Circularly Polarized Microstrip Antenna for Cordless Phones

By: Rachael Moore, Maria-Carmen Parejo-Mir, Kelly Stephenson Advising Professor: Alex Balandin, PhD.

Date: June 06,2002

HISTORY OF PROBLEM

- Cordless phones require two frequencies to operate
- Bandwidth is becoming increasingly expensive
- Eliminate bandwidth = decrease cost

PROJECT

Create a microstrip antenna that can be used to minimize bandwidth usage of cordless phones through the use of orthogonal <u>polarizations</u>.

Specifications:

- Frequency made for phones
 * 900 MHz
- Bandwidth made for voices
 * 30 KHz
- Must fit on phone
 * 2" x 6" x .132"
- Must be affordable
- Polarizationally Pure

POSSIBLE SOLUTIONS

- Antenna Type:
 * Cost, ease of
 - fabrication
- Patch shape:
 * Apply gip apply
 - * Analysis ease
- Substrate Choice
 * Polarization purity
- Feed Type:
 - * Size, ease of fabrication

THE SOLUTION

- Antenna Type:
 * Microstrip
- Patch Shape:
 * Square
- Substrate Choice:
 * RO3010
- Feed Type:
 - * Microstrip Line
 - * Dual Orthogonal Feed Scheme

HARDWARE DESIGN

FINAL DESIGN

BUDGETS AND MATERIAL

Materials	Cost of Test
Substrate Boards	\$0
Quadrature Hybrid	\$0
Administrative	\$3.60
Resistors	\$0.02
On-On Switch	\$3.00
BNC Connector	\$3.00
Frame	\$3.99
U-Bolts	\$4.00
Sum	\$17.61

TESTING

RESULTS

Radiation Pattern of Right Handed Circularly Polarized Antenna

RESULTS

Radiation Pattern of Left Handed Circularly Polarized Antenna

DISCUSSION OF RESULTS

Axial ratios of right and left handed circular polarizations

NUMERICAL RESULTS

			1/2 Power Beamwidth	Directivty	Axial Ratio Range
			(degrees)		(dB)
		Horizontal	101.25		
	R-Handed	Vertical	123.75	2.59	0-4
		Horizontal	112.5		
Test 1	L-Handed	Vertical	101.25	2.84	0-7
		Horizontal	123.75		
	R-Handed	Vertical	101.25	2.59	1-19
		Horizontal	213.75		
Test 2	L-Handed	Vertical	78.75	1.92	0-11
		Horizontal	78.75		
	R-Handed	Vertical	112.5	3.66	0-8
		Horizontal	123.75		
Test 3	L-Handed	Vertical	123.75	2.12	0-9

AREAS OF IMPROVEMENT

- Addition of insets around feed lines
 * Improve impedance matching
- Rotate antenna around axis horizontal to ground
 * Get better picture of axial ratio
- Try new test location
 * Eliminate error
- Use transmitter with circular polarization
 - * Test receiving circular polarization
- Bandwidth measurements

CONCLUSION

In conclusion, most of our specifications were met

- The prototype was tested at 450 MHz
 - * Could easily be scaled to 900 MHz and up
- Would fit on phone after frequency scaling
- Affordable
- Polarizationally pure
 - * Changes with angle, but for the most part relatively pure

QUESTIONS???

WHAT IS POLARIZATION?

- The tip of the *electric field* at a given point in time.
 - * Ey Versus Ex at any given point when Ez is held constant
- $Ex^2 + Ey^2 = E^2$
- If the tip of the electric field traces a circle the wave is said to be *circularly polarized*.
 - * Happens when Ey and Ex have equal magnitude
- Back

WHAT IS AXIAL RATIO?

- Axial Ratio describes polarization purity •
- $AR = V_{major axis} / V_{minor axis}$ •
- AR(dB) = difference in radiation patterns ۲
- Back

b) axial ratio > 0 dB c) axial ratio \neq measured ratio