

Unibrain

Fire-i.net SDK manual
Programmer’s Manual & Reference

2

Table of Contents
TABLE OF CONTENTS ... 2
INTRODUCTION .. 4
TECHNICAL DETAILS .. 5

ARCHITECTURE .. 5
PERFORMANCE ... 5
INSTALLATION ... 6
DESIGN ... 6

USAGE .. 7
SCENARIO I – SIMPLE VIDEO VIEWER 7
SCENARIO II – CONTROLLING CAMERA FEATURES 14
SCENARIO III – MANIPULATING CAPTURED FRAMES 17
SCENARIO IV – WORKING WITH A ROI (A.K.A. FORMAT 7) . 19

REFERENCE ... 22
FIREIPREVIEWCONTROL .. 22
FIREIGUID... 22

[] property .. 22
ToString method... 22
InitFromString method 23

FIREIMANAGER ... 24
GetConnectedCamerasCount method 24
SelectCamera method .. 24
GetCameraFromIndex method 25
GetCameraFromGUID method 26

FIREIREGISTER .. 27
GetBit method .. 27
SetBit method ... 27
GetField method ... 28
SetField method ... 28
GetFieldLen method ... 29
SetFieldLen method .. 29
SwapEndianess method 29

FIREITRIGGER ... 30
AbsControl property ... 30
Enabled property .. 30
Polarity property .. 31
Source property .. 31
Value property ... 32
Mode property ... 32
IsSupported property ... 32
HasAbsolute property .. 33
CanRead property .. 33
HasOnOff property ... 33
HasPolarity property .. 34
CanReadRaw property 34
Parameter property ... 34
IsSourceSupported method 35
IsModeSupported method 35
Reload method ... 36
PullSoftwareTrigger method 36
Save method .. 36

FIREISTREAMFORMAT .. 37
PixelFormatString property 37
PixelFormat property ... 37
Resolution property .. 38
IsUserDefined property 39

IsCurrent property .. 39
Identifier property .. 39
Fixed property .. 40
UserDefined property ... 40
RawModeOverride property 41
Width property ... 41
Height property .. 42
ToString method ... 42
Save method ... 42

FIREIFIXEDSTREAMFORMAT ... 44
ResolutionString property................................... 44
FrameRateString property 44
FrameRate property ... 44
PacketSize property .. 45
PacketsPerFrame property 45
ToString method ... 46
IsFrameRateSupported method 46

FIREIUSERDEFINEDSTREAMFORMAT 48
Left property ... 48
Right property .. 48
Top property ... 48
Bottom property ... 49
Width property ... 49
Height property .. 49
MaxWidth property .. 50
MaxHeight property ... 50
HorizontalPositionUnit property......................... 50
VerticalPositionUnit property 51
WidthUnit property .. 51
HeightUnit property ... 51
MaxPacketSize property 52
PacketSizeUnit property 52
PacketSize property .. 52
F7Offset property ... 53
ToString method ... 53
SetROI method ... 54

FIREIFEATURE ... 55
Name property ... 55
IsSupported property .. 55
HasAbsolute property ... 56
HasOnePush property ... 56
CanRead property ... 56
HasOnOff property ... 57
HasAuto property ... 57
HasManual property .. 58
MinValue property ... 58
MaxValue property ... 58
Absolute property ... 59
Enabled property .. 59
AutoMode property .. 59
Value property .. 60
HasSoftAbsolute property 60
SoftAbsolute property .. 61
ValueString property .. 61
MinValueString property 61

3

MaxValueString property 62
Unit property .. 62
AbsoluteValue property 63
MinAbsoluteValue property 63
MaxAbsoluteValue property 64
Reload method ... 64
OnePush method .. 64

FIREIFRAME ... 66
GetPixel method ... 66
SetPixel method ... 66
GetRGB method ... 67
SetRGB method .. 67
SaveToFile method ... 67
FlipHorizontally method 68
FlipVertically method ... 68
Negative method.. 68
ToBitmap method .. 69
GetGraphics method .. 69
DrawLine method ... 69
DrawString method .. 70
DrawRectangle method 70
DrawLineRGB method .. 71
DrawStringRGB method 71
DrawRectangleRGB method 72

FIREICAMERA ... 73
GUID property .. 73
Vendor property ... 73
Model property .. 74
Serial property .. 74
StreamFormat property 74
Trigger property ... 75
AutoExposure property 75
Shutter property ... 75
Gain property ... 76
Iris property .. 76
ColorUB property ... 76
ColorVR property .. 77
Hue property .. 77
Saturation property .. 77

Focus property .. 78
Zoom property .. 78
Brightness property .. 78
Sharpness property ... 79
Gamma property .. 79
RawConversion property 79
Icon property .. 80
ReadRegister method ... 80
WriteRegister method .. 81
ReadCommand method 81
WriteCommand method 82
ReadBlock method .. 82
WriteBlock method ... 82
GetMemoryPresetsCount method 83
ToString method ... 83
GetFeature method .. 84
SelectStreamFormat method 84
AttachPreviewCtrl method 86
Run method .. 87
Stop method ... 87
IsRunning method .. 87
GetStreamFormats method 88
DisplayProperties method 88
IsFeatureSupported method 89
GetFeaturesEnumerator method 89
GetCurrentResolution method 90
GetCameraPhoto method 90
SaveToMemory method 91
LoadFromMemory method 91
SaveToXML method .. 92
LoadFromXML method 92
RetrieveStreamFormat method 93
RetrieveStreamFormatFromIdentifier method ... 93
FrameReceived event ... 94
BufferReceived event .. 94
CameraRemoved event 95

Introduction
The Fire-i.net SDK is the latest addition to ubCore™ and the Unibrain APIs. It provides an entirely new and
comprehensive way to interact with multiple IEEE1394 IIDC compatible cameras, including video and feature
manipulation, direct register access, etc. Even though it is designed to follow in the footsteps of the Unibrain
Fire-iX SDK, it is based on Microsoft™ .net™ technology, written entirely in C#, making a perfect fit for any
managed .net project.

The Fire-i.net SDK can operate in two modes; ubCore and DirectShow. The SDK feature set is almost identical
and transparent under both modes of operation. It does not require familiarity with either of the two SDKs,
so it is an ideal fit in situations where the programmer does not need/want to delve into IEEE1394 or IIDC
details in order to perform simple camera tasks, such as setting a few features and capturing a few frames.
This is only on the surface though; the more powerful features are still there for anyone to use, they are just
not required for the simpler tasks.

5

Technical Details

Architecture
The following illustration shows how the various Unibrain APIs interact with each other, and how they are
abstracted from the programmer by using the Fire-i.net SDK.

Performance
The performance of the program at runtime depends on which underlying API is selected (Firei.dll,
DirectShow/ubCore or DirectShow/MS Stack). There is no specific set of circumstances where selecting one
API over another will produce better results. The ease of changing between all three, which requires minimal
changes1, allows the programmer to test through all three different cases and compare the performance.
Please keep in mind however, the performance using the MS Stack DirectShow drivers will be affected by the

1 A single parameter indicating whether Firei.dll or DirectShow is going to be used is passed to the FireiManager
constructor; no code difference to choose between DirectShow/ubCore and MS Stack (ubSwitch is used in the latter
case).

Firei DLL fiprop.ax
Camera Control Filter

fiyuv.ax
YUV-to-RGB Transform Filter

User Mode
DirectShow Engine

User Mode

Kernel Mode
MS Stream Class Driver

ubdcam.sys
WDM IIDC 1394 Camera Driver

Based on ubCore

fidcam.sys
WDM IIDC 1394 Camera Driver

Based on MS Stack

MS 1394 OHCI
Class Driver

MS 1394 OHCI
Miniport

ubCore 1394 OHCI
Class Driver

ubCore 1394 OHCI
Miniport

FiCommon.cpp functions

CFiCamera class

Managed Fire-i.net SDK

Fire-i.net SDK 3rd Party Applications

Microsoft
Unibrain
Fire-i.net
3rd Party

Unmanaged interop Unmanaged interop

6

MS 1394.sys driver, which is known to have various issues with popular operating systems (Windows XP
Service Pack 2 and Windows Vista included).

Installation
No specific installation of Fire-i.net SDK is necessary. It is included with both ubCore Setup and Firei MS Stack
Setup. The unmanaged portion of the API is automatically installed along with the other unmanaged dlls of
ubCore of Firei. It is therefore necessary to have either ubCore or Fire-i MS Stack installed and in working
order for Fire-i.net SDK to operate. The (managed) Firei.net.dll module (which contains the full functionality
of the Fire-i.net SDK) is registered with the GAC (Global Assembly Cache) automatically during these
installations. Also during installation, a registry entry is inserted making the Fire-i.net API directly available in
Microsoft Visual Studio™ for use in .net projects.

Design
The Fire-i.net SDK is designed as a Windows control, bundled with a few managed objects that help control
the action, each with its own interface, properties and methods. The programmer either begins with the
control (for use on a GUI application) and then uses it to create the other objects, or directly constructs the
objects (for use on a command-line based application), omitting the Windows control altogether. The
following diagram attempts to depict how the various objects interact with the Windows control and with
each other:

FireiPreviewCtrl
(Windows.Forms. Control)

FireiManager FireiCamera

FireiStreamFormat

FireiUserDefinedStreamFormat FireiFixedStreamFormat

FireiFeature

FireiTrigger

FireiFrame

FireiGUID FireiRegister

Helpers

7

Usage

Scenario I – Simple video viewer
Let’s start Microsoft Visual Studio 2008. Create a new empty project, of the “Windows Forms Application”
variety:

This should produce a new empty project, with a single form (empty as well). Now, right-click on the
References folder of the project and select “Add Reference…”:

8

This will bring up the reference selection dialog of VS. In the “.NET” tab, select “Firei.net” and click on OK:

This will add the Fire-i.net assembly to the project references. Next, we need to add the FireiPreviewControl
in our toolbox. To do that, right-click on the empty space of the current toolbox, and select “Choose
Items…”:

9

This will bring up the “Choose Control Items” dialog of Visual Studio. On the “.NET Framework Components”
tab, select and mark the FireiPreviewControl entry:

As soon as OK is pressed, the FireiPreviewControl is added to the toolbar. Let’s use it on our empty form:

10

Visual Studio automatically sets the name of the control to be “fireiPreviewControl1”, which for our purpose
will do nicely.

Now it’s time to edit the form code. First, we need two variables, so we add them at the very top:

private FireiManager Manager;
private FireiCamera Camera;

The FireiManager object will be used to construct our camera object. The FireiCamera object exposes
all the features that our camera supports. We need to initialize our Manager object before using it. This can
be done by calling:

Manager = new FireiManager(true);

The constructor parameter indicates whether DirectShow (true) or DLL (false) mode will be employed
internally. It is highly recommended that only one instance of a FireiManager object is constructed during
the program lifetime, ensuring that either the DirectShow or the DLL mode will be used throughout. Mixed
mode is not supported.

We override the OnShown method to place our initialization code:

protected override void OnShown(System.EventArgs e)
{

base.OnShown(e);
Manager = new FireiManager(true);

}

Now we need to construct our camera object. FireiManager provides two methods for doing just that;
GetCameraFromIndex and GetCameraFromGUID. The former is useful when a) we have only one
camera connected to our system or b) we want to programmatically iterate between all the connected
cameras, and select the one we want2. To simply construct the first (or only) camera connected to our
system, a call

Camera = Manager.GetCameraFromIndex(0);

will suffice. To iterate between all cameras, we can use GetConnectedCamerasCount and proceed with a
regular for-loop:

for (int i = 0; i < Manager.GetConnectedCamerasCount(); ++i)
{
 Camera = Manager.GetCameraFromIndex(i);
 if (Camera.Vendor == "Unibrain")
 break;
}
if (Camera == null || Camera.Vendor != "Unibrain")
 Close();

2 Please keep in mind that the order in which the cameras will be indexed is non-deterministic. It can be considered to
be random even on the same system with the exact same configuration between reboots.

11

The above code fragment will iterate through the connected cameras, and stop at the first camera that is
made by Unibrain. With the additional check at the end, it will effectively select the first available Unibrain
camera.

If the camera GUID (unique identifier) is known beforehand, we can use the GetCameraFromGUID method
of FireiManager. We construct a FireiGUID object, initialize it with our known GUID, and then construct
the camera with GetCameraFromGUID:

FireiGUID guid = new FireiGUID();
guid.InitFromString("08:14:43:61:02:63:0A:D2");
Camera = Manager.GetCameraFromGUID(guid);

Additionally, FireiManager allows choosing a camera using a GUI through the SelectCamera method.
This method will present a camera selection dialog, and if the user selects one, it will return the camera’s
GUID:

For simplicity, we will follow this path in this example. So, after our FireiManager construction, we add:

FireiGUID guid;
if (!Manager.SelectCamera(out guid))
 Close();

If the user didn’t select a camera, the SelectCamera call will return false, in which case we exit the
application. The FireiGUID object is constructed inside the SelectCamera method, and it is then used to
create the camera object:

12

Camera = Manager.GetCameraFromGUID(guid);

Next, we need to connect the Camera object to our FireiPreviewControl object. This is done with a
single call:

Camera.AttachPreviewCtrl(fireiPreviewControl1);

Effectively it means that any video this camera will produce will end up being shown in this preview control.

Now we need to select which streaming format our camera will run at. This can be done programmatically
by either accessing the currently selected streaming mode (through the StreamFormat property of
FireiCamera), or by accessing the supported streaming formats generic list, through the
GetStreamFormats method. For the purposes of our simple example though, we will go down a different
path, the GUI-driven one.

We add a call to SelectStreamFormat:

Camera.SelectStreamFormat();

This will allow selecting and setting a streaming format through the API provided GUI:

13

The available choice will of course vary depending on which camera this is called upon; only supported
formats will be presented. Also, the above selection dialog shown is the one provided by the Firei.dll API.
Using the DirectShow API will show a format selection dialog similar to:

Now that the streaming format is selected, the only part remaining is actually starting the camera. This
requires a simple call:

Camera.Run();

Some cleanup is also necessary though, according to best programming practices. Before exiting, we’ll stop
the camera and dispose of our two constructed objects. This can be done at the OnClosed override:

protected override void OnClosed(EventArgs e)
{
 if (Camera != null)
 {
 Camera.Stop();
 Camera.Dispose();
 }
 Manager.Dispose();
 base.OnClosed(e);
}

14

Running the program will show live video on our control on the form, after selecting the desired camera and
streaming format. If only one camera is connected on the system, it is selected without presenting a
selection dialog at all (and the SelectCamera method returns true immediately).

A nice touch to our program: Set the caption and the form icon to match our selected camera:

Text = Camera.ToString();
Icon = Camera.Icon;

This will change the form caption to look like:

NOTE: With DirectShow enabled and ubCore installed, by using ubSwitch (the ubCore tool) we can toggle
between ubCore DirectShow support and MS-Stack DirectShow support.

Scenario II – Controlling camera features
Now suppose we need to change some camera features, like brightness or shutter speed. Again, there are
more than one ways of achieving that. Each feature for example can be accessed individually through its
FireiFeature derived object; we can access that object by a simple direct call to the corresponding
camera property, like:

FireiFeature feature = Camera.Shutter;

Another way to access a feature would be by name, using the GetFeature method of FireiCamera:

FireiFeature feature = Camera.GetFeature("Shutter");

Suppose we want to change the shutter value to its maximum supported. Now that we have the Shutter
feature object, this can be done by:

if (feature.IsSupported)
 feature.Value = feature.MaxValue;

Note that the above code fragment checks whether the camera supports the feature before accessing any of
its properties. Failure to do so would throw an exception if the feature is not supported. Also, if the Shutter
feature is set to Auto, we’ll need to turn that off before setting the value, or an exception will be thrown as
well.

Yet another way to access the camera features is through the GetFeatures method provided by
FireiCamera. This allows iterating through all the supported camera features, like:

Camera.
GetFeatures(true, FireiFeatureGroup.All).
FindAll(f => f.HasAuto).
ForEach(f => f.AutoMode = true);

As can be seen from the above example, advanced .net features like lamda expressions are fully supported.
The above example gets a generic list of all supported features (for additional information on GetFeatures,

15

see the reference section of this manual) of the camera, checks whether they support Auto setting and if
they do, sets it.

A GUI-driven way to manipulate the camera features is also provided. A call to the DisplayProperties
method of FireiCamera will suffice:

Camera.DisplayProperties();

This brings up the camera properties sheet:

NOTE: The call to DisplayProperties returns immediately after opening the dialog. Therefore it is
possible to manipulate the camera features while observing the results in the preview window. There is no
additional functionality that can be accessed through the GUI feature manipulator; everything that can be
done through the GUI, can also be done programmatically. For example, the Shutter feature discussed above
resides in the “Exposure” tab. The “AutoMode” setting is the one marked “at” with a checkbox. The slider
control corresponds to the value setting.

For the purposes of our example, we’ll add a listbox to our Scenario I sample application, containing the
names of all the features that are supported by the camera, and a button that brings up the camera
properties.

16

Firstly, we enlarge our form, to make way for the new controls:

Then, we add the two controls. It is also a good idea to change their corresponding variable names to
FeatureList and Properties respectively:

The best time to populate the listbox would be immediately after we constructed our FireiCamera object.
As discussed above, iterating through the supported features is done with the GetFeatures method:

17

Camera.
GetFeatures(true, FireiFeatureGroup.All).
ForEach(f => FeaturesList.Items.Add(f.Name));

This takes care of the listbox population. Now for the properties button, we override the Properties_Click
event:

private void Properties_Click(object sender, EventArgs e)
{

if (Camera != null)
Camera.DisplayProperties();

}

Running the program produces the desired result:

Most cameras will reset to their default feature values if powered off. The SDK provides two ways to save
and restore them; to/from an XML file through the LoadFromXML and SaveToXML methods of
FireiCamera and, if the camera supports memory presets, through the SaveToMemory and
LoadFromMemory methods. Note that the XML formatting of the file is compatible with the other tools of
ubCore. So for instance, the programmer can use Fire-i Application or FireIIDC to select and then save a
feature set, and then load it programmatically in a Fire-i.net program.

Scenario III – Manipulating captured frames
Now that we have our simple viewer program up and running, watching the live video preview, let’s take it a
step further: we can manipulate the camera frames as they arrive.

In order to do that, we need to override the FrameReceived event of FireiCamera. First, we create the
event callback method:

void Camera_FrameReceived(object sender, FrameReceivedEventArgs e)
{
}

18

Next, we assign that method to the FrameReceived event. A good place for that would be immediately
before calling Camera.Run:

Camera.FrameReceived +=
new EventHandler<FrameReceivedEventArgs>(Camera_FrameReceived);

As shown above, the event provides a FireiFrame object for our perusal (via the Frame property of the
FrameReceivedEventArgs). Through this object we have absolute access to the frame buffer, pixel by
pixel, with the GetPixel/SetPixel and GetRGB/SetRGB methods. The only difference between the two
sets is the way the color value of the pixel is passed; in the former it is passed as a
Windows.Drawing.Color object, in the latter it is passed with R, G and B values separately. The same
designation holds true for the other methods of FireiFrame; whenever “RGB” is in their name, it means
separate R, G and B values.

Besides direct per-pixel manipulation, a few additional methods are implemented in FireiFrame. Suppose
we’d like to draw a blue rectangular box, along the edges of the frame, and a big red X inside it. We can use
the DrawRectangleRGB and DrawLineRGB methods to achieve that:

short x1 = 10;
short y1 = 10;
short x2 = (short)(Camera.StreamFormat.Width - x1);
short y2 = (short)(Camera.StreamFormat.Height - y1);
e.Frame.DrawLineRGB(x1, y1, x2, y2, 255, 0, 0);
e.Frame.DrawLineRGB(x2, y1, x1, y2, 255, 0, 0);
e.Frame.DrawRectangleRGB(x1, y1, (short)(x2 - x1), (short)(y2 - y1), 0, 0,
255, false);

Note the way x2 and y2 are calculated: we use the Width and Height properties of the selected streaming
format to ascertain the edges of our frame. The “false” in the last parameter of DrawRectangleRGB,
means “empty” as opposed to “filled” box.

Now suppose we’d like to write some text on the frame as well. We can use the DrawStringRGB method
for this:

e.Frame.DrawStringRGB("Hello World", 0, 0, Font, 100, 100, 0);

A yellowish color is chosen this time, using the default font of our form, placed at the top left corner of the
frame.

19

This is what the outcome looks like:

NOTE: The aliasing of the drawn lines and text is due to the enlargement of the picture in order for it to fit in
our selected preview control. The actual streaming format that was selected for the above screenshot was

252×232, which is more than the size of the window. Similarly, if the format was smaller than the screen, the
image would have been enlarged to fit accordingly. Also, to nitpick, there is no test made whether the image
is actually larger than 20×20, as would be required for the box and lines to fit. In case the image was smaller

than 20×20, an exception would be thrown trying to call DrawLineRGB with positions out-of-bounds.

Additionally, we can save the frame at any time to a Windows BMP compatible file on disk. To do that,
simply call the SaveToFile method of FireiFrame:

e.Frame.SaveToFile("C:\\1.bmp");

The placement of the SaveToFile call is important. If it is placed before any changes on the frame, the file
will contain the frame as it is, whereas if it is placed after any changes, it will contain them too. The resulting
file will have the Width × Height size as sent by the camera, not as shown on the screen. So for instance, in
this case it would be 252×232, regardless of the size of the window showing the video.

NOTE: Please exercise caution when using the SaveToFile method. If a high frame rate streaming format is
selected, especially with a high resolution, the overhead on the system saving individual uncompressed BMP
files in quick succession can be extremely taxing. For example, a 1280×960×24bit image has a size on the disk
of roughly 3.52MB. At 30 frames per second, the throughput required would be above 100MB per second,
which is prohibitive in most real-world cases. In such instances it is preferable not to save every frame
captured but every n-th frame to reduce overhead – or simply use a lower frame rate.

Scenario IV – Working with a ROI (a.k.a. Format 7)
Some cameras support capturing a specific ROI (Region Of Interest), through what is defined in the IIDC
specification as “Format 7” or “Partial Image Format”. The Fire-i.net SDK has full support for those modes of

20

operation, by using a derivative of the FireiStreamFormat object, called
FireiUserDefinedStreamFormat (as opposed to the FireiFixedStreamFormat).

The SelectFormat method discussed in Scenario I allows such selection, but this time we’ll go a different
way, and manipulate the streaming format programmatically.

First, we need to iterate through all available streaming formats of the camera. We do that through the
GetStreamFormats method, in a similar way to iterating through the camera features:

FireiStreamFormat streamFormat = Camera.
GetStreamFormats().
Find(s => s.IsUserDefined);

if (streamFormat == null)
{
 Close();
 return;
}
ushort w = streamFormat.UserDefined.MaxWidth;
ushort h = streamFormat.UserDefined.Height;
streamFormat.UserDefined.SetROI(0, 0, w, h);
Camera.StreamFormat = streamFormat;

In the above code fragment, a generic list of supported streaming formats is requested from the camera,
and the first User Defined stream format is selected through the Find method. If the camera doesn’t
support any User Defined formats, Find will return null – in which case we exit the program. Since we
ascertained that StreamFormat in fact is valid, and is of User Defined type, we can use the UserDefined
property of FireiStreamFormat to access the User Defined properties of the format. In this case we
assign in the w and h ushort variables the maximum allowed width and height of the format respectively
and then set it as our selection, using the SetROI method. If an invalid rectangle was specified as the User
Defined size the SetROI method would throw an exception. Finally, we set the now updated
StreamFormat to the Camera, via its StreamFormat property – we could also have done this through the
Save method of the FireiStreamFormat itself.

In fact, the UserDefined property of FireiStreamFormat returns a variable of type
FireiUserDefinedStreamFormat. In case the FireiStreamFormat is Fixed instead of User Defined,
the corresponding property is called Fixed accordingly and returns a variable of type
FireiFixedStreamFormat. Even though a Fixed format carries that name, it contains a single variable
property – the frame rate (it can be set using its FrameRate property).

All formats, whether Fixed or User Defined, have two attributes in common: their FireiResolution and
their FireiPixelFormat. Both of these attributes are enumerated values – in the case of
FireiResolution, the name is sort of a misnomer; if the stream format is User Defined it is actually
valued from Variable to Variable_7 which are roughly equivalent to the Format_7 Modes of the camera
(unlike for Fixed formats, which are valued from res160x120 to res1600x1200). This pair of values is unique
to a stream format, so it is sufficient to define the format.

Since the above situation is not always easy to work with, another way to identify a streaming format exists:
a unique identifier, which can be stored in a uint value. This is accessed through the Identifier property

21

of FireiStreamFormat. This identifier can be used to retrieve this specific stream format from the
camera, using its RetrieveStreamFormatFromIdentifier method. Keep in mind though that any user
selected settings are not stored – it is the stream format that is retrieved, not its contents.

22

Reference
In the following reference of all interfaces implemented, “Long” is defined as a 32-bit signed integer value,
and “Integer” is defined as a 16-bit signed integer value. “Byte” on the other hand is an 8-bit unsigned
integer value. “Single” is a single-precision floating-point number.

FireiPreviewControl
The FireiPreviewControl is a Windows.Forms.Control-derived control, which purpose is to show the video
output of the underlying API at work. It can be resized at will while running, and can be attached on any
Windows form.

FireiGUID
The FireiGUID object is a helper object, making the camera GUID easier to manipulate, store and retrieve.

It can be constructed directly, or through the SelectCamera method of FireiManager. It supports a
number of properties and methods through its interface:

[] property

Prototype
public byte this[int index]

Comments
The [] property is a read/write property, enabling the direct manipulation of any of the 8 bytes in a
FireiGUID object.

Visual Basic syntax
Dim Byte0 As Byte
Byte0 = Guid.Item(0) 'get
Guid.Item(0) = Byte0 'set

C# syntax
byte Byte0 = Guid[0]; //get
Guid[0] = Byte0; //set

ToString method

Prototype
String ToString()

Comments
The ToString method converts and returns the bytes contained in the FireiGUID object to a regular
string, with each of the 8 bytes separated with the ‘:’ character for better clarity. Each byte is represented in
2-character hexadecimal form.

Visual Basic syntax
Dim StringGUID As String
StringGUID = Guid.ToString

23

C# syntax
string StringGUID = Guid.ToString();

InitFromString method

Prototype
public void InitFromString(string guidString)

Comments
The InitFromString method can be used to initialize a FireiGUID object with an 8-byte GUID
represented as a string, with each byte being represented as a 2-character hexadecimal value. The bytes can
be separated by any single character (must be the same all the way) or not separated at all.

The output of the ToString method can be fed to the InitFromString method directly if desired.

Visual Basic syntax
Dim StringGUID As String
StringGUID = "XX:XX:XX:XX:XX:XX:XX:XX"
Guid.InitFromString StringGUID

C# syntax
string StringGUID = "XX:XX:XX:XX:XX:XX:XX:XX";
FireiGUID Guid = new FireiGUID();
Guid.InitFromString(StringGUID);

24

FireiManager
The FireiManager object is the starting point for the selection and construction of cameras.

It itself can be constructed directly. By constructing it directly it is ensured that, a Fire-i.net program can be
completely detached from any UI, existing entirely in command line (provided no video preview is necessary,
just image processing and/or manipulation).

There is no default constructor. The single constructor available requires a parameter to be passed denoting
whether DirectShow or DLL mode will be utilized.

It has a number of methods implemented, all having to do with the selection and construction of
FireiCamera objects.

GetConnectedCamerasCount method

Prototype
public uint GetConnectedCamerasCount()

Comments
This method will return the number of connected cameras on the bus.

Please keep in mind that since cameras can be freely plugged in and unplugged, this call can return different
results at different times, even during runtime. Also, the number of cameras connected to the bus is not the
same as the number of cameras directly connected to the PC running the Fire-i.net program. The 1394 bus
networks any connected cameras and PCs together, and the call to GetConnectedCamerasCount will
return all the accessible cameras from this PC.

This call is not light on system resources (it produces a lot of traffic on the 1394 bus searching for cameras)
and care should be exercised when using it.

Visual Basic syntax
Dim NumOfCameras As UInteger
NumOfCameras = Manager.GetConnectedCamerasCount

C# syntax
uint NumOfCameras;
Manager.GetConnectedCamerasCount();

SelectCamera method

Prototype
public bool SelectCamera(out FireiGUID cameraGuid)

Comments
This method when called will bring up a “Camera Selector” dialog, as constructed and maintained internally
by the APIs. Through this dialog, user selection of a camera is possible. The user can double-click on a
camera to select it, or click on one and then “OK”.

25

The dialog presented looks similar to:

The method returns true if a selection was made by the user and false if “Cancel” was pressed (no selection
made). If the result is true, then a FireiGUID object is constructed and returned through the cameraGuid
parameter. This FireiGUID can then be used by other methods, such as the GetCameraFromGUID
method.

If only one camera is connected to the system, the method returns true immediately, without presenting the
selector dialog. The FireiGUID then represents the GUID of the single camera.

Visual Basic syntax
Dim GUID As FireiGUID
Dim Selected As Boolean
Selected = Manager.SelectCamera(GUID)

C# syntax
FireiGUID GUID;
bool Selected = Manager.SelectCamera(out GUID);

GetCameraFromIndex method

Prototype
public FireiCamera GetCameraFromIndex(uint index)

Comments
This method constructs a FireiCamera object and returns it, given an Index number. This number must be
less than GetConnectedCamerasCount, starting from 0.

26

It is most useful when:

• A single camera is connected (a call with 0 index is sufficient).
• The order in which the cameras are created is not important, and all camera objects must be created

(a for-loop from 0 to GetConnectedCamerasCount – 1 is sufficient).
• A search for a specific camera, following specific criteria is required (the same for-loop, this time

looking at the properties of each camera and stopping at the first that meets the criteria).

Visual Basic syntax
Dim Camera As FireiCamera
Dim i, NumOfCameras As Byte
NumOfCameras = Manager.GetConnectedCamerasCount
For i = 0 To NumOfCameras - 1

Camera = Manager.GetCameraFromIndex(i)
If Camera.Vendor = "Unibrain" Then Exit For

Next

C# syntax
for (int i = 0; i < Manager.GetConnectedCamerasCount(); ++i)
{
 Camera = Manager.GetCameraFromIndex(i);
 if (Camera.Vendor == "Unibrain")
 break;
}

GetCameraFromGUID method

Prototype
public FireiCamera GetCameraFromGUID(FireiGUID guid)

Comments
This method constructs a FireiCamera object and returns it, given a valid FireiGUID object. The GUID
represented by this FireiGUID must belong to a camera connected on the system; otherwise an exception
will be thrown.

It is most useful when the camera GUID is known beforehand, and provides a more direct way of accessing
the camera as opposed to GetCameraFromIndex, because the positioning of the camera on the bus is
irrelevant.

It is also mated to the SelectCamera method, as the FireiGUID returned by that method can be passed
directly in GetCameraFromGUID to create the selected camera.

Visual Basic syntax
Dim Camera As FireiCamera
Dim GUID As FireiGUID
If Manager.SelectCamera(GUID) = True Then
 Camera = Manager.GetCameraFromGUID(GUID)
End If

27

C# syntax
FireiGUID guid;
if (Manager.SelectCamera(out guid))

Camera = Manager.GetCameraFromGUID(guid);

FireiRegister
The FireiRegister object is a helper object designed to make reading and writing values contained in a 4-
byte register easy. It can be used to read/write any single bit of the register (represented as a Boolean
value), or read/write any field of the register (represented as a uint value, and defined as from one bit to
another bit).

It can be used in conjunction with the ReadRegister/WriteRegister and
ReadCommand/WriteCommand methods of the camera, as those methods use FireiRegister objects.

GetBit method

Prototype
public bool GetBit(byte index)

Comments
The GetBit method is used for reading a single bit of the register, and it returns a Boolean value; it is true
when the bit is 1 and false when the bit is 0 in the FireiRegister object.

The Index parameter can carry any value from 0 to 31, with 0 being the Most Significant Bit (represented in
little-endian form, the same way cameras store their register values in them). If a value greater than 31 is
passed, an error will occur.

It is the equivalent of using the GetField method with the FromIndex and ToIndex parameters being equal
to Index.

Visual Basic syntax
Dim Bit5 As Boolean
Bit5 = Reg.GetBit(5)

C# syntax
bool Bit5 = Reg.GetBit(5);

SetBit method

Prototype
public void SetBit(byte index, bool value)

Comments
The SetBit method is used for writing a single bit to the register, using a Boolean value; true to set the bit
to 1 and false to set the bit to 0 in the FireiRegister object.

The Index parameter can carry any value from 0 to 31, with 0 being the Most Significant Bit (represented in
little-endian form, the same way cameras store their register values in them). If a value greater than 31 is
passed, an error will occur.

28

It is the equivalent of using the SetField method with the FromIndex and ToIndex parameters being equal
to Index.

Visual Basic syntax
Reg.SetBit(5, True)

C# syntax
Reg.SetBit(5, true);

GetField method

Prototype
public uint GetField(byte fromIndex, byte toIndex)

Comments
The GetField method can be used to read a sequence of bits in the register, from a given bit up to and
including another bit. It returns a uint value, so the entire register can be returned if desired.

The two Index parameters must both be from 0 to 31, and the ToIndex value must be greater than or equal
to the FromIndex value. In any other case, an exception is thrown.

If FromIndex and ToIndex are equal, it is the same as calling the GetBit method with the same value (albeit
return 0 or 1 as uint, instead of false or true as Boolean).

Visual Basic syntax
Dim Value As UInteger
Value = Reg.GetField(5, 7)

C# syntax
uint Value = Reg.GetField(5, 7);

SetField method

Prototype
public void SetField(byte fromIndex, byte toIndex, uint value)

Comments
The SetField method can be used to write a sequence of bits to the register, from a given bit up to and
including another bit. It uses a uint value, so the entire register can be written if desired.

The two Index parameters must both be from 0 to 31, and the ToIndex value must be greater than or equal
to the FromIndex value. In any other case, an exception is thrown. Also, the uint value passed must be less
than or equal to the maximum value that can be stored in the number of bits comprising the field. So for
instance, the examples below, which define a field of length of 3 bits can store a value from 0 to 7. If a value
of 8 or greater was tried, an exception would be thrown.

If FromIndex and ToIndex are equal, it is the same as calling the SetBit method with the same value (albeit
passing 0 or 1 as uint, instead of false or true as Boolean).

29

Visual Basic syntax
Reg.SetField(5, 7, 6)

C# syntax
Reg.SetField(5, 7, 6);

GetFieldLen method

Prototype
public uint GetFieldLen(byte fromIndex, byte fieldLength)

Comments
This method is similar to GetField, the only difference being the second parameter; here it denotes the
total bit-length of the field, instead of the ending bit.

Visual Basic syntax
Dim Value As UInteger
Value = Reg.GetFieldLen(5, 3)

C# syntax
uint Value = Reg.GetFieldLen(5, 3);

SetFieldLen method

Prototype
public void SetFieldLen(byte fromIndex, byte fieldLength, uint value)

Comments
This method is similar to SetField, the only difference being the second parameter; here it denotes the
total bit-length of the field, instead of the ending bit.

Visual Basic syntax
Reg.SetFieldLen(5, 3, 2)

C# syntax
uint Value = Reg.GetFieldLen(5, 3, 2);

SwapEndianess method

Prototype
public void SwapEndianess()

Comments
This method does a 32-bit in-place endianness swap in the FireiRegister object internally.

Please note that the entire value is swapped, meaning that any subsequent call to the FireiRegister
methods will yield different results. Also, two subsequent calls to SwapEndianess have no effect on the
value.

Visual Basic syntax
Reg.SwapEndianess()

30

C# syntax
Reg.SwapEndianess();

FireiTrigger
The FireiTrigger object encapsulates all the Trigger functionality that the camera may support. An
instance cannot be constructed directly; it is rather accessed through the Trigger property of the camera.
When no longer in use however, it should be disposed of properly (through its Dispose() method.)

Please note that the following properties have no additional functionality hidden inside them, besides what
the camera itself supports. In essence, the entire FireiTrigger object could have been two simple
FireiRegister objects (one for inquiry, one for control); it exits merely as a helping hand, in effect
“naming” the bits and fields of the two registers as they map to the Trigger inquiry and control registers of
the camera.

In order to call any of the following properties and methods, the IsSupported property must be true,
otherwise each call will throw an exception. Additionally, in order to read the value of any of the following
properties, the CanRead property must also be true.

AbsControl property

Prototype
public bool AbsControl

Comments
This property reads/sets the Abs_Control field of the camera trigger control register (bit 1). In order to
access this property, the property HasAbsolute of the FireiTrigger object must be true, otherwise an
error will occur.

Visual Basic syntax
Dim Abs As Boolean
Abs = Trigger.AbsControl 'get
Trigger.AbsControl = True 'set

C# syntax
bool Abs = Trigger.AbsControl; //get
Trigger.AbsControl = true; //set

Enabled property

Prototype
public bool Enabled

Comments
This property reads/sets the ON_OFF field of the camera trigger control register (bit 6). In order to access
this property, the property HasOnOff of the FireiTrigger object must be true, otherwise an exception
will be thrown.

31

Visual Basic syntax
Dim On As Boolean
On = Trigger.Enabled 'get
Trigger. Enabled = True 'set

C# syntax
bool On;
On = Trigger.Enabled; //get
Trigger.Enabled = true; //set

Polarity property

Prototype
public bool Polarity

Comments
This property reads/sets the Trigger_Polarity field of the camera trigger control register (bit 7). In order
to access this property, the property HasPolarity of the FireiTrigger object must be true, otherwise
an exception will be thrown.

Visual Basic syntax
Dim Polarity As Boolean
Polarity = Trigger.Polarity 'get
Trigger.Polarity = True 'set

C# syntax
bool Polarity;
On = Trigger. Polarity; //get
Trigger. Polarity = true; //set

Source property

Prototype
FireiTriggerSource Source

Comments
This property reads/sets the Trigger_Source field of the camera trigger control register (bits 8 to 10). In
order to set this property, a call to method IsSourceSupported of the FireiTrigger object should first
be performed, to check if the value being set is supported in this camera.

FireiTriggerSource is an enumerated value, with possible values being None, Source_0,
Source_1, Source_2, Source_3 and Source_SW.

Visual Basic syntax
Dim TriggerSource As FireiTriggerSource
TriggerSource = Trigger.Source 'get
Trigger.Source = FireiTriggerSource.Source_0 'set

C# syntax
FireiTriggerSource Source = Trigger.Source; //get
Trigger.Source = FireiTriggerSource.Source_0; //set

32

Value property

Prototype
public bool Value

Comments
This property reads/sets the Trigger_Value field of the camera trigger control register (bit 11). In order to
read this property, the property CanReadRaw of the FireiTrigger object must be true, otherwise an
exception will be thrown.

The resulting value can be considered as false being low and true being high signal value.

Visual Basic syntax
Dim Value As Boolean
Value = Trigger.Value 'get
Trigger.Value = True 'set

C# syntax
bool Value = Trigger.Value; //get
Trigger.Value = true; //set

Mode property

Prototype
public FireiTriggerMode Mode

Comments
This property reads/sets the Trigger_Mode field of the camera trigger control register (bits 12 to 15). In
order to set this property, a call to method IsModeSupported of the FireiTrigger object should first be
performed, to check if the value being set is supported in this camera.

FireiTriggerMode is an enumerated value, with possible values being None, Mode_0, Mode_1,
Mode_2, Mode_3, Mode_4, Mode_5, Mode14 and Mode15.

Visual Basic syntax
Dim TriggerMode As FireiTriggerMode
TriggerMode = Trigger.Mode 'get
Trigger.Mode = FireiTriggerMode.Mode_0 'set

C# syntax
FireiTriggerMode Mode = Trigger.Mode; //get
Trigger.Mode = FireiTriggerMode.Mode_0; //set

IsSupported property

Prototype
public bool IsSupported

33

Comments
This is a read only property that reflects the Presence_Inq field of the camera trigger inquiry register (bit
0). This property can always be read, and it is a necessary requirement for it to be true for all the other
methods and properties to have their intended behavior.

Visual Basic syntax
Dim Supported As Boolean
Supported = Trigger.IsSupported

C# syntax
bool Supported = Trigger.IsSupported;

HasAbsolute property

Prototype
public bool HasAbsolute

Comments
This is a read only property that reflects the Abs_Control_Inq field of the camera trigger inquiry register
(bit 1). It is a necessary requirement for it to be true for the AbsControl property to be accessible.

Visual Basic syntax
Dim HasAbs As Boolean
HasAbs = Trigger.HasAbsolute

C# syntax
bool HasAbs = Trigger.HasAbsolute;

CanRead property

Prototype
public bool CanRead

Comments
This is a read only property that reflects the ReadOut_Inq field of the camera trigger inquiry register (bit 4).
It is a necessary requirement for it to be true for any of the control properties to be readable.

Visual Basic syntax
Dim CanRead As Boolean
CanRead = Trigger.CanRead

C# syntax
bool CanRead = Trigger.CanRead;

HasOnOff property

Prototype
public bool HasOnOff

34

Comments
This is a read only property that reflects the On/Off_Inq field of the camera trigger inquiry register (bit 5).
It is a necessary requirement for it to be true for the Enable property to be accessible.

Visual Basic syntax
Dim OnOff As Boolean
OnOff = Trigger.HasOnOff

C# syntax
bool OnOff = Trigger.HasOnOff;

HasPolarity property

Prototype
Boolean HasPolarity

Comments
This is a read only property that reflects the Polarity_Inq field of the camera trigger inquiry register (bit
6). It is a necessary requirement for it to be true for the Polarity property to be accessible.

Visual Basic syntax
Dim HasPol As Boolean
HasPol = Trigger.HasPolarity

C# syntax
Bool HasPol = Trigger.HasPolarity;

CanReadRaw property

Prototype
Boolean CanReadRaw

Comments
This is a read only property that reflects the Value_Read_Inq field of the camera trigger inquiry register
(bit 7). It is a necessary requirement for it to be true for the Value property to be accessible.

Visual Basic syntax
Dim CanReadRaw As Boolean
CanReadRaw = Trigger.CanReadRaw

C# syntax
CanReadRaw = Trigger.CanReadRaw;

Parameter property

Prototype
ushort Parameter

35

Comments
This property reads/sets the Parameter field of the camera trigger control register (bits 20 to 31). Since this
is an optional field for the trigger, there is no equivalent inquiry to be made whether it is available or not.
However, acceptable values are integers greater than or equal to zero and less than 4096.

Visual Basic syntax
Dim Parameter As UShort
Parameter = Trigger.Parameter 'get
Trigger.Parameter = 1000 'set

C# syntax
ushort Parameter;
Parameter = Trigger.Parameter; //get
Trigger.Parameter = 1000; //set

IsSourceSupported method

Prototype
Boolean IsSourceSupported(FireiTriggerSource source)

Comments
This method checks whether a given FireiTriggerSource value is supported by the camera. The
programmer should typically test for the support of a trigger source value, before trying to set it using the
Source property.

Visual Basic syntax
Dim Supported As Boolean
Supported = Trigger.IsSourceSupported(FireiTriggerSource.Source_0)

C# syntax
bool Supported = Trigger.IsSourceSupported(FireiTriggerSource.Source_0);

IsModeSupported method

Prototype
Boolean IsModeSupported(FireiTriggerMode Mode)

Comments
This method checks whether a given FireiTriggerMode value is supported by the camera. The
programmer should typically test for the support of a trigger mode value, before trying to set it using the
Mode property.

Visual Basic syntax
Dim Supported As Boolean
Supported = Trigger.IsModeSupported(FireiTriggerMode.Mode_0)

C# syntax
bool Supported = Trigger.IsModeSupported(FireiTriggerMode.Mode_0);

36

Reload method

Prototype
Reload()

Comments
This method reloads the values of the trigger control register from the camera, so effectively it acts as an
“undo” function for any changes made through the various properties, as long as Save hasn’t yet been
called.

The inquiry register on the other hand is not reloaded, since it contains read-only values which cannot be
changed anyway.

Visual Basic syntax
Trigger.Reload()

C# syntax
Trigger.Reload();

PullSoftwareTrigger method

Prorotype
PullSoftwareTrigger()

Comments
This method sets the software_trigger register of the camera for acquiring a frame. If the source property of
the trigger is not set to Source_SW, an exception will be thrown.

You can call PullSoftwareTrigger method subsequently for acquiring new frames.

Visual Basic syntax
Trigger.PullSoftwareTrigger()

C# syntax
Trigger.PullSoftwareTrigger();

Save method

Prototype
Save()

Comments
This method saves any changes made to the trigger control register of the camera. If for some reason this
cannot be completed (i.e., the camera refuses the write request), an exception will be thrown.

Any subsequent calls to the Reload method will revert to this saved state.

Visual Basic syntax
Trigger.Save()

37

C# syntax
Trigger.Save();

FireiStreamFormat
The FireiStreamFormat object encapsulates the video format settings relevant to a given camera. A
FireiStreamFormat object instance cannot and should not be created directly; its functionality is paired
closely with the specific camera, so the camera is responsible for constructing the object.

To obtain a FireiStreamFormat, the programmer can use the StreamFormat property of
FireiCamera. Additionally, a list of all available to the camera FireiStreamFormats can be obtained
through the GetStreamFormats method; all the FireiStreamFormats contained in it are connected
with that camera automatically. It can also be obtained directly through the two “retrieve” methods,
RetrieveStreamFormat and RetrieveStreamFormatFromIdentifier.

The following properties and methods are not final; changes are kept in the FireiStreamFormat object
and only passed to the camera as the current settings when the Save method is called (or the
FireiStreamFormat is set to the camera using the StreamFormat property).

PixelFormatString property

Prototype
String PixelFormatString

Comments
This is a read only property that returns the pixel format of the FireiStreamFormat as a string. A pixel
format is not unique to a FireiStreamFormat. A pair of a pixel format and a resolution however is.

Visual Basic syntax
Dim PixelFormat As String
PixelFormat = StreamFormat.PixelFormatString

C# syntax
string PixelFormat = StreamFormat.PixelFormatString;

PixelFormat property

Prototype
FireiPixelFormat PixelFormat

Comments
This is a read only property that returns the pixel format of the FireiStreamFormat as a
FireiPixelFormat value. A pixel format is not unique to a FireiStreamFormat. A pair of a pixel format
and a resolution however is.

Possible values in the FireiPixelFormat enumerated value are:

None,

38

Y_MONO,
YUV_411,
YUV_422,
YUV_444,
RGB_24,
Y_MONO_16,
RGB_48,
S_Y_MONO_16,
S_RGB_48,
RAW_8,
RAW_16

Visual Basic syntax
Dim PixelFormat As FireiPixelFormat
PixelFormat = StreamFormat.PixelFormat

C# syntax
FireiPixelFormat PixelFormat = StreamFormat.PixelFormat;

Resolution property

Prototype
FireiResolution Resolution

Comments
This is a read only property that returns the resolution of the FireiStreamFormat as a
FireiResolution value. A resolution is not unique to a FireiStreamFormat. A pair of a pixel format
and a resolution however is.

Possible values in the FireiResolution enumerated value are:

None,
res160x120,
res320x240,
res640x480,
res800x600,
res1024x768,
res1280x960,
res1600x1200,
Variable,
Variable_1,
Variable_2,
Variable_3,
Variable_4,
Variable_5,
Variable_6,
Variable_7

The values from res160x120 up to res1600x1200 represent Fixed formats, and from Variable to
Variable_7 represent User Defined formats.

39

 Visual Basic syntax
Dim Resolution As FireiResolution
Resolution = StreamFormat.Resolution

C# syntax
FireiResolution Resolution = StreamFormat.Resolution;

IsUserDefined property

Prototype
Boolean IsUserDefined

Comments
This is a read only property that returns whether the given FireiStreamFormat is User Defined. If true,
the UserDefined property of FireiStreamFormat can be used. Otherwise, the Fixed property can be
used.

Visual Basic syntax
Dim UserDefined As Boolean
UserDefined = StreamFormat.IsUserDefined

C# syntax
bool IsUserDefined = StreamFormat.IsUserDefined;

IsCurrent property

Prototype
Boolean IsCurrent

Comments
This is a read only property that returns whether the given FireiStreamFormat is the currently selected
streaming format of the camera. Please note that it does not necessarily mean that all parameters of the
stream format are saved on the camera; it merely means it has the same pixel format and resolution.

If the FireiStreamFormat was obtained through the StreamFormat property of FireiCamera (which
returns the currently selected FireiStreamFormat) this property should always be true. It is therefore
only useful if the FireiStreamFormat object was obtained through other means.

Visual Basic syntax
Dim Current As Boolean
Current = StreamFormat.IsCurrent

C# syntax
bool IsCurrent = StreamFormat.IsCurrent;

Identifier property

Prototype
uint Identifier

40

Comments
This is a read only property that returns a unique identifier, in the form of a uint value that can be stored for
later usage (e.g., to retrieve this format directly from the camera using
RetrieveStreamFormatFromIdentifier).

This identifier is ideal for storing the stream format selection to a windows control, such as a Combo Box or a
List Box (as each entry’s data). It should be noted however, that the variable settings of
FireiStreamFormat are not transferred through this unique identifier; only the constant attributes of a
FireiStreamFormat, i.e., the pixel format and resolution.

Visual Basic syntax
Dim ID As UInteger
ID = StreamFormat.Identifier

C# syntax
uint ID = StreamFormat.Identifier;

Fixed property

Prototype
FireiFixedStreamFormat Fixed

Comments
This is a read only property that returns the associated FireiFixedStreamFormat object with this
FireiStreamFormat. It is only valid if the IsUserDefined property is false (a null value will be returned
if the IsUserDefined property is true).

Visual Basic syntax
Dim Fixed As FireiFixedStreamFormat
Set Fixed = StreamFormat.Fixed

C# syntax
FireiFixedStreamFormat Fixed = StreamFormat.Fixed;

UserDefined property

Prototype
FireiUserDefinedStreamFormat UserDefined

Comments
This is a read only property that returns the associated FireiUserDefinedStreamFormat object with
this FireiStreamFormat. It is only valid if the IsUserDefined property is true (a null value will be
returned if the IsUserDefined property is false).

Visual Basic syntax
Dim UserDefined As FireiUserDefinedStreamFormat
Set UserDefined = StreamFormat.UserDefined

C# syntax
FireiUserDefinedStreamFormat UserDefined = StreamFormat.UserDefined;

41

RawModeOverride property

Prototype
FireiRawMode RawModeOverride

Comments
This is a read/write property that allows the programmer to establish if a bayer conversion will be performed
on the image data coming from the camera and if so, the color filter that the camera is using.

The default setting is Auto, which means the SDK will try to determine the correct conversion necessary.
This is not always possible, since many raw-mode cameras sent raw-data as regular Y_MONO. In those cases,
an override is necessary if a conversion to RGB is desired, hence this property.

Per the IIDC specification, only under User Defined modes (Format_7) a camera is allowed to send raw
unconverted data – in that case, the color filter is supplied by the camera. However, many camera
manufacturers disguise raw data as Y_MONO, sent either through Fixed or User Defined streaming formats.

The RawModeOverride property carries enumerated values; possibilities are:

Auto,
None,
RGGB,
GRBG,
GBRG,
BGGR

Visual Basic syntax
Dim RawMode As FireiRawMode
RawMode = StreamFormat.RawModeOverride 'get
StreamFormat.RawModeOverride = FireiRawMode.RGGB 'set

C# syntax
FireiRawMode RawMode = StreamFormat.RawModeOverride; //get
StreamFormat.RawModeOverride = FireiRawMode.RGGB; //set

Width property

Prototype
ushort Width

Comments
This is a read only property that returns the resolution width of the streaming format. This is constant for a
Fixed streaming format and variable on a User Defined.

Visual Basic syntax
Dim Width As UShort
Width = StreamFormat.Width

C# syntax
ushort Width = StreamFormat.Width;

42

Height property

Prototype
ushort Height

Comments
This is a read only property that returns the resolution height of the streaming format. This is constant for a
Fixed streaming format and variable on a User Defined.

Visual Basic syntax
Dim Height As UShort
Height = StreamFormat.Height

C# syntax
ushort Height = StreamFormat.Height;

ToString method

Prototype
String ToString()

Comments
This method returns a textual representation of the FireiStreamFormat. The text contains the pixel
format and the resolution of the streaming format. A typical result for a Fixed format would look like:

Y_MONO, 160 X 120

In case of a User Defined format the string contains the maximum resolution instead, similar to:

Y_MONO, Max 160 X 120

Visual Basic syntax
Dim Description As String
Description = StreamFormat.ToString()

C# syntax
string Description = StreamFormat.ToString();

Save method

Prototype
Save()

Comments
This method sets this FireiStreamFormat to the camera, including any selected attributes, whether Fixed
or User Defined. If for some reason this cannot be completed (i.e., the camera refuses the write request), an
exception will be thrown.

The effect of this method is the same as using the StreamFormat property of FireiCamera, to set this
FireiStreamFormat.

43

Visual Basic syntax
StreamFormat.Save()

C# syntax
StreamFormat.Save();

44

FireiFixedStreamFormat
The FireiFixedStreamFormat object is derived from FireiStreamFormat. It carries any additional
functionality that pertains to Fixed streaming formats. It cannot be constructed directly; it is only ever
obtained through the Fixed property of FireiStreamFormat.

Its properties are mostly read-only, except for the FrameRate, which can be set by the programmer.

ResolutionString property

Prototype
String ResolutionString

Comments
This is a read only property that returns the resolution of the FireiFixedStreamFormat as a string. A
resolution is not unique to a FireiStreamFormat. A pair of a pixel format and a resolution however is.

Visual Basic syntax
Dim Resolution As String
Resolution = Fixed.ResolutionString

C# syntax
BSTR Resolution;
HRESULT hr = pIFixed->get_ResolutionString(&Resolution);

FrameRateString property

Prototype
String FrameRateString

Comments
This is a read/write property that can be used to retrieve a textual representation of the frame rate of the
streaming format and then set it back.

Since the format of the text is specific, setting the property can be safely done only with values got from it.

Visual Basic syntax
Dim FrameRate As String
FrameRate = Fixed.FrameRateString 'get
Fixed.FrameRateString = FrameRate 'set

C# syntax
string FrameRate = Fixed.FrameRateString; //get
Fixed.FrameRateString = FrameRate; //set

FrameRate property

Prototype
FireiFrameRate FrameRate

45

Comments
This is a read/write property that can be used to retrieve or set the frame rate of the
FireiFixedStreamFormat. It is represented by an enumerated value (FireiFrameRate), with the
following possibilities:

None,
fps1_875,
fps3_75,
fps7_5,
fps15,
fps30,
fps60,
fps120,
fps240

The programmer can test whether a given frame rate is valid with this Fixed format and acceptable by the
camera, a call to IsFrameRateSupported is sufficient.

Visual Basic syntax
Dim FrameRate As FireiFrameRate
FrameRate = Fixed.FrameRate 'get
Fixed.FrameRate = FireiFrameRate.fps30 'set

C# syntax
FireiFrameRate FrameRate = Fixed.FrameRate; //get
Fixed.FrameRate = FireiFrameRate.fps30; //set

PacketSize property

Prototype
uint PacketSize

Comments
This is a read only property that returns the size in bytes of the packets for this streaming format. This will be
constant between successive reads, since the packet size is always the same on a given Fixed streaming
format.

Visual Basic syntax
Dim PacketSize As UInteger
PacketSize = Fixed.PacketSize

C# syntax
uint PacketSize = Fixed.PacketSize;

PacketsPerFrame property

Prototype
uint PacketsPerFrame

46

Comments
This is a read only property that returns the number of packets per frame for this streaming format. This will
be constant between successive reads, since the number of packets per frame is always the same on a given
Fixed streaming format.

Visual Basic syntax
Dim PacketsPerFrame As UInteger
PacketsPerFrame = Fixed.PacketsPerFrame

C# syntax
uint PacketsPerFrame = Fixed.PacketsPerFrame;

ToString method

Prototype
String ToString()

Comments
This method returns a textual representation of the FireiFixedStreamFormat. The text contains the
pixel format and the resolution of the streaming format. A typical result would look like:

Y_MONO, 160 X 120

It is also the same value returned by the ToString method of the FireiStreamFormat from which this
FireiFixedStreamFormat was derived from.

Visual Basic syntax
Dim Description As String
Description = Fixed.ToString()

C# syntax
string Description = Fixed.ToString();

IsFrameRateSupported method

Prototype
Boolean IsFrameRateSupported(FireiFrameRate frameRate)

Comments
This method will return true if the supplied FireiFrameRate is both available in this
FireiFixedStreamFormat and acceptable by the camera and the current conditions of the 1394 bus.

A frame rate may not be available on a given Fixed streaming format, as defined in the IIDC spec. It may also
not be supported by the camera; these are static conditions. There are dynamic conditions though, such as
the isochronous speed of the bus the camera is connected to, limited by both hardware and software. Some
frame rates may require a higher isochronous speed than what is available currently, and even though the
camera may support the frame rate, it might not be currently achievable. In all those cases,
IsFrameRateSupported will return false.

47

Visual Basic syntax
Dim Supported As Boolean
Supported = Fixed.IsFrameRateSupported(FireiFrameRate.fps30)

C# syntax
bool Supported = Fixed.IsFrameRateSupported(FireiFrameRate.fps30);

48

FireiUserDefinedStreamFormat
The FireiUserDefinedStreamFormat object is derived from FireiStreamFormat. It carries any
additional functionality that pertains to User Defined streaming formats. It cannot be constructed directly; it
is only ever obtained through the UserDefined property of FireiStreamFormat.

Unlike the FireiFixedStreamFormat object, there many selectable attributes in
FireiUserDefinedStreamFormat.

Left property

Prototype
ushort Left

Comments
This is a read only property that can be used to read the currently set left coordinate of the Region of
Interest set in the FireiUserDefinedStreamFormat. This can be set through the SetROI method.

Visual Basic syntax
Dim Left As UShort
Left = UserDefined.Left

C# syntax
ushort Left = UserDefined.Left;

Right property

Prototype
ushort Right

Comments
This is a read only property that can be used to read the currently set right coordinate of the Region of
Interest set in the FireiUserDefinedStreamFormat. This can be set through the SetROI method.

Visual Basic syntax
Dim Right As UShort
Right = UserDefined.Right

C# syntax
ushort Right = UserDefined.Right;

Top property

Prototype
ushort Top

Comments
This is a read only property that can be used to read the currently set top coordinate of the Region of
Interest set in the FireiUserDefinedStreamFormat. This can be set through the SetROI method.

49

Visual Basic syntax
Dim Top As UShort
Top = UserDefined.Top

C# syntax
ushort Top = UserDefined.Top;

Bottom property

Prototype
ushort Bottom

Comments
This is a read only property that can be used to read the currently set bottom coordinate of the Region of
Interest set in the FireiUserDefinedStreamFormat. This can be set through the SetROI method.

Visual Basic syntax
Dim Bottom As UShort
Bottom = UserDefined.Bottom

C# syntax
ushort Bottom = UserDefined.Bottom;

Width property

Prototype
ushort Width

Comments
This is a read only property that can be used to read the currently set width of the Region of Interest set in
the FireiUserDefinedStreamFormat. This can be set through the SetROI method and it is equal to
Right – Left. It is also the same value returned by the Width property of the FireiStreamFormat
from which this FireiUserDefinedStreamFormat was derived from.

Visual Basic syntax
Dim Width As UShort
Width = UserDefined.Width

C# syntax
ushort Width = UserDefined.Width;

Height property

Prototype
ushort Height

Comments
This is a read only property that can be used to read the currently set height of the Region of Interest set in
the FireiUserDefinedStreamFormat. This can be set through the SetROI method and it is equal to
Bottom – Top. It is also the same value returned by the Height property of the FireiStreamFormat
from which this FireiUserDefinedStreamFormat was derived from.

50

Visual Basic syntax
Dim Height As UShort
Height = UserDefined.Height

C# syntax
ushort Height = UserDefined.Height;

MaxWidth property

Prototype
ushort MaxWidth

Comments
This is a read only property that can be used to read the maximum possible width for the Region of Interest
of the FireiUserDefinedStreamFormat.

Visual Basic syntax
Dim MaxWidth As UShort
MaxWidth = UserDefined.MaxWidth

C# syntax
ushort MaxWidth = UserDefined.MaxWidth;

MaxHeight property

Prototype
ushort MaxHeight

Comments
This is a read only property that can be used to read the maximum possible height for the Region of Interest
of the FireiUserDefinedStreamFormat.

Visual Basic syntax
Dim MaxHeight As UShort
MaxHeight = UserDefined.MaxHeight

C# syntax
ushort MaxHeight = UserDefined.MaxHeight;

HorizontalPositionUnit property

Prototype
ushort HorizontalPositionUnit

Comments
This is a read only property that can be used to read the horizontal unit for the position of the Region of
Interest of the FireiUserDefinedStreamFormat. The left, right, top and bottom x-coordinates of the
ROI must be perfectly divisible by this value.

Visual Basic syntax
Dim HPosUnit As UShort

51

HPosUnit = UserDefined.HorizontalPositionUnit

C# syntax
ushort HPosUnit = UserDefined.HorizontalPositionUnit;

VerticalPositionUnit property

Prototype
ushort VerticalPositionUnit

Comments
This is a read only property that can be used to read the vertical unit for the position of the Region of
Interest of the FireiUserDefinedStreamFormat. The left, right, top and bottom y-coordinates of the
ROI must be perfectly divisible by this value.

Visual Basic syntax
Dim VPosUnit As UShort
VPosUnit = UserDefined.VerticalPositionUnit

C# syntax
ushort VPosUnit = UserDefined.VerticalPositionUnit;

WidthUnit property

Prototype
ushort WidthUnit

Comments
This is a read only property that can be used to read the width unit for the Region of Interest of the
FireiUserDefinedStreamFormat. The total width of the ROI must be perfectly divisible by this value.

Visual Basic syntax
Dim WUnit As UShort
WUnit = UserDefined.WidthUnit

C# syntax
ushort WUnit = UserDefined.WidthUnit;

HeightUnit property

Prototype
ushort HeightUnit

Comments
This is a read only property that can be used to read the height unit for the Region of Interest of the
FireiUserDefinedStreamFormat. The total height of the ROI must be perfectly divisible by this value.

Visual Basic syntax
Dim HUnit As UShort
HUnit = UserDefined.HeightUnit

52

C# syntax
ushort HUnit = UserDefined.HeightUnit;

MaxPacketSize property

Prototype
ushort MaxPacketSize

Comments
This is a read only property that can be used to read the maximum allowed packet size in bytes of the
FireiUserDefinedStreamFormat. The PacketSize property cannot be set to a value greater than this
value.

Visual Basic syntax
Dim MaxPacketSize As UShort
MaxPacketSize = UserDefined.MaxPacketSize

C# syntax
ushort MaxPacketSize = UserDefined.MaxPacketSize;

PacketSizeUnit property

Prototype
ushort PacketSizeUnit

Comments
This is a read only property that can be used to read the packet size unit of the
FireiUserDefinedStreamFormat. The PacketSize property must be set to a value perfectly divisibly
by this value.

Visual Basic syntax
Dim PacketSizeUnit As UShort
PacketSizeUnit = UserDefined.PacketSizeUnit

C# syntax
ushort PacketSizeUnit = UserDefined.PacketSizeUnit;

PacketSize property

Prototype
ushort PacketSize

Comments
This is a read/write property that can be used to retrieve or set the size in bytes of each packet the camera
will transmit for this format.

When setting it, acceptable values are greater than or equal to 0 and less than or equal to the
MaxPacketSize property. The value must also be perfectly divisible by the value of PacketSizeUnit
property.

53

Setting this value to 0 means the SDK will try and determine the correct packet size automatically, either by
setting it to the maximum possible, or by querying the camera for it.

Visual Basic syntax
Dim PacketSize As UShort
PacketSize = UserDefined.PacketSize 'get
UserDefined.PacketSize = 0 'set

C# syntax
ushort PacketSize = UserDefined.PacketSize; //get
UserDefined.PacketSize = 0; //set

F7Offset property

Prototype
uint F7Offset

Comments
This is a read only property that can be used to read the register offset of this
FireiUserDefinedStreamFormat. This value can then be used in the ReadCommand and
WriteCommand methods of FireiCamera in order to access the streaming format directly through its
register.

Visual Basic syntax
Dim F7Offset As UInteger
F7Offset = UserDefined.F7Offset

C# syntax
uint F7Offset = UserDefined.F7Offset;

ToString method

Prototype
String ToString()

Comments
This method returns a textual representation of the FireiUserDefinedStreamFormat. The text contains
the pixel format and the maximum resolution of the streaming format. A typical result would look like:

Y_MONO, Max 160 X 120

It is also the same value returned by the ToString method of the FireiStreamFormat from which this
FireiUserDefinedStreamFormat was derived from.

Visual Basic syntax
Dim Description As String
Description = UserDefined.ToString()

C# syntax
string Description = UserDefined.ToString();

54

SetROI method

Prototype
SetROI(ushort left, ushort top, ushort width, ushort height)

Comments
This method is used to set the desired coordinates and size of the Region of Interest for the
FireiUserDefinedStreamFormat.

The left and top values must be greater than or equal to 0 and less than or equal to the MaxWidth and
MaxHeight properties respectively. They must also be perfectly divisible by HorizontalPositionUnit
and VerticalPositionUnit respectively.

The width and height values must be greater than or equal to WidthUnit and HeightUnit respectively
and less than or equal to MaxWidth and MaxHeight respectively. They must also be perfectly divisible by
WidthUnit and HeightUnit respectively. Additionally, they must not be greater than the available
rectangle as set by the left and top values (i.e., the sum of width and left must not be greater than
MaxWidth and the sum of height and top must not be greater than MaxHeight).

In case the above conditions are not met an exception will be thrown, containing an informative message.
The method will not query the camera for validity; any checks are made inside the SDK, according to the
reported parameters of the camera.

Visual Basic syntax
UserDefined.SetROI(0, 0, 160, 120)

C# syntax
UserDefined.SetROI(0, 0, 160, 120);

55

FireiFeature
The FireiFeature object encapsulates all functionality related to a camera feature. It contains all the
information available through the feature’s inquiry register, and all the capabilities available through the
feature’s control register in one concise package.

The FireiFeature object cannot be constructed directly by the programmer; instead, it is accessible
through the camera properties at any time. The FireiCamera object offers a specialized read-only property
for accessing each individual feature. For example, it has a Shutter property that returns the
FireiFeature object pertaining to the shutter feature. If a more generic way to access features is
required, the Feature property can be used instead; it takes a string of the name of the feature as a
parameter.

Additionally, a full list of all features can be retrieved from the camera, through its GetFeatures method.

The FireiFeature object implements various properties and methods to its interface. Unlike the
FireiStreamFormat and FireiTrigger objects, any change made to the FireiFeature instance is
directly passed to the camera, as there is no specific Save method.

Name property

Prototype
String Name

Comments
This is a read-only property that returns the name of the object as a string. This name is the exact same
name that can be used to retrieve this FireiFeature object, through the GetFeature method of
FireiCamera.

Visual Basic syntax
Dim Name As String
Name = Feature.Name

C# syntax
string Name = Feature.Name;

IsSupported property

Prototype
Boolean IsSupported

Comments
This is a read-only property that will return whether this FireiFeature represents a feature supported by
the camera.

If this property is false, no other property or method of FireiFeature should be called, otherwise an
exception will be thrown.

Visual Basic syntax
Dim Supported As Boolean

56

Supported = Feature.IsSupported

C# syntax
bool Supported = Feature.IsSupported;

HasAbsolute property

Prototype
Boolean HasAbsolute

Comments
This is a read-only property that will return whether this FireiFeature supports setting its value through
“Absolute” values.

If this property is false, the Absolute property of FireiFeature should not be accessed, otherwise an
exception will be thrown.

Visual Basic syntax
Dim HasAbsolute As Boolean
HasAbsolute = Feature.HasAbsolute

C# syntax
bool HasAbsolute = Feature.HasAbsolute;

HasOnePush property

Prototype
Boolean HasOnePush

Comments
This is a read-only property that will return whether this FireiFeature supports setting its value through a
“One Push” operation (as defined by the IIDC specification).

If this property is false, the OnePush method of FireiFeature should not be called, otherwise an
exception will be thrown.

Visual Basic syntax
Dim HasOnePush As Boolean
HasOnePush = Feature.HasOnePush

C# syntax
bool HasOnePush = Feature.HasOnePush;

CanRead property

Prototype
Boolean CanRead

Comments
This is a read-only property that will return whether this FireiFeature supports reading its value.

57

If this property is false, the Value property of FireiFeature should not be read, otherwise an exception
would be thrown. This does not mean it cannot be set however; the HasManual property can be used to
determine that.

Visual Basic syntax
Dim CanRead As Boolean
CanRead = Feature.CanRead

C# syntax
bool CanRead = Feature.CanRead;

HasOnOff property

Prototype
Boolean HasOnOff

Comments
This is a read-only property that will return whether this FireiFeature supports turning it on and off
entirely.

If this property is false, the Enable property of FireiFeature should not be accessed, otherwise an
exception will be thrown.

Visual Basic syntax
Dim HasOnOff As Boolean
HasOnOff = Feature.HasOnOff

C# syntax
bool HasOnOff = Feature.HasOnOff;

HasAuto property

Prototype
Boolean HasAuto

Comments
This is a read-only property that will return whether this FireiFeature supports setting its value
automatically, according to the camera shooting circumstances.

If this property is false, the AutoMode property of FireiFeature should not be accessed, otherwise an
exception will be thrown.

Visual Basic syntax
Dim HasAuto As Boolean
HasAuto = Feature.HasAuto

C# syntax
bool HasAuto = Feature.HasAuto;

58

HasManual property

Prototype
Boolean HasManual

Comments
This is a read-only property that will return whether this FireiFeature supports setting its value manually,
through the Value property.

If this property is false the Value property of FireiFeature should not be set, otherwise an exception
would be thrown. It could still be read though; the CanRead property can be used to determine that.

Visual Basic syntax
Dim HasManual As Boolean
HasManual = Feature.HasManual

C# syntax
bool HasManual = Feature.HasManual;

MinValue property

Prototype
uint MinValue

Comments
This is a read-only property that will return the minimum value that can be set to this FireiFeature,
through the Value property.

Visual Basic syntax
Dim MinValue As UInteger
MinValue = Feature.MinValue

C# syntax
uint MinValue = Feature.MinValue;

MaxValue property

Prototype
uint MaxValue

Comments
This is a read-only property that will return the maximum value that can be set to this FireiFeature,
through the Value property.

Visual Basic syntax
Dim MaxValue As UInteger
MaxValue = Feature.MaxValue

C# syntax
uint MaxValue = Feature.MaxValue;

59

Absolute property

Prototype
Boolean Absolute

Comments
This is a read/write property that will retrieve or set whether this FireiFeature will use “absolute” values
when setting its value. If set to true, the value of the feature is then read and set through the
AbsoluteValue property, instead of the Value property.

This property is not available if HasAbsolute is false.

Visual Basic syntax
Dim Absolute As Boolean
Absolute = Feature.Absolute 'get
Feature.Absolute = True 'set

C# syntax
bool Absolute = Feature.Absolute; //get
Feature.Absolute = true; //set

Enabled property

Prototype
Boolean Enabled

Comments
This is a read/write property that will retrieve or set whether this FireiFeature is on or off. If set to false a
call to any of its properties or methods could result in an exception.

This property is not available if HasOnOff is false.

Visual Basic syntax
Dim Enabled As Boolean
Enabled = Feature.Enabled 'get
Feature.Enabled = True 'set

C# syntax
bool Enabled = Feature.Enabled; //get
Feature.Enabled = true; //set

AutoMode property

Prototype
Boolean AutoMode

Comments
This is a read/write property that will retrieve or set whether this FireiFeature will be setting its value
automatically or not. If it is set to true, the Value property cannot be set, or an exception will be thrown.

This property is not available if HasAuto is false.

60

Visual Basic syntax
Dim Auto As Boolean
Auto = Feature.AutoMode 'get
Feature.AutoMode = True 'set

C# syntax
bool Auto = Feature.AutoMode; //get
Feature.AutoMode = true; //set

Value property

Prototype
uint Value

Comments
This is a read/write property that will retrieve or set the value of this FireiFeature. In order to read the
value, the CanRead property must be true. In order to set the value, the HasManual property must be true,
and the AutoMode property must be false. The value being set must also reside inside the boundaries set by
the MinValue and MaxValue properties.

Visual Basic syntax
Dim Value As UInteger
Value = Feature.Value 'get
Feature.Value = Feature.MaxValue 'set

C# syntax
uint Value = Feature.Value; //get
Feature.Value = Feature.MaxValue; //set

HasSoftAbsolute property

Prototype
Boolean HasSoftAbsolute

Comments
This is a read-only property that will return whether this FireiFeature supports setting its value through
“absolute” values, calculated through the API3.

If this property is false, the MinAbsoluteValue, MaxAbsoluteValue and SoftAbsolute properties are
inaccessible.

Visual Basic syntax
Dim HasSoftAbsolute As Boolean
HasSoftAbsolute = Feature.HasSoftAbsolute

3 This feature is called by the various Unibrain APIs “SoftAbsolute”. It is only available on specific cameras, mostly
Unibrain models. The camera in effect works in its regular manual values mode; the interface with the program
operates in absolute mode, and the underlying API takes care of the value adaptation.

61

C# syntax
bool HasSoftAbsolute = Feature.HasSoftAbsolute;

SoftAbsolute property

Prototype
Boolean SoftAbsolute

Comments
This is a read/write property that will turn the SoftAbsolute feature on and off, if supported. Trying to set
this feature when HasSoftAbsolute is false will result in an exception.

If this property is true, the AbsoluteValue property is used to set the feature value instead of the Value
property.

Visual Basic syntax
Dim SoftAbsolute As Boolean
SoftAbsolute = Feature.SoftAbsolute 'get
Feature.SoftAbsolute = True 'set

C# syntax
bool SoftAbsolute = Feature.SoftAbsolute; //get
Feature.SoftAbsolute = True; //set

ValueString property

Prototype
String ValueString

Comments
This is a read/write property that will retrieve or set the value of the feature through a textual
representation of it. The string will include the unit of the feature if in absolute mode.

Through this property the value can be read or set either in Absolute, SoftAbsolute or Relative mode, albeit
with different formats.

The same limitations as in the Value and AbsoluteValue properties apply.

Visual Basic syntax
Dim ValueString As String
ValueString = Feature.ValueString 'get
Feature.ValueString = ValueString 'set

C# syntax
string ValueString = Feature.ValueString; //get
Feature.ValueString = ValueString; //set

MinValueString property

Prototype
String MinValueString

62

Comments
This is a read-only property that will retrieve the minimum allowed value of the feature as a textual
representation. The string will include the unit of the feature if in absolute mode.

The same limitations as in the MinValue and MinAbsoluteValue properties apply.

Visual Basic syntax
Dim MinValueString As String
MinValueString = Feature.MinValueString

C# syntax
string MinValueString = Feature.MinValueString;

MaxValueString property

Prototype
String MaxValueString

Comments
This is a read-only property that will retrieve the maximum allowed value of the feature as a textual
representation. The string will include the unit of the feature if in absolute mode.

The same limitations as in the MaxValue and MaxAbsoluteValue properties apply.

Visual Basic syntax
Dim MaxValueString As String
MaxValueString = Feature.MaxValueString

C# syntax
string MaxValueString = Feature.MaxValueString;

Unit property

Prototype
FireiFeatureUnit Unit

Comments
This is a read-only property that will retrieve the unit of the value of the feature as FireiFeatureUnit
enumerated values.

Possible values returned are:

None,
FractionPercent,
ExposureValue,
Kelvin,
Degree,
Time,
Decibel,
FStops,
Distance,
ActualPercent

63

Visual Basic syntax
Dim Unit As FireiFeatureUnit
Unit = Feature.Unit

C# syntax
FireiFeatureUnit Unit = Feature.Unit;

AbsoluteValue property

Prototype
float AbsoluteValue

Comments
This is a read/write property that will retrieve or set the absolute value of this FireiFeature. For this
property to be enabled instead of the Value property, the Absolute or SoftAbsolute properties must
be true. Additionally, the value must reside in the boundaries set by the MinAbsoluteValue and
MaxAbsoluteValue properties.

Since absolute values have fractional parts, this value is represented through a single-precision floating point
number.

Visual Basic syntax
Dim Value As Single
Value = Feature.AbsoluteValue 'get
Feature.AboluteValue = Feature.MaxAbsoluteValue 'set

C# syntax
float Value = Feature.AbsoluteValue; //get
Feature.AboluteValue = Feature.MaxAbsoluteValue; //set

MinAbsoluteValue property

Prototype
float MinAbsoluteValue

Comments
This is a read-only property that will return the minimum value that can be set to this FireiFeature,
through the AbsoluteValue property.

Since absolute values have fractional parts, this value is represented through a single-precision floating point
number.

Visual Basic syntax
Dim MinValue As Single
MinValue = Feature.MinAbsoluteValue

C# syntax
float MinValue = Feature.MinAbsoluteValue;

64

MaxAbsoluteValue property

Prototype
float MaxAbsoluteValue

Comments
This is a read-only property that will return the maximum value that can be set to this FireiFeature,
through the AbsoluteValue property.

Since absolute values have fractional parts, this value is represented through a single-precision floating point
number.

Visual Basic syntax
Dim MaxValue As Single
MaxValue = Feature.MaxAbsoluteValue

C# syntax
float MaxValue = Feature.MaxAbsoluteValue;

Reload method

Prototype
Reload()

Comments
This method can be used to read the current value and absolute value (if applicable, along with the
minimum and maximum absolute values) of the camera feature.

It is particularly useful after a call to OnePush or if the camera is in AutoMode, as reading the value through
the Value property will not return the current value on the camera, rather the value stored in the
FireiFeature object. This is done for bus bandwidth conservation.

Visual Basic syntax
Feature.Reload()

C# syntax
Feature.Reload();

OnePush method

Prototype
OnePush()

Comments
This method, when called, will perform a complete one-push operation on the camera for the feature4.

4 A one push operation is two-step: first the register for the one push is set, and then the acknowledge register is
repeatedly read until the operation is finished. The OnePush method does these two steps in one call and returns when
the one push operation is finished.

65

This method is available only if HasOnePush is true; calling it otherwise will result in an exception.

Visual Basic syntax
Feature.OnePush()

C# syntax
Feature.OnePush();

66

FireiFrame
The FireiFrame object contains a single camera frame, allowing the programmer to read and write the
image data pixel by pixel. It also provides some useful methods that help manipulate the image, e.g., draw
lines, rectangles or print text on the image.

This object cannot be constructed directly; it is constructed and maintained internally by the SDK, and
passed through the FrameReceived event of FireiCamera. It can be considered valid throughout the
context of the event handler – but it cannot be stored in memory for later use.

GetPixel method

Prototype
Color GetPixel(ushort x, ushort y)

Comments
This method returns the color value as a System.Drawing.Color object of a given by coordinates pixel of
the image buffer.

x and y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiStreamFormat properties Width
and Height.

Visual Basic syntax
Dim Color As System.Drawing.Color
Color = Frame.GetPixel(0, 0)

C# syntax
System.Drawing.Color Color = Frame.GetPixel(0, 0);

SetPixel method

Prototype
SetPixel(ushort x, ushort y, System.Drawing.Color color)

Comments
This method sets the color value from a System.Drawing.Color object to a given by coordinates pixel of
the image buffer.

x and y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiStreamFormat properties Width
and Height.

Visual Basic syntax
Frame.SetPixel(0, 0, Drawing.Color.Black)

C# syntax
Frame.SetPixel(0, 0, Drawing.Color.Black);

67

GetRGB method

Prototype
GetRGB(ushort x, ushort y, out byte red, out byte green, out byte blue)

Comments
This method returns the color value as a red, green and blue components of a given by coordinates pixel of
the image buffer.

x and y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiStreamFormat properties Width
and Height.

Visual Basic syntax
Dim Red, Green, Blue As Byte
Frame.GetRGB(0, 0, Red, Green, Blue)

C# syntax
byte Red, Green, Blue;
Frame.GetRGB(0, 0, out Red, out Green, out Blue);

SetRGB method

Prototype
SetRGB(ushort x, ushort y, byte red, byte green, byte blue)

Comments
This method sets the color value of a given by coordinates pixel of the image buffer, using red, green and
blue components.

x and y must be within the boundaries of the image, starting from 0. The maximum width can be supplied
either by the camera (GetCurrentResolution method), or the FireiStreamFormat properties Width
and Height.

Visual Basic syntax
Frame.SetRGB(0, 0, 0, 0, 0)

C# syntax
Frame.SetRGB(0, 0, 0, 0, 0);

SaveToFile method

Prototype
SaveToFile(string filename)

Comments
This method will save the contents of the FireiFrame to disk, as a regular Windows uncompressed BMP
file. The filename must be supplied, with or without the .bmp extension (the SDK will add it if it was
omitted).

68

If for some reason the operation is unsuccessful, an exception will be thrown.

Visual Basic syntax
Frame.SaveToFile("c:\Frame1.bmp")

C# syntax
Frame.SaveToFile("c:\Frame1.bmp");

FlipHorizontally method

Prototype
FlipHorizontally()

Comments
This method will invert the frame in-place along the y-axis (horizontally).

Visual Basic syntax
Frame.FlipHorizontally()

C# syntax
Frame.FlipHorizontally();

FlipVertically method

Prototype
FlipVertically()

Comments
This method will invert the frame in-place along the x-axis (vertically).

Visual Basic syntax
Frame.FlipVertically()

C# syntax
Frame.FlipVertically();

Negative method

Prototype
Negative()

Comments
This method will invert the color information of the frame. The result will be similar to a photographic
negative.

Visual Basic syntax
Frame.Negative()

C# syntax
Frame.Negative();

69

ToBitmap method

Prototype
System.Drawing.Bitmap ToBitmap()

Comments
This method will return the frame data as a System.Drawing.Bitmap object. Any subsequent alterations
on the returned object will not be reflected on the image of the Frame. This object can be stored for later
use and it is the programmer’s responsibility to dispose of.

Visual Basic syntax
Dim Picture As System.Drawing.Bitmap
Picture = Frame.ToBitmap()

C# syntax
System.Drawing.Bitmap Picture = Frame.ToBitmap();

GetGraphics method

Prototype
System.Drawing.Graphics GetGraphics()

Comments
This method will return the frame data as a System.Drawing.Graphics object. Any subsequent
alterations on this object will be reflected on the image of the frame, so it should be considered volatile and
not stored for later use or disposed of.

Visual Basic syntax
Dim Picture As System.Drawing.Graphics
Picture = Frame.GetGraphics()

C# syntax
System.Drawing.Graphics Picture = Frame.GetGraphics();

DrawLine method

Prototype
DrawLine(

short fromX,
short FromY,
short toX,
short ToY,
System.Drawing.Color color
)

Comments
This method will draw a line from a point defined by a set of coordinates (fromX, fromY) to another point
defined by a set of coordinates(toX, toY), using the color defined by a System.Drawing.Color object.

The coordinates given as the 4 parameters must reside in the frame boundaries, otherwise an exception will
be thrown.

70

Visual Basic syntax
Frame.DrawLine(0, 0, 50, 50, Drawing.Color.Black)

C# syntax
Frame.DrawLine(0, 0, 50, 50, Drawing.Color.Black);

DrawString method

Prototype
DrawString(

string text,
short x,
short y,
System.Drawing.Font font,
System.Drawing.Color color
)

Comments
This method will draw a string of text on a point on the frame defined by a set of coordinates (x, y), using the
color defined by a System.Drawing.Color object and a valid System.Drawing.Font object.

The coordinates given as the 2 parameters must reside in the frame boundaries, otherwise an exception will
be thrown.

Visual Basic syntax
Frame.DrawString("Foo", 0, 0, Me.Font, Drawing.Color.Black)

C# syntax
Frame.DrawString("Foo", 0, 0, this.Font, Drawing.Color.Black);

DrawRectangle method

Prototype
DrawRectangle(

short x,
short y,
short width,
short height,
System.Drawing.Color color,
bool filled
)

Comments
This method will draw a rectangle, with its top-left corner being at a point defined by a set of coordinates (x,
y) having a specific width and height and using the color defined by a System.Drawing.Color object.
Additionally, it can be specified whether this rectangle will be empty (just its outline drawn) or filled.

The coordinates defined by the 4 parameters given must reside in the frame boundaries, otherwise an
exception will be thrown.

71

Visual Basic syntax
Frame.DrawRectangle(0, 0, 50, 50, Drawing.Color.Black, False)

C# syntax
Frame.DrawRectangle(0, 0, 50, 50, Drawing.Color.Black, false);

DrawLineRGB method

Prototype
DrawLineRGB(

short fromX,
short fromY,
short toX,
short toY,
byte red,
byte green,
byte blue
)

Comments
This method will draw a line from a point defined by a set of coordinates (fromX, fromY) to another point
defined by a set of coordinates(toX, toY), using the color defined by its red, green and blue components.

The coordinates given as the 4 parameters must reside in the frame boundaries, otherwise an exception will
be thrown.

Visual Basic syntax
Frame.DrawLineRGB(0, 0, 50, 50, 0, 0, 0)

C# syntax
Frame.DrawLineRGB(0, 0, 50, 50, 0, 0, 0);

DrawStringRGB method

Prototype
DrawString(

string text,
short x,
short y,
System.Drawing.Font font,
byte red,
byte green,
byte blue
)

Comments
This method will draw a string of text on a point on the frame defined by a set of coordinates (x, y), using the
color defined by its red, green and blue components, and a valid System.Drawing.Font object.

The coordinates given as the 2 parameters must reside in the frame boundaries, otherwise an exception will
be thrown.

72

Visual Basic syntax
Frame.DrawStringRGB("Foo", 0, 0, Me.Font, 0, 0, 0)

C# syntax
Frame.DrawStringRGB("Foo", 0, 0, this.Font, 0, 0, 0);

DrawRectangleRGB method

Prototype
DrawRectangle(

short x,
short y,
short width,
short height,
byte red,
byte green,
byte blue,
bool filled
)

Comments
This method will draw a rectangle, with its top-left corner being at a point defined by a set of coordinates (x,
y) having a specific width and height and using the color defined by its red, green and blue components.
Additionally, it can be specified whether this rectangle will be empty (just its outline drawn) or filled.

The coordinates defined by the 4 parameters given must reside in the frame boundaries, otherwise an
exception will be thrown.

Visual Basic syntax
Frame.DrawRectangleRGB(0, 0, 50, 50, 0, 0, 0, False)

C# syntax
Frame.DrawRectangleRGB(0, 0, 50, 50, 0, 0, 0, false);

73

FireiCamera
The FireiCamera object encapsulates all functionality pertaining to the camera itself; therefore it could be
considered to be the “central” object of the SDK.

It acts as a factory for many other objects: FireiFeature, FireiStreamFormat and FireiTrigger.

It cannot be constructed directly however; the FireiManager object is responsible for constructing a
FireiCamera instance.

Besides having a great number of properties and methods, it also implements three events:
FrameReceived, BufferReceived, and CameraRemoved. The first, if handled, will be fired every time a new
frame is received by the SDK; the second will be fired every time a new frame is received by the SDK, but
before converting it to a display-compatible format; and the third will be fired if the camera is physically
removed from the system.

GUID property

Prototype
FireiGUID GUID

Comments
This is a read-only property that can be used to retrieve the GUID of the camera. It constructs and initializes
a FireiGUID object internally and then returns it.

Visual Basic syntax
Dim GUID As FireiGUID
Set GUID = Camera.GUID

C# syntax
FireiGUID Set GUID = Camera.GUID;

Vendor property

Prototype
string Vendor

Comments
This is a read-only property that can be used to retrieve the vendor name of the camera, as a string.

Visual Basic syntax
Dim VendorName As String
VendorName = Camera.Vendor

C# syntax
string VendorName = Camera.Vendor;

74

Model property

Prototype
string Model

Comments
This is a read-only property that can be used to retrieve the model name of the camera, as a string.

Visual Basic syntax
Dim ModelName As String
ModelName = Camera.Model

C# syntax
string ModelName = Camera.Model;

Serial property

Prototype
uint Serial

Comments
This is a read-only property that can be used to retrieve the serial number of the camera, as a uint.

Visual Basic syntax
Dim SerialNo As UInteger
SerialNo = Camera.Serial

C# syntax
uint SerialNo = Camera.Serial;

StreamFormat property

Prototype
FireiStreamFormat StreamFormat

Comments
This is a read/write property that will retrieve or set the currently selected FireiStreamFormat of this
FireiCamera. Through this FireiStreamFormat, all the streaming format functionality of the camera is
exposed to the programmer.

The “set” operation of this property is the equivalent of calling the Save method of FireiStreamFormat.

Visual Basic syntax
Dim StreamFormat As FireiStreamFormat
StreamFormat = Camera.StreamFormat 'get
Camera.StreamFormat = StreamFormat 'set

C# syntax
FireiStreamFormat StreamFormat = Camera.StreamFormat; //get
Camera.StreamFormat = StreamFormat; //set

75

Trigger property

Prototype
FireiTrigger Trigger

Comments
This is a read-only property that will retrieve the currently selected FireiTrigger of this FireiCamera.
Through this FireiTrigger, all the trigger functionality of the camera is exposed to the programmer.

Visual Basic syntax
Dim Trigger As FireiTrigger
Trigger = Camera.Trigger 'get
Camera.Trigger = Trigger 'set

C# syntax
FireiTrigger Trigger = Camera.Trigger; //get
Camera.Trigger = Trigger; //set

AutoExposure property

Prototype
FireiFeature AutoExposure

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the
AutoExposure feature of the camera.

Visual Basic syntax
Dim AutoExposure As FireiFeature
AutoExposure = Camera.AutoExposure

C# syntax
FireiFeature AutoExposure = Camera.AutoExposure;

Shutter property

Prototype
FireiFeature Shutter

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the Shutter
feature of the camera.

Visual Basic syntax
Dim Shutter As FireiFeature
Shutter = Camera.Shutter

C# syntax
FireiFeature Shutter = Camera.Shutter;

76

Gain property

Prototype
FireiFeature Gain

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the Gain
feature of the camera.

Visual Basic syntax
Dim Gain As FireiFeature
Gain = Camera.Gain

C# syntax
FireiFeature Gain = Camera.Gain;

Iris property

Prototype
FireiFeature Iris

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the Iris
feature of the camera.

Visual Basic syntax
Dim Iris As FireiFeature
Iris = Camera.Iris

C# syntax
FireiFeature Iris = Camera.Iris;

ColorUB property

Prototype
FireiFeature ColorUB

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the U/B
component of the Color feature of the camera.

Visual Basic syntax
Dim ColorUB As FireiFeature
ColorUB = Camera.ColorUB

C# syntax
FireiFeature ColorUB = Camera.ColorUB;

77

ColorVR property

Prototype
FireiFeature ColorVR

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the V/R
component of the Color feature of the camera.

Visual Basic syntax
Dim ColorVR As FireiFeature
ColorVR = Camera.ColorVR

C# syntax
FireiFeature ColorVR = Camera.ColorVR;

Hue property

Prototype
FireiFeature Hue

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the Hue
feature of the camera.

Visual Basic syntax
Dim Hue As FireiFeature
Hue = Camera.Hue

C# syntax
FireiFeature Hue = Camera.Hue;

Saturation property

Prototype
FireiFeature Saturation

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the
Saturation feature of the camera.

Visual Basic syntax
Dim Saturation As FireiFeature
Saturation = Camera.Saturation

C# syntax
FireiFeature Saturation = Camera.Saturation;

78

Focus property

Prototype
FireiFeature Focus

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the Focus
feature of the camera.

Visual Basic syntax
Dim Focus As FireiFeature
Focus = Camera.Focus

C# syntax
FireiFeature Focus = Camera.Focus;

Zoom property

Prototype
FireiFeature Zoom

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the Zoom
feature of the camera.

Visual Basic syntax
Dim Zoom As FireiFeature
Zoom = Camera.Zoom

C# syntax
FireiFeature Zoom = Camera.Zoom;

Brightness property

Prototype
FireiFeature Brightness

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the
Brightness feature of the camera.

Visual Basic syntax
Dim Brightness As FireiFeature
Brightness = Camera.Brightness

C# syntax
FireiFeature Brightness = Camera.Brightness;

79

Sharpness property

Prototype
FireiFeature Sharpness

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the
Sharpness feature of the camera.

Visual Basic syntax
Dim Sharpness As FireiFeature
Sharpness = Camera.Sharpness

C# syntax
FireiFeature Sharpness = Camera.Sharpness;

Gamma property

Prototype
FireiFeature Gamma

Comments
This is a read-only property that can be used to retrieve directly the FireiFeature object for the Gamma
feature of the camera.

Visual Basic syntax
Dim Gamma As FireiFeature
Gamma = Camera.Gamma

C# syntax
FireiFeature Gamma = Camera.Gamma;

RawConversion property

Prototype
FireiRawConversion RawConversion

Comments
This is a read/write property that can be used to retrieve or set the Bayer conversion method that will be
employed in case it is set on the streaming format.

The Fire-i.net SDK uses the Bayer conversion algorithms implemented in the Firei.dll and DirectShow APIs as
they are, benefitting automatically from future performance updates in them.

Possible values of the FireiRawConversion enumerated value are:

NearestNeighbor,
BilinearInterpolation,
SmoothHueTransition

80

The three implemented algorithms are ordered “Best Performance → Best Quality”.
BilinearInterpolation is the default setting.

Please note that the SmoothHueTransition algorithm is only implemented in the Firei.dll API; if set while
using the DirectShow API, an exception will be thrown.

Visual Basic syntax
Dim RawConversion As FireiRawConversion
RawConversion = Camera.RawConversion 'get
Camera.RawConversion = FireiRawConversion.NearestNeighbor 'set

C# syntax
FireiRawConversion RawConversion = Camera.RawConversion; //get
Camera.RawConversion = FireiRawConversion.NearestNeighbor; //set

Icon property

Prototype
System.Drawing.Icon Icon

Comments
This is a read-only property that can be used to retrieve a System.Drawing.Icon object, depicting the
camera itself. This picture is derived from an internal database of camera pictures that the Unibrain APIs
maintain and is selected automatically, using the camera vendor and model.

Visual Basic syntax
Dim Icon As System.Drawing.Icon
Icon = Camera.Icon

C# syntax
System.Drawing.Icon Icon = Camera.Icon;

ReadRegister method

Prototype
FireiRegister ReadRegister(uint offset)

Comments
This is a method that can be used to retrieve any register of the camera, given its offset as a parameter.

It will read the value from the camera and initialize a FireiFeature object, returning it to the
programmer. If for some reason the camera rejects the read request, an exception will be thrown (the
exception information will contain the nature of the error).

Please note that the offset parameter is based at 0 – for reading the command registers of the camera
(normally based at hex F0000000) the ReadCommand method can be used instead.

Visual Basic syntax
Dim Register As FireiRegister
Register = Camera.ReadRegister(&H404)

81

C# syntax
FireiRegister Register = Camera.ReadRegister(0x404);

WriteRegister method

Prototype
void WriteRegister(uint offset, FireiRegister register)

Comments
This is a method that can be used to set any register of the camera, given its offset as a parameter.

It will write the value to the camera given a valid FireiFeature object. If for some reason the camera
rejects the write request, an exception will be thrown (the exception information will contain the nature of
the error).

Please note that the offset parameter is based at 0 – for writing the command registers of the camera
(normally based at hex F0000000) the WriteCommand method can be used instead.

Visual Basic syntax
Dim Register As FireiRegister
Register = new FireiRegister(0)
Camera.WriteRegister(&H404, Register)

C# syntax
FireiRegister Register = new FireiRegister(0);
Camera.WriteRegister(0x404, Register);

ReadCommand method

Prototype
FireiRegister ReadCommand(uint offset)

Comments
This is a method that can be used to retrieve any command register of the camera, given its offset as a
parameter. As “command register” is defined a register with its offset based on the command-base register
offset (normally hex F0000000).

It will read the value from the camera and initialize a FireiFeature object, returning it to the
programmer. If for some reason the camera rejects the read request, an exception will be thrown (the
exception information will contain the nature of the error).

The ReadCommand method has the exact same effect as the ReadRegister method, if the command-base
offset is added to the offset parameter. Since this offset is theoretically variable (camera-specific), for
command registers it is best to use the ReadCommand method.

Visual Basic syntax
Dim Register As FireiRegister
Register = Camera.ReadCommand(&H504)

82

C# syntax
FireiRegister Register = Camera.ReadCommand(&H504);

WriteCommand method

Prototype
void WriteCommand(uint offset, FireiRegister register)

Comments
This is method that can be used to set any command register of the camera, given its offset as a parameter.
As “command register” is defined a register with its offset based on the command-base register offset
(normally hex F0000000).

It will write the value to the camera, given a valid FireiFeature object. If for some reason the camera
rejects the write request, an exception will be thrown (the exception information will contain the nature of
the error).

The WriteCommand method has the exact same effect as the WriteRegister method, if the command-
base offset is added to the offset parameter. Since this offset is theoretically variable (camera-specific), for
command registers it is best to use the WriteCommand method.

Visual Basic syntax
Dim Register As FireiRegister
Register = new FireiRegister(0)
Camera.WriteCommand(&H504, Register)

C# syntax
FireiRegister Register = new FireiRegister(0);
Camera.WriteCommand(&H504, Register);

ReadBlock method

Prototype
byte[] ReadBlock(uint offset, uint size)

Comments
This is a method that can be used to retrieve a block of registers (quadlets) on the camera, given its offset
and the number of bytes to read (size) as parameters. The size must be a multiple of 4.

Visual Basic syntax
Dim buffer() As Byte
buffer = Camera.ReadBlock(&HF0F00508, 12)

C# syntax
Byte[] buffer = Camera.ReadBlock(0xF0F00508, 12);

WriteBlock method

Prototype
void WriteBlock(uint offset, byte[] buffer)

83

Comments
This is a method that can be used to write a block of registers (quadlets) on the camera, given its offset and a
byte buffer as parameters. The size of the buffer must be a multiple of 4.

Visual Basic syntax
Dim buffer() As Byte = New Byte(7) {&H82, &H0, &H0, &H10, &H82, &H0, &H0,
&H3A}
Camera.WriteBlock(&HF0F00508, buffer)

C# syntax
byte[] buffer = new byte[8] {0x82, 0, 0, 0x10, 0x82, 0, 0, 0x3A};
Camera.WriteBlock(0xF0F0081C, buffer);

GetMemoryPresetsCount method

Prototype
uint GetMemoryPresetsCount()

Comments
This method that can be used to retrieve the number of available memory presets of the camera.

If this number is 0, the camera does not support memory presets (rendering the SaveToMemory and
LoadFromMemory methods inaccessible).

Visual Basic syntax
Dim NumOfMemoryPresets As UInteger
NumOfMemoryPresets = Camera.GetMemoryPresetsCount()

C# syntax
uint NumOfMemoryPresets = Camera.GetMemoryPresetsCount();

ToString method

Prototype
string ToString()

Comments
This method can be used to retrieve an SDK-constructed “friendly name” for the camera, as a string. This
“friendly name” is a combination of the vendor name, the model name and the serial number of the camera.

A typical result is similar to:

Unibrain Fire-i 1.2 40045266

Visual Basic syntax
Dim FriendlyName As String
FriendlyName = Camera.ToString()

C# syntax
string FriendlyName = Camera.ToString();

84

GetFeature method

Prototype
FireiFeature GetFeature(string featureName)

Comments
This is a method that can be used to retrieve the FireiFeature object of any of features of the camera.

It takes the name (as a string) of the feature to locate the desired FireiFeature object. This name is the
same as the one returned by the Name property of FireiFeature. If the parameter passed is not a
recognized feature name, an exception will be thrown.

Visual Basic syntax
Dim Feature As FireiFeature
Feature = Camera.GetFeature("Shutter")

C# syntax
FireiFeature Feature = Camera.GetFeature("Shutter");

SelectStreamFormat method

Prototype
SelectStreamFormat()

85

Comments
This method when called will bring up a “Stream Format Selector” dialog, as constructed and maintained
internally by the APIs. Through this dialog, user selection of a streaming format is possible. The appearance
of this dialog varies depending on the underlying API selected. If DLL mode is currently running, the dialog
will look similar to:

86

If on the other hand the DirectShow mode is currently running, the dialog will look similar to:

Upon the return of the method, the streaming format that the user selected will be also set on the camera
automatically. It can be retrieved by the programmer, if desired, through the StreamFormat property. If
the user did not select a format, pressing “Cancel”, there is no change made to the camera.

Visual Basic syntax
Camera.SelectStreamFormat()

C# syntax
Camera.SelectStreamFormat();

AttachPreviewCtrl method

Prototype
AttachPreviewCtrl(FireiPreviewControl previewControl)

Comments
This method can be used to attach a FireiPreviewControl object to this FireiCamera, for video
preview purposes.

Visual Basic syntax
Camera.AttachPreviewCtrl(FireiPreviewCtrl1)

87

C# syntax
Camera.AttachPreviewCtrl(FireiPreviewCtrl1);

Run method

Prototype
Run()

Comments
This method will start the streaming of the camera.

If the FireiCamera object is attached to a FireiPreviewControl, the preview on that control will also
start.

If the camera is already running, a call to Run will have no effect5. If the camera for some reason cannot
start, or the preview window (if applicable) is invalid in some way, an exception will be thrown.

Visual Basic syntax
Camera.Run()

C# syntax
Camera.Run();

Stop method

Prototype
Stop()

Comments
This method will stop the streaming of the camera.

If the FireiCamera object is attached to a FireiPreviewControl, the preview on that control will also
stop.

If the camera is not running, a call to Stop will have no effect. If the camera for some reason cannot stop, an
exception will be thrown.

Visual Basic syntax
Camera.Stop()

C# syntax
Camera.Stop();

IsRunning method

Prototype
Boolean IsRunning()

5 This is not entirely true; if the camera was started while not being attached to a FireiPreviewControl, then
attached and Run was called again, the preview will start.

88

Comments
This method will return whether the camera is currently running.

Please note that IsRunning will return true even if the camera was not started during runtime (i.e., it was
running before the program was started).

Visual Basic syntax
Dim Running As Boolean
Running = Camera.IsRunning()

C# syntax
bool Running = Camera.IsRunning();

GetStreamFormats method

Prototype
System.Collections.Generic.List<FireiStreamFormat>.GetStreamFormats()

Comments
This method can be used to retrieve a list of the supported streaming formats of the object.

The returned list contains only the supported formats of the specific camera at the time of the call to
GetStreamFormats. Since the actual speed of the bus the camera is connected to can vary depending on
various parameters, the supported formats will also vary, depending on the speed of the bus (besides the
make and model of the camera).

Visual Basic syntax
Dim StreamFormats As System.Collections.Generic.List(Of FireiStreamFormat)
StreamFormats = Camera.GetStreamFormats()

C# syntax
System.Collections.Generic.List<FireiStreamFormat> StreamFormats;
StreamFormats = Camera.GetStreamFormats();

DisplayProperties method

Prototype
DisplayProperties()

Comments
This method when called will bring up a “Display Properties” dialog for the camera. This dialog can then be
used to set the various feature values of the camera.

Unlike the other UI-driven methods of the SDK (namely SelectCamera and SelectStreamFormat), this
dialog has an immediate effect on the camera as the values and settings of the features are changed.
Additionally, the method opens up the dialog and returns immediately. The dialog will remain open until the
user closes it, affecting the camera whether it is running or not.

89

The presented dialog is almost exactly the same in appearance, regardless if DirectShow or DLL is the
currently selected underlying mode, and it looks similar to:

Visual Basic syntax
Camera.DisplayProperties()

C# syntax
Camera.DisplayProperties();

IsFeatureSupported method

Prototype
Boolean IsFeatureSupported(string featureName)

Comments
This method will return whether a given feature is supported. The feature parameter is defined as a string,
containing the name of the feature. This name is the same as the one the Name property of FireiFeature
would return.

Visual Basic syntax
Dim Supported As Boolean
Supported = Camera.IsFeatureSupported("Shutter")

C# syntax
bool Supported = Camera.IsFeatureSupported("Shutter");

GetFeaturesEnumerator method

Prototype
System.Collections.Generic.List<FireiFeature> GetFeatures(

90

bool supportedOnly,
FireiFeatureGroup featureGroup
)

Comments
This method will construct and return a generic list of FireiFeatures. It will contain the FireiFeature
objects depending on the parameters passed. The first parameter will toggle whether all features will be
returned, or only the ones supported by the camera. Additionally, since the features are divided in 3 groups
(Exposure, Color, Basic), through the featureGroup parameter, further reduction on the returned set can be
achieved.

The possible values for the featureGroup parameter are:

All,
Exposure,
Color,
Basic

If FireiFeatureGroup.All is selected, all features will be contained in the list, otherwise only the ones
defined by the FireiFeatureGroup value.

Visual Basic syntax
Dim Features As System.Collections.Generic.List(Of FireiFeature)
Features = Camera.GetFeatures(true, FireiFeatureGroup.All)

C# syntax
System.Collections.Generic.List<FireiFeature> Features;
Features = Camera.GetFeatures(true, FireiFeatureGroup.All);

GetCurrentResolution method

Prototype
GetCurrentResolution(out ushort width, out ushort height)

Comments
This method will return (as out parameters) the width and height of the camera stream format resolution in
pixels.

Visual Basic syntax
Dim Width, Height As UShort
Camera.GetCurrentResolution(width, height)

C# syntax
ushort Width, Height;
Camera.GetCurrentResolution(out width, out height);

GetCameraPhoto method

Prototype
System.Drawing.Bitmap GetCameraPhoto(

91

ushort edgeSize,
byte red,
byte green,
byte blue,
byte alpha
)

Comments
This method constructs and returns a System.Drawing.Bitmap object, that contains a photograph of the
camera connected. This photograph is derived from an internal database that Unibrain maintains, and the
SDK utilizes.

The resulting picture will be square (width equals height); the size of each edge can be defined. Additionally,
the programmer can choose the background color of the picture (for rendering transparently on a control),
in all 4 color components, red, green, blue and alpha.

Visual Basic syntax
Dim Photo As System.Drawing.Bitmap
Photo = Camera.GetCameraPhoto(80, 255, 255, 255, 255)

C# syntax
System.Drawing.Bitmap Photo;
Photo = Camera.GetCameraPhoto(80, 255, 255, 255, 255);

SaveToMemory method

Prototype
SaveToMemory(byte channelNumber)

Comments
This method will save all current features to a memory preset channel on the camera. Since channel 0 is
reserved for the camera default values, it cannot be used as a parameter in SaveToMemory.

In order to ascertain what the maximum channel number allowed is, the GetMemoryPresetsCount
method can be used: in effect, the number representing the GetMemoryPresetsCount value is the
maximum allowed value for SaveToMemory.

If for any reason the camera cannot save the settings, an exception will be thrown.

Visual Basic syntax
Camera.SaveToMemory(1)

C# syntax
Camera.SaveToMemory(1);

LoadFromMemory method

Prototype
LoadFromMemory(byte channelNumber)

92

Comments
This method will load all current features from a memory preset channel of the camera. Since channel 0 is
reserved for the camera default values, it cannot be used as a parameter in LoadFromMemory.

In order to ascertain what the maximum channel number allowed is, the GetMemoryPresetsCount
method can be used: in effect, the number representing the GetMemoryPresetsCount value is the
maximum allowed value for LoadFromMemory.

If for any reason the camera cannot load the settings, an exception will be thrown.

Visual Basic syntax
Camera.LoadFromMemory(1)

C# syntax
Camera.LoadFromMemory(1);

SaveToXML method

Prototype
SaveToXML(string filename, bool overwrite)

Comments
This method will save all current features to a file on disk, in XML format. The first parameter passed
represents the filename to save as, and it cannot be empty. The second parameter passed will check if a file
with the same filename already exists. If overwrite is false and the file already exists, an exception will be
thrown.

The resulting XML file has 100% compatible format with the XML files saved and loaded from the other
Unibrain tools, like FireIIDC and Fire-i Application.

If for any reason the file cannot be written to disk, an exception will be thrown.

Visual Basic syntax
Camera.SaveToXML("c:\settings.xml", True)

C# syntax
Camera.SaveToXML("c:\settings.xml", true);

LoadFromXML method

Prototype
LoadFromXML(string filename)

Comments
This method will load all features from an XML file on disk, and set them to the camera. The parameter
passed represents the filename to load from, and it cannot be empty.

The XML file being loaded can be the one saved with SaveToXML, or any other XML files created by the
other Unibrain tools, like FireIIDC and Fire-i Application, since these are 100% compatible.

93

If for any reason the settings cannot be loaded or set to the camera, an exception will be thrown.

Visual Basic syntax
Camera.LoadFromXML("c:\settings.xml")

C# syntax
Camera.LoadFromXML("c:\settings.xml");

RetrieveStreamFormat method

Prototype
FireiStreamFormat RetrieveStreamFormat(

FireiPixelFormat pixelFormat,
FireiResolution resolution
)

Comments
This method will return a FireiStreamFormat object that has the given FireiPixelFormat and
FireiResolution attributes, provided it is supported by the camera. If it is not supported, an exception
will be thrown.

There is only a single FireiStreamFormat object having the same FireiPixelFormat and
FireiResolution values.

Visual Basic syntax
Dim StreamFormat As FireiStreamFormat
StreamFormat = Camera.RetrieveStreamFormat(

FireiPixelFormat.Y_MONO,
FireiResolution.res320x240
)

C# syntax
FireiStreamFormat StreamFormat = Camera.RetrieveStreamFormat(

FireiPixelFormat.Y_MONO,
FireiResolution.res320x240
);

RetrieveStreamFormatFromIdentifier method

Prototype
FireiStreamFormat RetrieveStreamFormatFromIdentifier(

uint identifier
)

Comments
This method will return a FireiStreamFormat object that has the given unique identifier. This identifier
can be retrieved by the Identifier property of FireiStreamFormat only.

If the identifier given is not valid, or if it points to a FireiStreamFormat that is not supported by the
camera, an exception will be thrown.

94

Visual Basic syntax
Dim Identifier As UInteger
Identifier = Camera.StreamFormat.Identifier
Dim StreamFormat As FireiStreamFormat
StreamFormat = Camera.RetrieveStreamFormatFromIdentifier(Identifier)

C# syntax
uint Identifier = Camera.StreamFormat.Identifier;
FireiStreamFormat StreamFormat =
 Camera.RetrieveStreamFormatFromIdentifier(Identifier);

FrameReceived event

Prototype
event System.EventHandler<FrameReceivedEventArgs> FrameReceived

Comments
This event is fired whenever a frame is received from the camera, after it has been converted to RGB for
viewing, but before having been actually sent to the screen (if attached to a FireiPreviewControl). It is
therefore useful both to perform image processing using the provided FrameReceivedEventArgs
instance and manipulation before display.

The supplied FrameReceivedEventArgs object can be considered valid in the context of the event
handler. It contains a Frame property that can be used to access the FireiFrame object. Any changes
made to it (through its methods) are then reflected on the preview screen (if applicable) upon exit from the
event handler.

Syntax
Since event handlers are usually created automatically by the underlying programming environment, it
would not be useful to provide sample code here.

BufferReceived event

Prototype
event System.EventHandler<BufferReceivedEventArgs> BufferReceived

Comments
This event is fired whenever a frame is received from the camera, before it has been converted to RGB for
viewing. It is useful when direct access to the frame buffer being received is necessary, such as when
working with Y-MONO-16 formats, since the actual buffer is available.

The supplied BufferReceivedEventArgs object can be considered valid in the context of the event
handler. It contains a Buffer property that can be used to access an IntPtr pointing to the actual buffer.
The framework-provided System.Runtime.InteropServices.Marshal class contains helpful methods
that can be used to handle this buffer, such as ReadByte and Copy.

Syntax
Since event handlers are usually created automatically by the underlying programming environment, it
would not be useful to provide sample code here.

95

CameraRemoved event

Prototype
event System.EventHandler CameraRemoved

Comments
This event is only ever fired once during the lifecycle of the FireiCamera object, if the camera is physically
removed from the system.

Since calling any methods or properties of the camera after it has been removed would result in an error,
this event notifies that the camera has been unplugged, giving the programmer the chance to handle the
situation. Since the firing of this event might originate from a different thread than the one used while
creating the camera object, the camera Dispose method should not be called, otherwise unexpected
behavior could occur.

Syntax
Since event handlers are usually created automatically by the underlying programming environment, it
would not be useful to provide sample code here.

	Table of Contents
	Introduction
	Technical Details
	Architecture
	Performance
	Installation
	Design

	Usage
	Scenario I – Simple video viewer
	Scenario II – Controlling camera features
	Scenario III – Manipulating captured frames
	Scenario IV – Working with a ROI (a.k.a. Format 7)

	Reference
	FireiPreviewControl
	FireiGUID
	[] property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ToString method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	InitFromString method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiManager
	GetConnectedCamerasCount method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SelectCamera method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetCameraFromIndex method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetCameraFromGUID method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiRegister
	GetBit method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SetBit method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetField method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SetField method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetFieldLen method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SetFieldLen method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SwapEndianess method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiTrigger
	AbsControl property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Enabled property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Polarity property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Source property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Value property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Mode property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsSupported property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasAbsolute property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	CanRead property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasOnOff property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasPolarity property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	CanReadRaw property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Parameter property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsSourceSupported method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsModeSupported method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Reload method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	PullSoftwareTrigger method
	Prorotype
	Comments
	Visual Basic syntax
	C# syntax

	Save method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiStreamFormat
	PixelFormatString property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	PixelFormat property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Resolution property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsUserDefined property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsCurrent property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Identifier property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Fixed property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	UserDefined property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	RawModeOverride property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Width property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Height property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ToString method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Save method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiFixedStreamFormat
	ResolutionString property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FrameRateString property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FrameRate property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	PacketSize property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	PacketsPerFrame property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ToString method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsFrameRateSupported method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiUserDefinedStreamFormat
	Left property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Right property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Top property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Bottom property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Width property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Height property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MaxWidth property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MaxHeight property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HorizontalPositionUnit property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	VerticalPositionUnit property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	WidthUnit property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HeightUnit property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MaxPacketSize property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	PacketSizeUnit property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	PacketSize property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	F7Offset property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ToString method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SetROI method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiFeature
	Name property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsSupported property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasAbsolute property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasOnePush property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	CanRead property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasOnOff property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasAuto property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasManual property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MinValue property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MaxValue property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Absolute property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Enabled property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	AutoMode property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Value property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	HasSoftAbsolute property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SoftAbsolute property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ValueString property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MinValueString property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MaxValueString property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Unit property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	AbsoluteValue property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MinAbsoluteValue property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	MaxAbsoluteValue property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Reload method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	OnePush method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiFrame
	GetPixel method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SetPixel method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetRGB method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SetRGB method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SaveToFile method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FlipHorizontally method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FlipVertically method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Negative method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ToBitmap method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetGraphics method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	DrawLine method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	DrawString method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	DrawRectangle method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	DrawLineRGB method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	DrawStringRGB method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	DrawRectangleRGB method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FireiCamera
	GUID property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Vendor property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Model property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Serial property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	StreamFormat property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Trigger property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	AutoExposure property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Shutter property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Gain property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Iris property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ColorUB property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ColorVR property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Hue property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Saturation property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Focus property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Zoom property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Brightness property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Sharpness property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Gamma property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	RawConversion property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Icon property
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ReadRegister method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	WriteRegister method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ReadCommand method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	WriteCommand method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ReadBlock method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	WriteBlock method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetMemoryPresetsCount method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	ToString method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetFeature method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SelectStreamFormat method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	AttachPreviewCtrl method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Run method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	Stop method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsRunning method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetStreamFormats method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	DisplayProperties method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	IsFeatureSupported method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetFeaturesEnumerator method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetCurrentResolution method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	GetCameraPhoto method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SaveToMemory method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	LoadFromMemory method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	SaveToXML method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	LoadFromXML method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	RetrieveStreamFormat method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	RetrieveStreamFormatFromIdentifier method
	Prototype
	Comments
	Visual Basic syntax
	C# syntax

	FrameReceived event
	Prototype
	Comments
	Syntax

	BufferReceived event
	Prototype
	Comments
	Syntax

	CameraRemoved event
	Prototype
	Comments
	Syntax

