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Abstract—A method to generalize square-wave core-loss
data to predict core loss with any common rectangular
voltage waveform is proposed. An automated measurement
system was used to collect the required square-wave core
characterization data for ferrite and powdered-iron cores, and
to collect additional data to assess the accuracy of the method
for other voltage waveforms. Measurement data is presented
and the application of the method in power-electronics design
is discussed.

I. Introduction

Core-loss data published by core manufacturers is based
on sinusoidal excitation, whereas most applications in
switching power supplies and other types of power electron-
ics circuits use rectangular voltage waveforms. Rectangular
waveforms can be described by the voltage, period, and
duty cycles of the positive and negative portions of the
waveform. This leads to a wide diversity of different possi-
ble test conditions, and it is not practical for manufacturers
to test all possible waveforms that might be used by
customers. Approximate methods to estimate expected core
loss with rectangular waveforms based on sinusoidal data
[1]–[8] exist, but are difficult to use, are inherently limited
in accuracy, and are not in wide use in industry.

In this paper, we introduce a new approach that uses
a simplified set of square-wave measurements to produce
easy-to-use data that can be applied to calculate loss for any
rectangular-voltage waveform. This approach is expected
to provide higher accuracy than is possible starting from
data based on sinusoidal waveforms, and is expected to
be easier to use than existing methods for nonsinusoidal
waveforms. The method can be applied to computerized
optimizations or in hand calculations using graphical data.
Although the data required is different from conventional
sinusoidal measurements, the amount of data needed is no
more than the amount of data collected in traditional loss
characterization.

In order to implement and evaluate the new method, we
have developed an automated excitation and data collection
system under computer control. This allows rapidly gather-
ing the proposed square-wave characterization data set, and
also faciltates scanning through other rectangular waveform

sets in order to assess the accuracy of the generalization
from the characterization data.

Previous methods for predicting core loss with rectangu-
lar waveforms based on sinusoidal data are reviewed in
Section II. The new calculation method is described in
Section III and the measurement system in Section IV.
Measurement results are presented and used to assess the
accuracy of the method in Section V. A guide to applying
the method in practical design is provided in Section VI.
Section VII further discusses the future application and
improvement of this approach.

II. Previous Methods for Core Loss with

Nonsinusoidal Waveforms

For sinusoidal waveforms, loss is often estimated by a
power law equation [9], [10]

Pv = k f αB̂β (1)

where B̂ is the peak flux amplitude, Pv is the time-average
power loss per unit volume, and f is the frequency of
sinusoidal excitation, and k, α, and β are constants found by
curve fitting. A similar equation, but without the frequency
dependence, was proposed by Steinmetz in 1892 [11],
and so (1) is often referred to as the Steinmetz equation.
Unfortunately, the Steinmetz equation, as well as the data
provided by manufacturers of magnetic materials, is based
only on sinusoidal excitation, and nonsinusoidal waveforms
result in different losses [1], [2], [5]. DC bias can also
significantly affect loss [12], [13], [14].

More detailed models, based on physical phenomena
producing loss, have been studied [15]–[18]. However,
especially for ferrites, there is not yet a clear consensus on
a practical physically-based model that properly includes
dynamic and nonlinear effects [5].

Initial attempts to make use of Steinmetz-equation pa-
rameters and extend the calculation to address arbitrary
waveforms allowed improved loss estimates, but have sig-
nificant limitations. The “modified Steinmetz equation”
(MSE) [1], [2], [3] works well for waveforms with small
harmonic content, but exhibits anomalies with large har-
monic content [5], as does the model introduced in [4],
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as discussed in [6]. The “generalized Steinmetz equation”
(GSE) was introduced in [5] to overcome anomalies in the
MSE, and although it overcomes the problems with the
MSE, it has poor accuracy in some regions [6].

A satisfactory method of using Steinmetz-equation pa-
rameters to roughly estimate loss with non-sinusoidal
waveforms, the “improved generalized Steinmetz equation”
(iGSE) was introduced in [6]. The same equation was
independently discovered in [7], [8], where it was called
the natural Steinmetz extension (NSE). Comparisons of
different approaches in [24] confirm results in [6], [7], [8]
showing that this method can work well in many situations.

An additional refinement introduced in [6] is to de-
compose a waveform that includes minor loops in the
hysteresis curve, and separately analyze the loss in each
minor loop. This was shown to be essential for accurately
modeling such cases. An automated algorithm is described
in [6] to perform this decomposition, but is unnecessary for
waveforms without minor loops.

Despite these improvements, the iGSE remains an ap-
proximate prediction method, and, in particular, is depen-
dent on the accuracy of the underlying Steinmetz model
for sinusoidal loss. Unfortunately, the best-fit Steinmetz
parameters are known to vary with frequency [25], [5]. For
waveforms with a harmonic content over a wide frequency
range, choosing the appropriate parameters can be prob-
lematic [5]. Some solutions to this problem that work for
sinusoidal waveforms (e.g., [25], [26]) are not applicable
with the iGSE. Summing several power-law terms is one
option that can be used to better capture the wide-range
frequency behavior while retaining compatibility with the
general approach of the iGSE, at the price of additional
complexity [7].

The approach in this paper is to directly measure loss
with square waveforms, rather than trying to extend data
from sinusoidal loss measurements to square waveforms.
The advantages relative to the iGSE and related methods are
both simplicity and accuracy. The challenge to developing
such a method is to be able to take data for a reasonably
constrained set of parameters, and be able to use the results
to predict loss for a wider range of practical waveforms.
This is discussed in the next section.

III. Calculating Core Loss from a Simplified Data Set

Consider a core with voltage waveforms such as those
shown in Fig. 1, typical of power electronics applications,
applied to a winding. The flux in the core will ramp up
or down during each positive or negative voltage pulse,
respectively. We hypothesize that the energy loss incurred
during each of these flux transitions depends only on the
amplitude and duration of the pulse, and that there is no
loss during periods of zero applied voltage (constant flux).
If this is the case, we can decompose any of the rectangular
waveform types shown in Fig. 1(b) into a set of two pulses,
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(a) Waveform parameter definitions

Shifted, D < 1

Asymmetric, D = 1

Symmetric, D < 1

Square

(b) Test waveform types

Fig. 1: Waveforms (voltage vs. time): parameters and test
waveform types. Square waves are used for characterizing
materials; the other test waveforms are used to test the
validity of the composite waveform hypothesis.

calculate the energy loss associated with each pulse, and
sum them to find the total energy loss per cycle. We call
this hypothesis the composite waveform hypothesis.

If the composite waveform hypothesis proves to be a
good approximation, we can predict core loss for any of
the waveforms in Fig. 1(b) if we know the loss for a
square pulse as a function of its amplitude and duration.
While we might estimate that loss from sinusoidal data
using one of the methods describe in Section II ([1]–[8]),
a more accurate approach is to collect measured test data
with square voltage waveforms, for which we can assume
that the loss associated with each pulse is one half of
the per-cycle energy loss. This requires data as a function
of two parameters, such as flux amplitude and frequency,
as used in conventional sinusoidal loss characterization.
The parameters may also be described in terms of applied
voltage per turn (corresponding to flux ramp rate) and on-
time t1 (one half the period for square waves).

The method we propose starts with characterizing a core
material by measuring loss data for square waveforms. One
half of the measured energy loss per cycle is the energy lost
for a single pulse of the applied amplitude and on-time. If
the composite waveform hypothesis is accurate, the same
loss per cycle will be incurred for that applied voltage and
on-time in any composite waveform. For the waveforms we
consider here (Fig. 1), the waveform comprises two pulses.
To find the total energy loss per cycle one sums the per-
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Fig. 2: Full-bridge excitation circuit. The device under test,
a magnetic core, is labeled DUT.

TABLE I: Sample cores.

Manufacturer Part Material Turns used
Magnetics 42206-TC R ferrite 5
Micrometals Inc. T80-52 –52 iron powder 21

pulse loss data for each of the two sets of pulse parameters
(amplitude and on-time) from the corresponding square-
wave measurements.

In Sections IV and V we report on experimental mea-
surements conducted for two purposes: 1) to collect square-
wave data for sample cores as is necessary for this method,
and 2) to assess the accuracy of the method and of the
composite waveform hypothesis. We note that all of the
previous methods for predicting loss with non-sinusoidal
waveforms discussed in Section II depend on some version
of the composite waveform hypothesis, even though this as-
sumption is rarely stated. Thus, tests of this hypothesis are
important for other approaches to predicting non-sinusoidal
losses as well as for validating the approach proposed here.

Predictive core loss models built up from fundamental
physical principals are not available for most core loss
mechanisms, and so theoretical analysis of the composite
waveform hypothesis is not possible. However, for core loss
produced purely by classical eddy-current effects, physical
models are well established, and analytical solutions exist
for some geometries. It can be shown that, for classical
eddy-current loss in core material layers thicker than or
comparable to an electromagnetic skin depth, the composite
waveform does not always hold exactly. However, it may
still be a useful approximation, and may hold exactly
for other types of losses. Thus experimental evaluation is
needed to assess its utility.

IV. Measurement System

We use a two-winding loss measurement [8] on toroidal
core samples with 5 or 21 turns to match core character-
istics to our drive system capabilities. The drive winding
is connected to a full-bridge switching network through a

blocking capacitor (Fig. 2). The gates of the four MOSFETs
are controlled by an arbitrary function generator through
a logic circuit and optically isolated gate drivers. Both
the arbitrary function generator and the dc power supply
feeding the bridge circuit are automatically controlled by
a computer to allow synthesis of a sequence of different
rectangular voltage waveforms.

Current in the drive winding is sensed with a Tek-
tronix P 6021 wide-band passive ac current probe. This
avoids the delay inherent in an active current probe; delay
measurements verify that the delay is negligible. Flux is
calculated from the voltage vs across a sense winding.
These signals are acquired by a digital storage oscilloscope
under computer control to automatically collect waveforms
from a sequence of measurements. After the waveforms are
allowed to reach steady-state, 512 periods are averaged, and
the average is recorded with 1000 points per period. Core
loss and other parameters are calculated off line from the
acquired data.

The core temperature can be controlled by immersion in
a heated oil bath. All the results reported here are for an oil-
bath temperature of 80 ◦C. The automated data collection
allows acquiring data for a single excitation in less than
two seconds; a pause of about two seconds precedes the
next excitation. Even without the oil bath, this results in
very little temperature rise; with the oil bath, temperature
deviations are negligible.

For verification of the test system, a large air-core
toroidal transformer was constructed. This would, in prin-
ciple, provide a zero-core-loss reference. However, large
stray capacitance in the transformer led to excessive ringing
in the waveforms and negative power dissipation numbers.
Future work will develop a better reference design to allow
a useful air-core test.

V. Experimental Results

Two sample cores were tested: one ferrite core and one
powdered-iron core, as listed in Table I.

A. Characterization

Fig. 3 presents square-wave loss data in two different
formats for the ferrite core. Fig. 3(a) uses a format similar
to that used for sinusoidal loss data on many datasheets.
Fig. 3(b) shows a Herbert curve in which core loss is plotted
as a function of on-time (t1 in Fig. 1(a)), parameterized
by the voltage per turn during that on-time [27]. The
Herbert curve is convenient for use in design as discussed
in Section VI; in addition, it directly illustrates the effect
of period on power loss and can help guide the choice of
switching frequency. Starting at a low switching frequency,
increasing frequency (and thus reducing the pulse width)
decreases losses, but beyond a certain frequency, further
increases not only result in diminishing returns, but actually
increase core losses. This point corresponds to pulse widths
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(b) Herbert curves: loss vs. on-time parameterized by voltage per turn

Fig. 3: Square-wave loss data for the ferrite core in Table I
presented in two different formats.

of 1.5 to 3 µs for the ferrite material tested, and thus
periods of 3 to 6 µs, and square-wave frequencies of 167 to
333 kHz. This is generally consistent with the behavior seen
in plots of “performance factor” B · f for fixed power loss
provided by some manufacturers [28], [29], [30]. However,
the frequency beyond which performance degrades is lower
in our data than in plots of performance factor for the same
material (about 600 kHz [28]), presumably because of the
harmonic energy content of the square-wave excitation.

Square-wave loss data for the powdered-iron core is
shown in the same two formats in Fig. 4, and shows similar
trends though the values are different.

B. Verification

Additional data was collected to assess the accuracy of
the method described in Section III for predicting loss for
other waveforms using only data from square-wave mea-
surements. The first category of these tests is experiments
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Fig. 4: Square-wave loss data for the powdered-iron core
in Table I presented in two different formats.

using asymmetric waveforms as shown in Fig. 1(b) (upper
right). The results of these experiments are plotted in Fig. 5.
Each curve is for fixed width and amplitude of the first
pulse (fixed V1 and t1 as defined in Fig. 1(a)) with the
width of the second pulse (t2) varying. The amplitude of
the second pulse was adjusted for zero average voltage. The
widths and amplitudes were all chosen to match data in the
original characterization data set such that no interpolation
was needed to predict loss, and the energy loss per cycle
could be predicted from two points in the characterization
data: the energy loss per cycle for a square wave of
amplitude V1 and half-period t1 (Esqr(V1, t1)) and the energy
loss per cycle for a square wave of amplitude V2 and half-
period t2, as

Ec =
1
2

(
Esqr(V1, t1) + Esqr(V2, t2)

)
(2)
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Fig. 5: Losses with asymmetric waveforms as predicted by
the proposed approach compared to measured results.

The measured asymmetric waveform loss is compared
to loss predicted from (2) in Fig. 5, showing excellent
matching over a wide range of asymmetry ratios (t1/T ) and
amplitudes, for both the ferrite core and the powdered iron
core. This confirms that the composite waveform hypothe-
sis is a good approximation for asymmetric waveforms.

Test results for waveforms with a zero-voltage time
t0 between pulses are shown in Figs. 6 and 7. In each
test, the positive and negative voltage pulses have constant
amplitude and duration (as listed in the figure legend),
but the zero-voltage time between pulses, t0, is varied. In
Figs. 6(a) and 7(a), the waveform is always symmetric and
the overall period is expanded as t0 is increased (marked
“Symmetric, D < 1” in Fig. 1(b)). In Figs. 6(b) and 7(b),
the period remains constant but the waveform is skewed
with one of the two zero-voltage periods shrinking as the

other expands (marked “Shifted, D < 1” in Fig. 1(b)).
Based on the composite waveform hypothesis (see Sec-

tion III), we would expect Figs. 6(a) and 7(a) to show
constant energy loss per cycle as the zero-voltage time, and
thus the period, increases, with no loss occurring during the
zero-voltage time. The data in Fig. 6(a), for the ferrite core,
show significant variations as t0 increases, as much as about
40%, in some cases increasing and in others decreasing.
The data in Fig. 7(a), for the powdered-iron core, show
much less variation, matching the expectation from the
composite waveform hypothesis very closely, with only
slight increases in loss for long off-times, which may be
a result of measurement artifacts.

The results for the shifted pulse waveforms, in Figs. 6(b)
and 7(b), show little variation in loss as the pulse position is
shifted (increasing one off-time while decreasing another),
as would be expected from the composite waveform hy-
pothesis, but the ferrite-core loss is slightly different from
that predicted from the square-wave characterization data
using (2), whereas the powdered-iron core matches the
predicted loss more closely. This is consistent with the
results shown in Figs. 6(a) and 7(a). For the ferrite core, the
relatively low variation in loss as the pulse position shifts,
compared to that shown in Figs. 6(a) and 7(a), could be
explained by the effects of one off-time increasing offsetting
the effect of the other decreasing for a net zero effect
on loss. Alternatively, if the trends shown in Figs. 6(a)
and 7(a) are due to measurement artifacts associated with
the expanding period, this could also explain the relatively
flat behavior seen in Figs. 6(b) and 7(b), because the shifted
pulse experiments are immune to any errors associated
with waveform period. However, the difference in behavior
between the two cores seen in Fig. 6(a) and 7(a) indicates
that the trends seen in the data are in fact due to the true
behavior of the cores, not to any unexpected measurement
artifacts.

VI. Design

The loss data derived from square-wave measurements
can be provided to a magnetics designer in various forms,
including tabulated data or curve-fit functions for use in
software, and various types of graphical presentation. The
loss data can be presented as loss per unit volume, or as
total loss for a specific core, to simplify calculations for the
designer. Here we discuss working from graphical data in
the “Herbert curve” format of Fig. 3(b). These curves are
parameterized by voltage per turn applied to a winding.
It’s also possible to provide curves like this for a specific
component with a given number of turns, parameterized by
voltage.

In general, for waveforms as shown in Fig. 1(a), based
on (2), one can calculate loss from a Herbert plot as

P =
1
T

(
Psqr(V1/N, t1) · t1 + Psqr(V2/N, t2) · t2

)
(3)
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Fig. 6: Experimental data testing the extension of ferrite-core
square-wave data to waveforms incorporating zero-voltage time
t0. This is done by varying the period and extending off-time t0,
or by shrinking one zero-voltage time while expanding the other
to maintain a constant period. The legend gives the on-time t1 and
the per-turn pulse voltage for each curve.

In the case of symmetric waveforms,
Psqr(V1/N, t1) = Psqr(V2/N, t2), and the loss calculation
reduces to

P =
2t1
T

Psqr(V1/N, t1). (4)

Consider, for example, a component operating at 50 kHz
with a symmetric waveform with a duty cycle of 63%, 12
turns, and a pulse amplitude of 4.8 V. The period is 20 µs,
and the positive and negative pulse widths are t1 = t2 =

0.63 · 10 µs = 6.3 µs. To find the correct curve to examine
in Fig. 3(b), we find the voltage per turn which is 4.8/12
= 0.4 V. As shown in Fig. 8, we can read off the power
loss for this pulse width and voltage per turn as Psqr =

7.9 mW. According to (4) we scale this result by the ratio
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Fig. 7: Experimental data testing the extension of powdered-iron-
core square-wave data to waveforms incorporating zero-voltage
time t0. This is done by varying the period and extending on-
time t1, or by shrinking one zero-voltage time while expanding
the other to maintain a constant period.

2t1/T = 12.6 µs/20 µs, to get a predicted power loss of
7.9 · 0.63 = 5 mW.

An interesting design space to explore is to maintain
constant frequency and average voltage, but to vary the
pulse width and period. The relevant data is along a curve
of constant volt-seconds on the Herbert plot—the dashed
line in Fig. 9. To get power loss from these points, assuming
constant frequency of 50 kHz, we then scale these points
down by the ratio 2 · t1/20 µs to get the solid line in Fig. 9.
This rise of this curve to the left illustrated the disadvantage
of using shorter duty cycles for a given average voltage or
volt-second requirement.

As an asymmetric example, consider the same 12-turn
winding, with a 12 V, 10 µs pulse applied in one direction,
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Fig. 9: Example exploring different duty cycle options for
a constant average voltage (constant volt-seconds). The
dashed line is the raw data points used from the plot; the
solid line shows the result scaled by the ratio of on-time to
period to calculate actual loss, as discussed in the text.

and a 30 V, 4 µs pulse applied in the other direction, with
a 20 µs overall period (50 kHz) as before (the waveform
includes a total of 6 µs of zero-voltage time). Psqr(V1/N, t1)
and Psqr(V2/N, t2) are read off Fig. 8 as 244 mW and
818 mW. The overall power loss can then be found from
(3) as

P = 50 kHz (244 mW · 10 µs + 818 mW · 4 µs) = 286 mW.
(5)

VII. Discussion

The results in Figs. 5 and 5(b) show that the com-
posite waveform hypothesis holds well for asymmetric

waveforms, and the method provides excellent accuracy.
Fig. 7 shows that, for the powdered-iron core tested, it also
holds very well for waveforms with zero-voltage periods,
although zero voltage times can cause significant deviation
in the ferrite core tested. This variation is not predicted by
the composite-waveform hypothesis; nor is it predicted by
any of the methods discussed in Section II. Additional work
to better characterize and model this behavior could lead
to more accurate loss predictions. However, even with this
error, the approach described here is expected to be more
accurate than other methods which are subject to the same
error, and additionally entail error due to using sinusoidal
data to predict square-wave loss.

In addition to being more accurate than other methods,
the new approach is also easier to use than methods like
the iGSE. Thus, we believe that it would be beneficial for
core manufacturers to characterize square-wave loss and
provide that data graphically, electronically or both, either
on a per-unit-volume basis or on a per-core basis.

As presented here, the method is only applicable to
waveforms with one positive voltage pulse and one neg-
ative pulse. However, it could also be easily applied to
waveforms with minor loops by separating the minor loops
following the approach in [6], as long as each constituent
loop comprises only one positive pulse and one negative
pulse. Adapting the method to waveforms with a series of
voltage pulses of the same polarity but differing amplitudes
is less straightforward. The corresponding analysis in the
iGSE (eq. (13) in [6]) includes a factor that depends on the
total flux excursion as well as the flux change for a given
pulse, and it may be necessary to introduce similar factors
to accurately model losses in such cases using square-wave
loss data. However, most power electronics applications
use waveforms with only one positive voltage pulse and
one negative pulse, such that that the analysis here applies
directly.

VIII. Conclusion

The proposed measurement and loss calculation ap-
proach allows generalizing square-wave core-loss data to
predict core loss with any common rectangular voltage
waveform. An automated measurement system has been
used to collect the required square-wave core character-
ization data for ferrite and powdered-iron cores, and to
collect additional data to assess the accuracy of the method
for other voltage waveforms. Measurements show good
correlation, but also exhibit behavior not yet explained by
published models, which may lead to new insights and more
accurate models. Despite the minor discrepancies, the loss
prediction method yields higher accuracy, and is easier to
use, than other methods for non-sinusoidal waveforms.
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