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Abstract— Previous methods for calculating power loss in litz-
wire windings usually assume very fine strands such that the
diameter of strands is much smaller than skin depth. In this
paper, we present a method for calculating proximity-effect loss
in litz-wire windings. This method uses an equivalent complex
permeability model of the winding to describe the proximity effect.
We first obtain a permeability model for litz-wire bundles, then use
homogenization techniques to find the average permeability of a
winding. Permeability models are provided for bundles consisting
either rectangularly packed or hexagonally-packed strands. The
permeability model enables high-accuracy proximity-effect loss
analysis and field analysis for litz-wire windings at high frequen-
cies. It can also be used to find the leakage inductances in magnetic
components.

I. INTRODUCTION

Eddy-current effects, including skin effect and proximity

effect, increase power loss in windings at high frequencies

dramatically. Accurately analyzing eddy-current loss is very

important in the design and optimization of power components.

Litz wire is often used in power components to reduce the skin-

effect loss and obtain lower total loss at higher frequencies.

Previous AC winding loss calculation methods for litz-wire

windings are mostly based on the assumption of very fine

strands, such that the diameter of strands is much smaller than

a skin depth [1], [2], [3]. References [4] and [5] apply the

Bessel-function method to litz-wire windings to approximate

eddy-current loss in a wider frequency range. However, the

Bessel-function method uses the analytical field solution for an

isolated round wire subjected to an external field to approximate

the behavior of a round wire in a winding. It is only a good

approximation when the wires are far apart from each other,

which is not true for litz-wire strands and it produces large

error for solid-wire windings [6]. Numerical analysis can be

used to obtain loss results to any desired accuracy, but it

is very time consuming, especially for a litz-wire winding,

which may contain thousands of small strands. Based on high-

accuracy finite element analysis (FEA) results, a model for the

proximity-effect loss in round-wire windings was given in [6],

[7]. However, it cannot be applied directly to litz-wire windings

at high frequencies due to the special winding geometry of litz-

wire windings. In this paper, we present a model for calculating

proximity-effect loss in litz-wire windings for a wider frequency

This work was supported in part by the United States Department of Energy
under grant DE-FC36-01GO1106.

range by deriving an equivalent permeability model for litz-wire

windings from the proximity-effect loss model in [7].

The proximity-effect loss model is presented in terms of a

proximity-effect loss factor, which is power loss per length

normalized to the square of external field magnitude [7]. The

proximity-effect loss factor describes the eddy current loss

caused by an external time-varying field in a conductor matrix

consisting of repeating cells of round conductors (with space

between each). To model proximity effect in such a wire matrix,

the conductor matrix can also be considered as a block of

nonconductive material with complex permeability [8], [9]. The

complex permeability of the winding can be derived from the

proximity-effect loss model based on the relationship between

power loss and the imaginary part of permeability using the

physical relationship between real and imaginary permeability

[10]. The complex permeability model, like the proximity-effect

loss model in [7], separates the overall field analysis from the

local eddy-current analysis in each conductor. Furthermore, the

complex permeability model contains information about how

the local eddy currents affect the overall field distribution and

can be help for solving the overall field distribution, especially

in a winding with two-dimensional (2-D) geometry such as a

litz-wire winding.

(a) Winding level (b) Bundle level (c) Strand level

''' BB jµµ −
0µ ''' BB jµµ −0µ''' ww jµµ −

Fig. 1. The modelling process for a litz-wire winding

In a litz-wire winding, as shown in Fig. 1, conductors are

arranged in a more complex pattern than in solid-wire windings;

thus the equivalent complex permeability model for a litz-wire

winding cannot be obtained directly from the proximity-effect
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Rectangular Arrangement Hexagonal  Arrangement

Fig. 2. Two ideal arrangements of conductors in a winding

loss factor for a solid-wire matrix. This is an eddy-current

problem and can be solved using FEA.

Alternatively, the eddy-current field problem for high-

frequency litz-wire windings can be solved by treating each

bundle as a cylinder made of material with known permeability

µ
′

B − jµ
′′

B . Then, by magnetostatic field analysis and the aid of

FEA, we can homogenize repeated cells of bundles and find

the average permeability of a litz-wire winding µ
′

w − jµ
′′

w.

The complex permeability model for litz-wire windings can

help us obtain a more accurate proximity-effect loss expression

at high frequencies where the diameters of the strands are

larger than the skin depth. Also, it helps us simplify an eddy

current field computation problem to a problem similar to a

magnetostatic problem but with all the quantities phasors and

find the field distribution without solving for the local eddy

current distribution inside each winding, which is much more

time-efficient than direct FEA.

There are different possible packing patterns in windings

[1] and also inside litz-wire bundles. To see how the different

winding patterns affect proximity-effect loss, we investigate

both the proximity-effect loss in rectangularly packed wires and

hexagonally-packed wires (as shown in Fig. 2) and present loss

models and permeability models for both. This investigation

would also be useful for proximity-effect loss calculations in

solid-wire windings.

In Section II, we review numerical simulation results of

the complex permeability for solid-wire windings and how to

derive complex permeability models from the proximity-effect

loss factor model [10]; similar models for hexagonal windings

are derived in Section III for the need of modelling different

possible packing patterns in practical windings; In Section IV,

we discuss the homogenization of the litz-wire bundles and the

spaces between bundles as is needed for calculating complex

permeability for litz-wire windings.

II. COMPLEX PERMEABILITY MODEL FOR A SOLID-WIRE

WINDING

In this section we review the complex permeability model for

a solid-wire winding that was developed in [10]. The overall

d+v

d+h

d

air

copper

�
(f)=

�
'(f)-j

�
"(f)

=

Block of material 

with permeability:

Fig. 3. Definition of complex permeability of a winding. The left half of the
figure shows a cell of the cross section of a winding of round conductors with
diameter d. The distance between each wire in the field direction is called v and
the distance between wires in the other direction is defined as h; the right half
shows its equivalent at high frequencies—a block of material with permeability
µ′

− jµ′′.

equivalent complex permeability of a winding is defined and

calculated in [10] as:

µe = B/H = B′ + jB′′/(H ′ + jH ′′) (1)

where B and H are particular types of averages of B and H ,

chosen such that their ratio gives the effective permeability. B
is the total complex flux through the winding area divided by

d + h and H is the integration of complex H along the field

direction divided by the length d + v. h, v and d are defined in

Fig. 3.
The overall complex permeability of a solid-wire winding

can be obtained from numerical simulations in a setup as

in Fig. 3. The FEA results for complex permeability shows

that the real part of the relative permeability is one at low

frequencies where the wire diameter is much smaller than skin

depth [10]. At high frequencies, the real part of the complex

permeability of the winding goes to a constant which depends

on the winding geometry and the ratio between copper area

and air area. The imaginary part of the complex permeability

of the winding is approximately proportional to frequency f at

low frequencies and proportional to f−0.5 at high frequencies.

Different distances between wires in the same layer v change

the distribution of eddy currents and change the equivalent

permeability of one layer.
The imaginary part of the complex permeability µ′′ is directly

related to the power loss (or power dissipation) [9]. If a block of

material with permeability µ′ − jµ′′ is subjected to an external

field with magnitude H0:

Pv = µ′′ωH2

0
(2)

where Pv is power loss per unit volume.
Given a model of proximity-effect loss factor Ĝ—defined

as proximity-effect loss per unit length normalized by H2

0

and conductivity σ in [7]—and (2), the imaginary part of

permeability is easily obtained:

µ′′ =
Ĝ

2πf(d + h)(d + v)σ
(3)
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Fig. 4. Real part of relative permeability of two windings with different
interwire distances v and the same interlayer distance h/d = 1.2619
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Fig. 5. Real part of relative permeability of two windings with different
interwire distances v and the same interlayer distance h/d = 1.2619

where µ′′ is the imaginary part of the complex permeability of a

winding in which the spacing between each wire parallel to the

field direction is v, the spacing in the direction perpendicular

to the field is h and the wire diameter is d.

Based on the proximity-effect loss factor model Ĝ in [7]

(also presented in the Appendix) and (3), the imaginary part of

relative permeability is:

µ′′

r =
1

2πσf

1

(d + h)(d + v)

[(1 − w)
3π

16
k−3X

sinh(kX) − sin(kX)

cosh(kX) + cos(kX)
+ w

π

32

X

(X−3 + b3)
]

(4)

X =
d

δ
= d

√

πσµf

(5)

where w is a weight function determined by winding geometry;

k and b are also functions of winding geometry parameters

v/d and h/d, σ is the conductivity of wire material and µ is

permeability. Expressions for w, b and k can be found in the

Appendix.

A physical relationship exists between real and imaginary

permeability of material, which is called the Kramers-Kronig

relation. The Kramers-Kronig relation, which states that real

and imaginary parts of complex permeability are Hilbert pairs,

is valid because of the causal connection between magnetization

and magnetic field:

µ′(ω) =
2

π

∫

∞

0

µ′′(η)η

η2 − ω2
dη + µ′

const (6)

where µ′

const is a constant determined by physical constraints.

The real part of complex permeability for a round wire is

given as [10]:

µ′

r(X) = 1 − µ̂′

r(0) + µ̂′

r(X) (7)

where µ̂′

r(X) is a frequency-dependent component of the real

part of relative permeability given by the Hilbert transform of

(4):

µ̂′

r(X) =
d2

16(d + h)(d + v)

[w
3b5X5(−1 + b6X6) + 4

√
3(−1 + b4X4)

3b2(−1 + b12X12)

+(1 − w)
3π

k3X

sinh(kX) + sin(kX)

cosh(kX) + cos(kX)
] (8)

III. POWER LOSS MODEL AND COMPLEX PERMEABILITY

MODEL FOR HEXAGONALLY PACKED WINDINGS

There are two types of ideal arrangements of round con-

ductors in a winding: rectangular and hexagonal. It’s difficult

and unnecessary to accurately position the strands in a practical

round litz-wire bundle in either of the ideal packing arrange-

ments shown in Fig. 2, because usually there are a lot of

very fine strands in litz-wire bundles. Practical litz wire very

probably is a combination of these two packing patterns. So, it

is useful to inspect the proximity-effect loss in both kinds of

packing patterns.

We performed FEA simulations for eddy-current loss in a

similar way as for solid-wire windings in rectangular packing

[6]. To take insulation on wires and packing effects into account,

we define d0 as the diameter of the area occupied by each

wire, and d as the diameter of the actual copper area. We

obtain proximity-effect loss results for a conductor as shown

in Fig. 6. The proximity-effect loss factor for hexagonally

packed windings is the same as that of a rectangularly packed

winding at very low frequencies. At high frequencies, given two

windings with the same wires and the same insulation but with

a different packing pattern, the hexagonally packed winding has

a larger proximity-effect loss factor. The difference in packing

patterns has a larger effect on the proximity-effect loss when the

distance between wires (the ratio between d0 and d) is smaller.

According to our FEA results, the difference in proximity-effect

factor is around 10% for these two packing patterns at high

frequencies where diameter is ten times of the skin depth and

when d0/d is 1.3.
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Fig. 6. FEA simulation configuration for a hexagonal winding

Proximity-effect loss factor Ĝhex for a hexagonally packed

winding is found by performing curve fit with a similar function

form as that of the proximity-effect loss factor model for

rectangularly packed windings to match the simulation data:

Ĝhex(X) ∼=

(1 − whex)
3π

16
k−3

hexX
sinh(khexX) − sin(khexX)

cosh(khexX) + cos(khexX)

+whex

π

32

X

(X−3 + b3

hex)
(9)

The values of whex, khex and bhex are:

bhex(λ) = 0.1401e−1.4717λ + 0.4284

khex(λ) = −0.2064λ + 1.5970 (10)

whex(λ) = 2.4555

where λ is defined as:

λ = d0/d − 1 (11)

The complex permeability model for hexagonally packed

windings is similar to that for the rectangularly packed winding

in (4) and (8). However, the area per wire d2(1 + v)(1 + h)
should be replaced by

√
3d2(1 + λ)2/2, and b, w and k should

be replaced by bhex, whex and khex.

In practice, usually, an average packing factor Fp can be

easily found from manufacturer’s data or measurements for

litz-wire bundles [2], which is defined as the ratio between

copper area and area of a single bundle. However, the packing

pattern is not specified. To use a complex permeability model

for litz-wire bundles, the user must choose the packing pattern

style (or combinations of packing patterns) and determine the

geometric parameters d, h and λ from the packing factor

information. There are a few possible choices when determining

these geometric parameters. We inspect how much difference

in proximity-effect loss prediction might result from different

choices of geometric parameters for the same numbers of

strands and same packing factor.

For the same setups such as the same wire diameters and

same insulation thicknesses, hexagonally packed windings have

a larger packing factor than rectangular windings have. In the

ideal case, the packing factor Fp,hex of hexagonally packed

winding is 2/
√

3 of that of a rectangularly packed winding

Fp,rec:

Fp,hex =
2
√

3
Fp,rec (12)

assuming infinite area and same insulation thickness.

In our comparison, we assume a given area and a given

packing factor (the ratio between copper area and total area).

We compare three different rectangular winding types to a

hexagonally packed with the distance between wire centers d0:

The first one is rectangularly packed with:

h = d0 − d

v =
√

3d0/2 − d (13)

The second one is rectangularly packed with:

v = d0 − d

h =
√

3d0/2 − d (14)

The third one is a squarely packed winding with:

h = v =

√√
3/2d0 − d (15)

All of the above geometric arrangements result in same

packing factor and all have very similar proximity-effect loss

factors at low frequencies (for strand diameter less than a skin

depth) or at any frequency when the filling factor is low. At

high frequencies with high filling factors, FEA results show that,

compared to square-packed windings with the same fill factor

as setup in (15), hexagonally packed windings have a slightly

larger proximity-effect loss factor. However, if the comparison

is made with the same spacing between strands, the situation

is reversed, and square-packed windings have a slightly higher

proximity-effect loss factor than hexagonally packed windings.

Rectangularly packed windings with the same packing factor

as the hexagonally packing winding and with unequal vertical

and horizontal spacing were also analyzed. Based on previ-

ous work [6] we expect lower proximity effect loss factor

when the vertical spacing v (in the direction of the field) is

small and when the horizontal spacing h (perpendicular to

the field direction–between layers) is large. As expected, the

rectangularly packed winding with large h and small v (as in

(13)) had low high-frequency proximity effect loss factor, lower

than the hexagonally packed winding; and the rectangularly

packed winding with large h and small v (as in (14)) had

high high-frequency proximity effect loss factor, higher than

the hexagonally packed winding.

IV. COMPLEX PERMEABILITY MODEL FOR LITZ-WIRE

BUNDLE

To find the equivalent permeability of a litz-wire winding,

we first find the effective permeability of each bundle using

the method presented in Section II and Section III. Fig. 8

shows the process of homogenization of litz-wire bundles. In

order to find the equivalent permeability of a bundle cell as
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onally packed winding, as specified in (15). The top and bottom lines, marked
with squares and triangles, represent rectangularly packed configurations that
are not square, as specified in (14) and (13), respectively. All curves are for
d/δ = 16.

defined by (1), we perform FEA simulation on the magnetostatic

problem represented by Fig. 8. The equivalent permeability is

determined by two variables: the permeability of the litz-wire

bundle (circular area) µ1 and the area ratio rs which is defined

as:

rs =
Abundle

Acell

. (16)

in Fig. 8. Abundle is the area of a circular bundle, and Acell is the

area of the square-shaped bundle cell. FEA results are shown in

Fig. 9. The relationships between µavg and these two variables

are approximately linear when µ1 isn’t too small (larger than

0.3) and the area ratio is not too large (smaller than 0.75).

Fig. 10 shows two geometry situations under which average

permeability of the setups can be easily determined. The average

permeability of a block of material with relative permeability

µ1 and air can be given as:

µe1 = µ1rs + 1 − rs (17)

for (a) in Fig. 10, and

µe2 =
µ1

µ1(1 − rs) + rs

(18)

for (b) in Fig. 10, where rs is the area ratio of the block with

permeability µ1. Calculations in (17) and (18) are based on the

assumptions that the field at the boundaries of the two blocks

are either parallel to the boundary as in (a) or perpendicular to

the boundary as in (b). Neither assumption can be applied to

the geometry of a litz-wire bundle in Fig. 8. We compared the

d

air

Litz-wire bundle with known 

permeability 
�

1; Area ratio rs

Equivalent permeability
�

e

Fig. 8. Homogenization of litz-wire bundles
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Fig. 9. This figure shows the FEA simulation results of average permeability
µavg of a square block consisting a circular region with permeability µ1

surrounded by air. The average permeability changes with µ1 and the area ratio
rs of the circular region . From the figure, the relationships between µavg and
these two variables are approximately linear when µ1 isn’t too small (larger
than 0.3) and the area ratio is not too large (smaller than 0.75).

average permeabilities given by (17), (18) and the equivalent

permeability given by FEA for various sets of µ1 and rs. The

comparison shows that both (17) and (18) are accurate for the

geometry in Fig. 8 at extreme case where µ1 = 1 or rs = 0.

However, using (17) overestimates the equivalent permeability

and using (18) underestimates the equivalent permeability. The

errors of simple area-weighting averaging methods in (17) and

(18) can be as large as 20% for large rs and small µ1, as shown

in Fig. 11 and Fig.12.

A simple combination of the two area-weighting averaging

methods can improve the predication accuracy:

µe = wtµe1 + (1 − wt)µe2 (19)

where µe is the average permeability of a square area containing

a circular area with permeability µ1 in the center, and rs is the

area ratio of the round shape. The value of wt is varied to

achieve best fitting to FEA data and is found to be 0.68 at the

smallest total error.
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Fig. 11. This figure compares the FEA simulation results of average perme-
ability µavg with the predications of two area-weighting averaging methods in
(17), (18) and the combination of (17) and (18) in (19) for area ratio rs = 0.20
and various µ1.

Using (19) to predict µavg produces less than 1% error

relative to FEA results for µ1 ≥ 0.2 and rs ≤ 0.55. For larger

area ratio rs up to 0.74 (Note the maximum rs is π/4), the

error increases slightly but remains within 5%. We checked

the possible insulation between strands in litz-wire windings

and the corresponding permeabilities based on the simulation

results in Section II. The real part of complex permeability is

larger than 0.5 for a bundle consisting of single build insulated

strands up to the frequency where d/δ is 60. The area ratio rs

is always less than π/4 and usually smaller with served litz-

wire bundles. Furthermore, in some litz-wire windings thick

insulation between layers is used; thus there would be extra

spaces between the square bundle cells, which is similar as the

setup shown in Fig. 10. Simple averaging as in (17) can be

combined with (19) to find the average permeability of these
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Fig. 12. This figure compares the FEA simulation results of average permeabil-
ity µavg with the predications of two area-weighting averaging methods in (17),
(18) and the combination of (17) and (18) in (19) for area ratio rs = 0.54 and
various µ1. Averaging method in (17) overestimates the equivalent permeability,
while averaging method 2 (18) underestimates the equivalent permeability of
the geometry setup in Fig. 8. The combination of them can give a pretty good
prediction of equivalent permeability µe.

windings.

V. CONCLUSION

In this paper, a complex permeability model for proximity

effects in high-frequency litz-wire windings is presented. The

model is derived from the proximity-effect loss model based

on high-accuracy numerical simulation data. Models for two

different strands-packing patterns—rectangularly packing and

hexagonally packing—are presented and discussed. Homoge-

nization of litz-wire bundles is also discussed. This permeability

model enables high-accuracy proximity-effect loss analysis and

field analysis for litz-wire windings at high frequencies and is

much more time-efficient than numerical methods.

APPENDIX

The expressions for Ĝ, b, k and w are given in [7].

Ĝ(X) = (1 − w)
3π

16
k−3X

sinh(kX) − sin(kX)

cosh(kX) + cos(kX)

+w
π

32

X

(X−3 + b3)
(20)

b(v/d, h/d) = f

(

v/d, f(h/d, s1b,1, s2b,1, qb,1),

f(h/d, s1b,2, s2b,2, qb,2), f(h/d, s1b,3, s2b,3, qb,3)

)

(21)

k(v/d, h/d) = f

(

h/d, f(v/d, s1k,1, s2k,1, qk,1),

f(v/d, s1k,2, s2k,2, qk,2), f(v/d, s1k,3, s2k,3, qk,3)

)

(22)

w(v/d, h/d) = (h/d)w1(v/d) + w2(v/d)

w1(v/d) = c11 − (u11 − u01e
−

v/d
Y01 )2

w2(v/d) = c21 + (u21 − u02e
−

v/d
Y02 )2 (23)
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where:

f(Y, s1, s2, q) =
s1 − s2

Y −1 + q−1
+ s2 (24)

The parameters in (21), (22) and (23) are in Table. I.

TABLE I

PARAMETERS FOR b, k AND w TO BE USED IN (21), (22) AND (23)

s1b,j s2b,j qb,j

j = 1 −0.0037 0.0432 −0.0661
b j = 2 1.8167 0.0074 0.2195

j = 3 0.7053 0.8378 23.8755

s1k,j s2k,j qk,j

j = 1 1.0261 0.8149 9.3918
k j = 2 0.4732 0.8023 1.2225

j = 3 0.0930 0.2588 −0.0334

c11 = 0.0462 u11 = 0.1558 u01 = 0.3477 Y01 = 1.0673
w c21 = 0.0018 u21 = 0.1912 u02 = 0.2045 Y02 = 1.3839
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