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Abstract— Litz-wire windings for gapped inductors are optimized for ~ CcOSt is essential to selecting a good design, the analysis in [19]
minimum cost within a loss constraint or vice-versa. Optimal winding has peen applied to gapped inductors despite m'm-acy

shapes and the strand diameter and number for each shape are found . that h 1211, In thi h h t
through simultaneous consideration of two-dimensional field effects and In that approac [ ] n this paper, we show how to accu-

of cost and ac-loss implications of litz stranding. rately analyze the cost/loss tradeoff in a litz wire winding for a
gapped inductor through minimization of loss subject to a cost
|. INTRODUCTION constraint, using the two-dimensional loss analysis and shape

HE eddy current losses in a gapped inductor depergggtmnlqzoadtgn ?:Vcizzﬁg Erllg[]ll] [18] in conjunction with the
strongly on the two-dimensional field shape, determine(? prop '

by the gap, the core, and the winding. Conventional one- Il. OPTIMIZED-SHAPE WINDINGS
di ional I f imity-effect | 1], [2], [3], . Lo . -
imensional analyses of proximity-effect losses [1], [2], [3] The numerical optimization in [11] results in the winding

4], [5], [6], [7], [8], [9] do not account for the true field of a o ; .
[41, [5] [. 1 [71, 18], 9] o .~ shapes shown in Fig. 1 for 0.1 mm litz strand diameter and a
gapped inductor, and do not alloaecurate prediction of in- - . .
. . 10 mm square winding window. The analysis in [11], [18] and
ductor ac resistance [10], [11]. Because of the high flux den- : . _
. the analysis below are two-dimensional and neglect the effects
sity near the gap, and the dependence of loss on the square . - : o
' . qf curvature or different winding lengths at different positions
the field, the loss can be much worse than predicted. One al- )
L : . ..o inthe window.
ternative is the modify the structure to introduce a distribute I :
Each one of the shapes such as those in Fig. 1 is not only

[12], [13] or quasi-distributed gap [14], [15], [16], [17]. How- ptimal for the specific conditions of frequency and strand di-

ever, in [11], [18], it is shown that a simple lumped gap wit o .
the winding shape changed to keep the winding away from tﬁreneter for Wh'Ch it was chosen, but it is al§o 'the sh.ape-that,
en a particular amount of area for the winding, minimizes

gap can result in better performance than an ideal distribut&ld: . )
: . . . : . the exposure of the winding to the field. Thus, for any param-
gap design. Optimal design using this strategy requires an It-r in that window metrv. th t of optimal sh wil
erative numerical solution, because when the winding shapeglgtz :: b tsvhigﬁo ne iylb et?er 0 ?\5) n f? s ages m
changed to keep the winding out of the high-field regions, tife '€ same, bu chonels bestiora givenirequency may

field shape changes, and so the location of high-field regio\ﬁaﬁrx rder to minimize | for a given t we wil N
also changes [11]. order to e loss for a given cost, we use one

of the shapes in Fig. 1, or an interpolation between them. (For

Although the inductor designs with optimized Windin%.ﬁ ¢ ind h ts of windi timi
shapes found in [11], [18] represent a significant advance, they o ot core Window shapes, new sets ot winding optimiza-

depend on some parameters being arbitrarily chosen ratH%/Es d?rfnnteerdefdt'z] The frh?:ge gftm;mrr: er otfhlltz \rN|renstrandsr
than truly optimized. In [11], the use of litz wire is assume ameter ot those strands dete es the area necessary

gor a given number of turns) and so determines which shape

and the size of strands in the litz wire must be arbitrarily fixe required. We then need expressions for both loss and cost in
before the optimization proceeds. In [18], the results of [1i d ' ed exp
der to perform an optimization.

are extended to allow the possibility of arbitrarily fixing the

number of strands rather than the diameter of strands. But 1. M ODELS USED

neither arbitrarily fixing the number of strands nor arbitrarily .

fixing the diameter of strands corresponds to the real practiéal Loss calculation

design problem. The real reason for not using more or finerThe calculation of loss, given a choice of strand diameter

strands is a cost constraint, and cost depends on both strand number of strands follows that in [11], [18]. For cylin-

diameter and number of strands. Thus, the designs founditcal conductors with diameted, small compared to a skin

[11], [18] are optimal in only a harrow sense. depth, the eddy-current (proximity-effect) loss in a sinusoidal
The question of optimization of a litz wire winding subjectc field of amplitude3, perpendicular to the axis of the wire,

to a cost constraint has been addressed in [19], [20], where iaisa frequency is [8],

shown that considering cost can lead to significant cost and/or 2 )0

loss savings. However, the results in [19] are limited to simple P, = mw |B|" td (1)

geometries with one-dimensional fields. Because considering 128 - pc
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AT T o= i Fig. 2. Relationship betwedi3|2 and window area used (0). Also shown

is the value OW with non-optimized rectangular winding shapes (x)
and the value of B|2 calculated based on one-dimensional analysis (solid
Fig. 1. Optimized winding shapes, from [11]. Upper left is a drawing corre- line).
sponding approximately to the optimized shape for 50 kHz with a square
10 mm winding window and litz wire with 0.1 mm stand diameter. The -
remaining three figures show the shapes obtained for a range of frequaermalize| B|? to the total winding currenN I = I;10;. We
cies. For other strand diameters or frequencies, the set of shapes willi§fine this normalized function as
same, but the frequency correspondence will differ.

|BI*
where/ is the length of the conductor anpd is the resistivity total
of the conductor. For nonsinusoidal waveforms, an “effectivgnis function may be found from one set of numerical opti-
frequency” [22], [23], [24], [25] may be substituted for al-  mjzation data, such as that shown in Fig. 1, and is shown in
lowing the analysis below to apply directly (Appendix A). Fig. 2.
For the complete winding, Total winding loss may be found by summing eddy loss (2)
and resistive loss (3):

2F 2F [
= Tag b [ Bl -aa =2 R ATBE @) "
Pe i Pec Pw A_u + ked2g(Au>Au (5)

where/; is the length of a turnd,, is the portion of the win- wherek,. is a resistive loss constant
dow area that is actually usg¢d|? is the spatial average of the

2
squared field magnitude in that region, afidis the WindiDg k. = % (6)
packing factor relative to ideal square packifig = 2&'re, P

with N the number of turns and the number of strands perandk, is an eddy-current loss constant

turn. From (2) one can see that the proximity effect loss is ) )

proportional to the area times the average value of the square k, = W Fp il @)
of the flux density,4, |B|2. The resistive loss, however, is 128p.

inversely proportional tol,, B. Cost Modd

4It20talpcet (3)

TFp, Ay ’

Attempting to quantify cost for academic analysis is prob-
lematic; prices change with volume, manufacturer, time, and
negotiation. However, many important results depend only on
where total winding current is defined &s;,; = N1. the general form of the cost function. In particular, the general

To evaluate the tradeoff between eddy and resistive loss, s@ution developed here for optimal cost/loss tradeoff designs
need to consider not only the effect of area uség, on loss, depends only on the assumption that the cost of a length of litz
but also the effect ofl,, on|B|2. This latter relationship de- wire can be approximately described by [19]
pends only on the core geometry and winding shape, and not
on details such as winding current or number of turns, if we Cost = (Co + Cpn(d)d*n)¢ (8)

P, =



PESC '01: SULLIVANET AL.:ANALYSIS OF MINIMUM COST IN SHAPE-OPTIMIZED LITZ-WIRE INDUCTORS 3

To minimize loss with fixed cost we fig';,;. SinceN and/;
» are also fixed, we can factor them out and fix a newly defined
normalized cost variable

——  Cost per unit mass
- - Cost per unit length C
tot

Cip =
K (N

= Cp(d)d®n = Co(d)kpA,.  (12)

[
o

With the cost fixed, we can substituie= W into (5),
and, also substituting,, = "k—dz, this results in
P

k .k Cm(d) keClin Cin
P, = P d? 13
Ctn + kpcm(d) (Kpcm(d)) ( )

Relative Cost

The optimum value ofl for the fixed cost can be obtained by

% 32 31 36 38 20 a2 a1 a6  as differentiating this expression with respecitand setting the

Strand Diameter [AWG] result equa| to zero,
Fig. 3. Normalized cost per unit mass and normalized cost per unit IengﬂarkZC;n(d)Cm(d) 5 Cl.(d) ala Cin
as modeled by (9) Both are normalized such that the minimum values k.C? + - C (d) 9 K.C (d)
are one, for the purpose of display in this graph. The cost per unit mass ¢~in m p=m
increases monotonically, reflecting the cost of drawing a giventijyaf C{n(d)cm P2d ( Cin ) —0 (14)
copper into finer and finer strands. C?n(d)kp KpCm(d) )

whereC, is a base cost per unit length associated with tf¢ereg’(-) andC;, (-) are the derivatives of those functions
bundling and serving operations,,, (d) is a cost basis func- with respect to their arguments. Without a closed-form ex-

tion proportional to the additional cost per unit mass for Bression forg(A.), this expression must be solved numeri-
given strand diametel; n is the number of strands, aiés the  Cally for the optimumd to obtain minimum loss for a given
length of the wire. Note that for the purpose of optimizatiof®St- In practice, it may be desirable to find the lowest cost

with a fixed winding length, we can ignor&,, and consider for a given loss instead, or to obtain a plot of the full range
only the cost variation which is proportional @, (d)d?n. of possibilities from which the best choice for a given circuit

In [19], an approximate expression for a normalizggd(d) May be chosen. Thus, it is useful to elimingtg, from (14)
is also found, via a curve fit to manufacturers’ pricing

k2 10 T
(9) X —— Optimal shape windings with gap
- 32\ o

kq
d6 d2 \\ : Lo : . 1| = — Transformer winding with 1-D fields
*

whered is in metersk; = 1.1 x 10726 m6, andk, = 2 x
107 m?. This function, proportional to cost per unit mass,
is shown in Fig. 3, along with the normalized cost per unit
length,C,,, (d)d>.

IV. OPTIMIZATION

Normalized Loss

Allthe necessary analyses are now in place to determine th
minimume-loss choice of number and diameter of strands for ¢
given cost. The choice of holding cost fixed and minimizing ' -
loss is only for convenience; the set of these choices for dif-

ferent costs will also be the set of minimum cost designs for e

various given losses. L i

B . . . 10 10 10
Using the cost model discussed in Section 11I-B, we can Normalized Cost

express total cost as

9 Fig. 4. The costand loss of a range of possible designs (solid line) for optimal
Ciot = Cm(d)gtNd n = etNCm(d)kpAu (10) cost/loss tradeoff in a gappeutuctor with an optimized winding shape.
AWG stand sizes required to achieve the plotted points are indicated. This

wherek, is an overall packing constant defined as particular curve is for a 10 mm square winding window and a 50 kHz
d2 AF operating frequency;the curve varies slightly for different frequencies and
kp = na- i (11) also varies for other winding window sizes and aspect ratios. The dotted

A, Nr’ line shows the same tradeoff for a simple one-dimensional case.
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using (12) to obtain (after some rearrangement) the life of the equipment, and other costs that indirectly result
@ from lower efficiency and higher heat production. An example
ke kp 1 Cm(d including the cost of is di din[19
L. —d2_9 4. (15) includingthe cost of energy is discussed in [19].
EoEa A oy @ 9

A. Optimal ac resistance factor
This is a relationship between the area of the bobbin used
and the strand diameter. For the curve of design optionsoit
: 7
describes, one may calculate the cos_,t aqd loss from (10) ’:Hf calculation of the following e;pression for the optimal
(5). These are plotted, normalized, in Fig. 4. For compari- . )
. . cost/loss value of ac resistance factor:
son, the corresponding normalized cost/loss curve for a case
with one-dimensional fields [19] is plotted on the same axes. Ja — 1+ 1
h .y ) nCL Crm(d) | g'(Au)
e curves are very similar, but for fine strands, the slope of 1 =250 + Gt Au

the curve for the optimized-winding-shape gapped inductor is ) ) ) ) ) )
lower, indicating that the loss improves relatively slowly adhis result is consistent with previous results in the literature,

more money is spent on larger numbers of finer litz strand@¢!uding, for a fixed strand diameter in an optimal winding
compared to the one-dimensional case. This is explained §{Pe [18];

It is elucidative to also express the results in terms of the
imal ac resistance factd, = Z£2=. Appendix B details

(16)

the fact that the more expensive designs use a larger area of 1
the winding window, and thus the average value of the field Fropt = 1+ 14 9 »4 17
to which the winding is exposed increases, as reflected in the glAu) =

functiong(A,) (Fig. 2). This partially offsets the gains fromand for a one-dimensional field with full consideration of cost
the use of more strands of finer wire, and so the possible ias a function of number and diameter of strands [19],
provement from a given investment in wire is not a great as it

. - . . 1
would be with a flay(A,,), as in the one-dimensional case. Fror=1+ — o (18)
In the one-dimensional case, the cost/loss curves for any 1- 2C;n(cl)cl

two different designs with different parameters (window 98rhe consistency between (16) and the previous results

ometry, frequency, etc.) are identical if they are both normaly7) (1 gy can be seen by first considering a cost function that is

ized to the cost and loss of the same strand size [19]. Unfef)'nstant until it increases abruptly above a fixed diameter, ef-

tunately, with two-dimensional field and winding geometrie_&‘rectively constraining the design to that diameter. Vi@th(d)

_the CUIVES areé no Io_nger identical, although they remain Slifffinite, (16) reduces to (17). With a one-dimensional field,
ilar. T_he curve in Fig. 4 shows but one particular exampI%(Au> is constant, and (16) reduces to (18).
Equation (15) must be solved for each new set of parameters.

Fig. 5 shows, for example, the results for the same param-
eters as in Fig. 4, but for twice the frequency. The curve is
generally similar, but is not as flat in the fine wire region; it
is more similar to the curve for one-dimensional fields. Fig. 5
also shows the full range of possible non-optimal designs fol
each even AWG strand size. This allows comparing the de
signs that give minimum loss for a given strand diameter, as
would be calculated directly from the analysis in [11], to the
optimal cost/loss designs derived here. The results of the sin g
ple optimization based on fixed strand size [11] would be the
minimum “valley” in each strand-size curve. For fine strands,
these minima are very close to the optimal cost/loss curve
Thus, in practice, for fine-strand designs, it may be sufficient *°
to perform only the optimization for a fixed strand diameter as W
in [11], and directly use those results. However, in the case i . -
of larger strands, Fig. 5 shows that the optimal cost-loss de 0 Normaiized Cos 1°
signs offer improvements in the range of 20% in cost or loss
compared to the designs of minimum loss for a given stram@. 5. The costand loss of designs with optimal cost/loss tradeoffin a dappe
diameter. inductor with an optimized winding shape, plotted with the full range of

T lect rticular desian from th tions found b r possible non-optimal designs for each even AWG strand size. This partic-
0 Select a particular desig 0 e optionsfou y ou ular curve is for a 10 mm square winding window and a 100 kHz operat-

analysis and shown in, for example, Fig. 4, one could mini- ing frequency; the curve varies slightly for different frequencies and also
mize total cost including the cost of the energy dissipated over varies for other winding window sizes and aspect ratios.

lized Loss

Norl
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Fig. 6. Two views of a bobbin for optimized-shape winding, for an EC70
ferrite core. Overall length is about 70 mm.

Fig. 7. Experimental inductor.

Another familiar previous result is that the optimal ac re-
sistance factor is equal to 1.5 for a fixed number of strands
(usually one). This is also special case of (18), if we choose
the appropriate cost functio@,,,(d), that makes the costinde-

pendent of diameter, depending only on the number of strandsgor the first time, a rigorous gapped-inductor winding opti-

Since the total cost is proportional @, (d)nd?, choosing mization has been developed simultaneously considering wire

Cim(d) o 2= will give total cost independent of diameter, decosts and two-dimensional field effects. The results allow a

pending only on the number of strands. Substituting this ingsigner to choose between higher-cost, lower-loss designs

(18) gives the familiar result af;. ,,» = 1.5, again confirming and lower-cost, higher-loss designs after seeing the full range

consistency of the present work with established results.  of possibilities,each of which provides the minimum loss for
different given cost (and the minimum cost for a given loss).

V. EXAMPLE DESIGN AND EXPERIMENTAL RESULTS The results are shown to be consistent with previous results in

the literature.

A 19 mH inductor for a 100 kHz, 0.5 A rms sine wave ) _ o
current in a resonant converter was designed using AWG 46There remain at least two important limitations of the
It neglects the effects of curvature of the

strand litz wire and optimal winding shape. As shown iHr'ese.znt analysis'. .
Fig. 5, at AWG 46 the minimum loss design for a given stran\efmdmg' In particular, the length of any turn is assumed to

diameter is very close to the optimum cost/loss frontier, arl?& equal to a fixed average turn length. The optimized designs

so we simply selected the minimum loss design using A\A}félth wire crowded far from the gap tend to increase average

46 rather than explicitly calculating the cost/loss tradeoff. THEM length and thu; Increase re'3|stance ina manner th.at IS not
first design targeted 10 W total loss (winding and core) on Y&t accounted for in our analysis. A second limitation is that

EC70 core. 10 W of loss represents 0.3 % of the 3300 \;Rere are still parameters that are assumed fixed and are not
handled by the inductor, and corresponds to an ESR Mooptimized, such as the core size and geometry and number of
and aQ of three hundred. turns. However, after a core and number of turns are chosen by

A close approximation to this design was built, using di1‘fer(20m/em|On.aI quIQD mth.ods, the approach here can provide a
Io¥v-loss winding with minimal cost.

ent wire based on what was available from stock. To construc
the optimized-shape winding, custom bobbins (Fig. 6) were

VI. CONCLUSIONS

fabricated with a fusion-deposition-molding rapid-prototyping APPENDIX
machine. The experimental inductor is shownin Fig. 7. LOW- | ErrecTivE FREQUENCY FORNON-SINUSOIDAL
signal measurements were performed in resonance with an air CURRENT WAVEEORMS

capacitor, which could be assumed lossless. The ESR was

measured as 39, close to the original predicted ESR. How- Although calculations of winding loss with non-sinusoidal
ever, in the process of analyzing differences between the offgaveforms may be performed using Fourier analysis, the use
inal loss predictions and the design based on stock materigsan “effective frequency” can allow the analysis above to
we found an error in the original design calculations, such tHzg used directly. This and similar approaches have been dis-
the original design was actually far from optimal, and missedssed in [22], [23], [24], [25]. Here, we summarize the con-
substantial opportunities for loss reduction. A newly calciglusions on this issue from [24].

lated design is predicted to have approximately half the lossFor situations in which the frequency-dependent component
of the original (5 W), but requires a new bobbin shape usimj loss is proportional to frequency squared, as in (1), an ef-
more of the winding window. It has not yet been constructedective frequency that will give the same loss as a component-
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by-component Fourier analysis is given by [5]

Weff = (19) [6l

where I, is the rms amplitude of the Fourier component af!
frequencyw;. Itis often easier to use the equivalent expression
(8]

RMS{gi(t)} o

Itot,rms

Weff = (20)
The necessary rms values for many common waveforms are
tabulated in [25]. It is apparent that (20) is not bounded f&#0]
waveforms such as square waves with infinite-slope edges.
However, practical current waveforms have bounded slopgs)
especially in inductors.

II. DERIVATION OF AC RESISTANCEFACTOR

The ac resistance factdf, = ng can also be expressed[13]

asF, = 1+ &=, whereP, is eddy current (or “ac”) loss and

P, = I?, . Ra. is loss due to dc resistance. Using this Iatt?h]
form and expressing, and P, as in the two terms of (5), we
can express ac resistance factor as

[12]

ked?g(Ay) A [15]

ky

u

Fo=1+ (21)

hN

To find F, for optimal cost-loss designs, we first rearrang@®l
(15) as

[17]

2 7
ke _hpAbg(A) |, Onl(d)

R ARg(A)E ~ NaPg(A,) Cra(d)d 2

The left-hand-side of (22) is the inverse of the fraction in (21).
Thus, (21) can be re-written using the right-hand-side of (22)
as: [19]

(22)

1
+1-2

FT,CL =1 + kpAig/(Au) (23) [20]

Nd2g(A.)

Cm(d) *
C7 (d)d

From the definition of:, (11),k, 4. /N = d?, and so (23) can
also be written as 2

1
Fr CL — 1 + C . (24)
’ m (d) "(Aw)
L= 267 ma + Geag A (221
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