

BSD or Linux: Which Unix is best
for embedded applications?
A Wasabi Systems White Paper

Contents:

I. Introduction
II. Commercial Features: The GPL License
 1. The GPL License
 2. The BSD License
 3. Consequences in the Embedded Market
III. Technical Features
 1. Portability/ Hardware Abstraction
 2. Kernel Design and Development Tools
 3. OS Development Models
 4. Maturity of Code Base
 5. Memory Management System
 6. Threading and Scheduling
 7. Application Support
IV. Conclusion

I. Introduction

 With Linux’s breakthrough into the server and desktop markets, the OS has
emerged as an option for embedded OEMs as well. Several vendors have created
their own distributions of Linux intended for the embedded market, and while these
have met with only limited success, OEMs are right to look at Unix-like operating
systems for their advanced embedded needs. However, as this white paper will
discuss, there are several features which make Linux a less than optimal Unix choice
for embedded applications.

 These features are divided into two general categories: commercial/legal, and
technical. On the commercial side, Linux is severely hampered by its license, which
requires that all modifications to the Linux kernel (and several other modules of the
OS as well) be made open source. While this licensing feature is not important in the
desktop or server space, where kernel modifications are rare, it is critical in the
embedded space, where modifications to the kernel are part and parcel of OEM’s OS
investment.

 On the technical side, Linux is constrained by its less than robust
development tools on the one hand, and its lack of an adequate hardware
abstraction layer on the other.

 Were Linux the sole Unix-derived OS choice, OEMs might still be justified in
selecting it over the increasingly obsolete VxWorks operating system, or the
unwieldy Windows offerings. However, concurrent with the expansion of FreeBSD in
the server space (the OS was recently chosen by Yahoo! for its Hotjobs site), the

 1

 2

NetBSD operating system has expanded its penetration in the embedded space.
NetBSD lacks the user application support of FreeBSD and Linux, so it has not made
much of an impact in server or desktop applications. However, such support is not
necessary in most embedded applications, and NetBSD offers all of Linux’s Unix
functionality with none of its licensing or portability encumbrances. Because NetBSD
is unlikely to be as widely branded in the consumer space, embedded OEMs may not
know of it as familiarly as Linux. However, NetBSD is commercially supported in the
embedded market, and may be a more desirable Unix choice for embedded.

II. Commercial Features: The GPL License

The GPL

 The GNU General Public License was created by the Free Software Foundation
(FSF), the organization headed by Richard Stallman and devoted to the principle that
software ought to be freely available.1 The GPL was, from its inception, intended to
be a “copyleft” license: while it allows users to copy, modify, and distribute code it
governs, the GPL requires that any derivative work be licensed under the same
terms. In other words, any distributed modifications to GPL’d code must themselves
be governed by the GPL. This “viral” property of the GPL makes it an exceptionally
‘sticky’ license – whole libraries of software can become ‘contaminated’ by the GPL,
and proprietary code must be kept entirely separate from GPL’d code in order for it
to remain proprietary.

 The GPL has achieved what it set out to achieve: it is virtually impossible to
make money selling Linux, since any Linux distribution that is sold must also be
made open source, enabling users and competitors to obtain it for free. Moreover,
since the GPL specifically refers to “work based on the [governed] Program,”2 even
new software models – device drivers, some applications, etc. – are automatically
covered by the GPL. While the exact scope of the GPL remains uncertain, most
experts believe that this provision is much wider than U.S. Copyright law’s usual
definition of “derivative works,” extending to code that merely interacts or links with
GPL’d code.3 As a consequence, a series of increasingly baroque work-arounds have
been developed to circumvent these provisions, though none have been tested in
court. Moreover, the FSF has stated that it believes they are all invalid,4 and is
aggressively seeking to end some of them (such as the “lighter” external-libraries-
only version of the GPL, the LGPL).

The BSD License

1 While Linux takes its name from Linus Torvalds, Stallman is at least as responsible for the
OS’s code. Glyn Moody, Rebel Code: Inside Linux and the Open Source Revolution 93 (2001).

2 Free Software Foundation, GNU General Public License,
http://www.gnu.org/copyleft/gpl.html (emphasis added).

3 Open Software Licenses: Part 2, 5.10 Intellectual Prop. Strategist (July 1999).

4 Emails by FSF members to Matt Asay, cited in Matt Asay, A Funny Thing Happened on the
Way to the Market: Linux, the General Public License, and a New Model for Software
Innovation (April 2002) (on file with author).

 3

 In contrast to the GPL, the BSD License – which governs all the members of
the open-source BSD operating system family – places no restrictions on derivative
works whatsoever. There is no requirement that modified BSD code be made open
source. If a user wishes, she may modify BSD code, keep the entire resulting
product proprietary, and attempt to charge licensing fees for its use.

 While critics have predicted code fragmentation as a result of the BSD license,
it has not come to pass. The four open source BSD projects frequently share code,
and instead of fragmentation, there has been increased specialization as the projects
focus in different areas of interest.5 Wind River Systems does offer a proprietary
version of BSD, BSD/OS (now in version 4.3), but since the open source
communities have more developers than one company, there has not yet been an
instance of significant innovation not being shared or duplicated across the open
source world. More importantly, the BSD license has allowed projects such as
Apache and X11 – as well as Wind River and embedded OEMs -- to modify BSD code
and keep the results proprietary, or make them open source, as their business
judgment dictates.

Consequences in the Embedded Market

 As Linux has begun to threaten Microsoft in the desktop and server space, the
software behemoth has spilled much ink decrying the GPL as antithetical to
intellectual property, software development, and even American capitalism. This
FUD (Fear, Uncertainty, and Doubt) is unfounded. A company running Linux on its
servers may still keep proprietary data on those servers. Software companies may
write proprietary applications to work atop Linux. And for desktop users, Linux’s
UNIX-level reliability may hold significant advantages over Microsoft’s notoriously
crash-prone products. While there may be isolated instances in which GPL’d code
must be modified, most ordinary desktop and server users do not modify their OS
code.

 In the embedded space, however, the GPL matters considerably.
Modifications to the kernel are central to many embedded OEM’s software
development cycle. Porting the kernel to new architectures, device driver
development and maintenance, and similar operations are essential tasks in
customizing an operating system to work on new or unique hardware. All such
software is required by the terms of the GPL to be made open source. Consequently,
the GPL may:

 1. Cause considerable IP investment to be rendered totally valueless, as

software paid for by a customer must be shared with competitors. (Example:
A new device driver, which may cost several months and hundreds of
thousands of dollars to create, must instantly be shared with competitors as
soon as it is distributed.)

 2. Expose OEM hardware configuration to competitors, as hardware

configuration may easily be ‘reverse engineered’ from the relevant software
code.

5 Historically, FreeBSD has focused on application support, and is widely used in server
applications; NetBSD has focused on wide platform support, and is widely used in embedded;
and OpenBSD has focused on security.

 4

 3. Create unbounded uncertainty surrounding the legality of application-

layer software. With no judicially established limits on the time or scope of
the GPL, and with ideologically-motivated free software “zealots” patrolling
infringements, companies can never be sure whether their created software is
legally theirs.

 None of these consequences apply when, as in ordinary desktop or server
use, the GPL’d code of Linux and its associated modules is not altered. But in the
embedded space, where such alterations are the ‘bread and butter’ of ordinary
business, all three pose significant business risks for potential users.

 In sum, the effect of the GPL depends on its application. As a way of
capturing and preserving the innovations of hundreds of Linux developers around the
world, it has been a success. To desktop and server users of Linux, it is largely
irrelevant. For commercial embedded companies, as for any other firms in which
kernel modification and driver modifications are important, the GPL can be
catastrophic. Of uncertain scope and deliberately-intended durability, the GPL makes
it virtually impossible to safely modify Linux for an embedded use and preserve the
privacy of such modifications. Particularly with BSD-licensed operating systems
commercially supported in the embedded market, embedded OEMs and software
companies should proceed with caution.

III. Technical Features

 Although the GPL is the clearest single differentiator between Linux and the
BSD operating systems, there are several technical features which separate them as
well. Because only NetBSD runs on the wide variety of hardware architectures
generally required in the embedded space, this section will focus on NetBSD
exclusively, though certain points may be applicable to FreeBSD as well.

 1. Portability/Hardware Abstraction Layer

 NetBSD has had maximum portability as its chief design focus for the last
seven years of its open source development. Where FreeBSD has focused on
application support, and OpenBSD on security, NetBSD’s most distinctive feature is
its wide platform support: as of the date of this writing, it runs on a technology-
leading fifty one different hardware architectures.

 NetBSD’s fast portability is due to its unique Modular Portability Layer (MPL).
With the MPL, the driver is completely isolated from the hardware platform, I/O
instructions or no I/O instructions, interlocking, retry error recovery, bounce buffers,
memory type boundaries, scatter/gather maps in host bridges, even peripherals
which use pseudo-dma to write a buffer RAM with host CPU copyin and copyout all --
are transparently handled beneath the driver layer. Moreover, several embedded
systems using NetBSD have required no additional software development other than
toolchain and target rehost.

 With Linux, however, device driver code must be reworked for every new
architecture. As a consequence, in recent porting efforts by NetBSD and Linux
developers, NetBSD has taken as little as 10% of the time to port to new hardware.
Engineers ported NetBSD to the SuperH processor core in under six weeks; Linux

 5

took three months. NetBSD was ported to the AMD x86-64 in about a month; Linux
took six months. As a result, NetBSD supports fifty one supported architectures
from the same source tree.

 2. Kernel Design/ Development Tools

 a. NetBSD’s built-in kernel debugger allows comprehensive low-
level debugging in real time on the target itself, as well as remotely from a
workstation. Linux kernel debugging is only available through third party JTAG tools.

 b. The NetBSD kernel provides modular framework for code
changes, which facilitates faster, cleaner changes to kernel code than Linux, which
does not offer a modular framework for code changes.

 c. NetBSD allows for kernel core dumps, which provide a full
image of system memory written to disk in the case of a kernel failure. The disk, in
turn, can be examined by standard process and kernel manipulation tools. Linux
does not offer full kernel core dumps.

 d. NetBSD’s auto-configuration framework facilitates system and
device configuration by simplifying kernel configuration. Under Linux, many devices
require explicit hardware information before they can be used.

 e. NetBSD’s cross-building system (build.sh) allows users to easily
target different hardware architectures from a single build machine which need not
itself run NetBSD. Linux’s cross-development capabilities are more limited; although
proprietary embedded Linux companies offer cross-development tools (at significant
cost), without such tools cross-building is a complex manual process. (For an
example of such a process, see http://www.ltc.com/~brad/mips/mips-cross-
toolchain.html.)

 3. OS Development Models

 NetBSD and Linux are developed according to very different models. NetBSD
is developed in a unified way, with the Core Team of the NetBSD Project overseeing
additions and modifications to the NetBSD source tree. Adhering to the principle that
first is not always best, the NetBSD Core Team tightly controls access to the source
tree, and frequently rejects early code contributions in order to wait for better ones.
This gatekeeping role is particularly important because NetBSD maintains a unified
source tree for all architectures – allowing simultaneous builds on each release --
ensuring high code quality and the most consistent possible environment across
platforms.

 Linux is, by design, a more ‘anarchic’ development community. There is no
single Linux distribution, but rather, as is well known, a multiplicity of distributions
with different featuresets. While the market has coalesced around a select few
distributions (RedHat, SuSE, SCO) and developers around a few additional ones
(Slackware, Debian), code still diverges among the different distributions. Moreover,
since there is no unified source tree for all architectures, Linux for the i386 may be
very different from Linux for the x86-64. Each release is built, tested, and
distributed separately.

 6

 Both communities, naturally, defend their development models. The NetBSD
community points to several inferior modules being integrated into Linux (or certain
distributions of Linux) simply because they were developed faster than superior
pieces of code. For example, Linux had at least two completely independent USB
stacks before Linus Torvalds rejected them both and wrote a third one from scratch,
after he found both existent Linux stacks unsatisfactory. (When pressed for an
explanation as to why he selected the API he did, Torvalds stated: "because I wanted
to.”) The NetBSD community also claims that the multiplicity of Linux distributions is
both confusing and dangerous, because improvements to one distribution may or
may not be present in other distributions. Linux developers counter that the
multiplicity of distributions makes a wider variety of features available to users, and
that there is no single standard of ‘best’ such as that which the guardians of the
NetBSD source tree pretend to impose. Leaders of the Linux community have,
further, been able to centralize development around a cadre of their own friends and
associates, replicating to some degree the function of NetBSD Core.

 The Linux community is almost certainly correct when it comes to popular and
widely-supported architectures. There is sufficient intellectual capital in the Linux
community to support multiple Linux distributions for i386 and similar platforms, and
the market is large enough to ensure code quality. Where Linux falters, however, is
in more specialized platforms without such wide market support. For these platforms
– whether produced by SuperH, or MIPS licensees, or other vendors – the lack of a
single source tree across all architectures, and of unified development, can be
critically fatal, because users may be forced to do much of the debugging and other
development themselves (or pay consultants to do it for them). For embedded
applications requiring or preferring unusual hardware configurations, NetBSD is likely
preferable

Finally, the NetBSD development model can often yield better code quality.
For example, NetBSD has full integration of kernel and user space code in the source
tree. This ensures code changes are debugged in the context of the entire system.
With Linux, kernel and user-space code are not tested together until integrated by
the distributor. In addition, in NetBSD, regression test-suites are integrated in
source tree, which helps isolate unexpected effects when introducing changes. With
Linux, no single testing standard exists, so QA depends on the distributor.

 4. Maturity of Code Base

 NetBSD is the result of twenty five years of open source development. As a
consequence, it has a highly mature code base. For example, its networking code
ensures better performance and insurance against denial-of-service attacks than
Linux’s. Linux’s TCP/IP suite, while well regarded, is simply less of a known quantity
than NetBSD’s, which is the reference implementation for Unix. As another example,
NetBSD had integrated IPv6 long before Linux. Bugs have had longer to appear, and
have been removed for a longer period of time. Although in many applications
newer equals better, when dealing with OS code, the more mature a code base is,
the more stable and predictable it is likely to be.

 5. Memory Management System

The Linux memory management system is designed around the three-level
MMU available on Intel x86 processors. For these and similar processors, this works
extremely well. However, systems with other MMU designs are forced to suffer the

 7

complexity and performance impact of making the underlying hardware appear to
function like a three level MMU system. In many cases this requires code to perform
specific low level hardware access (for example to flush TLBs) to be scattered
throughout the kernel. NetBSD, by comparison, has a cleanly designed pmap
abstraction that provides a well-defined interface for the high level routines to
perform virtual memory related operations. Each processor's low-level pmap code
can then implement the data instructions and algorithms best suited to its MMU.

6. Threading and Scheduling

 NetBSD’s threading structure optimizes the handling of threads in the kernel,
providing performance improvement under thread-intensive conditions. Under Linux,
every thread is a high-overhead process, severely impacting performace.

In addition, NetBSD’s scheduling algorithms provide prioritized, fast handling
of multiple tasks, reducing latency. Linux’s scheduling, based on time slices, does
not provide equal performance.

 7. Application Support

 With a high installed user base, Linux offers better application support than
NetBSD, though not necessarily FreeBSD or Mac OS X. Most embedded devices do
not require a high level of application support, however, so this feature is likely to be
less important than development and performance features. Moreover, since
NetBSD offers runtime compatibility for binaries compiled for other systems, it allows
use of legacy code from Linux, FreeBSD, BSD/OS, Solaris, HP-UX, Digital Unix, SCO,
IRIX, and other systems. Linux, in contrast, offers such compatibility for only a
small subset of foreign OS binaries.

 NetBSD’s POSIX-compliant APIs maintain conformity to reference standards,
maximizing application portability. Linux is known to have non-conforming APIs and
often use platform-specific extensions.

 Thus, while application support is likely to be of only peripheral importance to
embedded users, even in this area the choice between NetBSD and Linux may be a
trade-off depending on the precise functionality required.

IV. Conclusion

 There is no one optimal Unix OS choice for all applications. In server and
desktop applications, most of the features discussed in this white paper are of only
moderate importance, whereas commercial support may be paramount. And while
BSD vendors such as Wasabi Systems and Wind River Systems offer a wide range of
BSD support (Wind River of BSD/OS and Wasabi of NetBSD), these offerings are
primarily targeted at the embedded market. With its plethora of support vendors
and application developers, Linux may thus be the better choice for such
applications.

 In embedded, however, the selection factors are different. The uncertainty of
the GPL is a risk factor that must be taken into account by any embedded OEM
considering Linux, and while the few remaining embedded Linux companies offer
various ways to work around the GPL, none have been tested, and their mere
existence testifies to the risks posed by the licensing structure. The GPL alone

 8

makes the selection of embedded Linux a questionable choice from a legal and
commercial perspective. Were Linux the only Unix available for embedded
applications, it might be worth the trade-off. However, given that NetBSD may
actually provide better performance – and certainly can more quickly operate on
more hardware platforms – there is no need to take such a gamble. NetBSD offers
superior Unix functionality on a wider range of platforms than Linux, and yet without
any licensing encumbrances. It thus can represent the best of both worlds for
embedded OEMs.

Jay Michaelson
David Brownlee

(c) 2003 Wasabi Systems Inc. All rights reserved. This paper may not be sold or distributed
without the permission of Wasabi Systems Inc. (www.wasabisystems.com). Citations and
quotations from this document must include the copyright notice.

