 1394 Bus Analyzer and check whether the iso stream is
valid throughout or it contains erroneous packets.

Page 289

FireAPI User Mode Interface Unibrain

STATUS_1394_FIFO_UNDERRUN

The DMA channel failed to transmit one or more packets
because of a FIFO underrun.
This situation occurs usually on very busy systems, when the
adapter did not have the chance to move data from main
memory to the isochronous transmit FIFO fast enough. As a
result the transmit FIFO was emptied and an invalid packet
was transmitted.
Note that this operation is done automatically by the 1394
adapter on the PCI so it has little to do with interrupt latency
and interrupt handling. The most likely cause of this error is a
PCI bus that is too loaded with traffic.

STATUS_1394_DMA_ERROR + xxx

The operation was aborted because an error other than the
above occurred in the isochronous DMA channel.
The actual error code returned is the STATUS_1394_DMA_ERROR
constant plus the OHCI-level event code for the operation.
Some event codes have been remapped to specific
STATUS_1394 errors as follows:

evt_long_packet (0x02) STATUS_1394_LONG_PACKET

evt_overrun (0x05) STATUS_1394_FIFO_OVERRUN

evt_underrun (0x04) STATUS_1394_FIFO_UNDERRUN

ack_data_error (0x1D) STATUS_1394_CRC_ERROR

Note that the ack_data_error condition is often reported instead
of evt_overrun as the adapter runs out of isochronous receive
FIFO and truncates the incoming packet so the packet appears
to have wrong length and invalid CRC.

STATUS_1394_LONG_PACKET
At least one isochronous data packet was received whose data
length (payload) was larger than the maximum payload of the
isochronous request.

STATUS_1394_UNSUCCESSFUL An error other than the above occurred.

Whenever an operation is prematurely aborted, then depending on the type of operation some
information will be available on how far did the operation proceed (how many packets were sent or
received before the request was cancelled).

Page 290

FireAPI User Mode Interface Unibrain

Isochronous Operation Parameters
This section describes operation-specific parameters.

C1394_ISOCH_RCV_FIXED_PKTS
Used with the ISOCH_OP_RCV_FIXED_PKTS operation code.
typedef struct
{
 // Identification tag. Must be set to TAG_ISOCH_RCV_FIXED_PKTS.
 IN ULONG Tag;

 // The memory into which to receive the packets.
 IN void *PacketBuffer;

 // The size of the packet reception buffer.
 // When calculating the buffer size, remember to account one quadlet
 // per packet (the isochronous packet header).
 IN ULONG uBufferBytes;

 // The maximum *payload* size in quadlets of the packets to be received.
 IN USHORT ushMaxPayloadQuads;

 // Operation Flags (byte swap, use SyCode, use TagCode, bigger ignore/partialRcv).
 IN USHORT Flags;

 // The SyCode with which to synchronize the start of reception.
 IN UCHAR IsochSyCode;

 // The TagCode with which to synchronize the start of reception.
 IN UCHAR IsochTagCode;

 // The channel number to receive from.
 IN UCHAR ChannelNumber;

 // The number of packets received into the buffer.
 // This is considered valid even if a receive operation was aborted
 // due to a timeout, or some other reason.
 OUT ULONG uPacketsReceived;
}
C1394_ISOCH_RCV_FIXED_PKTS, *PC1394_ISOCH_RCV_FIXED_PKTS;

The operation-specific flags that can be specified in the Flags field are:

Value Description
RCV_START_ON_SYCODE

The value in the IsochSyCode field must be matched in the first
isochronous packet to be received in the buffer.

RCV_FORCE_SYCODE
The value in the IsochSyCode field must be matched on all isochronous
packets that are received in the buffer.

RCV_START_ON_TAGCODE
The value in the IsochTagCode field must be matched in the first
isochronous packet to be received.

RCV_FORCE_TAGCODE
The value in the IsochTagCode field must be matched on all isochronous
packets that are received in the buffer.

RCV_BYTE_SWAP

Byte-swap the packet data on a quadlet basis, while the packet is being
received. This byte swap is performed by the DMA channel itself, not
software.
For efficiency reasons this byte swap operation also byte swaps the
header of the isochronous packet (1 quadlet), so the applications should
be prepared to do their header checks as appropriate in this case.

The RCV_START_ON_SYCODE and RCV_FORCE_SYCODE flags are mutually exclusive. Only one
of them can be specified. Similarly, the RCV_START_ON_TAGCODE and RCV_FORCE_TAGCODE
flags are mutually exclusive. Only one of them can be specified.

The combination of these flags impose criteria that define the exact point in the isochronous stream
from where the command will start receiving data. The START_ON flags impose criteria only on the
first isochronous packet, while the FORCE flags impose criteria on all the isochronous packets. Using
the FORCE flag(s) one can effectively achieve selective reception of isochronous packets.

Page 291

FireAPI User Mode Interface Unibrain

Using the RCV_FORCE_xxx flags imposes non-trivial processing overhead at the hardware level,
because the 1394 chip has to execute a more complex set of instructions for each incoming isochronous
packet.
This means that even if they are used with an isochronous stream with relatively small bandwidth, they
may tie up the 1394 chip to a level where it cannot operate a second isochronous DMA channel at the
same time.

If any isochronous packets larger than ushMaxPayloadQuads*4 appear on the stream, then they will
‘appear’ partially received to the application. The packet will be received completely, but any data
bytes found after the maximum size will be overwritten by the next isochronous packet that will be
received.

Upon completion of the command, no matter in what way was the command completed, the 1394 stack
provides valid information in the uPacketsReceived field.

Page 292

FireAPI User Mode Interface Unibrain

C1394_ISOCH_RCV_FIXED_DATA
Used with the ISOCH_OP_RCV_FIXED_DATA operation code.

typedef struct
{
 // Identification tag. Must be set to TAG_ISOCH_RCV_FIXED_DATA.
 IN ULONG Tag;

 // The memory into which to receive the packet payload.
 // The required size of this buffer is equal to
 // (ushMaxPayloadQuads*4)*uPacketsToReceive.
 IN void *DataBuffer;

 // The memory into which to receive the packet headers.
 // ushHeaderQuads quadlets are being received as the header of each packet.
 // The required size of this buffer is equal to
 // (ushHeaderQuads*4)*uPacketsToReceive.
 IN void *HeaderBuffer;

 // The number of packets to receive.
 IN USHORT ushPacketsToReceive;

 // The number of header quadlets to move to the header buffer.
 // This is set to 1 if only the isochronous packet header is to be stripped
 // from each isochronous packet.
 // However additional quadlets can be copied if required.
 IN USHORT ushHeaderQuads;

 // The maximum *payload* size in quadlets of the packets to be received.
 // This is the number of 'pure' payload quadlets (the payload that remains
 // after all header quadlets are removed).
 // This means that the total max payload of any receive packet is equal to
 // (ushMaxPayloadQuads + ushHeaderQuads - 1)*4
 IN USHORT ushMaxPayloadQuads;

 // Operation Flags (byte swap, use SyCode, use TagCode, bigger ignore/partialRcv).
 IN USHORT Flags;

 // The SyCode with which to synchronize the start of reception.
 IN UCHAR IsochSyCode;

 // The TagCode with which to synchronize the start of reception.
 IN UCHAR IsochTagCode;

 // The channel number to receive from.
 IN UCHAR ChannelNumber;

 // The number of packets received into the buffer.
 // This is considered valid even if a receive operation was aborted
 // due to a timeout, or some other reason.
 OUT ULONG uPacketsReceived;
}
C1394_ISOCH_RCV_FIXED_DATA, *PC1394_ISOCH_RCV_FIXED_DATA;

Page 293

FireAPI User Mode Interface Unibrain

The flags that can be used and the related restrictions are the same as for
C1394_ISOCH_RCV_FIXED_PKTS.

The maximum size of the isochronous packets to be received is the sum of:

1. The ‘header’ quadlets H≥1 (includes the isoch packet header quadlet and possibly one or more
‘protocol’ header quadlets). The value of H is stored in the ushHeaderQuads field.

2. The ‘pure’ payload quadlets M≥1. The value of M is stored in the ushMaxPayloadQuads field.

The actual maximum payload of an isochronous packet (its data_length) is (M+H-1) quadlets.

The payload of the Nth packet received is stored at byte offset (M*4)*N in the data buffer, and its
header quadlet is store at byte offset (H*4)*N in the header buffer.

If a packet with a payload larger than (M+H-1) quadlets appears on the isochronous stream, then the
packet will either be ignored or will be partially received depending on the operation-specific flags set
for this operation.

If a packet smaller than (M+H-1) quadlets but larger than (H-1) quadlets is received, then simply a
couple of bytes stay unused in the data buffer.
If a packet smaller than (H-1) quadlets is received, then a couple of bytes will stay unused in the header
buffer, and M quadlets will stay unused in the data buffer.

Page 294

FireAPI User Mode Interface Unibrain

C1394_ISOCH_RCV_FIXED_DATA_NH
Used with the ISOCH_OP_RCV_FIXED_DATA_NH operation code.

typedef struct
{
 // Identification tag. Must be set to TAG_ISOCH_RCV_FIXED_DATA_NH.
 IN ULONG Tag;

 // The memory into which to receive the packet payload.
 // The required size of this buffer is equal to
 // (ushMaxPayloadQuads*4)*uPacketsToReceive.
 IN void *DataBuffer;

 // The number of packets to receive.
 IN USHORT ushPacketsToReceive;

 // The maximum *payload* size in quadlets of the packets to be received.
 IN USHORT ushMaxPayloadQuads;

 // Operation Flags (byte swap, use SyCode, use TagCode, bigger ignore/partialRcv).
 IN USHORT Flags;

 // The SyCode with which to synchronize the start of reception.
 IN UCHAR IsochSyCode;

 // The TagCode with which to synchronize the start of reception.
 IN UCHAR IsochTagCode;

 // The channel number to receive from.
 IN UCHAR ChannelNumber;

 // The number of packets received into the buffer.
 // This is considered valid even if a receive operation was aborted
 // due to a timeout, or some other reason.
 OUT ULONG uPacketsReceived;
}
C1394_ISOCH_RCV_FIXED_DATA_NH, *PC1394_ISOCH_RCV_FIXED_DATA_NH;

The flags that can be used and the related restrictions are the same as for
C1394_ISOCH_RCV_FIXED_DATA.

The payload of the Nth packet received is stored at byte offset (ushMaxPayloadQuads*4)*N in the
data buffer.

If a packet with a payload larger than ushMaxPayloadQuads quadlets appears on the isochronous
stream, then the packet will either be ignored or will be partially received depending on the
operation-specific flags set for this operation.

If a packet smaller than ushMaxPayloadQuads quadlets is received, then simply a couple of bytes stay
unused in the data buffer.

Page 295

FireAPI User Mode Interface Unibrain

C1394_ISOCH_XMIT_PKTS
Used with the ISOCH_OP_XMIT_PKTS operation code. This operation code is used when the client
wants to transmit one or more isochronous streams, that have a variable block size.
When the request involves more than one isochronous streams, the number of isochronous stream
packets that will be transmitted per isochronous cycle is adjustable by the caller.
typedef struct
{
 // Identification tag. Must be set to TAG_ISOCH_XMIT_PKTS.
 IN ULONG Tag;

 // The memory (system address space) that contains the packets.
 IN void *PacketBuffer;

 // The size of the packet buffer.
 IN ULONG uBufferBytes;

 // The number of packets in the buffer.
 IN ULONG uPacketsInBuffer;

 // Operation Flags (byte swap, cycletimer insert, packets per cycle).
 IN USHORT Flags;

 // The transmission speed.
 IN C1394_SPEED_CODE TransmissionSpeed;

 // The number of packets per cycle.
 // This is only used if the XMIT_PACKETS_PER_CYCLE flag is specified
 // in FIREAPI_ISOCH_REQUEST.Flags
 IN USHORT PacketsPerCycle;

 // The quadlet offset where to insert the cycle timer value.
 // This is only used if the XMIT_INSERT_CYCLE_TIME flag is specified
 // in FIREAPI_ISOCH_REQUEST.Flags
 IN USHORT CycleTimerInsertOffset;

 // The number of isochronous packets that were transmitted.
 OUT ULONG uPacketsTransmitted;
}
C1394_ISOCH_XMIT_PKTS, *PC1394_ISOCH_XMIT_PKTS;

The operation-specific flags that can be specified in the Flags field are:

Value Description

XMIT_BYTE_SWAP

Byte-swap the payload data on a quadlet basis, while the packet is being
transmitted. This byte swap is performed by the DMA channel itself,
not software.
When this option is specified, the packet header will also be
byte-swapped upon transmission, so the class driver expects the packet
header in little endian format.

XMIT_PACKETS_PER_CYCLE

Indicates that the 1394 stack should use the value in PacketsPerCycle in
order to decide how many packets per cycle should be transmitted.
See the comments below for a detailed explanation of the use of this
field.

XMIT_LOOP
Indicates that the transmit request should be executed repeatedly, until
it is interrupted by some event (C1394IsochCancel, one or more bus
resets or a timeout if the request flags specify these options).

XMIT_INSERT_CYCLE_TIME

Inserts the 32-bit value of the cycle timer in the packet before
transmitting it, at the quadlet offset specified by
CycleTimerInsertOffset. This is only available if supported by the
adapter.

The 1394 stack expects to find in PacketBuffer a series of complete isochronous packets, which means
1 quadlet for the header followed by the data for each packet. Each packet starts at the next quadlet
boundary after the previous one.

This means that if the current packet starts at offset Base and contains data_length bytes, then the next
isochronous packet is expected at offset (Base + ((data_length+3) & 0xFFFC)).

Page 296

FireAPI User Mode Interface Unibrain

If an isochronous packet is zero bytes long, then the next isochronous packet starts on the next quadlet.

By default the 1394 stack does not byte-swap the data upon transmission. This means that the data are
transmitted as they appear in memory, which in turn means that the header of each packet must be
properly prepared in big endian format.
If the XMIT_BYTE_SWAP flag is specified in the XmitPkts.Flags field, then both the data and the
header will be transmitted byte-swapped. This means that in this case the isochronous packet header
must appear in little endian format.

The PacketsPerCycle field is used when the XMIT_PACKETS_PER_CYCLE flag is specified in the
XmitPkts.Flags field. It is used to control the number of packets that will be transmitted per
isochronous cycle when more than one isochronous streams are involved in an isochronous transmit
request.

If the request only contains packets for a single isochronous stream then this flag is ignored, and should
not be specified. It is a 1394 requirement that an isochronous stream number can only appear once per
cycle.

If the flag is not specified and multiple streams are found in the packet buffer, then the 1394 stack will
transmit one isochronous packet per cycle.

Otherwise the 1394 stack will use the value of PacketsPerCycle as the basic directive in order to decide
how many packets it will transmit per cycle. The number of packets that will actually be transmitted
will always be limited by the 1394 standard requirement that each channel (stream) number can only
appear once per isochronous cycle.
For example, if the channel numbers in successive packets are 1-2-1-2-1-1-1-2-1-2-1-2, and
PacketsPerCycle is 2, then the packets will be transmitted as [1-2]-[1-2]-[1]-[1]-[1-2]-[1-2]-[1-2].

If PacketsPerCycle is zero, then the class driver will transmit as many isochronous packets per cycle as
possible, always subject to the rule that each stream number is transmitted once per cycle.

Upon completion of the command, no matter in what way was the command completed, the class
driver provides valid information in the uPacketsTransmitted field.

IMPORTANT NOTE: The data payload portion of an isochronous packet is always contructed as a
quadlet multiple. For example, if data_length is 41, the data payload that must be actually transmitted
will be 44 bytes. The last 3 bytes are called padding. They are meaningless and are usually set to zero.
The application must take this into consideration when preparing the packets for transmission.

Page 297

FireAPI User Mode Interface Unibrain

C1394_ISOCH_XMIT_FIXED_PKTS
Used with the ISOCH_OP_XMIT_FIXED_PKTS operation code.
typedef struct
{
 // Identification tag. Must be set to TAG_ISOCH_XMIT_FIXED_PKTS.
 IN ULONG Tag;

 // The memory that contains the packets.
 IN void *PacketBuffer;

 // The size of the packet buffer.
 IN ULONG uBufferBytes;

 // The number of packets in the buffer.
 IN ULONG uPacketsInBuffer;

 // The fixed *payload* size in quadlets of the packets to be transmitted.
 // This applies for ALL isoch packets to be transmitted.
 IN USHORT ushPayloadQuads;

 // Operation Flags (byte swap, cycletimer insert).
 IN USHORT Flags;

 // The transmission speed.
 IN C1394_SPEED_CODE TransmissionSpeed;

 // The quadlet offset where to insert the cycle timer value.
 IN USHORT CycleTimerInsertOffset;

 // The number of isochronous packets that were transmitted.
 OUT ULONG uPacketsTransmitted;
}
C1394_ISOCH_XMIT_FIXED_PKTS, *PC1394_ISOCH_XMIT_FIXED_PKTS;

The operation-specific flags that can be specified in the Flags field are:

Value Description

XMIT_BYTE_SWAP

Byte-swap the packet data on a quadlet basis, while the packet is being
transmitted. This byte swap is performed by the DMA channel itself, not
software.
When this option is specified, the packet header will also be
byte-swapped upon transmission, so the class driver expects the packet
header in little endian format.

XMIT_LOOP
Indicates that the transmit request should be executed repeatedly, until it
is interrupted by some event (C1394IsochCancel, one or more bus resets
or a timeout if the request flags specify these options).

XMIT_INSERT_CYCLE_TIME
Inserts the 32-bit value of the cycle timer in the packet before
transmitting it, at the quadlet offset specified by CycleTimerInsertOffset.
This is only available if supported by the adapter.

The buffer must obviously be big enough to hold all the packets. This means that:

uBufferBytes ≥ uPacketsInBuffer*(ushPayloadQuads+1)*4

The class driver expects to find in PacketBuffer a series of complete isochronous packets, which means
1 quadlet for the header followed by a maximum of ushPayloadQuads for the data. The isochronous
payload of any isochronous packet can be less than ushPayloadQuads*4 if desired. It can even be zero,
but still a header with a zero data_length field must appear.

However in the ISOCH_OP_XMIT_FIXED_PKTS operation code, the class driver demands that no
matter the size of each indicidual isochronous packet, the Nth packet (N=0..uPacketsInBuffer-1) is
located at offset N*(ushPayloadQuads+1)*4 from the start of the packet buffer. If some isochronous
packets have a smaller payload, then the memory bytes from the end of that packet to the beginning of
the next are being wasted.

Page 298

FireAPI User Mode Interface Unibrain

Upon completion of the command, no matter in what way was the command completed, the class
driver provides valid information in the uPacketsTransmitted field.

By default the drivers does not byte-swap the data upon transmission. This means that the data are
transmitted as they appear in memory, which in turn means that the header of each packet must be
properly prepared in big endian format.
If the XMIT_BYTE_SWAP flag is specified in the XmitFixedPkts.Flags field, then both the data and the
header will be transmitted byte-swapped. This means that in this case the isochronous packet header
must appear in little endian format.

Upon completion of the command, no matter in what way was the command completed, the class
driver provides valid information in the uPacketsTransmitted field.

IMPORTANT NOTE: The data payload portion of an isochronous packet is always contructed as a
quadlet multiple. For example, if data_length is 41, the data payload that must be actually transmitted
will be 44 bytes. The last 3 bytes are called padding. They are meaningless and are usually set to zero.
The application must take this into consideration when preparing the packets for transmission.

Page 299

FireAPI User Mode Interface Unibrain

C1394_ISOCH_XMIT_DATA
Used with the ISOCH_OP_XMIT_DATA operation code.
typedef struct
{
 // Identification tag. Must be set to TAG_ISOCH_XMIT_DATA.
 IN ULONG Tag;

 // The memory that contains the data that
 // will be used as the packets' payload.
 IN void *DataBuffer;

 // The size of the data buffer.
 // This size should be greater or equal to the sum of the data_length
 // field of the packet headers found in HeaderBuffer, minus the total
 // size of the extra header quadlets (ushHeaderQuads-1)*uPacketsInBufer*4.
 IN ULONG uBufferBytes;

 // The buffer that contains the headers to be used.
 // The required size of this buffer is equal to
 // (ushHeaderQuads-1)*uPacketsInBufer*4.
 IN void *HeaderBuffer;

 // The number of packets in the buffer.
 IN ULONG uPacketsInBuffer;

 // The number of header quadlets contained in the header buffer for each packet.
 // This is set to 1 if the header buffer only contains the isochronous
 // packet header for each isochronous packet.
 IN USHORT ushHeaderQuads;

 // Operation Flags (byte swap, xmit loop, cycletimer insert, packets per cycle).
 IN USHORT Flags;

 // The transmission speed.
 IN C1394_SPEED_CODE TransmissionSpeed;

 // The number of packets per cycle.
 // This is only used if the XMIT_PACKETS_PER_CYCLE flag is specified
 // in C1394_ISOCH_XMIT_DATA.Flags
 IN USHORT PacketsPerCycle;

 // The quadlet offset where to insert the cycle timer value.
 // This is only used if the XMIT_INSERT_CYCLE_TIME flag is specified
 // in C1394_ISOCH_XMIT_PKTS.Flags
 IN USHORT CycleTimerInsertOffset;

 // The number of isochronous packets that were transmitted.
 OUT ULONG uPacketsTransmitted;
}
C1394_ISOCH_XMIT_DATA, *PC1394_ISOCH_XMIT_DATA;

The flags that can be used and the related restrictions and comments are the same as for
C1394_ISOCH_XMIT_FIXED_PKTS. For comments regarding the use of XMIT_BYTE_SWAP and
XMIT_PACKETS_PER_CYCLE see that section.

The header quadlets for each packet contain the isochronous packet header quadlet, and optionally one
or more quadlets of ‘protocol’ data. The header quadlets of the Nth isochronous packet are located at
offset (ushHeaderQuads*4)*N in the header buffer.

The number of bytes that will be read from the data buffer and will be added to the payload of each
packet is data_length-(H-1)*4, provided of course that (H-1)*4<data_length. The value of data_length
is found in the isochronous packet header quadlet.
It can be the case that the data_length of a packet is smaller than (ushHeaderQuads-1)*4. In this case
some bytes are unused in the header buffer, and no bytes are being used for this packet from the data
buffer.

IMPORTANT NOTE: The data payload portion of an isochronous packet is always contructed as a
quadlet multiple. For example, if data_length is 41, the data payload that will be actually transmitted
will be 44 bytes. The last 3 bytes are called padding. They are meaningless and are usually set to zero.
With FireAPI, if the data_length of a packet is not a multiple of 4, then the 1394 stack will not ensure a
zero-fill for the padding of the data payload. The fill will actually be the first bytes of the payload of
the next isochronous packet.
This only affects the padding bytes that will be added. The next isochronous packet will start from the
correct position in the buffer.

Page 300

FireAPI User Mode Interface Unibrain

C1394_ISOCH_IDLE_CYCLES
Used with the ISOCH_OP_IDLE_CYCLES operation code.

typedef struct
{
 // Identification tag. Must be set to TAG_ISOCH_IDLE_CYCLES.
 IN ULONG Tag;

 // The number of cycles to leave idle before completing this command.
 IN ULONG uIdleCycles;

 // Operation specific flags.
 IN ULONG Flags;
}
C1394_ISOCH_IDLE_CYCLES, *PC1394_ISOCH_IDLE_CYCLES;

The operation-specific flags that can be specified in the Flags field are:

Value Description

IDLE_CYCLE_LOOP

This specifies that the uIdleCycles field should be ignored and that the
adapter channel should stay idle until this command is cancelled or
aborted (for example due to a bus reset).
This way the channel can be ‘triggered’ according to an external event.

Page 301

FireAPI User Mode Interface Unibrain

Isochronous Packet Header Structures & Macros
The C1394_STREAM_PACKET_HEADER structure and the MAKE_ISOCH_HEADER macro have
been defined for the purpose of helping construct isochronous packet headers.

C1394_STREAM_PACKET_HEADER
typedef union
{
 // An alias for accessing each byte separately.
 UCHAR Bytes[4];

 // An alias for accessing it as a quadlet.
 // ENDIANESS DEPENDENT.
 ULONG Quadlet;

 struct
 {
 // The data_length field
 // ENDIANESS DEPENDENT
 USHORT data_length;

 struct
 {
 // The channel number.
 UCHAR Channel:6;

 // The tag of this packet.
 UCHAR Tag:2;
 };

 struct
 {
 // The sy code.
 UCHAR SyCode:4;

 // The transaction code.
 UCHAR tcode:4;
 };
 };
}
C1394_STREAM_PACKET_HEADER, *PC1394_STREAM_PACKET_HEADER;

MAKE_ISOCH_HEADER
The MAKE_ISOCH_HEADER macro, constructs a valid big endian header, given a pointer to a
C1394_STREAM_PACKET_HEADER structure and the values to store in.
The macro is prototyped as shown below:

void MAKE_ISOCH_HEADER(
 PC1394_STREAM_PACKET_HEADER pStreamPacketHeader,
 USHORT data_length,
 C1394_CHANNEL ChannelNumber,
 C1394_TAG TagCode,
 C1394_SY_CODE SyCode
);

Additionally the macro MAKE_ULONG_ISOCH_HEADER has been defined in order to construct a
native ULONG value structured like an isochronous packet header (16 bits data_length, 2 bits Tag, 6
bits channel number, 4 bites transaction code, 4 bits sy-code).

ULONG MAKE_ULONG_ISOCH_HEADER(
 USHORT data_length,
 C1394_CHANNEL ChannelNumber,
 C1394_TAG TagCode,
 C1394_SY_CODE SyCode
);

The resulting header quadlet is in the CPU’s native endianess.

Page 302

FireAPI User Mode Interface Unibrain

PHY Packet Structures & Macros
The following structures have been defined for use with PHY packets. The types defined include all the
extended PHY packet types defined by P1394A.
All packet types are defined in big endian format. A PHY packet constructed with the use of one of
these structures can be directly transmitted to the 1394 bus using C1394TransmitRaw.

C1394_PHY_PACKET_GENERIC
This type is used for testing what the actual PHY packet is.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 struct
 {
 UCHAR PhysicalID:6;
 UCHAR PHYType:2;
 };

 // Valid only if PHTType == PHY_TYPE_ZERO
 struct
 {
 UCHAR:6;
 UCHAR T:1;
 UCHAR R:1;
 };

 UCHAR Bytes_3_4[2];
 };
}
C1394_PHY_PACKET_GENERIC, *PC1394_PHY_PACKET_GENERIC;

C1394_PHY_PACKET_SELF_ID_0
This structure describes a Self-ID #0 packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR PhysicalID:6;
 UCHAR PHYType:2; // Should Be Binary 10 (PHY_TYPE_SELF_ID).
 };

 // The second byte (Base address + 1).
 struct
 {
 UCHAR gap_count:6;
 UCHAR L:1;
 UCHAR Zero:1; // This is not reserved. It is defined and it must be zero.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR pwr:3;
 UCHAR c:1; // Contender bit.
 UCHAR rsv:2; // Reserved. Must be zero.
 UCHAR sp:2; // Speed code.
 };

Page 303

FireAPI User Mode Interface Unibrain

 // The fourth byte (Base address + 3).
 struct
 {
 UCHAR m:1; // More packets.
 UCHAR i:1; // Initiated bus reset.
 UCHAR p2:2;
 UCHAR p1:2;
 UCHAR p0:2;
 };
 };
}
C1394_PHY_PACKET_SELF_ID_0, *PC1394_PHY_PACKET_SELF_ID_0;

C1394_PHY_PACKET_SELF_ID_N
This structure describes generically Self-ID packets #1,2,3.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR PhysicalID:6;
 UCHAR PHYType:2; // Should Be Binary 10 (PHY_TYPE_SELF_ID).
 };

 // The second byte (Base address + 1).
 struct
 {
 UCHAR pa:2;
 UCHAR rsv:2; // Reserved. Must be 0.
 UCHAR n:3; // Must be 0,1 or 2.
 UCHAR One:1; // This is not reserved. It is defined and it must be 1.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR pe:2;
 UCHAR pd:2;
 UCHAR pc:2;
 UCHAR pb:2;
 };

 // The fourth byte (Base address + 3).
 struct
 {
 UCHAR m:1; // More packets.
 UCHAR r:1; // Reserved. Must be 0.
 UCHAR ph:2;
 UCHAR pg:2;
 UCHAR pf:2;
 };
 };
}
C1394_PHY_PACKET_SELF_ID_N, *PC1394_PHY_PACKET_SELF_ID_N;

Page 304

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_SELF_ID_1
This structure describes a Self-ID #1 packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR PhysicalID:6;
 UCHAR PHYType:2; // Should Be Binary 10 (PHY_TYPE_SELF_ID).
 };

 // The second byte (Base address + 1).
 struct
 {
 UCHAR p3:2;
 UCHAR rsv:2; // Reserved. Must be 0.
 UCHAR n:3; // Must be 0.
 UCHAR One:1; // This is not reserved. It is defined and it must be 1.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR p7:2;
 UCHAR p6:2;
 UCHAR p5:2;
 UCHAR p4:2;
 };

 // The fourth byte (Base address + 3).
 struct
 {
 UCHAR m:1; // More packets.
 UCHAR r:1; // Reserved. Must be 0.
 UCHAR p10:2;
 UCHAR p9:2;
 UCHAR p8:2;
 };
 };
}
C1394_PHY_PACKET_SELF_ID_1, *PC1394_PHY_PACKET_SELF_ID_1;

Page 305

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_SELF_ID_2
This structure describes a Self-ID #2 packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR PhysicalID:6;
 UCHAR PHYType:2; // Should Be Binary 10 (PHY_TYPE_SELF_ID).
 };

 // The second byte (Base address + 1).
 struct
 {
 UCHAR p11:2;
 UCHAR rsv:2; // Reserved. Must be 0.
 UCHAR n:3; // Must be 1.
 UCHAR One:1; // This is not reserved. It is defined and it must be 1.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR p15:2;
 UCHAR p14:2;
 UCHAR p13:2;
 UCHAR p12:2;
 };

 // The fourth byte (Base address + 3).
 struct
 {
 UCHAR m:1; // More packets.
 UCHAR r:1; // Reserved. Must be 0.
 UCHAR p18:2;
 UCHAR p17:2;
 UCHAR p16:2;
 };
 };
}
C1394_PHY_PACKET_SELF_ID_2, *PC1394_PHY_PACKET_SELF_ID_2;

Page 306

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_SELF_ID_3
This structure describes a Self-ID #3 packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR PhysicalID:6;
 UCHAR PHYType:2; // Should Be Binary 10 (PHY_TYPE_SELF_ID).
 };

 // The second byte (Base address + 1).
 struct
 {
 UCHAR p19:2;
 UCHAR rsv:2;
 UCHAR n:3; // Must be 2.
 UCHAR One:1; // This is not reserved. It is defined and it must be 1.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR p23:2;
 UCHAR p22:2;
 UCHAR p21:2;
 UCHAR p20:2;
 };

 // The fourth byte (Base address + 3).
 struct
 {
 UCHAR m:1; // More packets. Must be zero.
 UCHAR r:1; // Reserved. Must be 0.
 UCHAR p26:2;
 UCHAR p25:2;
 UCHAR p24:2;
 };
 };
}
C1394_PHY_PACKET_SELF_ID_3, *PC1394_PHY_PACKET_SELF_ID_3;

C1394_PHY_PACKET_LINK_ON
This structure describes a PHY Link-ON packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR PhysicalID:6;
 UCHAR PHYType:2; // Should Be Binary 01 (PHY_TYPE_LINK_ON).
 };

 UCHAR Zeroes[3];
 };
}
C1394_PHY_PACKET_LINK_ON, *PC1394_PHY_PACKET_LINK_ON;

Page 307

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_CONFIGURATION
This structure describes a PHY Configuration packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR gap_count:6;
 UCHAR T:1;
 UCHAR R:1;
 };

 // The third and fourth bytes. SHOULD BE ZEROS.
 UCHAR Bytes_3_4[2];
 };
}
C1394_PHY_PACKET_CONFIGURATION, *PC1394_PHY_PACKET_CONFIGURATION;

C1394_PHY_PACKET_EXTENDED
This structure generically describes an extended PHY packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR PacketSpecificBits:2; // Packet Specific.
 UCHAR type:4; // The packet type.
 UCHAR T:1; // Should be zero.
 UCHAR R:1; // Should be zero.
 };

 UCHAR PacketSpecificBytes[2];
 };
}
C1394_PHY_PACKET_EXTENDED, *PC1394_PHY_PACKET_EXTENDED;

Page 308

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_PING
This structure generically describes a PHY Ping packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR:2; // Should be zero.
 UCHAR type:4; // Should be PHY_EXTENDED_PING (0) for PHY Ping Packets.
 UCHAR T:1; // Should be zero.
 UCHAR R:1; // Should be zero.
 };

 // The third and fourth bytes. SHOULD BE ZEROS.
 UCHAR Bytes_3_4[2];
 };
}
C1394_PHY_PACKET_PING, *PC1394_PHY_PACKET_PING;

C1394_PHY_PACKET_REMOTE_ACCESS
This structure generically describes a PHY Remote Access (PHY Register Read) packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR page_2_1:2; // Bits 1 and 2 of the page field.
 UCHAR type:4; // Should be PHY_EXTENDED_READ_BASE_REGISTER (1) or
 // PHY_EXTENDED_READ_PAGED_REGISTER (5).
 UCHAR T:1; // Should be zero.
 UCHAR R:1; // Should be zero.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR reg:3; // The reg field.
 UCHAR port:4; // The port field.
 UCHAR page_0:1; // Bit 0 of the page field.
 };

 // The fourth byte (Base Address + 3).
 UCHAR Reserved;
 };
}
C1394_PHY_PACKET_REMOTE_ACCESS, *PC1394_PHY_PACKET_REMOTE_ACCESS;

Page 309

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_REMOTE_REPLY
This structure generically describes a PHY Remote Reply (PHY Register Read) packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR page_2_1:2; // Bits 1 and 2 of the page field.
 UCHAR type:4; // Should be PHY_EXTENDED_BASE_REGISTER_CONTENTS (3)
 // or PHY_EXTENDED_PAGED_REGISTER_CONTENTS (7).
 UCHAR T:1; // Should be zero.
 UCHAR R:1; // Should be zero.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR reg:3; // The reg field.
 UCHAR port:4; // The port field.
 UCHAR page_0:1; // Bit 0 of the page field.
 };

 // The fourth byte (Base Address + 3).
 UCHAR Data;
 };
}
C1394_PHY_PACKET_REMOTE_REPLY, *PC1394_PHY_PACKET_REMOTE_REPLY;

Page 310

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_REMOTE_COMMAND
This structure generically describes a PHY Remote Command packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR:2; // Should be zero.
 UCHAR type:4; // Should be PHY_EXTENDED_REMOTE_COMMAND (8)
 // for remote command packets.
 UCHAR T:1; // Should be zero.
 UCHAR R:1; // Should be zero.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR:3; // Should be zero.
 UCHAR port:4;
 UCHAR:1; // Should be zero.
 };

 // The fourth byte (Base address + 3).
 struct
 {
 UCHAR cmnd:3;
 UCHAR:5; // Should be zero.
 };
 };
}
C1394_PHY_PACKET_REMOTE_COMMAND, *PC1394_PHY_PACKET_REMOTE_COMMAND;

Page 311

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_REMOTE_CONFIRMATION
This structure generically describes a PHY Remote Confirmation packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR:2; // Should be zero.
 UCHAR type:4; // Should be PHY_EXTENDED_REMOTE_CONFIRMATION (0xA)
 // for remote confirmation packets.
 UCHAR T:1; // Should be zero.
 UCHAR R:1; // Should be zero.
 };

 // The third byte (Base address + 2).
 struct
 {
 UCHAR:3; // Should be zero.
 UCHAR port:4;
 UCHAR:1; // Should be zero.
 };

 // The fourth byte (Base address + 3).
 struct
 {
 UCHAR cmnd:3;
 UCHAR ok:1;
 UCHAR disabled:1;
 UCHAR bias:1;
 UCHAR connected:1;
 UCHAR fault:1;
 };
 };
}
C1394_PHY_PACKET_REMOTE_CONFIRMATION, *PC1394_PHY_PACKET_REMOTE_CONFIRMATION;

Page 312

FireAPI User Mode Interface Unibrain

C1394_PHY_PACKET_RESUME
This structure generically describes a PHY Resume packet.
typedef union
{
 // Access each quadlet (beware the endianess stuff).
 QUADLET PhyQuadlet[2];

 struct
 {
 // The first byte (Base address).
 struct
 {
 UCHAR RootID:6;
 UCHAR PHYType:2; // Should Be Binary 00 (PHY_TYPE_ZERO).
 };

 // The second byte (Base Address + 1).
 struct
 {
 UCHAR:2; // Should be zero.
 UCHAR type:4; // Should be PHY_EXTENDED_RESUME (0xF) for remote command pkts.
 UCHAR T:1; // Should be zero.
 UCHAR R:1; // Should be zero.
 };

 // Bytes 3 and 4.
 UCHAR zeroes[2];
 };
}
C1394_PHY_PACKET_RESUME, *PC1394_PHY_PACKET_RESUME;

C1394_PHY_PACKET
This structure describes any PHY packet.
typedef union
{
 // Access to each byte separately.
 UCHAR Bytes[8];

 union
 {
 // Generic alias to help find out what the PHY packet actually is.
 C1394_PHY_PACKET_GENERIC;

 // Self-ID packets.
 C1394_PHY_PACKET_SELF_ID_0 SelfID0;
 C1394_PHY_PACKET_SELF_ID_1 SelfID1;
 C1394_PHY_PACKET_SELF_ID_2 SelfID2;
 C1394_PHY_PACKET_SELF_ID_3 SelfID3;
 C1394_PHY_PACKET_SELF_ID_N SelfIDN;

 // Link ON Packet
 C1394_PHY_PACKET_LINK_ON LinkOn;

 // Configuration Packet.
 C1394_PHY_PACKET_CONFIGURATION Configuration;

 // Extended PHY Packets
 union
 {
 C1394_PHY_PACKET_EXTENDED;
 C1394_PHY_PACKET_PING Ping;
 C1394_PHY_PACKET_REMOTE_ACCESS RemoteRead;
 C1394_PHY_PACKET_REMOTE_REPLY RemoteReply;
 C1394_PHY_PACKET_REMOTE_COMMAND RemoteCommand;
 C1394_PHY_PACKET_REMOTE_CONFIRMATION RemoteConfirmation;
 C1394_PHY_PACKET_RESUME Resume;
 }
 Extended;
 };
}
C1394_PHY_PACKET, *PC1394_PHY_PACKET;

Page 313

FireAPI User Mode Interface Unibrain

The following macros can help in the manipulation of PHY packet structures:

PHYPacketIsInvalid(PC1394_PHY_PACKET pPhyPacket)
Returns TRUE if the second quadlet of the PHY packet pointed to by pPhyPacket is not the binary
complement of the first quadlet, otherwise it returns FALSE.

PHYPacketIsValid(PC1394_PHY_PACKET pPhyPacket)
The logical reverse of PHYPacketIsInvalid.

PHYIsConfigurationPacket(PC1394_PHY_PACKET pPhyPacket)
Returns TRUE if the PHY packet pointed to by pPhyPacket is a valid PHY configuration packet.

PHYIsExtendedPacket(PC1394_PHY_PACKET pPhyPacket)
Returns TRUE if the PHY packet pointed to by pPhyPacket is an extended PHY packet.

PHYPacketExtendedType(PC1394_PHY_PACKET pPhyPacket)
Returns the type field of an extended PHY packet. The possible values for this field are shown in the
table below (defined in P1394A).

Extended PHY Packet Types
PHY_EXTENDED_PING 0

PHY_EXTENDED_READ_BASE_REGISTER 1

PHY_EXTENDED_READ_PAGED_REGISTER 5

PHY_EXTENDED_BASE_REGISTER_CONTENTS 3

PHY_EXTENDED_PAGED_REGISTER_CONTENTS 7

PHY_EXTENDED_REMOTE_COMMAND 8

PHY_EXTENDED_REMOTE_CONFIRMATION A16

PHY_EXTENDED_RESUME F16

PHYPacket_Get_page(pPhyPacket, RemoteType)
PHYPacket_Set_page(pPhyPacket, RemoteType, page)

These macros help handle the manipulation of the page field of the extended PHY remote access and
remote reply packets. This 3-bit field spans a byte boundary so the platform-independent big endian
definitions of the C1394_PHY_PACKET_REMOTE_ACCESS and
C1394_PHY_PACKET_REMOTE_REPLY types had to break this field in two. These macros help in
the handling of this broken-apart field.
RemoteType should be either RemoteRead or RemoteReply.

Page 314

FireAPI User Mode Interface Unibrain

Status Codes Reference (alphabetical listing)

STATUS_1394_ABORTED
The operation was cancelled/aborted by the miniport because it could not be performed (for example
there is a critical hardware error that halted the adapter, or the miniport is unloading).

STATUS_1394_ADAPTER_ERROR
A non-critical error occurred on the adapter that caused the request to fail. The error affected only this
operation and the adapter is otherwise functioning normally.

STATUS_1394_ALREADY_OPEN
A status code returned by C1394OpenAdapter, in the case when the application has already opened the
specified adapter. The same handle value is returned but its client-side reference count is increased.

STATUS_1394_BR_LIMIT
The operation was cancelled because more bus resets occurred than the operation could tolerate.

STATUS_1394_BUS_RESET
The operation was cancelled because a 1394 bus reset took place. For example a queued asynchronous
transaction must be failed because the target NodeID might not be the same after the bus reset.

STATUS_1394_CONFLICT
The operation could not be completed because there was a conflict.

STATUS_1394_CRC_ERROR
An isochronous packet was received with a CRC error.

STATUS_1394_CRITICAL_ADAPTER_ERROR
A critical error occurred on the adapter that caused the request to fail. The adapter is not fully
functional and the class driver should take corrective actions (closing an isochronous channel, resetting
the adapter etc).

STATUS_1394_DEVICE_BUSY
The operation requested failed because the local adapter is busy.

STATUS_1394_DEVICE_NOT_FOUND
The transmit request was aborted because the target device was not found on the bus.

STATUS_1394_DRIVER_INTERNAL_ERROR
The driver detected a bug in its execution logic (through assertions or sanity checks), and could not
complete the operation.

STATUS_1394_DMA_ERROR + xxx
The isochronous operation request failed with an OHCI event code that is not mapped to a more
specific error code (like STATUS_1394_FIFO_OVERRUN or STATUS_1394_LONG_PACKET).

STATUS_1394_DMA_LIMIT
The isochronous operation request could not be queued because its size exceeds the maximum DMA
transfer size permitted by the operating system.

STATUS_1394_DUPLICATE_CHANNEL
The isochronous channel number is already in use.

STATUS_1394_FIFO_OVERRUN
An isochronous operation failed because of a FIFO underrun.

STATUS_1394_FIFO_UNDERRUN
An isochronous operation failed because of a FIFO overrun.

Page 315

FireAPI User Mode Interface Unibrain

STATUS_1394_GAP_COUNT_ERROR
The class driver detected that not all the self-ID packets that were transmitted after the last bus reset
contained the same value in their gap_count field.

STATUS_1394_INCORRECT_RESPONSE
An outgoing response packet is not valid.

STATUS_1394_INSUFFICIENT_RESOURCES
An operation failed due to some lack of resources other than memory. If a memory allocation failed
then preferably STATUS_1394_NO_MEMORY should be used.

STATUS_1394_INVALID_BUFFER_SIZE
The size specified for the supplied buffer is not the expected for the operation requested. This will most
probably mean that the buffer is smaller than needed.

STATUS_1394_INVALID_CHANNEL_TYPE
The operation requested is not applicable to the channel type.

STATUS_1394_INVALID_CHANNEL_STATE
The operation requested is not possible at the channel’s current operating state.

STATUS_1394_INVALID_DEVICE_STATE
The adapter is in a state from where the requested operation cannot be performed.

STATUS_1394_INVALID_HANDLE
The miniport adapter handle passed to the miniport does not identify one of its adapters.

STATUS_1394_INVALID_ISOCHRONOUS_BUFFERS
A validation check on a number of isochronous buffers failed.

STATUS_1394_INVALID_OFFSET
The 1394 address space offset specified was above the highest 1394 offset (0xFFFFFFFFFFFF), or the
address range specified spanned the highest 1394 offset.

STATUS_1394_INVALID_PARAMETER
One of the parameters to function was invalid, and there is no other more specific error for the situation
(for example STATUS_1394_INVALID_HANDLE or STATUS_1394_INVALID_BUFFER_SIZE).

STATUS_1394_INVALID_REQUEST
The request passed to the miniport was invalid, and there was no other more specific error status for
this operation.

STATUS_1394_INVALID_RESPONSE
An response packet was received that was invalid for the corresponding transaction request, or the class
driver detected that an outgoing response is not complying with the rules set by the standard with
regards to header information (destination NodeID, transaction code, data length).

STATUS_1394_LOCK_FAILED
A call to C1394CompareSwap failed.

STATUS_1394_LONG_PACKET
An isochronous receive operation failed because one or more packets were received whose payload
was greater than the maximum payload specified in the request.

STATUS_1394_NO_MEMORY
An operation failed due to memory allocation failure.

STATUS_1394_NOT_FOUND
The requested item was not found.

Page 316

FireAPI User Mode Interface Unibrain

STATUS_1394_NOT_IMPLEMENTED
The request passed to the miniport was valid, the adapter hardware supports the functionality but the
miniport does not implement this feature.

STATUS_1394_NOT_SUPPORTED
The request passed to the driver was valid, but the driver software or the adapter itself does not support
the required functionality.

STATUS_1394_PENDING
The request is queued in the miniport and will be processed asynchronously.

STATUS_1394_SELFID_ERROR
The class driver detected that there was some structural/logical problem in the self-ID packets that were
transmitted after the last bus reset.

STATUS_1394_SIZE_LIMITATION
The request cannot be transmitted because the payload size cannot be transmitted on the path to the
destination node.

STATUS_1394_SPEED_LIMITATION
The request cannot be transmitted because the payload size is greater than the maximum allowed for
the adapter’s speed.

STATUS_1394_SUCCESS
The requested operation completed successfully.

STATUS_1394_TIMEOUT
The requested operation was not completed in the expected amount of time.

STATUS_1394_TOPOLOGY_ERROR
The class driver detected that although there was no structural/logical problem in the self-ID packets
that were transmitted after the last bus reset, the bus topology described by them is not valid.

STATUS_1394_TRANSACTION_FAILED
A transaction request has been sent, its corresponding response was received, and the response code
indicated that the transaction was not completed successfully.

STATUS_1394_UNSOLICITED_RESPONSE
An application tried to transmit a response that did not have a matching request. This can happen if the
response is indeed unsoliticited, or if the application was so late that the request was timeout and an
additional split transaction timeout occurred and the entry was cleared.

STATUS_1394_UNSUCCESSFUL
The requested operation failed and there is no other more specific error status for the situation.

Page 317

FireAPI User Mode Interface Unibrain

Change History (reverse chronological order)

December 2008 – 5.60
• VersaPHY support added to the FireAPI programming interface.

August 2008 – 5.52
• No additions to the FireAPI programming interface. Additions were made to the Fire-i interface

with the addition of the FireiX COM library; please see the relevant documentation.

June 2008 – 5.51
• No additions to the FireAPI programming interface. Additions were made to the Fire-i interface;

please see the relevant documentation.

March 2008 – 5.50
• Added DMA Multiplexing support (MultiDMA) with three modes of operation.
• Added MultiDmaOperation enumeration for the available MultiDMA modes.
• Added OID_MULTIDMA_MODE identifier to retrieve/set the current MultiDMA mode through

C1394QueryInformation/C1394SetInformation.
• Added OID_ISO_RECEIVE_DMA_CONTEXTS and OID_ISO_TRANSMIT_DMA_CONTEXTS

to C1394QueryInformation so that applications and designers can query the actual number of
hardware DMA contexts available for isochronous receive and transmit.

• Added new error code for isochronous receive operations: STATUS_1394_LONG_PACKET.
• Added the C1394Retry functions:

o C1394MayRetryTransaction
o C1394RetryReadNodeInQuads
o C1394RetryReadNodeExInQuads
o C1394RetryReadDeviceInQuads
o C1394RetryWriteDeviceInQuads

• Removed support for User Mode Bus Reset Exceptions (OID_BUS_RESET_EXCEPTIONS).
• Removed UB1394DH.LIB from FireAPI. Merged into UB1394.LIB. UB1394DH.DLL remains in

ubCore as a DLL function forwarder that forwards all calls to UB1394.DLL.
• Minor updates to Device Handle functions’ documentation.
• Removed FIREI.LIB from FireAPI. Merged into UB1394.LIB. FIREI.DLL remains in ubCore as a

DLL function forwarder that forwards all calls to UB1394.DLL.
• Added configurable “Minimum Bus Reset Interval” controllable through the

OID_MIN_BUS_RESET_INTERVAL identifier. Default value is 2 seconds as dictated by the
1394 specifications.

• Added configurable delay between successive successful configuration ROM reads during
Plug’n’Play bus enumeration. Controllable through the OID_ENUM_READ_DELAY identifier.

• Added configurable delay between retries in configuration ROM reads during Plug’n’Play bus
enumeration. Controllable through the OID_ENUM_RETRY_DELAY identifier.

• Added VC6/VS2005 BATCH BUILD generator for FireAPI sample code.

July 2007 – 5.21
• Added the OID_DMA_LIMIT identifier to C1394QueryInformation to discover maximum DMA

transfer size permitted by the operating system.
• Added new isochronous receive method (ISOCH_OP_RCV_FIXED_DATA_NH) for flawless

isochronous fixed data receive on 64-bit systems.

June 2006
• Added function C1394ReadPHYRegister to allow easy access to remote PHY registers.
• Compliance with 1394 Base Test Suite (defined by 1394 Trade Association).
• Improved stability of bus reset storm handling.

February 30th 2005

Page 318

FireAPI User Mode Interface Unibrain

• Made the ubCore 1394 drivers full plug and play compatible. Now any 1394 devices connected to
the bus are enumerated by the ubCore drivers and presented to the system in the registry and the
device manager. A plug and play driver can be created for each device separately if there is need
for it or the user mode API can be used in order to directly access the device.

• Added a WDM compliant IIDC camera driver based on ubCore.
• Added a WDM compliant DV camera driver based on ubCore. This driver is also provided as a

kernel mode source sample.

November 17th 2003
• Added function C1394PingNode which gives the ability to ping a 1394 bus node and get a ping

response time.
• Added functionality to the ubCore drivers for asynchronous streaming operations. The

functionality was internaly implemented and is available to the user through the existing
isochronous receive mechanism for reception and C1394TransmitPackets for transmition.

May 5th – 20th 2003
• Added function C1394GetAddAdapterEventHandle which returns an event that is set when a 1394

adapter is added to the system (either enabled or physically added).
• Added the event EventMiniportAdapterRemoved which indicates that a host adapter has been

removed (either disabled or physically removed).
• Added the flag ALLOCATE_MAX_REQUESTS in the field fAdapterChannelOptions of the

FIREAPI_CHANNEL_PARAMETERS structure used in function C1394OpenAdapterChannel.

September 19th 2000
• Increased the number of pending isochronous request to 25. Previous value was 10.

July 11th – 20th 1999
• VERY IMPORTANT: Added the C1394AcknowledgeBusReset function which implies new

behaviour for outgoing asynchronous transactions.
• VERY IMPORTANT: Added OID_BUS_RESET_EXCEPTIONS.
• VERY IMPORTANT: Updated the device handle emulation code.
• Added section on transaction requests spanning multiple address ranges
• Added section on Common Errors in Transaction Processing
• Defined BANDWIDTH_UNITS macro that calculates the isochronous bandwidth allocation units as

a function of payload bytes and transmission speed.
• Added C1394GetRootNodeID.
• VERY IMPORTANT: Added OID_AR_PACKET_TRANSFER and

OID_DEF_AR_PACKET_TRANSFER, and a section that explains the mechanism involved.

July 1st – 10th 1999
• Added ACCESS_BROADCAST_LOOPBACK in the documentation of C1394MapAddressRange.
• Removed RCV_REJECT_LARGER flag from the options of ISOCH_OP_RCV_FIXED_PKTS.
• Added ISOCH_OP_RCV_FIXED_DATA, ISOCH_OP_XMIT_FIXED_DATA,

ISOCH_OP_XMIT_FIXED_DATA and ISOCH_OP_IDLE_CYCLES.

June 18th – 23rd 1999
• VERY IMPORTANT: Major rewrite of introduction, up to function reference. Added multiple

samples demonstrating usage of FireAPI functions, and comments on the way to use these
functions.

• Added C1394CompareSwap.
• Added C1394DebugPrint and KdPrint.
• Added the STATUS_1394_LOCK_FAILED, STATUS_1394_FIFO_UNDERRUN and

STATUS_1394_FIFO_UNDERRUN return codes.

June 9th 1999
• Added OID_PCI_LATENCY in C1394QueryInformation and C1394SetInformation.

Page 319

FireAPI User Mode Interface Unibrain

Page 320

June 2nd 1999
• Added comment in C1394MapAddressRange with regards to the type of access required on the

address range’s backing memory.

May 24th 1999
• Added the FIFO_ISO_XMIT_ZEROED flag in the flags returned by OID_ADAPTER_FIFO.
• Added OID_ADAPTER_FIFO to C1394QueryInformation and C1394SetInformation.
• Added the Changing FIFO Settings section.
• Added the XMIT_LOOP flag to the isochronous transmit operations.
• Added section for C1394_LINK_REGISTER_ACCESS structure.
• Added OID_RECEIVE_BUFFER_SIZE to C1394QueryInformation.

May 4th 1999
• Added comment in C1394GetAdapters, for the behaviour that occurs on multi-adapter systems.
• Added comments for 64-bit integer arithmetic pitfalls.
• Added comment for the IsochCancelExact option to C1394IsochCancel.
• Removed kernel-API-specific commens from the descriptions of C1394IsochCancel and

C1394IsochQueue.

April 27th 1999
• Clarified the descriptions of the XMIT_BYTE_SWAP and RCV_BYTE_SWAP options for fixed

packet isochronous transmit and receive.

April 25th 1999
• Merged the user mode isochronous specification into the main API specification.

Functions added are: C1394OpenAdapterChannel, C1394CloseAdapterChannel,
C1394IsochQueue, C1394IsochCancel, C1394GetNextCompleteRequest,
C1394SetInformation.
Also added the description of the FIREAPI_ISOCH_REQUEST structure and the description of the
isochronous request-specific parameters.

Feb 15th 1999
• Added note in C1394TransmitPackets about capability to transmit a broadcast at a rate higher

than the broadcast speed. Update on the same issue in the remarks sections of C1394WriteNode
and C1394WriteNodeAsynch.

• Added Topology Analysis Error Codes section.
• Added SelfID Analysis Error Codes section.
• Corrected the prototype of C1394TransmitPackets.
• Completely removed section on isochronous operations. Will be updated in its entirety.

Feb 10th 1999
• Added OID_SELFID_ANALYSIS_ERROR and OID_TOPOLOGY_ANALYSIS_ERROR in

C1394QueryInformation.
• Added the IncorrectSelfID field in C1394_NODE_INFO structure.

Feb 1st 1999
• Added OID_CYCLE_START_AVAILABLE to C1394QueryInformation.
• Added the description of OID_LINK_REGISTER to C1394QueryInformation.

Jan 26th 1999
• Reformated and updated the possible return values of C1394OpenAdapter.

Jan 12th 1999
• Added the STATUS_1394_CONFLICT to the return values of C1394MapAddressRange.

	Part I - Technical Overview
	Introduction
	References from the IEEE-1394 Standard
	Architecture
	Conventions
	Before You Start

	Initializing with FireAPI
	Initializing and Terminating 1394 Support
	Multiple Adapter Support
	Enumerating the installed adapters
	Opening a handle to an adapter
	Opening an adapter by GUID
	Receiving notifications about the dynamic addition of 1394 adapters

	Asynchronous Operations
	Initiating Transaction Requests
	Maximum Transmission Speed Per Destination NodeID
	Maximum Asynchronous Packet Size
	Bandwidth Consumption
	Broadcast Requests
	Software Loopback
	Transaction Management
	Transaction Label Management for Outgoing Transaction Requests
	Transmit Order
	NodeID & Device Functions
	Bus Resets & Asynchronous Transactions
	Bus Reset Exceptions (obsolete)
	Reading the GUID of bus nodes
	Reading the GUID of bus nodes – Transaction Failures
	Reading the GUID of bus nodes – Transaction Timeouts
	Reading the GUID of bus nodes – Various Notes
	Determining the nodes connected to the 1394 Bus
	Enumerating the Devices on the 1394 Bus
	Non-blocking Calls
	Write Transaction Requests
	Lock Transaction Requests
	HandleBased Functions
	Using Device Handles
	Retrying transactions with C1394Retry functions
	Performing Asynchronous Streaming transactions

	Accepting Transactions from Remote Nodes
	The 1394 Address Space
	Address Ranges in the 1394 Address Space
	Allocating and Freeing an Address Range
	Incoming Transaction Request Processing
	Application Control Flow
	Simple CSR Server Sample
	Mapping an Address Range to more than one adapters
	Performance Optimization for Incoming Requests
	Requests Spanning Address Ranges
	Receiving Asynchronous Streaming transactions
	Advantages of FireAPI Incoming Transaction Request Processing
	Summary of Class Driver Transaction Processing functions
	Common Errors in Transaction Processing

	Event Notifications
	Registering a Bus Reset Notification
	Using a separate thread for events
	Notes on Bus Reset Processing

	Isochronous Operations
	Adapter Channels & DMA Channels
	DMA Multiplexing
	DMA Multiplexing Modes
	Opening an Adapter Channel
	Enabling stream channel numbers for an Adapter Channel
	Adapter Channel Operating Models
	QueuedCompletion Model
	Instant Completion Notification
	Isochronous Request Types
	Why use ‘Packet’ or ‘Fixed’ operations?
	Design Examples

	Processing Isochronous Requests
	Outline of Isochronous Processing Loop
	Queueing Isochronous Requests
	Retrieving Complete Isochronous Requests
	How many requests to queue?
	Queueing ‘Small’ Requests
	Isochronous Options
	Common Mistakes in Isochronous Processing
	Isochronous Operation Limits

	Isochronous Resource Allocation
	Isochronous Timing
	The Protocol
	Bus Reset & Isochronous Resources
	Identifying the IRM
	Allocating a channel number using compare swap
	Allocating bandwidth using compare swap
	Freeing Isochronous Resources

	VersaPHY Operations
	VersaPHY Basics
	VersaPHY Functions & Profiles
	VersaPHY Transactions
	VersaPHY API Overview
	VersaPHY PhyID functions
	VersaPHY Label functions
	VersaPHY Packet Structures
	VersaPHY Packet Initialization/Handling
	VersaPHY Transaction Serialization
	VersaPHY Transaction Timeout

	Miscellaneous Topics
	Endianess Considerations
	Endianess Swapping
	Utility String Functions
	64bit Integer Arithmetic
	Path Speed Information
	Bus Topology Information
	C1394_NODE_INFO
	SelfID Analysis Error Codes
	Topology Analysis Error Codes
	Manipulating CYCLE_TIME timestamps
	Application Reaction Time
	Accessing the Link Layer Registers
	Changing the FIFO settings

	Part IIFireAPI Function Reference
	Initialization Functions
	Outgoing Asynchronous Transactions
	FIREAPI_TRANSACTION

	Incoming Asynchronous Transactions
	Device Handle Functions
	Retry Functions
	Isochronous Processing
	VersaPHY Functions
	Control & Information Functions
	OID_ARBITRATION_ACCELERATION_STATUS
	OID_MULTI_SPEED_PACKET_CONCATENATE_STATUS
	OID_PHY_REGISTER_PAGE
	OID_ADAPTER_CONNECTED
	BOOLEAN *
	OID_PHYSICAL_NODES
	OID_SELFID_ANALYSIS_ERROR
	OID_CHANNEL_REQUEST_INDEX
	OID_CHANNEL_STATISTICS
	BOOLEAN *
	CHANNEL_MASK_STRUCT
	CHANNEL_MASK_STRUCT
	CHANNEL_MASK_STRUCT

	Event Notification Functions
	Miscellaneous Functions
	Part IIIFireAPI Structures & Macros Reference
	Incoming Packets & C1394_PACKET_HEADER
	Outgoing Packets & C1394_PACKET_HEADER
	Request Index
	Request Timeouts
	Bus Reset Handling
	Other Options
	Isochronous Completion Status
	C1394_ISOCH_RCV_FIXED_PKTS
	C1394_ISOCH_RCV_FIXED_DATA
	C1394_ISOCH_RCV_FIXED_DATA_NH
	C1394_ISOCH_XMIT_PKTS
	C1394_ISOCH_XMIT_FIXED_PKTS
	C1394_ISOCH_XMIT_DATA
	C1394_ISOCH_IDLE_CYCLES
	C1394_STREAM_PACKET_HEADER
	MAKE_ISOCH_HEADER
	C1394_PHY_PACKET_GENERIC
	C1394_PHY_PACKET_SELF_ID_0
	C1394_PHY_PACKET_SELF_ID_N
	C1394_PHY_PACKET_SELF_ID_1
	C1394_PHY_PACKET_SELF_ID_2
	C1394_PHY_PACKET_SELF_ID_3
	C1394_PHY_PACKET_LINK_ON
	C1394_PHY_PACKET_CONFIGURATION
	C1394_PHY_PACKET_EXTENDED
	C1394_PHY_PACKET_PING
	C1394_PHY_PACKET_REMOTE_ACCESS
	C1394_PHY_PACKET_REMOTE_REPLY
	C1394_PHY_PACKET_REMOTE_COMMAND
	C1394_PHY_PACKET_REMOTE_CONFIRMATION
	C1394_PHY_PACKET_RESUME
	C1394_PHY_PACKET

	Change History (reverse chronological order)

