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Abstract—Litz-wire windings for gapped inductors are optimized for
minimum cost within a loss constraint or vice-versa. Optimal winding
shapes and the strand diameter and number for each shape are found
through simultaneous consideration of two-dimensional field effects and
of cost and ac-loss implications of litz stranding.

I. I NTRODUCTION

THE eddy current losses in a gapped inductor depend
strongly on the two-dimensional field shape, determined

by the gap, the core, and the winding. Conventional one-
dimensional analyses of proximity-effect losses [1], [2], [3],
[4], [5], [6], [7], [8], [9] do not account for the true field of a
gapped inductor, and do not allowaccurate prediction of in-
ductor ac resistance [10], [11]. Because of the high flux den-
sity near the gap, and the dependence of loss on the square of
the field, the loss can be much worse than predicted. One al-
ternative is the modify the structure to introduce a distributed
[12], [13] or quasi-distributed gap [14], [15], [16], [17]. How-
ever, in [11], [18], it is shown that a simple lumped gap with
the winding shape changed to keep the winding away from the
gap can result in better performance than an ideal distributed-
gap design. Optimal design using this strategy requires an it-
erative numerical solution, because when the winding shape is
changed to keep the winding out of the high-field regions, the
field shape changes, and so the location of high-field regions
also changes [11].

Although the inductor designs with optimized winding
shapes found in [11], [18] represent a significant advance, they
depend on some parameters being arbitrarily chosen rather
than truly optimized. In [11], the use of litz wire is assumed,
and the size of strands in the litz wire must be arbitrarily fixed
before the optimization proceeds. In [18], the results of [11]
are extended to allow the possibility of arbitrarily fixing the
number of strands rather than the diameter of strands. But
neither arbitrarily fixing the number of strands nor arbitrarily
fixing the diameter of strands corresponds to the real practical
design problem. The real reason for not using more or finer
strands is a cost constraint, and cost depends on both strand
diameter and number of strands. Thus, the designs found in
[11], [18] are optimal in only a narrow sense.

The question of optimization of a litz wire winding subject
to a cost constraint has been addressed in [19], [20], where it is
shown that considering cost can lead to significant cost and/or
loss savings. However, the results in [19] are limited to simple
geometries with one-dimensional fields. Because considering

cost is essential to selecting a good design, the analysis in [19]
has been applied to gapped inductors, despite the inaccuracy
in that approach [21]. In this paper, we show how to accu-
rately analyze the cost/loss tradeoff in a litz wire winding for a
gapped inductor through minimization of loss subject to a cost
constraint, using the two-dimensional loss analysis and shape
optimization developed in [11], [18] in conjunction with the
cost model proposed in [19].

II. OPTIMIZED-SHAPE WINDINGS

The numerical optimization in [11] results in the winding
shapes shown in Fig. 1 for 0.1 mm litz strand diameter and a
10 mm square winding window. The analysis in [11], [18] and
the analysis below are two-dimensional and neglect the effects
of curvature or different winding lengths at different positions
in the window.

Each one of the shapes such as those in Fig. 1 is not only
optimal for the specific conditions of frequency and strand di-
ameter for which it was chosen, but it is also the shape that,
given a particular amount of area for the winding, minimizes
the exposure of the winding to the field. Thus, for any param-
eters in that window geometry, the set of optimal shapes will
be the same, but which one is best for a given frequency may
vary.

In order to minimize loss for a given cost, we will use one
of the shapes in Fig. 1, or an interpolation between them. (For
different core window shapes, new sets of winding optimiza-
tions are needed.) The choice of number of litz wire strands
and diameter of those strands determines the area necessary
(for a given number of turns) and so determines which shape
is required. We then need expressions for both loss and cost in
order to perform an optimization.

III. M ODELS USED

A. Loss calculation

The calculation of loss, given a choice of strand diameter
and number of strands follows that in [11], [18]. For cylin-
drical conductors with diameter,d, small compared to a skin
depth, the eddy-current (proximity-effect) loss in a sinusoidal
ac field of amplitudeB, perpendicular to the axis of the wire,
at a frequencyω is [8],

Pe =
πω |B|

2
ℓd4

128 · ρc

(1)



PESC ’01: SULLIVANET AL.:ANALYSIS OF MINIMUM COST IN SHAPE-OPTIMIZED LITZ-WIRE INDUCTORS 2

    

10 κΗζ

(96 µµ2)

30 Κηζ
(83 µµ2)

50 κΗζ

(66.5 µµ
2
)

60 κΗζ

(58.6 µµ
2
)

10 κΗζ

30 κΗζ

50 κΗζ

60 κΗζ

60 κΗζ

 60 κΗζ

 

70 kHz (51 .75 mm2)

100 kHz (37 .2 mm2)

 70 κΗζ

 100 κΗ ζ 120 kHz (3 2.4 mm2)
200 kHz (2 1.35mm2)

500 kHz (9 .75 mm2)
120 κΗζ

120 κΗζ

200 κΗζ

200 κΗζ

500 κΗζ

500 κΗζ

Fig. 1. Optimized winding shapes, from [11]. Upper left is a drawing corre-
sponding approximately to the optimized shape for 50 kHz with a square
10 mm winding window and litz wire with 0.1 mm stand diameter. The
remaining three figures show the shapes obtained for a range of frequen-
cies. For other strand diameters or frequencies, the set of shapes will be
same, but the frequency correspondence will differ.

whereℓ is the length of the conductor andρc is the resistivity
of the conductor. For nonsinusoidal waveforms, an “effective
frequency” [22], [23], [24], [25] may be substituted forω, al-
lowing the analysis below to apply directly (Appendix A).

For the complete winding,

Pe =
πω2Fp

128ρc

ℓtd
2

∫

Au

|B|2 · dA =
πω2Fp

128ρc

ℓtd
2Au|B|2 (2)

whereℓt is the length of a turn,Au is the portion of the win-
dow area that is actually used,|B|2 is the spatial average of the
squared field magnitude in that region, andFp is the winding

packing factor relative to ideal square packingFp = nNπd2

4Au
,

with N the number of turns andn the number of strands per
turn. From (2) one can see that the proximity effect loss is
proportional to the area times the average value of the square
of the flux density,Au |B|2. The resistive loss, however, is
inversely proportional toAu

Pr =
4I2

totalρcℓt

πFpAu

, (3)

where total winding current is defined asItotal ≡ NI.
To evaluate the tradeoff between eddy and resistive loss, we

need to consider not only the effect of area used,Au, on loss,
but also the effect ofAu on |B|2. This latter relationship de-
pends only on the core geometry and winding shape, and not
on details such as winding current or number of turns, if we
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Fig. 2. Relationship between|B|2 and window area used (o). Also shown
is the value of|B|2 with non-optimized rectangular winding shapes (x)
and the value of|B|2 calculated based on one-dimensional analysis (solid
line).

normalize|B|2 to the total winding currentNI = Itotal. We
define this normalized function as

g(Au) =
|B|

2

I2
total

. (4)

This function may be found from one set of numerical opti-
mization data, such as that shown in Fig. 1, and is shown in
Fig. 2.

Total winding loss may be found by summing eddy loss (2)
and resistive loss (3):

Pw =
kr

Au

+ ked
2g(Au)Au (5)

wherekr is a resistive loss constant

kr ≡
4I2

totalρcℓt

πFp

(6)

andke is an eddy-current loss constant

ke ≡
πω2FpℓtI

2
tot

128ρc

. (7)

B. Cost Model

Attempting to quantify cost for academic analysis is prob-
lematic; prices change with volume, manufacturer, time, and
negotiation. However, many important results depend only on
the general form of the cost function. In particular, the general
solution developed here for optimal cost/loss tradeoff designs
depends only on the assumption that the cost of a length of litz
wire can be approximately described by [19]

Cost = (C0 + Cm(d)d2n)ℓ (8)
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Fig. 3. Normalized cost per unit mass and normalized cost per unit length,
as modeled by (9) Both are normalized such that the minimum values
are one, for the purpose of display in this graph. The cost per unit mass
increases monotonically, reflecting the cost of drawing a given quantity of
copper into finer and finer strands.

whereC0 is a base cost per unit length associated with the
bundling and serving operations,Cm(d) is a cost basis func-
tion proportional to the additional cost per unit mass for a
given strand diameterd, n is the number of strands, andℓ is the
length of the wire. Note that for the purpose of optimization
with a fixed winding length, we can ignoreC0, and consider
only the cost variation which is proportional toCm(d)d2n.

In [19], an approximate expression for a normalizedCm(d)

is also found, via a curve fit to manufacturers’ pricing

Cm(d) = 1 +
k1

d6
+

k2

d2
(9)

whered is in meters,k1 = 1.1 × 10−26 m6, andk2 = 2 ×
10−9 m2. This function, proportional to cost per unit mass,
is shown in Fig. 3, along with the normalized cost per unit
length,Cm(d)d2.

IV. OPTIMIZATION

All the necessary analyses are now in place to determine the
minimum-loss choice of number and diameter of strands for a
given cost. The choice of holding cost fixed and minimizing
loss is only for convenience; the set of these choices for dif-
ferent costs will also be the set of minimum cost designs for
various given losses.

Using the cost model discussed in Section III-B, we can
express total cost as

Ctot = Cm(d)ℓtNd2n = ℓtNCm(d)kpAu (10)

wherekp is an overall packing constant defined as

kp ≡
nd2

Au

=
4Fp

Nπ
. (11)

To minimize loss with fixed cost we fixCtot. SinceN andℓt

are also fixed, we can factor them out and fix a newly defined
normalized cost variable

Ctn ≡
Ctot

ℓtN
= Cm(d)d2n = Cm(d)kpAu. (12)

With the cost fixed, we can substituten = Ctn

Cm(d)d2 into (5),

and, also substitutingAu = nd2

kp
, this results in

Pw =
krkpCm(d)

Ctn

+
keCtn

kpCm(d)
d2g

(

Ctn

KpCm(d)

)

(13)

The optimum value ofd for the fixed cost can be obtained by
differentiating this expression with respect tod and setting the
result equal to zero,

krk
2
pC ′

m(d)Cm(d)

keC2
tn

+

[

2 −
C ′

m(d)

Cm(d)
d

]

dg

(

Ctn

KpCm(d)

)

−
C ′

m(d)Ctn

C2
m(d)kp

d2g′
(

Ctn

KpCm(d)

)

= 0, (14)

whereg′(·) andC ′

m(·) are the derivatives of those functions
with respect to their arguments. Without a closed-form ex-
pression forg(Au), this expression must be solved numeri-
cally for the optimumd to obtain minimum loss for a given
cost. In practice, it may be desirable to find the lowest cost
for a given loss instead, or to obtain a plot of the full range
of possibilities from which the best choice for a given circuit
may be chosen. Thus, it is useful to eliminateCtn from (14)
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Fig. 4. The cost and loss of a range of possible designs (solid line) for optimal
cost/loss tradeoff in a gapped inductor with an optimized winding shape.
AWG stand sizes required to achieve the plotted points are indicated. This
particular curve is for a 10 mm square winding window and a 50 kHz
operating frequency; the curve varies slightly for different frequencies and
also varies for other winding window sizes and aspect ratios. The dotted
line shows the same tradeoff for a simple one-dimensional case.
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using (12) to obtain (after some rearrangement)

[

kr

keA2
u

−
kp

N
A2

ug′(Au)

]

1

g(Au)
= d2 − 2

Cm(d)

C ′

m(d)
d. (15)

This is a relationship between the area of the bobbin usedAu

and the strand diameter. For the curve of design options it
describes, one may calculate the cost and loss from (10) and
(5). These are plotted, normalized, in Fig. 4. For compari-
son, the corresponding normalized cost/loss curve for a case
with one-dimensional fields [19] is plotted on the same axes.
The curves are very similar, but for fine strands, the slope of
the curve for the optimized-winding-shape gapped inductor is
lower, indicating that the loss improves relatively slowly as
more money is spent on larger numbers of finer litz strands,
compared to the one-dimensional case. This is explained by
the fact that the more expensive designs use a larger area of
the winding window, and thus the average value of the field
to which the winding is exposed increases, as reflected in the
functiong(Au) (Fig. 2). This partially offsets the gains from
the use of more strands of finer wire, and so the possible im-
provement from a given investment in wire is not a great as it
would be with a flatg(Au), as in the one-dimensional case.

In the one-dimensional case, the cost/loss curves for any
two different designs with different parameters (window ge-
ometry, frequency, etc.) are identical if they are both normal-
ized to the cost and loss of the same strand size [19]. Unfor-
tunately, with two-dimensional field and winding geometries,
the curves are no longer identical, although they remain sim-
ilar. The curve in Fig. 4 shows but one particular example.
Equation (15) must be solved for each new set of parameters.

Fig. 5 shows, for example, the results for the same param-
eters as in Fig. 4, but for twice the frequency. The curve is
generally similar, but is not as flat in the fine wire region; it
is more similar to the curve for one-dimensional fields. Fig. 5
also shows the full range of possible non-optimal designs for
each even AWG strand size. This allows comparing the de-
signs that give minimum loss for a given strand diameter, as
would be calculated directly from the analysis in [11], to the
optimal cost/loss designs derived here. The results of the sim-
ple optimization based on fixed strand size [11] would be the
minimum “valley” in each strand-size curve. For fine strands,
these minima are very close to the optimal cost/loss curve.
Thus, in practice, for fine-strand designs, it may be sufficient
to perform only the optimization for a fixed strand diameter as
in [11], and directly use those results. However, in the case
of larger strands, Fig. 5 shows that the optimal cost-loss de-
signs offer improvements in the range of 20% in cost or loss
compared to the designs of minimum loss for a given strand
diameter.

To select a particular design from the options found by our
analysis and shown in, for example, Fig. 4, one could mini-
mize total cost including the cost of the energy dissipated over

the life of the equipment, and other costs that indirectly result
from lower efficiency and higher heat production. An example
including the cost of energy is discussed in [19].

A. Optimal ac resistance factor

It is elucidative to also express the results in terms of the
optimal ac resistance factorFr = Rac

Rdc
. Appendix B details

the calculation of the following expression for the optimal
cost/loss value of ac resistance factor:

Fr,CL = 1 +
1

1 − 2
Cm(d)
C′

m(d)d +
g′(Au)
g(Au) Au

(16)

This result is consistent with previous results in the literature,
including, for a fixed strand diameter in an optimal winding
shape [18],

Fr,opt = 1 +
1

1 + g′(Au)
g(Au)

Au

(17)

and for a one-dimensional field with full consideration of cost
as a function of number and diameter of strands [19],

Fr,CL = 1 +
1

1 − 2 Cm(d)
C′

m(d)d

. (18)

The consistency between (16) and the previous results
(17),(18) can be seen by first considering a cost function that is
constant until it increases abruptly above a fixed diameter, ef-
fectively constraining the design to that diameter. WithC ′

m(d)
infinite, (16) reduces to (17). With a one-dimensional field,
g(Au) is constant, and (16) reduces to (18).
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Fig. 5. The cost and loss of designs with optimal cost/loss tradeoff in a gapped
inductor with an optimized winding shape, plotted with the full range of
possible non-optimal designs for each even AWG strand size. This partic-
ular curve is for a 10 mm square winding window and a 100 kHz operat-
ing frequency; the curve varies slightly for different frequencies and also
varies for other winding window sizes and aspect ratios.
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Fig. 6. Two views of a bobbin for optimized-shape winding, for an EC70
ferrite core. Overall length is about 70 mm.

Another familiar previous result is that the optimal ac re-
sistance factor is equal to 1.5 for a fixed number of strands
(usually one). This is also special case of (18), if we choose
the appropriate cost function,Cm(d), that makes the cost inde-
pendent of diameter, depending only on the number of strands.
Since the total cost is proportional toCm(d)nd2, choosing
Cm(d) ∝ 1

d2 will give total cost independent of diameter, de-
pending only on the number of strands. Substituting this into
(18) gives the familiar result ofFr,opt = 1.5, again confirming
consistency of the present work with established results.

V. EXAMPLE DESIGN AND EXPERIMENTAL RESULTS

A 19 mH inductor for a 100 kHz, 0.5 A rms sine wave
current in a resonant converter was designed using AWG 46
strand litz wire and optimal winding shape. As shown in
Fig. 5, at AWG 46 the minimum loss design for a given strand
diameter is very close to the optimum cost/loss frontier, and
so we simply selected the minimum loss design using AWG
46 rather than explicitly calculating the cost/loss tradeoff. The
first design targeted 10 W total loss (winding and core) on an
EC70 core. 10 W of loss represents 0.3 % of the 3300 VA
handled by the inductor, and corresponds to an ESR of 40Ω
and aQ of three hundred.

A close approximation to this design was built, using differ-
ent wire based on what was available from stock. To construct
the optimized-shape winding, custom bobbins (Fig. 6) were
fabricated with a fusion-deposition-molding rapid-prototyping
machine. The experimental inductor is shown in Fig. 7. Low-
signal measurements were performed in resonance with an air
capacitor, which could be assumed lossless. The ESR was
measured as 39Ω, close to the original predicted ESR. How-
ever, in the process of analyzing differences between the orig-
inal loss predictions and the design based on stock materials,
we found an error in the original design calculations, such that
the original design was actually far from optimal, and missed
substantial opportunities for loss reduction. A newly calcu-
lated design is predicted to have approximately half the loss
of the original (5 W), but requires a new bobbin shape using
more of the winding window. It has not yet been constructed.

Fig. 7. Experimental inductor.

VI. CONCLUSIONS

For the first time, a rigorous gapped-inductor winding opti-
mization has been developed simultaneously considering wire
costs and two-dimensional field effects. The results allow a
designer to choose between higher-cost, lower-loss designs
and lower-cost, higher-loss designs after seeing the full range
of possibilities,each of which provides the minimum loss for
different given cost (and the minimum cost for a given loss).
The results are shown to be consistent with previous results in
the literature.

There remain at least two important limitations of the
present analysis. It neglects the effects of curvature of the
winding. In particular, the length of any turn is assumed to
be equal to a fixed average turn length. The optimized designs
with wire crowded far from the gap tend to increase average
turn length and thus increase resistance in a manner that is not
yet accounted for in our analysis. A second limitation is that
there are still parameters that are assumed fixed and are not
optimized, such as the core size and geometry and number of
turns. However, after a core and number of turns are chosen by
conventional design methods, the approach here can provide a
low-loss winding with minimal cost.

APPENDIX

I. EFFECTIVE FREQUENCY FORNON-SINUSOIDAL

CURRENT WAVEFORMS

Although calculations of winding loss with non-sinusoidal
waveforms may be performed using Fourier analysis, the use
of an “effective frequency” can allow the analysis above to
be used directly. This and similar approaches have been dis-
cussed in [22], [23], [24], [25]. Here, we summarize the con-
clusions on this issue from [24].

For situations in which the frequency-dependent component
of loss is proportional to frequency squared, as in (1), an ef-
fective frequency that will give the same loss as a component-
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by-component Fourier analysis is given by

ωeff =

√

∑

∞

j=0 I2
j ω2

j
∑

∞

j=0 I2
j

. (19)

whereIj is the rms amplitude of the Fourier component at
frequencyωj . It is often easier to use the equivalent expression

ωeff =
RMS{ d

dt
i(t)}

Itot,rms

. (20)

The necessary rms values for many common waveforms are
tabulated in [25]. It is apparent that (20) is not bounded for
waveforms such as square waves with infinite-slope edges.
However, practical current waveforms have bounded slopes,
especially in inductors.

II. D ERIVATION OF AC RESISTANCEFACTOR

The ac resistance factorFr = Rac

Rdc
can also be expressed

asFr = 1 + Pe

Pr
, wherePe is eddy current (or “ac”) loss and

Pr = I2
rmsRdc is loss due to dc resistance. Using this latter

form and expressingPe andPr as in the two terms of (5), we
can express ac resistance factor as

Fr = 1 +
ked

2g(Au)Au

kr

Au

(21)

To find Fr for optimal cost-loss designs, we first rearrange
(15) as

kr

keA2
ug(Au)d2

=
kpA

2
ug′(Au)

Nd2g(Au)
+ 1 − 2

Cm(d)

C ′

m(d)d
. (22)

The left-hand-side of (22) is the inverse of the fraction in (21).
Thus, (21) can be re-written using the right-hand-side of (22)
as:

Fr,CL = 1 +
1

kpA2
ug′(Au)

Nd2g(Au) + 1 − 2 Cm(d)
C′

m(d)d

. (23)

From the definition ofkp (11),kpAu/N = d2, and so (23) can
also be written as

Fr,CL = 1 +
1

1 − 2 Cm(d)
C′

m(d)d
+ g′(Au)

g(Au)
Au

. (24)
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