

Multilayer

Ceramic Chip

Capacitors

UTC

COMPANY OVERVIEW

OVERVIEW

Union Technology Corp. (UTC) is a global provider for the design and manufacture of multilayer ceramic capacitors for use in: commercial, industrial and high reliability applications.

Product offering:

- SMT multilayer ceramic chips
- SMT High Voltage MLCC
- SMT Large Body Size MLCC
- · Radial Leaded High Voltage Capacitors
- Switch Mode Power Supply Capacitors (SMPS)
- · Planar Arrays & Discoidal Capacitors

QUALITY

UTC integrates quality throughout its supply chain system by building quality into our designs and manufacturing process. Supplier control systems ensure the highest quality materials and service to our customers. Our manufacturing facility is ISO 9001:2000 certified and MIL-STD-790 approved.

UTC is equipped for performing testing in accordance with MIL-PRF-39014, MIL-PRF-20, and MIL-PRF-55681 as required by some customers. Our quality assurance system and procedures are based upon the requirements of MIL-I-45208 and MIL-STD-790, with the calibration program in accordance with MIL-STD-45662A.

OPERATIONS

Established in 1991, UTC is a Corporation headquartered in Monterey Park, California. Within this 25,000 square foot facility, UTC houses its technology center, manufacturing operations along with the sales and customer support staff. UTC also maintains a fully staffed, highly qualified engineering department to support customer applications, product design, and new product development.

UTC's global network of sales representatives and distributors are prepared to assist you with designing our products to meet your application requirements.

ENVIROMENT

UTC is fully committed to helping the cause of achieving and maintaining a clean environment. The complete UTC offering of commercial ceramic chips within this catalog are designed and produced to be lead-free and are fully RoHS compliant.

ISO 9001: 2000 CERTIFIED

UTC

TABLE OF CONTENTS

PRODUCT OVERVIEW

Union Technology Corp. is a global supplier of ceramic chip capacitors and other specialty multilayer ceramic (MLC) products used by electronic manufacturers.

UTC formulates the materials used in the manufacture of its MLCs, including ceramic dielectric powders, electrode materials, resins, and inks. Precise raw material characterization and tight process control maintains UTC's quality reputation as a state-of-the-art manufacturer of ceramic capacitor products.

UTC offers the full range of standard popular EIA sizes from a 0402 up to 2225. They are available in; NPO, X7R, X5R, and Y5V dielectrics from 6.3 volts up to ratings of 5,000 volts.

In addition to our standard chip products UTC does support many custom application specific designs which include capacitors that have voltage ratings up to 10 KV and chip sizes as large as 6560. Our Advanced Products Group is staffed and equipped to assist customers with developing these MLC solutions for their specific applications requiring cost effective, volumetric efficient designs.

TABLE OF CONTENTS

ompany Overview	
Product Overview	2
SMT MULTILAYER CERAMIC CAPACITORS	
Packaging Specifications	3
IPO Dielectric Chips	
7R Dielectric Chips	7
SSR / Y5V Dielectric Chips	
Safety Certified Chips	
ligh Voltage Chips	
echnical Specifications	
Soldering Profiles	16
MILITARY & CUSTOM PRODUCTS	
Switch Mode Power Supply Capacitors	17
ligh Voltage Radial Capacitors	
eed-Through Discoidal Capacitors	
Planar Capacitor Arrays	

MECHANICAL DIMENSIONS & PACKAGING SPECIFICATIONS

Outline	Size Inch (mm)	Length L (mm)	Width W (mm)	Termination A (mm)	Thickness T (mm)	Designation /Symbol	Packaging Qty/Reel
	0402 (1005)	1.00±0.05	0.50±0.05	0.25+0.05/-0.10	N	0.50±0.05	10,000
		1.60±0.10	0.80±0.10		s	0.80±0.07	4,000
	0603 (1608)	1.60+0.15/-0.10	0.80+0.15/-0.10	0.40±0.15	х	0.80+0.15/-0.10	4,000
					Α	0.60±0.10	4,000
	0005 (0040)	2.00±0.15	1.25±0.10	0.5010.00	В	0.80±0.10	4,000
	0805 (2012)			0.50±0.20	D	1.25±0.10	3,000
		2.00±0.20	1.25±0.20		I	1.25±0.20	3,000
					В	0.80±0.10	4,000
			4 0010 45		С	0.95±0.10	3,000
	4000 (0040)	3.20±0.15	1.60±0.15	0.60±0.20	J	1.15±0.15	3,000
	1206 (3216)			0.6010.20	D	1.25±0.10	3,000
			1.60±0.20		G	1.60±0.20	2,000
T		3.20+0.30/-0.10	1.60+0.30/-0.10		Р	1.60+0.30/-0.10	2,000
W		3.20±0.30	2.50±0.20		С	0.95±0.10	3,000
A		3.20±0.30	2.50±0.20		D	1.25±0.10	3,000
	1210 (3225)			0.75±0.25	G	1.60±0.20	2,000
		3.20±0.40	2.50±0.30		K	2.00±0.20	1,000
					М	2.50±0.30	1,000
	1909 (4520)	4.50±0.40	2.03±0.25	0.75±0.25	D	1.25±0.10	2,000
	1808 (4520)	4.50±0.40	2.03±0.25	0.7510.25	K	2.00±0.20	1,000
	4942 (4522)	4.50±0.40	3.20±0.30	0.75±0.25*	D	1.25±0.10	1,000
	1812 (4532)	4.50±0.40	3.20±0.30	0.75±0.25°	K	2.00±0.20	1,000
	2220	5.70±	4.50±	.50±	D	2.50±	1,000
	2220	5./UI	4.5UI	.DUI	К	2.50±	1,000
	2225	F 70+	C 254	E0+	D	3.05±	1,000
	2225	5.70±	6.35±	.50±	K	3.05±	1,000

NPO-COG DIELECTRIC MONOLITHIC CERAMIC CAPACITORS

APPLICATION

Suited for precision circuits, requiring stable capacitor characteristics. No aging effects, low dielectric loss.

PERFORMANCE SPECIFICATIONS

Temperature Coefficient:

< 30 ppm/°C, -55°C to 125°C.

Dissipation Factor: < 0.1 % @ 1 MHz, 25°C.

Insulation Resistance:

 1000Ω F or $100G\Omega$, whichever is less @ rated voltage 25°C. At 125°C IR is 10% of 25°C value.

Dielectric Strength:

2.5 times rated voltage D.C. 1.5 times rated voltage for 500V devices.

Quality Factor:

> 1000 @ MHz 25°C.

Test Parameters:

Cap<100pF 1.0±0.2Vrms, 1MHz±10% Cap>100pF 1.0±0.2Vrms, 1KHz±10%

Capacitance Tolerances Available:

B, C, D, F, G, J, K, M

NPO-COG DIELECTRIC

	Size		04	02				06	03					80	05				1	120	6			1	121	0		
	ted Voltage (VDC)	16V	25V	50V	100V	16V	25V	50V		200V	250V	16V	25V	50V		200V	250V	16V			200V	250V	16V			200V	250V	EIA Code
	0.5pF			N	N		S	S	S					Α	Α	Α	Α	_										(0R5)
	0.6pF			N	N		S	S	S					A	A	A	A											(0R6)
	0.7pF			N	N		S	S	S					Α	Α	Α	Α											(0R7)
	0.8pF			N	N		S	S	S					Α	Α	Α	Α											(0R8)
	0.9pF			N	N		S	S	S					Α	Α	Α	Α											(0R9)
	1.0pF			N	N N	┝	S	S	S					A	A	A	Α	┝					<u> </u>					(1R0)
	1.2pF 1.5pF			N N	N		S	S	S					A	A	A	A		В	В	В	В						(1R2) (1R5)
	1.8pF			N	N		S	S	S					A	A	A	A		В	В	В	В						(1R8)
	2.2pF			N	N		S	S	S					Α	Α	Α	Α		В	В	В	В						(2R2)
	2.7pF			N	N		S	S	S					Α	Α	Α	Α		В	В	В	В						(2R7)
	3.3pF			N	N		S	S	S	-				A	A	A	A	_	В	В	В	В	_					(3R3)
	3.9pF 4.7pF			N N	N N		S	S	S					A	A	A	A	-	В	В	В	В	-					(3R9) (4R7)
	5.6pF			N	N		S	S	S					A	A	A	A		В	В	В	В						(5R6)
	6.8pF			N	N		S	S	S					Α	Α	Α	Α		В	В	В	В						(6R8)
	8.2pF			N	N		S	S	S					Α	Α	Α	В		В	В	В	В						(8R2)
	10pF	$oxed{oxed}$		N	N	_	S	S	S					Α	Α	Α	В	_	В	В	В	В			С	С	С	100
	12pF			N	N		S	S	S					A	A	A	D		В	В	В	В	_		С	С	С	120
	15pF 18pF			N N	N N	-	S	S	S					A	A	A	D D	\vdash	B	B	В	B	\vdash		C	C	С	150 180
	22pF			N	N		S	S	S	S	S			A	A	A	D		В	В	В	В		С	С	С	С	220
	27pF			N	N		S	S	S	S	S			Α	Α	A	D		В	В	В	В		С	С	С	С	270
	33pF			N	N		S	S	S	S	S			Α	Α	Α	D		В	В	В	В		С	С	С	С	330
	39pF			N	N		S	S	S	S	S			A	A	A			В	В	В	В		С	С	С	С	390
	47pF			N	N		S	S	S	S	S			A	A	A			В	В	В	В	_	С	С	С	С	470
	56pF 68pF			N N			S	S	S	S	S			A	A	A			В	B	В	B	-	C	C	C	С	560 680
	82pF			N			S	S	S	S	S			A	A	A			В	В	В	В		С	С	C	С	820
_	100pF			N			S	S	S	S	S			Α	Α	Α			В	В	В	В		С	С	С	С	101
S	120pF			N			S	S	S					Α	Α	Α			В	В	В	В		С	С	С	С	121
Capacitance	150pF			N			S	S	S					Α	Α	Α			В	В	В	В		С	С	С	С	151
ij	180pF		N N	N N			S	S	S					A	A	A			В	В	В	B	_	C	С	C	С	181 221
S	220pF 270pF	N	IN	IN			S	S	S					A	A	A			В	ВВ	В	С		С	C	С	С	271
ğ	330pF	N					S	S	S					A	A	A			В	В	В	С		С	С	С	С	331
G	390pF	N					S	S	S					Α	Α	Α			В	В	В	С		С	С	С	С	391
	470pF	N					S	S	S					Α	Α	В			В	В	С	С		С	С	С	С	471
	560pF						S	S	S					A	A	В			В	В	С	С	_	С	С	С	С	561
	680pF 820pF						S	S	S					A	A	D			В	B	C	D		C	C	C	С	681 821
	1000pF						S	S						A	A				В	В	С	G		C	С	C	С	102
	1200pF					S		S						В	В				В	В	С			С	С	D	D	122
	1500pF					S		S						В	В				В	В	С			С	С	D	D	152
	1800pF					S		S						В	В				В	В	D			С	С	D	D	182
	2200pF 2700pF	l				S								B	B			-	В	В	D		-	C	C	D	D D	222 272
	3300pF				+	S								D	D				В	В				C	C	D	U	332
	3900pF					S								D	D				В	В				С	С	D		392
	4700pF					S							D	D					В	В				С	С			472
	5600pF											D							В	В				С	С			562
	6800pF	<u> </u>			-	-					-	D						_	С	С			-	С	С			682
	8200pF 0.010μF					-						D D						\vdash	C	С			\vdash	C	C			822 103
	0.010μF											D						D	P				С	D	D			123
	0.015µF											D						D	P				С	D	D			153
	0.018µF																	D										183
	0.022µF																	D										223
	0.027µF	<u> </u>				-												D			-		_					273
	0.033μF 0.039μF					-												D D					\vdash					333 393
	0.033μ1 0.047μF																	ا ا										473
	0.056µF																											683
	0.068µF																											563
	0.082µF																											823
	0.010µF	<u> </u>				<u> </u>												<u> </u>										104
	0.012µF																						<u> </u>					124

NPO-COG DIELECTRIC

Size	•		•	1808	3				1812	2				2220)				2225	5		
Rated Volta		25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	EIA Code
	_																					
0.5	-																					(0R5)
0.6	_																					(0R6) (0R7)
0.8																						(0R8)
0.9																						(0R9)
1.0	_																					(1R0)
1.2	2pF																					(1R2)
1.5	5pF																					(1R5)
1.8	3pF																					(1R8)
2.2	2pF																					(2R2)
2.7																						(2R7)
3.3	_																					(3R3)
3.9	_																					(3R9)
4.7																						(4R7) (5R6)
5.6 ₁	-																					(6R8)
8.2	_																					(8R2)
)pF	D	D	D	D	D			D	D	D											100
	2pF	D	D	D	D	D			D	D	D											120
	5pF	D	D	D	D	D			D	D	D											150
18	ВрЕ	D	D	D	D	D			D	D	D											180
22	2pF	D	D	D	D	D			D	D	D											220
27	7pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	270
33	3pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	330
	pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	390
	7pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	470
	3pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	560
	3pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	680
100	2pF	D D	D D	D D	D D	D D			D D	D	D D	D D	D D	D D	820 101							
	· 	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	121
120 150 180 220 270 330 390		D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	151
180		D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	181
220		D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	221
270		D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	271
330)pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	331
390)pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	391
470)pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	471
560)pF	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	561
680	-	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	681
820	-	D	D	D	D	D		_	D	D	D	D	D	D	D	D	D	D	D	D	D	821
1000		D	<u>D</u>	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	102
1200		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	122
1500	_	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	152
1800 2200		D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	D D	182 222
2700		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	272
3300		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	332
3900		D	D	D	D	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	392
4700		D	D	D	D	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	472
5600		D	D	D	D	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	562
6800)pF	D	D	D	D	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	682
8200	_	D	D	D	D		D	D	D			D	D	D	D	D	D	D	D	D	D	822
0.010		D	D	D	D		D	D	D			D	D	D	D	D	D	D	D	D	D	103
0.012	_	D	D	D			D	D	D			D	D	D	D	D	D	D	D	D	D	123
0.015		D	D	D			D	D	D			D	D	D	D	D	D	D	D	D	D	153
0.018	-	D	D				D	D	D			D	D	D	D	D	D	D	D	D	D	183
0.022		D	D				D	D D	D			D D	D D	D	D	D	D	D	D	D	D	223
0.027		D D					D D	D	D			D	D	D D	D D	D	D D	D D	D	D D	D	273
0.033	-	U					D	D				D	D	D	D	D D	D	D	D D	D	D D	333 393
0.039	_						D	J				D	D	D	D		D	D	D	D	D	473
0.056	_						D					D	D	D	-		D	D	D	D	D	563
0.068	_											D	D	D			D	D	D	D	D	683
0.082												D	D				D	D	D	D		823
0.10	_						İ					D	D				D	D	D			104
	· 2μF																D	D				124

X7R DIELECTRIC MONOLITHIC CERAMIC CAPACITORS

APPLICATION

Suited for By-Pass and Coupling Application, Filtering, D.C. Blocking and Transient Suppression.

PERFORMANCE SPECIFICATIONS

Temperature Coefficient:

 $\pm 15\% \Delta C$, -55°C to 125°C. maximum -55 to 125° at WVdc.

Dissipation Factor:

Maximum DF; 25V - 3.5% Maximum DF; 50V - 2.5% Maximum DF; 100V - 2.5% Maximum DF; 250V - 2.5%

Insulation Resistance:

 $1000\Omega F$ or $100G\Omega,$ whichever is less @ rated voltage 25°C. At 125°C IR is 10% of 25°C value.

Dielectric Strength:

2.5 times rated voltage D.C. 1.5 times rated voltage for 500V devices.

Aging:

Maximum 2% per decade hour, for X7R.

Test Parameters:

1 kHz and 1 vms if capacitance \leq 10 μ F 120 Hz and 0.5 vms if capacitance > 10 μ F

Capacitance Tolerances Available:

J, K, M

X7R DIELECTRIC

S	Size		04	02				06	03					(080	5					1	120	6			
	d Voltage (VDC)	10V	16V	25V	50V	10V	16V	25V	50V	100V	200V	10V	16V	25V	50V	100V	200V	250V	10V	16V	25V	50V	100V	200V	250V	EIA Code
Ť	100pF				N				s	s	s				В	В	В	В								101
Ī	120pF				N				s	S	S				В	В	В	В								121
	150pF				N				s	s	s				В	В	В	В			В	В	В	В	В	151
	180pF				N				s	s	s				В	В	В	В			В	В	В	В	В	181
Ī	220pF				N				s	s	S				В	В	В	В			В	В	В	В	В	221
Ī	270pF				N				s	s	S				В	В	В	В			В	В	В	В	В	271
	330pF				N				s	S	S				В	В	В	В			В	В	В	В	В	331
Ī	390pF				N				s	S	S				В	В	В	В			В	В	В	В	В	391
	470pF				N				s	S	S				В	В	В	В			В	В	В	В	В	471
	560pF				N				s	S	S				В	В	В	В			В	В	В	В	В	561
	680pF				N				s	S	S				В	В	В	В			В	В	В	В	В	681
	820pF				N				s	S	S				В	В	В	В			В	В	В	В	В	821
	1000pF				N				s	S	S				В	В	В	В			В	В	В	В	В	102
	1200pF				N				S	S	S				В	В	В	В			В	В	В	В	В	122
	1500pF				N				S	S	S	L			В	В	В	В			В	В	В	В	В	152
	1800pF				N				S	S	S				В	В	В	В			В	В	В	В	В	182
ļ	2200pF				N				S	S	S				В	В	В	В			В	В	В	В	В	222
	2700pF				N				S	S	S				В	В	В	В			В	В	В	В	В	272
	3300pF				N				S	S	S				В	В	В	В			В	В	В	В	В	332
ļ	3900pF				N				S	S	S				В	В	В	В			В	В	В	В	В	392
	4700pF				N				S	S	S				В	В	В	В			В	В	В	В	В	472
-	5600pF			N					S	S	Х				В	В	D	D			В	В	В	В	В	562
-	6800pF			N					S	S	Х				В	В	D	D			В	В	В	В	В	682
Ø	8200pF			N					S	S	Х				В	В	D	D			В	В	В	В	В	822
Capacitance	0.010µF			N					S	S	Х				В	В	D	D			В	В	В	В	В	103
ta	0.012µF		N	N					S	Х	Х				В	В	D	D			В	В	В	В	В	123
<u>اي</u>	0.015µF		N	N					S	Х	Х				В	В	D	D			В	В	В	С	С	153
ğ	0.018µF		N	N					S	X	X				В	В	D	D			В	В	В	С	С	183
S	0.022µF		N						S	Х	Х				В	В	D	D			В	В	В	С	С	223
_	0.027µF	N							S						В	D	D	D			В –	В	В	С	С	273
-	0.033µF	N						S	X						В	D					В -	В	В	С	С	333
ŀ	0.039µF	N						S	X						В	D					В _	В	В	С	С	393
ŀ	0.047µF	N						S	X			-			В	D					В	В	В	С	С	473
ŀ	0.056µF	N						S	X						В	D					В	В	В	С	С	563
ŀ	0.068µF	N					_	S	X					-	В	D					В	В	В	С	С	683
	0.082µF	N					S	S	X			<u> </u>		В	В	D D					В	В	D	С	С	823
-	0.10µF	N			_			S	٨			\vdash		В	В	U					В	В	D		U	104
-	0.12μF 0.15μF					s	S	S				\vdash		B D	D D						В	В	D G			124 154
-	0.15µF 0.18µF					S	S	S				\vdash		D	U						С	С	G			184
-	0.16μF 0.22μF					S	S	3				-		D							С	С	G			224
-	0.22μF 0.27μF					X	X							D						С	D	D	G			274
-	0.27μF 0.33μF					X	X							D						С	D	D				334
	0.39µF					X	X					\vdash	D	D					С	J	P	P				394
	0.47μF					X	X					-	D	D					J	J	P	P				474
-	0.56μF											-	D	D					J	J	P	P				564
-	0.68µF											D	D	D					J	J	P	P				684
	0.82µF											D	D	D					J	J	P	P				824
	1.0μF											D	D						J	J	P	P				105
-	1.5µF											D								G						155
-	2.2µF											D								Р						225
-	3.3µF																									335
-	4.7µF											<u> </u>														475

;	Size		1	121	0			1	1808	8			1	181	2			2	222	0			2	222	5		
Rat	ed Voltage (VDC)	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	EIA Code
	100pF						D	D	D	D																	101
	120pF						D	D	D	D																	121
	150pF						D	D	D	D																	151
	180pF						D	D	D	D																	181
	220pF						D	D	D	D																	221
	270pF						D	D	D	D																	271
	330pF						D	D	D	D																	331
	390pF						D	D	D	D																	391
	470pF						D	D	D	D							D	D	D	D	D						471
	560pF						D	D	D	D		_					D	D	D	D	D	_					561
							D	D	D	D		_					D	D	D	D	D	_					681
	680pF																	_									
	820pF		_		_	0	D	D	D	D		_	_	_	_	_	D	D	D	D	D	-					821
	1000pF		С	С	С	С	D	D	D	D	_	<u> </u>	D	D	D	D	D	D	D	D	D	<u> </u>					102
	1200pF	-	С	С	С	С	D	D	D	D			D	D	D	D	D	D	D	D	D						122
	1500pF	-	С	С	С	С	D	D	D	D		_	D	D	D	D	D	D	D	D	D						152
	1800pF	<u> </u>	С	С	С	С	D	D	D	D			D	D	D	D	D	D	D	D	D						182
	2200pF		С	С	С	С	D	D	D	D			D	D	D	D	D	D	D	D	D						222
	2700pF		С	С	С	С	D	D	D	D			D	D	D	D	D	D	D	D	D						272
	3300pF	ļ	С	С	С	С	D	D	D	D			D	D	D	D	D	D	D	D	D						332
	3900pF		С	С	С	С	D	D	D	D			D	D	D	D	D	D	D	D	D						392
	4700pF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	472
	5600pF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	562
	6800pF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	682
0	8200pF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	822
2	0.010µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	103
apacitance	0.012µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	123
<u>=</u>	0.015µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	153
ğ	0.018µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	183
٩	0.022µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	223
ပ	0.027µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	273
	0.033µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	333
	0.039µF		С	С	С	С	D	D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	393
	0.047µF		С	С	D	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	D	473
	0.056µF		С	С	D	D	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	D	563
	0.068µF		С	С	G	G	D	D	D	D			D	D	D	D	D	D	D	D	D	D	D	D	D	D	683
	0.082µF		С	С	G	G	D	D	D				D	D	D	D	D	D	D	D	D	D	D	D	D	D	823
	0.10µF		С	С	G	G	D	D	D				D	D	D	D	D	D	D	D	D	D	D	D	D	D	104
	0.12μF		С	С	G	G	D	D					D	D	D	D	D	D	D	D	D	D	D	D	D	D	124
	0.15µF		С	D	М	М	D	D					D	D	K	к	D	D	D	D	D	D	D	D	D	D	154
	0.18µF		С	D	М	М							D	D	К	к	D	D	D	D	D	D	D	D	D	D	184
	0.22µF		С	D	М	М							D	D	K	K	D	D	D	D	D	D	D	D	D	D	224
	0.27µF		С	G									D	D	K	K	D	D	D	D	D	D	D	D	D	D	274
	0.33µF	С	D	G									D	D	K	K	D	D	D	D	D	D	D	D	D	D	334
	0.39µF	С	D	М									D	D	K	K	D	D	D	D	D	D	D	D	D	D	394
	0.47μF	С	D	М									D	K	K	K	D	D	D	D	D	D	D	D	D	D	474
	0.47μ1 0.56μF	D	D	M									D	K		-	D	D	D	D	D	D	D	D	D	D	564
	0.68μF	D	D									D	K	K			D	D	D	D	K	D	D	D	D		684
		D	D									В	K	K			D	D	D	K	K	В	D	D	D		824
	0.82μF	D	D									D		_			D	D	D	_		D	D	D	D		105
	1.0µF	L .	U									-	K	K			_	_		K	K	_			U		
	1.5µF											K	K	K			D	D	D			D	D	D	-		155
	2.2µF	-										K	K	K			D	D	D			D	D	D			225
	3.3µF											<u> </u>					D	D	D			D	D				335 475
	4.7µF																D	D	D			D	D				

X5R/Y5V DIELECTRIC MONOLITHIC CERAMIC CAPACITORS

APPLICATION

Hi-K Dielectric suited for applications where PCB real estate is at a premium and usage is at near room temperature with low DC bias.

Temperature Coefficient:

X5R +15% -15% Δ C, -55°C to 85°C Y5V +22% -82% Δ C, -30°C to 85°C

Dissipation Factor:

71011	101
Maximum DF;	Maximum DF;
6.3V~10V - 3.5%	6.3V~10V - 10%
16V~25V - 3.5%	16V~25V - 7%
50V - 2.5%	50V~100V - 5%

PERFORMANCE SPECIFICATIONS

Insulation Resistance:

100ΩF or 10GΩ, whichever is less @ Rated Voltage 25°C.

Dielectric Strength:

2.5 times rated voltage D.C.

Aging:

X5R Maximum 2.5% per decade hour. Y5V Maximum 7% per decade hour.

Test parameters:

(X5R) 1 kHz and 1 vms if capacitance ≤ 10μF 120 Hz and 0.5 vms if capacitance > 10μF (Y5V) 1 kHz and 1 vms if capacitance ≤ 10μF 120 Hz and 0.5 vms if capacitance > 10μF 1 kHz and 1 vms

Capacitance Tolerance Available:

M, Z

X5R/Y5V DIELECTRIC

											X	5R											
	Size	04	02			0603	3				080	5				1206	3			12	10		
Rat	ed Voltage (VDC)	6.3V	10V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	EIA Code
	0.010µF																						103
	0.015μF																						153
	0.022µF																						223
	0.033µF																						333
	0.047μF	N			s	s	s					D	D										473
	0.068µF																						683
ø	1.0µF	N			s	s	s		D	D	D	D		G			Р						105
Capacitance	1.5µF																						155
133	2.2µF			s	s	s	s			D	D	D		G		Р							225
pa	3.3µF													G									335
S	4.7µF			s					D	D	D			Р	Р	Р	Р						475
	6.8µF																						685
	10µF	N			s	s			D	D	D			Р	Р	Р	Р	Р	К				106
	15µF																						156
	22μF	N							D	D				Р	Р	Р				K	К		226
	47μF								D					Р	Р				К	К	К		476
	100μF													Р					К				107

											,	Y5V												
	Size			0402	2			06	03			08	05			12	06		12	10		1812	2	
Rat	ed Voltage (VDC)	6.3V	10V	16V	25V	50V	10V	16V	25V	50V	16V	25V	50V	100V	10V	25V	50V	100V	50V	100V	10V	50V	100V	EIA Code
	0.010µF					N				s			Α	В		В	В	В		С			D	103
	0.015µF					N				s			Α	В		В	В	В		С			D	153
	0.022µF					N				s			Α	В		В	В	В		С			D	223
	0.033µF					N				s			Α	В		В	В	В		С			D	333
	0.047µF				N					s			Α	В		В	В	В		С			D	473
	0.068µF			N	N					s			Α	В		В	В	В		С			D	683
ŏ	0.10µF		N	N	N					s			Α	В		В	В	В	С	С		D	D	104
and	0.15µF		N							s			Α	В		В	В	С	С	С		D	D	154
cit	0.22µF		N							s			Α	В		В	В	С	С	С		D	D	224
Capacitance	0.33µF	N	N						s				Α			В	В		С	С		D	D	334
ပီ	0.47µF	N	N						s				В			В	В		С			D	D	474
	0.68µF	N						s				В	В			В	В		С			D	D	684
	1.0µF	N					s	х			В	D				В	В		С			D	D	105
	3.3µF						s	х			В	D				С	С		С			D	D	335
	10µF																							106
	22µF														Р									226
	47µF																				К			476

SAFETY CERTIFIED CHIPS

The "S" Series X2/Y3 & X1/Y2 safety capacitors are designed for applications in; modem, facsimile, and various other electronic communication equipment. They are also well suited for use in lighting, surge protection, and EMI filter isolation circuits.

Features & Applications:

- · Small size & high cap values
- Surface mountable
- Safety standard approved by EN132400+A4:01 & UL60950
- RoHS Compliant
- Lead Free

Cap Value	-	08 / Y2	_	08 / Y3	18 X1	12 / Y2	18 X2	12 / Y3		08 / Y2	22 X1	11 / Y2	22 X1 /	_
	NPO	X7R	NPO	X7R	NPO	X7R	NPO	X7R	NPO	X7R	NPO	X7R	NPO	X7R
2R0pF	D		D		İ				D		D		D	
5R0pF	D		D						D		D		D	
6R8pF	D		D						D		D		D	
8R2pF	D		D						D		D		D	
100pF	D		D						D		D		D	
120pF	D		D						D		D		D	
150pF	D		D						D		D		D	
180pF	D		D						D		D		D	
220pF	D		D						D		D		D	
270pF	D		D						D		D		D	
330pF	D		D						D		D		D	
360pF	D		D						D	D	D		D	
390pF	D		D						D	D	D		D	
470pF	D		D						D	D	D		D	
560pF	D		D						D	D	D		D	
680pF	D		D						D	D	D	D	D	
820pF	D		D						D	D	D	D	D	
101pF	D		D						D	D	D	D	D	
121pF	D		D						D	D	D	D	D	
131pF	D		D						D	D	D	D	D	D
151pF	D	D	D	D		D			D	D	D	D	D	D
181pF		D	D	D		D			D	D	D	D	D	D
221pF		D	D	D		D			D	D	D	D	D	D
271pF		D	D	D		D			D	D	D	D	D	D
331pF		D	D	D		D			D	D	D	D	D	D
391pF		D	D	D		D				D	D	D	D	D
471pF		D	D	D		D				D	D	D	D	D
561pF		D	D	D		D				D	D	D	D	D
681pF		D	D	D		D				D	D	D	D	D
821pF		D	D	D		D				D		D	D	D
102pF		D	D	D		D		D		D		D	D	D
122pF		D		D				D		D		D	D	D
152pF				D				D		D		D	D	D
182pF				D				D		D		D		D
222pF								D		D		D		D
272pF								D						D
332pF														D
472pF														D

HIGH VOLTAGE CHIP CAPACITORS 500VDC TO 5000VDC

UTC offers a wide variety of sizes, voltages, and capacitance values in our series of High Voltage Ceramic Chips.

Features & Applications:

- Specialized internal electrode designs offer an enhanced product performance.
- Ideally, suited for telecommunication devices in LAN interface (IEEE 802.3) products.
- Performs well as a ballast capacitor for backlighting inverter applications.
- UTC also supports many applications for both custom sizes and voltages beyond those listed.
- RoHS Compliant
- Lead Free

HOW TO OR	DER						
C	T	1812	X7R	102	K	W	T
	\perp				\perp	\perp	\perp
UTC P/N STYLE	VOLTAGE	BODY SIZE	TEMPERATURE COEFFICIENT	CAPACITANCE CODE	TOLERANCE	TERMINATION	PACKAGE STYLE
C = MLCC CHIP	S = 500V K = 600V K = 630V T = 1,000V W = 2,000V X = 3,000V Y = 4,000V Z = 5,000V	1206 1210 1808 1812 1825 2220 2225 3530 4040 5550	NPO X7R	2 significant digits are used plus the third character then represents the number of zeros to follow	J = 5% K = 10% M = 20%	W = 100% tin termination & RoHS - Lead Free compliant product B = Soft Termination [consult factory]	T = Tape & Reel

Dimension

Si	ze	1206	1210	1808	1812	1825	2220	2225	3530	4040	5550
Min	Сар	10pF	10pF	10pF	10pF	47pF	47pF	47pF	47pF	47pF	100pF
500V	NPO	1500pF	1800pF	3300pF	.01µF	.022µF	.022µF	.027µF	.068µF	.1µF	.18µF
5000	X7R	.039µF	.047µF	.047µF	.1µF	.33µF	.27μF	.33µF	1.0μF	1.8µF	2.2μF
1000V	NPO	1000pF	2200pF	2200pF	4700pF	.01µF	.01µF	.015µF	.027µF	.056µF	.1µF
10000	X7R	4700pF	.033µF	.01µF	.027µF	.1µF	.1µF	.1µF	.33µF	.56µF	1.0μF
2000V	NPO	220pF	560pF	330pF	1800pF	2700pF	2700pF	3900pF	.015µF	.027µF	.047µF
2000	X7R	1000pF	1800pF	2200pF	4700pF	.012µF	.01µF	.015µF	.068µF	.15µF	.27μF
3000V	NPO	39pF	220pF	1000pF	820pF	1200pF	1200pF	1800pF	.01μF	.018µF	.033µF
3000	X7R			1800pF	1500pF	4700pF	4700pF	5600pF	.027µF	.068µF	.12µF
4000V	NPO			220pF	470pF	680pF	680pF	1000pF	5600pF	.012µF	.018µF
4000	X7R			330pF	680pF	1500pF	1500pF	1500pF	.015µF	.022µF	.047µF
5000V	NPO					390pF	151pF	560pF	3300pF	6800pF	.012μF
5000 V	X7R					820pF	820pF	1000pF	.01μF	.012µF	.033µF

^{*} TOLERANCE +-.010 or 7% WHICHEVER IS GREATER.

SPECIFICATIONS & RELIABILITY TESTS

Item	Test Condition			Requirements					
Visual and Mechanical				No remarkable defect. Dimensions to confirm to individual specification sheet.					
Capacitance	Class I: NPO Cap≤100pF 1.0±0.2Vrms, 1MHz±10% Cap>100pF 1.0±0.2Vrms, 1KHz±10% Class II: X7R, X5R, Y5R Cap≤10µF, 1.0±0.2Vrms, 1KHz±10% Cap>10µF, 0.5±0.2Vrms, 120Hz±20%			Shall not exceed the limits given in the detailed spec.					
Q/ D.F. (Dissipation Factor)				NPO : Cap≥30pF, Q≥1000; Cap<30pF, Q≥400+20C x7R, X5R :					
				Rated Voltage D.F.≤			Exception of D.F.≤		
				≥50V 25V	5.0% 3.5%	5.0% 7.0%	 0805≥1μF, 1210≥10μF 0603≥0.33μF; TT series & Cap≥1μF		
				16V	3.5%	5.0%	0402≥0.033µF; 0603≥0.15µF; 0805≥0.68µF; 1206≥2.2µF		
				10V	5.0%	10.0%			
				6.3V	10.0%	15.0%	0805≥22μF; 1210≥100μF		
		Y5V:	Y5V:						
				Rated Voltag			tion of D.F. <u><</u>		
				≥50V 35V	5.0% 7.0%				
				350	7.0%	+	0603≥0.1µF; 0805≥µF;		
				25V	5.0%	7.0%	1206≥1µF; 1210≥4.7µF		
						9.0%	0402 <u>></u> 0.068μF		
				16V (C<1.0µl		9.0%	0402≥0.068µF; 0603≥0.68µF		
				16V (C≤1.0µI	F) 9.0% 12.5%	12.5%	0805≥4.7μF; 1206≥10μF; 1210≥22μF		
					20.0%				
Dielectric Strength	To apply voltage: (≤50V) 250%. Duration: 1 to 5 sec. Charge & discharge current less than 50mA. To apply voltage:		- No evidence	e or damaç	ge or nas	h over during test.			
	100V ≥3 times V DC 200V ~ 300V ≥2 times V DC 500V ~ 999V ≥1.5 times V DC 1000V ~ 5000V ≥1.2 times V DC • Cut-off, set at 10mA • TEST= 15 sec. • RAMP= 0								
Dielectric Strength (for X1/Y2 & X2/Y3)	To apply 1500 VAC voltage. Duration: 60 sec.			No evidence of damage or flash over during test.					
Insulation Resistance	To apply rated voltage for max. 120 sec.			>10GΩ or RxC>500 Ω-F whichever is smaller.					
msulation Resistance	Rated Voltage: 100 ~ 500V To apply rated voltage for 60 sec.			≥10GΩ					
	Rated Voltage: To apply 500V for 60 sec.			≥10GΩ					
Temperature Coefficient	With no electrical T.C. NPO (COG) NPO (COJ) X7R X5R Y5V	load.	Operating Temp -55~125°C at 25°C -55~125°C at 25°C -55~125°C at 25°C -55~85°C at 25°C -55~85°C at 20°C	T.C. NPO (COG) NPO (COJ) X7R X5R Y5V		With With With With	acitance Change nin ± 30ppm/°C nin ± 120ppm/°C nin ± 15% nin ± 15% nin ± 15%		
Adhesive Strength of Termination	• Pressurizing for 0402 & 0603: 5N > 0603: 10N • Test time: 10±1	No remarkable damage or removal of the terminations.							
Vibration Resistance	Vibration frequency: 10~55 Hz/min. Total amplitude: 1.5mm Test time: 6 hrs. (Two hrs each in three mutually perpendicular directions.)			No remarkable damage. Cap change and Q/D.F.: To meet initial spec.					

SPECIFICATIONS & RELIABILITY TESTS

Item	Test Condition	Requirements				
Solderability	Solder temperature: 235±5°C Dipping time: 2±0.5 sec.	95% min. coverage of all metalized area.				
Bending Test	The middle part of substrate shall be pressurized by means of the presurrizing rod at a rate of about 1 mm per second until the deflection becomes 1 mm and then the pressure shall be maintained for 5±1 sec. Measurement to be made after keeping at room temp. for 24±2 hrs.	No remarkable damage. Cap change: NPO: within ±5.0% or ±0.5pF whichever is larger. X7R, X5R: within ±12.5% Y5V: within ±30% (The capacitance change is measured under specified flexture of the substrate, versus the capacitance measured before the test).				
Resistance to Soldering Heat	Solder temperature: 270±5°C Dipping time: 10±1 sec. Preheating: 120 to 150°C for 1 minute before immerse the capacitor in a eutectic solder. Before intial measurement (Class II only): Perform 150+0/-10°C for 1 hr and then set for 48±4 hrs at room temp. Measurement to be made after keeping at room temp. for 24±2 hrs. (Class I) or 48±4 hrs. (Class II).	No remarkable damage. Cap change: NPO: within ±2.5% or ±0.25pF whichever is larger. X7R, X5R: within ±7.5% Y5V: within ±20% Q/D.F., I.R. and dielectric strength: To meet initial requirements.				
Temperature Cycle	Conduct the five cycles according to the temperatures and time. Step Temp. (°C) Time (min.) 1 Min. operating temp. +0/-3 30±3 2 Room temo. 2-3 3 Max. operating temp. +3/-0 30±3 4 Room temp. 2-3 • Before initial measurement (Class II only): Perform 150+0/-10°C for 1 hr and then set for 48±4 hrs at room temp. • Measurement to be made after keeping at room temp. for 24±2 hrs. (Class I) or 48±4 hrs. (Class II).	No remarkable damage. Cap change: NPO: within ±2.5% or ±0.25pF whichever is larger. X7R, X5R: within ±7.5% Y5V: within ±20% Q/D.F., I.R. and dielectric strength: To meet initial requirements.				
Humidity (Steady State)	• Test temp.: 40±2°C • Humidity: 90~95% RH • Test time: 500+24/-0 hrs. • Measurement to be made after keeping at room temp. for 24±2 hrs. (Class I) or 48±4 hrs. (Class II).	• No remarkable damage. • Cap change: NPO: within ±5.0% or ±0.5pF whichever is larger. X7R, X5R: ≥10V, within ±12.5% 6.3V, within ±25% Y5V: within ±30% • Q/D.F. Value: NPO: Cap≥30pF, Q≥350; 10pF≤Cap<30pF, Q≥275±2.5C. Cap<10pF; Q≥200+10C X7R, X5R: Rated Voltage D.F.≤ Exception of D.F.≤ ≥50V 3.0% 6.0% 0603≥0.047μF: 0805≥0.18μF; 1206≥0.047μF 25V 5.0% 10.0% 0805≥1μF, 1210≥10μF 14.0% 0603≥0.33μF 16V 5.0% 10.0% 0805≥1μF, 1210≥10μF 14.0% 0603≥0.68μF; 1206≥2.2μF 10V 7.5% 15.0% 0402≥0.033μF; 0603≥0.15μF; 0805≥0.68μF; 1206≥2.2μF TT Series & Cap≥1μF 6.3V 15.0% 30.0% 0805≥10μF; 1210≥100μF Y5V: Rated Voltage D.F.≤ Exception of D.F.≤ ≥50V 7.5% 35V 10.0% 25V 7.5% ≤10.0% 0805≥0.1μF; 0805≥0.33μF; 1206≥1μF; 1210≥4.7μF ≤12.5% 0402≥0.068μF 16V (C<1.0μF) 10.0% ≤12.5% 0402≥0.068μF; 0603≥0.68μF 16V (C≤1.0μF) 12.5% 10V 15.0% 10V 15.0% 15.0% 16.3V 30.0% 15.0% 30.0%				
	Test time: 500+24/-0 hrs. Measurement to be made after keeping at room	NPO: within ±5.0% or ±0.5pF whichever is larger. X7R, X5R: ≥10V, within ±12.5% 6.3V, within ±25% Y5V: within ±30% QJD.F. Value: NPO: Cap≥30pF, Q≥350; 10pF≤Cap<30pF, Q≥275±2.5C.				

RECOMMENDED SOLDERING PROFILE

SOLDERING-ROHS/PB FREE COMPONENTS

The UTC RoHS compliant ceramic chips incorporate termination bands which are compatible with Pb Free soldering systems.

PREHEAT CYCLE

The preheat cycle is performed to gradually increase the component to the higher reflow or wave solder temperature by minimizing the temperature differential the component is being exposed to prior to the reflow cycle beginning.

A higher preheat cycle temperature with wave soldering can help to reduce thermal shock issues and can further help if they are preheated from the bottom side of the board.

REFLOW SOLDER PROFILE

The recommended heating rate will depend on the body size of each component; however it should not exceed 3°C / second. While in the reflow phase the maximum recommended time should not exceed; 40 second time rates @ 230°C. Lastly, the reflow peak temperature should also not exceed 260° maximum / 10 seconds. Please refer to the reflow solder chart for assistance.

WAVE SOLDER PROFILE

Most components that are wave soldered use a solder at 230°C up to 250°C

Please refer to the charts for guidelines.

COOL DOWN CYCLE

Natural cooling in ambient air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference between the solvent and the chips must be less than 100° C. This phase should not be forced, and we recommend a rate $\leq 6^{\circ}$ C / second.

UTC

MILITARY & CUSTOM PRODUCTS

SMPS (Switch Mode Power Supply) Capacitors

Manufactured in accordance with military series DSCC Drawing 87106, 88011, and MIL-PRF-49470 • Standard capacitance range of .056uF to 270uF • Voltages of 50VDC to 500VDC • Case sizes 1, 2, 3, 4, 5, and 6 with lead styles N, J, and L

High Voltage Radial Capacitors

Manufactured in accordance with military series DSCC Drawings 87046, 87043, 87040, 87114, 87047, 87076, 87044, 87077, 87070 and 87081 • Standard capacitance range of 10pF-0.47uF • Voltages of 1KV to 10KV

Feed-through Discoidal Capacitors

Manufactured in Outside Diameter (OD) sizes of .070" to .600" • Voltages of 50VDC to 3KV • Please contact factory for other variations, which include size, voltage, termination, dielectric, or special configuration

Planar Capacitor Array

Manufactured in accordance with MIL-STD-1554, MIL-STD-1560A, MIL-STD-1669 • Style SUB-D, Microstyle SUB-D in accordance with MIL-C-24308

For more information on these products, contact the factory or visit the UTC website at: http://www.uniontechcorp.com

Ordering Terminology

Product Family	Voltage		erature eteristic	Tolerance	Testing Level	Termination
P = SMPS Capacitors H = High Voltage Radial Capacitors D = Discoidal A = Planar Array	G = 50V B = 100V R = 200V S = 500V T = 1000V W = 2000V X = 3000V Y = 4000V Z = 5000V	BX BR BG BP	X7R X7R X7R X7R NPO (COG)	J = ±5 % K = ±10% M = ±20% V = GMV Z = +80/-20%	A = Electrical Screening Only B = MIL-PRF-39014 Group A C = MIL-PRF-39014 Group B	P = Platinum Silver

MILITARY & CUSTOM PRODUCTS

718 MONTEREY PASS RD., MONTEREY PARK, CA 91754
TEL: (323) 266-6603 FAX: (323) 266-7890
Email: info@uniontechcorp.com
http://www.uniontechcorp.com