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Abstract— It has recently been shown that the most commonly
used methods for calculating high-frequency eddy-current loss in
round-wire windings can have substantial error, exceeding 60%.
Previous work includes a formula based on a parametric set of
finite-element analysis (FEA) simulations that gives proximity-
effect loss for a large range of frequencies, using the parameters
from a lookup table based on winding geometry. We improve the
formula by decreasing the number of parameters in the formula
and also, more importantly, by using simple functions to get
the parameters from winding geometry such that a large lookup
table is not needed. The function we present is exact in the low
frequency limit (diameter much smaller than skin depth) and
has error less than 4% at higher frequencies.

We make our new model complete by examining the field
expression needed to get the total proximity-effect loss and
by including the skin-effect loss. We also present experimental
results confirming the validity of the model and its superiority
to standard methods.

I. I NTRODUCTION

In the design and optimization of magnetic components
such as inductors and transformers used in power electronics
applications, accurate prediction of high-frequency winding
loss is very important. Eddy-current winding loss, which
includes skin-effect loss and proximity-effect loss, increases
rapidly with frequency. Due to the complexity of winding
geometries and interactions between conductors in windings,
it is difficult to find a general analytical solution for the eddy-
current losses in windings. Several methods have been used
to predict high-frequency winding losses in windings of round
conductors as reviewed in [1]. One type of these methods [2],
[3], [4], [5], [6], often called the Dowell method, is to use
the analytical solution for a foil conductor as an equivalent to
round conductors in the same layer with the same total cross-
sectional area. Another type of method is called the Ferreira
method or the Bessel-function method [7], [8], [9], [10], [11],
which is to use the analytical field solution of a single isolated
round conductor which is subjected to an external uniform
field.

Both the Dowell method and the Bessel-function method
can have large error (up to 60% to 150%) at high frequencies
[12]. Another kind of approach used to calculate eddy-current
loss is to employ numerical methods such as finite element
analysis (FEA) to find the field solutions. Through FEA, it
is possible to find the loss for any given configuration to
any desired degree of accuracy, though it may be very time-
consuming and one solution can only be applied to one certain
configuration. Several approaches [13], [14] have been used
to overcome the limitations of direct numerical methods as
discussed in [12].
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Fig. 1. FEA simulation configuration for a rectangular winding of round
conductors. The power loss in the shaded area represents half the proximity-
effect loss per unit length in each turn of a winding with interwire distance
v and interlayer distanceh.

To find the behavior of a round wire in a winding, [12] used
FEA for a single wire with symmetry boundary conditions as
shown in Fig. 1. Loss in the simulation region can represent
proximity-effect loss in half of a round conductor in a winding
with interlayer distanceh and interwire distancev. The setup
of the boundary conditions was discussed in detail in [12].
Reference [12] collected data of power loss and field solutions
for a range of wire spacings in two directions and for ratios
of wire diameter to skin depth ranging from 0.6 to 60,
and showed that the proximity-effect loss factor, which is
proximity-effect loss in a conductor normalized by the square
of the external field, not only increases with frequency, but also
depends on the interwire distance in a layer and the interlayer
distance. Based on these results, [12] gives a function that
approximates the simulation results much better (error less
than 2%), and provides a table in which the parameters of the
function can be looked up according to the wire spacings.

In this paper, we improve on the model provided in [12]. As
in [12], the new model gives a more accurate loss prediction
than the Dowell method or the Bessel-function method, and
works for a large range of frequencies and for any wire size
and winding geometry used in practice. However, the functions
have been simplified and adjusted to give exact results match-
ing analytical solutions in the low-frequency limit, and the new
model does not require a large table of parameters as in [12],
but instead uses simple functions to get the parameters from
winding geometry. In addition to presenting this improved
model for proximity-effect loss factor, we examine the field
expression needed to get the total proximity-effect loss, discuss
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the inclusion of the skin-effect loss, and show that using a
simple model for skin-effect loss gives only small errors. Thus,
we are able to provide a complete model for calculating the
winding losses for round conductors configured as shown in
Fig. 1. We also present experimental results confirming the
validity of the model and its superiority to standard methods.

Section II discusses in detail how we decompose eddy-
current loss into skin-effect loss and proximity-effect loss.
In Section III, the model for calculating proximity-effect loss
factor is presented and its accuracy is analyzed. Section IV
shows how to calculate the total ‘proximity field’ in a winding,
which is another important factor that determines the total
proximity-effect loss besides proximity-effect loss factor. In
Section V, we discuss the calculation of skin-effect loss.
Experimental results are given in Section VI that prove the
validity of our model.

II. D EFINITIONS AND DECOMPOSITION OFSKIN -EFFECT

LOSS ANDPROXIMITY-EFFECTLOSS

Winding loss at high frequencies is caused by eddy-current
effects. Generally, eddy-current effects are divided into skin
effect and proximity effect. The classical definition of skin-
effect loss is the extra AC loss in a single isolated conductor
which is carrying a time-varying current. And the correspond-
ing definition of proximity-effect loss in a winding is defined
as the total eddy-current loss minus the classical skin-effect
loss.

The classical definitions of skin-effect loss and proximity-
effect loss can help us better understand the behavior of
a conductor at high frequencies. However, they don’t help
much in solving the eddy-current problem. To calculate the
proximity-effect loss based on the classical definition, one
has to know the field distribution and current distribution
beforehand, which is almost impossible. To decompose loss
into two parts that are easy to calculate and avoid analyzing
the local proximity field in each conductor, we use a different
definition of proximity-effect loss. We define proximity-effect
loss in a winding as the loss due to the external field applied
on a matrix of wire (the winding), and the corresponding
definition of skin-effect loss is the total eddy-current loss
minus that proximity-effect loss, which is equal to the loss in
a conductor carrying time-varying net current and subjected
to specified boundary conditions as shown in Fig. 2.

Fig. 2 shows in detail how the total current (including eddy
current) in a winding is decomposed into skin-effect current in
A and proximity-effect current in B by our definitions and also
how the field on the winding is decomposed corresponding to
the current decomposition. The fact that the currents in con-
figuration A and B add up to current in C doesn’t necessarily
mean that the loss in A and the loss in B add up to loss in
C. The total losses can be obtained by adding losses in A and
B only if we can prove that orthogonality exists between skin
effect and proximity effect in Fig. 2.

Reference [7] discussed conditions under which orthogo-
nality is valid. A sufficient (but not necessary) condition for
the sum of the loss in A and the loss in B to be identical to
the total loss is that the conductor has an axis of symmetry
in geometry and the current distribution in A has an odd
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Fig. 2. Decomposition of total loss into skin-effect loss and proximity-effect
loss in a winding.

symmetry about this axis while the current distribution in B
has an even symmetry, or vice versa. It is straightforward that
the configuration and current distributions in A and B in Fig. 2
satisfy these two conditions. Thus the total eddy-current loss
in one conductor in C will be:

Ptotal,ac = Pproximity−effect + Pskin−effect (1)

Pproximity−effect =
ĜH2

σ
(2)

whereĜ is the normalized unitless proximity-effect loss factor
as in [12]: the proximity-effect loss per unit length in a
conductor in a winding, normalized by the external field which
the winding subjected to and by the conductivity, andH is
the magnitude of external field or so-called ‘proximity field’
the winding is subjected to. From Fig. 2, we can see that the
total field on the conductor can be decomposed into a uniform
‘external field’ componentH plus H0 or −H0 caused by net
current in the conductor, whereH is the external field used to
calculate proximity-effect loss and is the average of the fields
on each side of the windingH1 andH2:

H =
H1 + H2

2
(3)

Similar field decomposition method and orthogonality between
skin effect and proximity effect also apply to foil-conductor
windings. In the appendix, we show that the analysis of
winding loss based on orthogonality leads to the same result
as the analytical solution of field and loss in foil-conductor
windings.

III. M ODEL FORCALCULATING PROXIMITY-EFFECT

LOSSES IN AWINDING

In [12], we performed 4000 simulations for various winding
geometries and various frequencies and then did curve fitting
of Ĝ based on the simulation data. The results were given in
the form of a function whose parameters are determined by
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the winding geometry and can be looked up in a table. Our
aim here is to create a similar function based on the same data
from 2-D simulations but to avoid the unwieldy table needed
in [12] by providing a function to calculate parameters directly
from the geometry.

The new functional form of our model of the proximity-
effect factor Ĝ is the weighted average of two different
functions. One is called the modified Dowell function:

Ĝ1(X) =
3π

16
k−3X

sinh(kX)− sin(kX)
cosh(kX) + cos(kX)

(4)

wherek is a function of wire spacingsv/d andh/d andX is
defined as:

X =
d

δ
= d

√
πσµf (5)

whered is the diameter of the conductor,σ is the conductivity,
µ is the permeability of the conductor material, andf is the
frequency.

The other function is called the dual-slope function:

Ĝ2(X) =
π

32
X

(X−3 + b3)
(6)

The dual-slope function was discussed in detail in [12].
The factors of3π/16 in (4) and π/32 in (6) ensure that

both of them give the exact solutionπ32 (d
δ )4 at very low

frequenciesd/δ ¿ 1, which is derived from the Bessel-
function method’s solution. At low frequencies, the Taylor
expansion of sinh(kX)−sin(kX)

cosh(kX)+cos(kX) is 1
6x3k3. The k3 factor in

this expansion cancels thek−3 factor in (4), makingĜ1

independent ofk at low frequencies. Sincek is the only
parameter in (4) which is related to wire spacings,Ĝ1 is
independent of the turn spacing, which makes physical sense,
because at low frequencies, the field caused by eddy current in
nearby conductors is very small and negligible. Compared to
the function forms in [12], (4) and (6) are simpler and ensure
the accuracy of the model in the low-frequency range when
d/δ is much smaller than one.

As shown in [12], the (6) provides a better fit for some ge-
ometries, whereas (4) provides a better fit for other geometries.
To allow fitting data with either shape, or any intermediate
shape, we used a weighted average of the two functions (4)
and (6), with weightingw:

Ĝ = (1− w)Ĝ1(X) + wĜ2(X) (7)

By fitting (7) to the 100 sets of data (in each set of data
d/δ sweeps from 0.6 to 60 with 40 samples evenly distributed
on a log scale), we obtained 100 sets ofw, k, and b values,
defining curves which fit the data from 2-D FEA simulations
much better than original Dowell model. Each set of values
corresponds to a differentv/d andh/d.

To use the results of curve-fitting and to avoid a large table
as provided in [12], we studied different possible curve-fit
functions that would give values ofw, k and b based on the
values ofv/d andh/d.

In order to findw(h/d, v/d), k(h/d, v/d) andb(h/d, v/d),
first, we chose the appropriate models for the curve-fitting of

w, k andb versush/d andv/d. By looking at plots ofk and
b, we found that the model

f(Y, s1, s2, q) =
s1 − s2

Y −1 + q−1
+ s2 (8)

would be able to describe accurately howb andw change with
normalized interwire distancev/d and normalized interlayer
distanceh/d, where Y is the input—wire spacingv/d or
h/d—whereass1, s2 and q are parameters. It is a simplified
form of the dual-slope function wheres1 and s2 decide the
two slopes, andq defines where the curve transitions between
these two slopes.

Simulation data of proximity-effect loss factor̂G shows an
overshoot at the transitions. This overshoot is exhibited by
the modified Dowell function and does not exist in the dual-
slope function. Thus, weightingw determines the extent of
overshoot in (7). A model for the variation ofw for various
combinations ofv/d andh/d can be constructed using curves
of the form

w(Y ) = c1 ± (u1 − u0e
− Y

Y0 )2. (9)

The shape of thew(Y ) curve is like a parabolic curve with a
small input valueY and turns into a constant with large values
of Y . Several such curves are combined with a weighting
determined byh/d.

Second, we did curve-fitting fork, b and w. For example,
to find the parameters for the model ofk(v/d, h/d), we first
found 10 sets ofs1, s2 andq for (8) for different values ofh/d,
and then chose the curve-fitting functionss1(h/d), s2(h/d)
and Tp(h/d). After the initial function forms and parameter
values are found fork, b andw, we adjust all the parameters
of k(v/d, h/d), b(v/d, h/d) andw(v/d, h/d) simultaneously
to make (7) fit the simulation data best. Finally, the functions
for b, k andw can be given as:

b(v/d, h/d) = f

(
v/d, f(h/d, s1b,1, s2b,1, qb,1),

f(h/d, s1b,2, s2b,2, qb,2), f(h/d, s1b,3, s2b,3, qb,3)
)

(10)

k(v/d, h/d) = f

(
h/d, f(v/d, s1k,1, s2k,1, qk,1),

f(v/d, s1k,2, s2k,2, qk,2), f(v/d, s1k,3, s2k,3, qk,3)
)

(11)

w(v/d, h/d) = (h/d)w1(v/d) + w2(v/d)

w1(v/d) = c11 − (u11 − u01e
− v/d

Y01 )2

w2(v/d) = c21 + (u21 − u02e
− v/d

Y02 )2 (12)

The parameters in (10), (11) and (12) are in Table. I.
The error of our model ((4), (6), (7), (8) and (10)–(12)) is

within 4% in the range of frequency up tod/δ = 60, v/d
from 0.02 to 1.40, andh/d from 0.02 to 1.90, compared to
FEA results both from the original 4000 simulations on which
our curve-fitting is based, and also another 800 simulations we
did for different interpolation values ofh/d, v/d andf in the
same range.

Fig. 3 compares maximum error for any geometry at a
certain frequency given by each of three models: our model,
the Dowell method, and the Bessel-function method. Errors are
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TABLE I

PARAMETERS FORb, k AND w TO BE USED IN (10), (11)AND (12)

s1b,j s2b,j qb,j

j = 1 −0.0037 0.0432 −0.0661
b j = 2 1.8167 0.0074 0.2195

j = 3 0.7053 0.8378 23.8755

s1k,j s2k,j qk,j

j = 1 1.0261 0.8149 9.3918
k j = 2 0.4732 0.8023 1.2225

j = 3 0.0930 0.2588 −0.0334

c11 = 0.0596 u11 = 0.1558 u01 = 0.3477 Y01 = 1.0673
w c21 = 0.0018 u21 = 0.1912 u02 = 0.2045 Y02 = 1.3839

relative to the simulation results which have less than 0.1%
error. We can see that at frequencies whered/δ is larger than
one, both the Bessel function method and the Dowell method
can give very large error, from 60% to 120%, while our model
only gives error less than 4%. At low frequencies, the Dowell
method’s error goes to 4.7%, while both the Bessel-function
method and our model give error much smaller than that. At
d/δ ¿ 1, the proximity-effect factors given by Bessel-function
method and our model converge, and their error is below the
simulation error of 0.1%.

A contour plot of maximum errors with various geometries
is shown in Fig. 4. From Fig. 4, we can see that the largest
error of our model—exceeding 3%—happens in geometries
where the interlayer distanceh is small and the interwire
distancev is large, which is a rare situation in practical
design—error there doesn’t matter much. The largest error
also happens when bothv and h are very large. Based on
2-D simulation results shown in [12], proximity-effect factor
increases with the increase ofv/d and the decrease ofh/d. To
minimize the proximity-effect loss, generally we would like to
have smallv/d and largeh/d. Fig. 4 shows that in the region
of small v/d and largeh/d, our model gives error smaller
than 3%.

IV. F IELD CALCULATION FOR A TRANSFORMER

As discussed in Section II, the field magnitudeH used for
calculating proximity-effect loss is the average of the fields on
each side of the conductor. In this section we will discuss how
to calculateH for a simple transformer winding. However, the
proximity-effect loss factorĜ is independent of the overall
field and can be used broadly in various field shapes.

In the pth layer of a simple layer-wound transformer
winding of m layers, the magnitude of external field is:

H =
(2p− 1)

2
NmI

bw
(13)

where bw is the breath of winding window,N is the total
number of turns, andI is the peak current carried by each
turn.

For the convenience of using (13) in (1), we can obtain the
average of square of the field inm layers:

H2 =
1
3

(NI)2

bw
2 (1− 1

4m2
) (14)

Assuming that the field varies linearly over the winding
layer thickness and that the number of layers is very large,
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Fig. 3. This plot compares the maximum error for any geometry at a
certain frequency given by each of the three models: our model, the Dowell
method, and the Bessel-function method. At low frequencies, the Dowell
method’s error goes to 4.7%, while both the Bessel-function method give
error much smaller than that. Atd/δ ¿ 1, the proximity-effect factors given
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the simulation error of 0.1%. At higher frequencies, our model always gives
a more accurate prediction than the Dowell method (up to 60% error) and the
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within 4%. Generally our model gives a smaller error (within 3%) at smaller
interwire distancev, which is the geometry most frequently used in practice.

the most generally used average field for a multilayer winding
is [15]:

H2 =
1
3

(NI)2

b2
w

(15)

Although (14) is a better formula to use especially for a one
or two layer winding, when the number of layers is large, the
error of (15) compared to (14) is very small. For example, the
error is less than 3% atm = 3.

V. D ISCUSSION OFSKIN -EFFECTLOSSES OF A

CONDUCTOR IN A WINDING

The loss increase at high frequencies caused by skin effect
for a single isolated round conductor can be expressed in the
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form of the ratio of AC resistance and DC resistance [6]:

Rac,skin

Rdc
=

γ

2
berγbei′γ − beiγγber′γ

ber′2γ + bei′2γ
− 1 (16)

whereγ is:

γ =
1√
2

d

δ
=

1√
2
X (17)

Equation (16) is for a conductor carrying a specified current
which is not subjected to any external field. But according
to our definition of skin-effect loss, the skin-effect loss of
conductors in a winding will be larger than that in (16)
because the current distribution will be affected by other
conductors, even in a layer which is not subjected to any
external ‘proximity’ field.

We performed 2-D FEA simulation for a configuration as
shown in Fig. 5 to find out the scope of error caused by using
(16) to calculate skin-effect loss in our definition. Fig. 5 is an
equivalent setup for A in Fig. 2. Atd/δ = 8, the difference
between the loss prediction of (16) and the simulation result
is about 20% of the skin-effect loss and 11% of the skin-
effect loss plus resistive loss. However, this difference is only
about 1% of the total loss which also includes the proximity-
effect loss in a one-layer winding. When the number of layers
increases, proximity-effect loss becomes more significant and
dominates the total loss, the error in calculating skin-effect
loss is negligible in the total loss.

In a one-layer winding, the percentage of error caused
by using approximate skin-effect loss calculation is given in
Fig. 6. In a multi-layer winding, this error will continue to
decrease as the number of layers increases. Thus we can use
(16) for calculating the skin-effect loss in our model.

Even symmetry

Odd symmetry

0.4 mm

0.4 m
m

Diameter of the 
conductor is 
0.28 mm

Fig. 5. Configuration of FEA simulation for skin-effect loss

VI. EXPERIMENTAL RESULTS

To validate the accuracy of our new model, we did loss
measurements on three different types of windings. All of
the three windings are on pot cores (42 mm× 29 mm)
of MnZn ferrite (Philips 3F3). All of the three windings
contain three layers of primary winding and three layers of
secondary winding. The two windings are wound in opposite
directions and are connected in series opposition to achieve
small inductance in the winding so that accurate measurement
of small winding resistance is easier. We used an impedance
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Fig. 6. Inaccuracy produced by using approximate formula (16) is below 1%
of the total winding loss. Though using (16) to calculate the skin-effect loss
(by our definition) can produce error as large as 20%, this error is negligible in
the total eddy-current loss, in which skin-effect loss is always a small part over
the frequency range. The plot is for a one-layer winding withv/d = 0.4286
andh/d = 0.4286. In a multilayer winding, inaccuracy in calculating skin-
effect loss will be even more insignificant compared to the total loss, because
proximity-effect loss dominates.
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Fig. 7. Comparison of experimental data for winding type A to the results
given by our new model

analyzer to measure the AC resistance over the frequency
range of 1 kHz to 2.5 MHz. Also, the error caused by the
parasitic capacitance was compensated using the circuit model
in [16]. Specifications of the three winding types are in Table
II.

In Fig. 7, Fig. 8 and Fig. 9, we can see that our model fits
the experimental data better than either the Dowell model and
the Bessel-function model.

Winding type A and winding type C have the same interwire
distancev and same wire diameter, while winding C has a
larger interlayer distanceh than winding type A. Winding
A will have larger winding loss according to our model’s
prediction. Though the difference in loss between experimental
data in Fig. 7 and 9 is not obvious, a closer examination
of the experimental data revealed that atd/δ around3 the
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TABLE II

SPECIFICATIONS OF THE WINDINGS MEASURED

Winding type Wire Insulation on wire Insulation between layers Actual averagev/d Actual averageh/d
A 22 AWG magnet wire single build one layer of tape 0.28 0.29
B 22 AWG solid wire 0.25 mm teflon — 1.43 1.43
C 22 AWG magnet wire single build 5 layers of 0.29 1.50

polypropylene tape
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Fig. 8. Comparison of experimental data for winding type B to the results
given by our new model
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Fig. 9. Comparison of experimental data for winding type C to the results
given by our new model

loss in type C is 1% larger than the loss in type A, which
matches the prediction of our model. At higher frequencies,
our experimental data on winding type A and C doesn’t show
the same loss difference. This may be due to the limitation of
our compensation of parasitic capacitances.

Loss in winding type B is smaller than that of winding
type A or that of winding type C. This is because there are
fewer turns per layer in winding type B and smallerH. To
minimize the proximity-effect loss for the same number of
turns, winding type C, with minimum interwire distance and

large interlayer distance, will be the best.

VII. C ONCLUSION

In this paper, based on 2-D FEA simulation data, we present
a complete model for calculating the eddy-current winding
losses in a winding of round conductors. Compared to other
methods, our method of calculating winding loss has the
following advantages: First, our method’s results are based on
FEA simulations on a 2-D model of the winding, which are
inherently more accurate than the previously used approximate
models such as Dowell’s 1-D model and the Bessel-function
model, which neglects the interactions between conductors.
Second, our loss model is able to describe the behavior of a
winding with various geometry parameters over a wide fre-
quency range, and our method separates overall field analysis
from the analysis of local eddy currents thus the result can be
extended to any field shape. Third, our model is presented as
a closed-form function, such that designers can use it directly
to calculate loss and thus avoid the pain of FEA simulations.
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APPENDIX

The decomposition of orthogonal skin effect and proximity
effect in Fig. 2 works for any conductor or group of conductors
which has a symmetric shape. We can use the foil conductor as
an example to explain how the orthogonality works and show
that the average of the fields on each side of the winding is
the right H to use for (2). The loss per unit length in a foil
conductor is given in [17]:

P =
1
2

bρ

δ
[(H1 −H2)2F (h/δ) + 2H1H2G(h/δ)] (18)

whereh is the thickness of the conductor,b is the width of
the conductor,ρ is the resistivity of the conductor,H1 andH2

are the field magnitudes on each side of the foil, andF and
G are functions of the skin depthδ:

F (x) =
sinh(2x) + sin(2x)
cosh(2x)− cos(2x)

(19)

G(x) =
sinh(x)− sin(x)
cosh(x) + cos(x)

(20)

The loss per unit length in a foil conductor which is
subjected to an external field of peak valueH is:

Pproximity =
bρ

δ
H2G(h/δ) (21)

The skin-effect loss in a foil conductor in a winding window
will be:

H1 = −H2 =
I

2b
; Pskin =

ρ

2δ

I2

b
(F (h/δ)− 1

2
G(h/δ))

(22)
Then if we consider a one-layer winding, we know that for

that layer:

H1 = 0; H2 =
I

b
(23)

For the proximity-effect loss, if we use fieldH as average of
H1 andH2:

Pproximity =
ρ

δ

I2

4b
G(h/δ) (24)

Equation (22) gives the expression for skin-effect loss. Either
by plugging (23) into (18) or by add (22) and (24), we get an
identical total loss expression for a one-layer winding:

P =
ρ

2δ

I2

b
F (h/δ) (25)

This shows that the decomposition Fig. 2 works and that the
average of the values ofH on each side of a winding layer is
the correct value to use in (2) to calculate loss.

For thepth layer in a multilayer foil winding,

H1 =
(p− 1)I

b
(26)

H2 =
pI

b
(27)

H =
(2p− 1)I

2b
(28)

Pproximity =
bρ

δ

(2p− 1)2I2

4b2
G(h/δ) (29)

Pproximity + Pskin

=
bρ

δ

(2p− 1)2I2

4b2
G(h/δ) +

ρ

2δ

I2

b
(F (h/δ)− 1

2
G(h/δ))

=
ρ

2δ

I2

b
[F (h/δ) + 2p(p− 1)G(h/δ)]

=
1
2

bρ

δ
[(H1 −H2)2F (h/δ) + 2H1H2G(h/δ)] (30)

The above calculations again prove the validity of the
decomposition in Fig. 2.
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