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Abstract— Eddy currents at high frequencies affect both active power
and reactive power in a winding. Recently a two-dimensional (2-D) model
for calculating power loss in round-wire windings was introduced and was
shown to have higher accuracy than the Dowell model and the Bessel-function
method. The model was given in terms of proximity-effect loss normalized
by the square of field magnitude and conductivity. In order to find the total
proximity-effect loss, the field distribution in the winding window should also
be known, which requires the modeling of not only how the eddy currents in
windings affect power loss but also how they affect the field distribution in the
window. Based on the proximity-effect loss model and the Kramer-Kronig
relation, we derive an equivalent complex permeability model of a round-
wire winding that agrees with finite element analysis results. This model can
be used to calculate high-frequency winding loss and inductances (especially
leakage inductance) in transformers and inductors with two-dimensional ge-
ometry. Numerical simulation results and experimental results validate the
complex permeability model.

I. INTRODUCTION

Eddy currents in windings at high frequencies affect not only
the loss in the windings but also the overall field shape in magnetic
components. Both of these two are concerns in the design and op-
timization of magnetic components. Thus, accurately modelling
the eddy-current effects in a winding is very important. Some sim-
plified models have been developed to calculate high-frequency
winding loss, such as Dowell’s model [1], [2], [3] and the Bessel-
function model [4]. Although these models are widely accepted,
they have been shown to have large errors (up to 60% for the Dow-
ell method and up to 120% for the Bessel-function method) at high
frequencies where diameter is much larger than skin depth [5].

Based on high-accuracy finite element analysis (FEA) results,
a model for the proximity-effect loss in a winding was given
in [5], [6]. Reference [6] separated the overall field analysis
from the analysis of the local interaction of wires producing
eddy currents and presented the proximity-effect loss model in
terms of a proximity-effect loss factor which is power loss per
length normalized to the square of external field magnitude. The
proximity-effect loss factor itself is independent of external field
shape and can be applied to two-dimensional (2-D) field shapes—
total proximity-effect loss in a winding can be obtained from the
proximity-effect loss factor given that the magnitude of field in
the winding is known. At low frequencies where the conductor
diameter is much smaller than skin depth, field solution for situa-
tions with 2-D field geometry such as in Fig. 1 can be obtained by
solving a magnetostatic problem assuming that the permeability
of a winding is same as the permeability of air [7]. However, at
high frequencies where the diameter is larger than the skin depth,

This work was supported in part by the United States Department of Energy
under grant DE-FC36-01GO1106

fields in the windings interact with the eddy currents in the wires.
It is impossible to find the expression for the average of square
of field magnitude which is needed for calculating the total loss
from proximity-effect loss factor in a winding with a 2-D geom-
etry without knowing the local eddy currents in each conductor.
Thus the use of the proximity-effect loss factor model in [6] at
high frequencies is only accurate for a simple transformer winding
which ensures a 1-D field shape outside the windings. In order to
use the proximity-effect loss factor model in [6] in 2-D situations,
we need a model that describes both the power dissipation and
the field change caused by eddy currents in the conductors. Such
a model would also be very useful for the 2-D field calculation,
which is needed not only for the loss calculation in windings but
also for the calculation of inductances of magnetic components at
high frequencies, particulary leakage inductance in which most of
the energy storage is often in the windings.

Winding1

Winding2

Winding3

†-¢
22 mm j

†-¢
33 mm j

†-¢
11 mm j

Fig. 1. An example of a transformer with 2-D fields: a gapped-core inductor with
3 windings, in which winding 2 and winding 3 don’t fill the whole window
height.

Eddy currents decrease flux through the winding and increase
loss in the winding. The behavior of a winding subjected to a
time-varying external field is similar to a block of lossy ferromag-
netic material; the characteristic of this winding can be expressed
in terms of complex permeability as a function of frequency (or
the ratio between wire diameter and skin depth). The eddy-current
distribution in each winding is almost impossible to calculate an-
alytically in such a 2-D field situation at high frequencies and is
also difficult to calculate by numerical methods [7]. As shown in
Fig. 1, if the complex permeabilities µ′ − jµ′′ of the windings are
known, we will be able to simplify the field computation prob-
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Fig. 2. Definition of complex permeability of a winding. The left half of the figure
shows a cell of a winding of round conductors with diameter d. The distance
between each wire in the same layer is v and the interlayer spacing is v; the
right half shows its equivalent at high frequencies—a block of material with
permeability µ′ − jµ′′.

lem to a problem similar to a magnetostatic problem but with all
the quantities phasors; then the field distribution and loss in each
winding can be found without solving for the local eddy current
distribution inside each winding.

Reference [8] applied the idea of complex permeability to cop-
per loss calculation in transformers. The winding was considered
as an isotropic homogenous magnetic material. An approximate
analytical expression for the equivalent complex permeability was
presented. A limitation of the model in [8] is that it only consid-
ered the interactions of eddy currents in wires in one layer, while
the effects of eddy currents in conductors in nearby layers were ne-
glected. A complex permeability model for foil windings can be
derived from the analytical 1-D field solution [9], [10]. In [10], a
complex permeability model for foil windings is used to compute
the impedance of windings in transformers at high frequencies.

In this paper, a complex permeability model for a winding is
derived based on the proximity-effect loss factor model in [6]
and two physical relations: the relationship between power loss
and imaginary permeability; and the relationship between real and
imaginary parts of complex permeability, which is known as the
Kramers-Kronig relation. This complex permeability model ap-
plies to round-wire windings at both low and high frequencies with
various winding geometries. Numerical simulation results are also
presented and analyzed. Agreement of our permeability model to
the numerical simulation data and experimental measurement re-
sults is shown.

II. COMPLEX PERMEABILITY MODEL FOR A WINDING

A. Numerical Simulation Results

The overall complex permeability of a winding is defined and
calculated as:

µ = B/H = B′ + jB′′/(H ′ + jH ′′) (1)

where B is the spatial average of complex flux density in the wind-
ing and H is the complex field.

The overall complex permeability of a winding can be obtained
from numerical simulations in a setup as in Fig. 2. In our simula-
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Fig. 3. Real part of relative permeability of two windings with different turn-to-
turn spacings v and the same interlayer distance h/d = 1.2619
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Fig. 4. Real part of relative permeability of two windings with different turn-to-
turn spacings v and the same interlayer spacing h/d = 1.2619

tion, we specify the total flux with zero phase and thus fix B at a
real value. Data of H ′ + jH ′′ is sampled at various frequencies,
turn-to-turn spacings v and interlayer distances h. Figs. 3 and 4
show how the complex permeability changes with frequency for
two different values of v/d for a fixed value of h/d. From Figs. 3
and 4, we can see that the real part of the relative permeability is
one at low frequencies where the wire diameter is much smaller
than skin depth. At high frequencies, the real part of the complex
permeability of the winding goes to a constant which depends on
the winding geometry and the ratio between copper area and air
area. The imaginary part of the complex permeability of the wind-
ing is approximately proportional to frequency f at low frequen-
cies and proportional to f−0.5 at high frequencies. Different dis-
tances between wires in the same layer v change the distribution of
eddy currents and change the equivalent permeability of one layer.

Interlayer spacing h affects the permeability of the winding in
two aspects: Increasing h increases the area of air and increases
total flux through the winding; and changing the interlayer spac-
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Fig. 5. Real part of relative permeability of a ‘bare layer’ normalized from three
windings with same turn-to-turn spacings v/d = 0.9405, and different inter-
layer spacings h. For windings with large interlayer spacings, normalization
leads to the same ‘bare layer’ permeability, while for windings with small h,
normalization doesn’t lead to the same ‘bare layer’ permeability

ing h changes the extent of interaction between eddy currents in
conductors of different layers. The second effect can be neglected
when h is larger than the wire diameter [5]. In that case, the flux in
a region near the center between two layers is approximately par-
allel to the surface of the layer, and thus changing h only results in
a linear change of permeability which is independent of frequency
f .

µ2 =
h2 − h1 + µ1(h1 + d)

h2 + d
(2)

where µ1 and µ2 are the relative average permeability of two wind-
ings which have the same geometrical setups except for different
interlayer spacings h1 and h2. Formula (2) can be used for an
approximate calculation of average permeability of two blocks of
winding with different sets of diameters and interlayer spacings.

In order to see how well the simple average method applies to
different arrangements of winding layers, we employ the relation-
ship in (2) and normalize our permeability data for winding with
interlayer spacing h into permeability of a ‘bare layer’ which has
width of d and h = 0. We compare how the complex permeability
differs when the interlayer spacing h changes in Figs. 5 and 6.

Figs. 5 and 6 show that the average in (2) works well with large
turn-to-turn spacing h; complex permeability curves of two dif-
ferent windings converge if normalized to the same h (h = 0 in
Figs. 5 and 6). However, when h is smaller, after normalization,
the data gives a different ‘bare layer’ permeability, which shows
that the simple relationship in (2) doesn’t work for smaller inter-
layer spacings h and a more complicated function is needed to
accurately model the effect that changing h has on permeability.
A more accurate method that properly models this effect is devel-
oped in Section II-B and II-C.

B. Relationship between Power Loss and Imaginary Permeability

The imaginary part of the complex permeability µ′′ is directly
related to the power loss (or power dissipation) [10]. If a block of
material with permeability µ′ − jµ′′ is subjected to a sinusoidally
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Fig. 6. Imaginary part of relative permeability of a ‘bare layer’ normalized from
three windings with same turn-to-turn spacing v/d = 0.9405, different inter-
layer spacings h. This plot leads to the same conclusion as Fig. 5.

varying field with peak magnitude H0 and angular frequency ω:

Pv = µ′′ωH2
0 (3)

where Pv is power loss per unit volume.
Given a model of proximity-effect loss factor Ĝ—defined as

proximity-effect loss per unit length normalized by H2
0 and con-

ductivity σ in [6]—and (3), the imaginary part of permeability is
easily obtained:

µ′′ =
Ĝ

2πσf(d + h)(d + v)
(4)

where µ′′ is the imaginary part of the complex permeability of a
winding where the interlayer spacing is h, turn-to-turn spacing is
v and diameter is d.

Based on the proximity-effect factor model Ĝ in [6] (reviewed in
the Appendix) and (4), the imaginary part of relative permeability
is:

µ′′r (X) =
1

2πσfµ0

1
(d + h)(d + v)

[(1− w)
3π

16
k−3X

sinh(kX)− sin(kX)
cosh(kX) + cos(kX)

+ w
π

32
X

(X−3 + b3)
]

(5)

X =
d

δ
= d

√
πσµf

(6)

where w is a weight function determined by winding geometry; k
and b are also functions of winding geometry parameters v/d and
h/d. Expressions for w, b and k can be found in the Appendix.

The model for imaginary permeability (5) uses a weighted
average of two parts—the modified Dowell function and the
dual-slope function [6]. The modified Dowell function part,
k−3X sinh(kX)−sin(kX)

f(cosh(kX)+cos(kX)) , originates from the field solution of a

foil conductor. The dual-slope function part, π
32f

X
(X−3+b3) , acts as
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a compensation to the modified Dowell function to achieve a better
fit to the simulation data.

As discussed in Section II-A, when the distances between lay-
ers is large enough that increasing the distances doesn’t change
the eddy-current distribution, the imaginary permeability will be
inversely proportional to the total cross-sectional area of the wind-
ing. When the interlayer spacing is large enough, the power loss
in the equvilament block of material remains unchanged when we
increase the interlayer spacing h, which is consistent with the FEA
results presented in [5].

C. Relationship between Real and Imaginary Permeability

The real part of the complex permeability determines the reac-
tive power in the winding. Instead of constructing a new model
directly from the numerical simulation data as was done in [6] for
the proximity-effect loss factor Ĝ, we employ the Kramers-Kronig
relation for real and imaginary parts of the complex permeability
of continuous lossy media [11] to obtain µ′ from the model of Ĝ.
The Kramers-Kronig relation, which states that real and imaginary
parts of complex permeability are Hilbert pairs, is valid because of
the causal connection between magnetization and magnetic field.
To explain this better, in

B(jω) = µ(jω)H(jω) (7)

where ω is angular frequency, H(jω) and B(jω) can be consid-
ered the input and output of a linear, time-invariant (LTI) causal
system. µ(jω) is the transfer function of this causal system and is
analytical. Thus, real and imaginary parts of µ(jω) form a Hilbert
pair:

µ′(ω) =
2
π

∫ ∞

0

µ′′(η)η
η2 − ω2

dη + µ′const (8)

where µ′const is a constant determined by physical constraints.
Linearity of the Hilbert transform [12] ensures that we can find
the Hilbert pair of the modified Dowell function part and dual-
slope function part separately and then add them together to get
the Hilbert transform of (5). The modified Dowell function part
of imaginary permeability (5) has the same function form as that
of a foil winding [10]. Its Hilbert pair is also in the same function
form as the real part of foil-winding permeability given in [10].
Given the linearity and scaling property of Hilbert transform, one
can easily find the Hilbert transform of the modified Dowell func-
tion part. The Hilbert transform of the dual-slope function part is
found by calculating the integral in (8).

The Hilbert transform of (5) can be given as:

µ̂′r(X) =
d2

16(d + h)(d + v)

[w
3b5X5(−1 + b6X6) + 4

√
3(−1 + b4X4)

3b2(−1 + b12X12)

+(1− w)
3π

k3X

sinh(kX) + sin(kX)
cosh(kX) + cos(kX)

] (9)

where µ̂′r(X) is a frequency-dependent component of the real part
of relative permeability given by the Hilbert transform of (5).

However, (9) is not yet a complete expression for the real part
of relative permeability. Because the Hilbert transform of any con-
stant is zero, the Hilbert transform of (5) (µ̂′r(X)) doesn’t give
any information about the constant in the real part of permeability
which exists in real physics and numerical simulations. By making
µ′r(X) meet the physical constraint that at very low frequencies
(X = 0) the real part of relative permeability is one, we determine
µ′r(X) to be:

µ′r(X) = 1− µ̂′r(0) + µ̂′r(X) (10)

Fig. 7 shows that the prediction of the real part of permeabil-
ity based on (9) and (10) agrees with data from numerical sim-
ulation. This verifies the Kramer-Kronig relation experimentally.
The small error given by our model is due to the small error in
the proximity-effect loss factor Ĝ in [6], and does not exceed that
error.

III. EXPERIMENTAL VERIFICATION

The imaginary part of the complex permeability model is de-
rived directly from the loss model in [6]. The loss measurement
and results in [6] can therefore also validate the model for imag-
inary part of the complex permeability of a winding in (5). We
conducted two new experiemnts to verify the real part of the model
and to demostrate its application in windings with significant two-
dimensional field effects.

A. Experimental Test for Transformers with 1-D Geometries

To test the accuracy of the new model for real part of the com-
plex permeability of a winding, we measured the leakage induc-
tances of transformers which each have two windings with the
same wire spacings connected in series opposition. The windings
are on ferrite cores (pot core 4229 with material Philips 3F3). The
real part of relative permeability of a winding is proportional to the
leakage inductance and can be found as:

µ′r(f) =
L(f)
L0

(11)

where L(f) is the leakage inductance at frequency f , L0 is the
leakage inductance at very low frequencies, and µ′r(f) is the real
part of the relative permeability of the winding at the frequency f .

We tested three windings with different insulation types, thus
with different turn-to-turn spacings v/d and interlayer spacings
h/d. The specifications of these three windings can be found in
Table I. Fig. 8 compares the results of real permeability calcu-
lated from the leakage inductance measurement data with the re-
sults from the model in (9) and (10). From Fig. 8 we can see that
the experimental data validates the complex permeability model.
Errors caused by parasitic capacitances in the winding have been
compensated using circuit model in [7].

B. FEA and Experimental Test for Transformers with 2-D Geome-
tries

To test how the new model works for windings with 2-D geome-
tries, we measured three air-core transformers with the same wind-
ings as in the previous tests, but without the ferrite cores. Without
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TABLE I

SPECIFICATIONS OF THE WINDINGS MEASURED

Winding type Wire Insulation on wire Insulation between layers Actual average v/d Actual average h/d
1 22 AWG magnet wire single build one layer of tape 0.28 0.29
2 22 AWG magnet wire single build 5 layers of 0.29 1.50

polypropylene tape
3 22 AWG solid wire 0.25 mm teflon — 1.43 1.43
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Fig. 7. Model prediction of real part of complex permeability compared to simu-
lation data

a core, the field on the windings is not parallel to the layer inter-
face as in the transformers tested in III-A, and the path of the field
includes a significant portion through air. Thus, the ratio between
the permeabilities of the air path and the winding have a signifi-
cant effect on the field in the winding, and a permeability model is
needed. For example, FEA results show that the average H2 in the
windings of winding type 1 differs by 15% when the permeability
of the winding goes down from 1 to 0.5.

We performed FEA on the windings. Instead of perform-
ing time-consuming eddy-current analysis by setting up an exact
model of the windings, we simplified the FEA model geometry
by modelling each winding with a block of material with perme-
ability predicted by the new model, then performed FEA on this
simplified model to find inductance and AC resistance of the wind-
ing. Windings with different interlayer spacings h and turn-to-turn
spacings v, such as winding type 1, can be modelled as a block
of anisotropic material with different complex permeability for di-
rections parallel or perpendicular to the direction of layers. The
complex permeability for one specified field direction is calcu-
lated by defining v as the distance between parallel wires in this
field direction, and h as the distance between parallel wires in the
perpendicular direction. Turn-to-turn spacings v for winding type
2 and winding type 3 are very close to the interlayer spacings h.
Thus, these two windings can be considered isotropic materials.

FEA results and experimental measurement results for leakage
inductance and AC winding loss for three different types of wind-
ings are presented in Figs. 9 and 10. Specifications of the windings
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Fig. 8. Model prediction of real part of complex permeability compared to experi-
mental data.

are the same as in Table. I.

IV. CONCLUSION

A complex permeability model for high-frequency windings
is presented. The model is derived from a proximity-effect loss
model based on high-accuracy numerical simulation data and ex-
periemental tests validate the model. This permeability model
makes field analysis of transformers and inductors with 2-D ge-
ometries at high frequencies much easier, thus facilitating winding
loss analysis and leakage inductance analysis in many cases. An
impedance model (including resistance and inductance) for induc-
tors and transformers can also be derived from this permeability
model.

APPENDIX

The expressions for Ĝ, b, k and w are given in [6].

Ĝ(X) = (1− w)
3π

16
k−3X

sinh(kX)− sin(kX)
cosh(kX) + cos(kX)

+w
π

32
X

(X−3 + b3)
(12)
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b(v/d, h/d) = f

(
v/d, f(h/d, s1b,1, s2b,1, qb,1),

f(h/d, s1b,2, s2b,2, qb,2), f(h/d, s1b,3, s2b,3, qb,3)
)

(13)

k(v/d, h/d) = f

(
h/d, f(v/d, s1k,1, s2k,1, qk,1),

f(v/d, s1k,2, s2k,2, qk,2), f(v/d, s1k,3, s2k,3, qk,3)
)

(14)

w(v/d, h/d) = (h/d)w1(v/d) + w2(v/d)

w1(v/d) = c11 − (u11 − u01e
− v/d

Y01 )2

w2(v/d) = c21 + (u21 − u02e
− v/d

Y02 )2 (15)

where:

f(Y, s1, s2, q) =
s1 − s2

Y −1 + q−1
+ s2 (16)

The parameters in (13), (14) and (15) are in Table. II.

TABLE II

PARAMETERS FOR b, k AND w TO BE USED IN (13), (14) AND (15)

s1b,j s2b,j qb,j
j = 1 −0.0037 0.0432 −0.0661

b j = 2 1.8167 0.0074 0.2195
j = 3 0.7053 0.8378 23.8755

s1k,j s2k,j qk,j
j = 1 1.0261 0.8149 9.3918

k j = 2 0.4732 0.8023 1.2225
j = 3 0.0930 0.2588 −0.0334

c11 = 0.0462 u11 = 0.1558 u01 = 0.3477 Y01 = 1.0673
w c21 = 0.0018 u21 = 0.1912 u02 = 0.2045 Y02 = 1.3839
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