
WEINZIERL ENGINEERING GmbH 

 Page 1/133 

 
 

 

 

 

 

 

 

 

 

 

 

KNX BAOS Starter Kit 

 

For 

- KNX BAOS Modules 830 (TP) 

- KNX BAOS Modules 832 (TP) 

- KNX BAOS Modules 838 (TP, kBerry) 

- KNX BAOS Modules 840 (RF) 

 

User's Guide 
 

 

 

 

 

 

 

 

 

 

 

 

 

WEINZIERL ENGINEERING GmbH 

Achatz 3 

84508 Burgkirchen / Alz 

GERMANY 

E-Mail: info@weinzierl.de 

Web: www.weinzierl.de 

 

 

mailto:info@weinzierl.de
http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 2/133 

KNX BAOS Starter Kit 

User's Guide 

Copyright © 2016 - 2017 Weinzierl Engineering GmbH. All Rights reserved. 

The KNX BAOS Modules 830, 832, 838 and 840 allow a jump start into KNX device 

development with minimal invest. All versions include a KNX transceiver and a micro-controller 

with certified KNX Stack. The communication with the module is performed via a serial interface 

(UART/TTL) based on FT1.2 frame format. The module provides access to communication 

objects (application layer) as well as to KNX telegrams (link layer). 

The KNX BAOS Module 830 provides electrical isolation and is suitable for devices with 

separate power supply. The KNX BAOS Module 832 offers direct coupling and provides power 

for the application from the bus. 

The KNX BAOS Module 838 is for use with the Raspberry Pi and provides electrical isolation, 

also. 

For the development, tools and a generic ETS entry with up to 1000 group objects 

(communication objects) are provided. For a quick start in the development, we recommend our 

starter kit with a demo project in source code for Atmel Cortex micro-controller and GNU 

compiler. 

The KNX BAOS Modules are suitable for the development of KNX devices with small and 

medium quantities. By using the BAOS modules the development of KNX certified devices with 

an individual ETS database is possible of course. The protocol description and our demo 

application can be found at our web page. 

For products with higher volume integration with a KNX stack could be an alternative. We will 

advice you on request. 

For comments or questions please feel free to contact support@weinzierl.de. 

  

mailto:support@weinzierl.de


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 3/133 

Contents

1 Preface ..................................................................................................................... 9 

1.1 About Us ..................................................................................................................... 9 

1.1.1 The Company ....................................................................................................................... 9 
1.1.2 Our Services and Products ................................................................................................... 9 
1.1.3 Our focus: KNX ................................................................................................................... 10 

1.2 Feedback .................................................................................................................. 10 

1.3 License Agreement .................................................................................................. 10 

1.3.1 Definitions ........................................................................................................................... 10 
1.3.2 Permitted Uses ................................................................................................................... 11 
1.3.3 Restrictions ......................................................................................................................... 11 
1.3.4 Overview of Restrictions/Permissions ................................................................................ 11 

2 Overview ................................................................................................................ 12 

3 Quick Start ............................................................................................................. 13 

3.1 Standard Kit (BAOS Modules 830 and 832) ............................................................ 13 
3.1.1 Download the Software ...................................................................................................... 13 
3.1.2 Hardware Setup .................................................................................................................. 13 
3.1.3 First Commissioning with ETS ............................................................................................ 14 

3.2 Standard Kit (BAOS Module RF 840) ...................................................................... 15 

3.2.1 Download the Software ...................................................................................................... 15 
3.2.2 Hardware Setup .................................................................................................................. 16 
3.2.3 First Commissioning with ETS ............................................................................................ 17 

3.3 Kit for Raspberry Pi (BAOS Module 838) ................................................................ 17 

4 The Starter Kit ....................................................................................................... 19 

4.1 Standard Kit (BAOS Modules 830 and 832) ............................................................ 19 

4.2 Standard Kit (BAOS Module RF 840) ...................................................................... 20 

4.3 Controller only Solution........................................................................................... 21 

4.4 Kit for Raspberry Pi (BAOS Module 838) ................................................................ 21 

5 The Development Board ....................................................................................... 23 

5.1 Introduction .............................................................................................................. 23 

5.2 KNX BAOS Module ................................................................................................... 23 

5.3 The Demo Application ............................................................................................. 24 

5.3.1 Data Points/Group Objects ................................................................................................. 24 
5.3.2 Parameters ......................................................................................................................... 25 

5.4 Connect and commission the Hardware ................................................................ 25 

5.5 Monitoring KNX using Net'n Node .......................................................................... 26 

5.6 Development Board Hardware ................................................................................ 26 
5.6.1 Components ....................................................................................................................... 27 
5.6.2 Jumpers for BAOS Communication.................................................................................... 28 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 4/133 

5.7 Schematics of the Development Board .................................................................. 34 

6 KNX BAOS Modules .............................................................................................. 35 

6.1 Introduction .............................................................................................................. 35 

6.2 Connection Requirements ....................................................................................... 36 

6.3 Pinning of the KNX BAOS Modules ........................................................................ 37 

6.4 Dimensions of the KNX BAOS Modules ................................................................. 40 

6.5 Modular Overview of the Firmware ......................................................................... 43 

6.6 Reset all Configurations of the BAOS Module to Default ...................................... 43 

6.7 KNX IP BAOS Devices ............................................................................................. 43 

7 Commissioning with ETS ..................................................................................... 45 

7.1 Install ETS ................................................................................................................. 45 

7.2 Install ETS License................................................................................................... 45 

7.3 Import a Project ........................................................................................................ 45 

7.4 Topology ................................................................................................................... 46 
7.4.1 Areas .................................................................................................................................. 46 
7.4.2 Lines ................................................................................................................................... 46 
7.4.3 Devices ............................................................................................................................... 46 

7.5 Parameters ............................................................................................................... 46 

7.6 Group Addresses ..................................................................................................... 48 

7.7 Download .................................................................................................................. 48 

7.8 Conclusion ............................................................................................................... 49 

8 Programming the Development Board ................................................................ 50 

8.1 Additional Hardware ................................................................................................ 50 

8.2 Installation of IDE and Compiler ............................................................................. 50 

8.3 First Debugging Steps ............................................................................................. 50 

8.4 Download a Binary Application ............................................................................... 52 

9 The Demo Application .......................................................................................... 54 

9.1 Software Modules..................................................................................................... 54 

9.1.1 Main Loop Module .............................................................................................................. 55 
9.1.2 Sensor, Actuator and ProgMode Module ........................................................................... 55 
9.1.3 BAOS Protocol Client Module ............................................................................................ 60 
9.1.4 FT1.2 Handler Module ........................................................................................................ 60 
9.1.5 Serial Driver Module ........................................................................................................... 61 
9.1.6 Timer module ...................................................................................................................... 61 
9.1.7 Header Files ....................................................................................................................... 62 

9.2 Creating Own Applications ...................................................................................... 62 

9.2.1 Use Cases .......................................................................................................................... 62 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 5/133 

10 Programming the Raspberry Pi Board ............................................................. 66 

10.1 Download the Operating System ............................................................................ 66 

10.2 Connect the Pi and kBerry ....................................................................................... 66 

10.3 Prepare the Operating System ................................................................................ 66 

10.3.1 Optionally re-size the File System ...................................................................................... 67 
10.3.2 Release the Serial Console ................................................................................................ 67 
10.3.3 Install Software ................................................................................................................... 67 

10.4 Install BAOS Software ............................................................................................. 68 

10.5 Use BAOS Software ................................................................................................. 68 

10.5.1 Read a Server Item ............................................................................................................ 68 
10.5.2 First Commissioning with ETS ............................................................................................ 68 
10.5.3 Listening to Data Points ...................................................................................................... 69 

11 BAOS Protocol ................................................................................................... 72 

11.1 BAOS Frame ............................................................................................................. 72 

11.2 Some Important Services and their Responses ..................................................... 73 

11.2.1 GetDatapointValue.Req ...................................................................................................... 73 
11.2.2 GetDatapointValue.Res ...................................................................................................... 73 
11.2.3 DatapointValue.Ind ............................................................................................................. 73 
11.2.4 SetDatapointValue.Req ...................................................................................................... 74 
11.2.5 SetDatapointValue.Res ...................................................................................................... 74 
11.2.6 GetParameterByte.Req ...................................................................................................... 75 
11.2.7 GetParameterByte.Res ...................................................................................................... 75 

11.3 BAOS Server Items .................................................................................................. 75 

11.3.1 GetServerItem.Req ............................................................................................................. 75 
11.3.2 GetServerItem.Res ............................................................................................................. 75 

12 About KNX .......................................................................................................... 79 

12.1 KNX Twisted Pair Bus System ................................................................................ 79 
12.1.1 KNX Twisted Pair Telegrams ............................................................................................. 80 
12.1.2 Telegram Timings ............................................................................................................... 82 
12.1.3 Bus monitoring with Net'n Node ......................................................................................... 83 

12.2 KNX Radio Frequency Bus System ........................................................................ 83 
12.2.1 KNX Radio Frequency Telegrams ...................................................................................... 84 

12.3 Addressing Modes ................................................................................................... 86 

12.4 Data Point Types ...................................................................................................... 87 

12.5 Virtual Memory Map of the BAOS Module .............................................................. 87 
12.5.1 Address Table (MCB 1) ...................................................................................................... 88 
12.5.2 Association Table (MCB 2) ................................................................................................. 89 
12.5.3 Group Object Table (MCB 3) .............................................................................................. 90 
12.5.4 Application Header (MCB 4.1) ............................................................................................ 91 
12.5.5 BAOS Header Block (MCB 4.2) .......................................................................................... 92 
12.5.6 BAOS Internals (MCB 4.3) ................................................................................................. 92 
12.5.7 Data Point Types (MCB 4.4) ............................................................................................... 92 
12.5.8 Data Point Descriptions (MCB 4.5)..................................................................................... 92 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 6/133 

12.5.9 Parameter Bytes (MCB 4.6) ............................................................................................... 92 
12.5.10 Free Virtual Memory ....................................................................................................... 93 

12.6 Access Protection .................................................................................................... 93 
12.6.1 Access via Net'n Node ........................................................................................................ 93 

12.7 Important Properties ................................................................................................ 94 
12.7.1 The 0 - Device Object ......................................................................................................... 94 
12.7.2 The 1 - Address Table Object ............................................................................................. 95 
12.7.3 The 2 - Association Table Object ....................................................................................... 95 
12.7.4 The 9 - Group Object Table Object .................................................................................... 95 
12.7.5 The 3 - Application 1 Object ............................................................................................... 95 
12.7.6 The 4 - Application 2 Object ............................................................................................... 95 
12.7.7 The 8 - cEMI Server Object ................................................................................................ 95 
12.7.8 The 19 – RF Medium Object .............................................................................................. 96 

13 How to Change Production Parameters .......................................................... 97 

13.1 BAOS Module Config Tool ....................................................................................... 97 

13.2 Net'n Node ................................................................................................................ 97 

14 FT1.2 Protocol .................................................................................................... 98 

14.1 General ...................................................................................................................... 98 

14.2 Physical .................................................................................................................... 98 

14.2.1 Interface .............................................................................................................................. 98 
14.2.2 Timings ............................................................................................................................... 99 

14.3 FT1.2 Frame Format ................................................................................................. 99 

15 BAOS Frame Embedded in an FT1.2 Frame .................................................. 101 

16 Common EMI Protocol .................................................................................... 102 

16.1 Link Layer Access .................................................................................................. 102 
16.1.1 cEMI in the Application ..................................................................................................... 103 
16.1.2 Send Group Telegrams using Net'n Node ........................................................................ 106 

16.2 Management Server Access .................................................................................. 107 

16.2.1 Property Access Examples with Net'n Node .................................................................... 108 

16.3 cEMI Frame Embedded in an FT1.2 Frame ........................................................... 110 

17 Individual ETS Entries ..................................................................................... 112 

17.1 Example for Creating an Individual ETS Database .............................................. 112 

17.1.1 Project ............................................................................................................................... 113 
17.1.2 Create New Application .................................................................................................... 113 
17.1.3 Create New Hardware ...................................................................................................... 113 
17.1.4 Binary Import .................................................................................................................... 114 
17.1.5 Create Address and Association Table ............................................................................ 117 
17.1.6 Create Visible Data Points ................................................................................................ 118 
17.1.7 Button for Switching and Dimming ................................................................................... 118 
17.1.8 Light for Switching and Dimming ...................................................................................... 121 
17.1.9 Hide Unwanted Data Points ............................................................................................. 124 
17.1.10 Preview the Work so far ............................................................................................... 125 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 7/133 

17.1.11 Create New Product ..................................................................................................... 126 
17.1.12 Export the Project ......................................................................................................... 127 

17.2 Test the Individual ETS Database in ETS ............................................................. 127 

17.3 Example to create more Parameter Bytes ............................................................ 127 

17.3.1 Project ............................................................................................................................... 128 
17.3.2 Binary Import .................................................................................................................... 128 
17.3.3 Using Objects ................................................................................................................... 128 
17.3.4 Using Parameters ............................................................................................................. 128 
17.3.5 Additional Settings ............................................................................................................ 128 
17.3.6 Speed up ETS Download ................................................................................................. 129 

18 KNX Certification ............................................................................................. 130 

19 Glossary ........................................................................................................... 131 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 8/133 

Document history 

State Date Author 

Release 2016-12-22 Gi 

Fixed some references 2017-02-07 Gi 

   

   

   

   

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 9/133 

1 Preface 

1.1 About Us 

 

1.1.1  The Company 

Weinzierl Engineering GmbH develops software and hardware components for building control 

systems. The focus of our activities is Building Automation based on KNX Technology. Thanks 

to our specialization in this field we are able to offer a comprehensive range of products 

supporting the KNX Standard. We can advise you in the conceptual phase and develop all 

aspects of hardware, firmware and application software according to your requirements, 

including certification of your products with the KNX Association. In addition we develop and 

produce devices under our own name as well as OEM products. For any questions feel free to 

contact support@weinzierl.de. 

1.1.2  Our Services and Products 

 KNX Devices 

As a solutions provider we offer KNX system devices mainly with high complexity like 

interfaces and gateways. The devices are available under the Weinzierl brand as well as 

OEM versions with individual design. 

 Modules for KNX 

Our range of KNX modules allows a fast integration of KNX protocol in devices. 

Especially for low volumes or for the extension of existing devices a module based 

approach often is an optimal solution. 

 Stacks for KNX 

KNX describes a complex protocol, which means a considerable effort in the 

implementation and certification. With our KNX Stacks we offer complete solutions for 

professional device design. 

 Software for KNX 

This is how we complete our offer for the development of KNX: A variety of tools and 

software development kits (SDKs) enables and facilitates the development of KNX client 

applications and tools. 

mailto:support@weinzierl.de


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 10/133 

 Services for KNX 

We advise you on the system design and provide on request the full development of 

hardware, firmware and application software. We develop a complete solution as full 

service or in co-operation with your development department. 

 Test laboratory for KNX 

Our KNX Test Lab offers the complete service for KNX certification of your products. 

1.1.3  Our focus: KNX 

KNX has developed into one of the most important standards for home & building control and is 

the first worldwide standard to be compliant with EN and ISO/IEC. By building on our extensive 

experience we are able to offer the components and tools necessary for KNX development. Our 

product spectrum centers on our stack implementations for the various standardized device 

models and media of the KNX specification. 

For more information about KNX-systems, see the KNX web site. 

1.2 Feedback 

In case of any errors, misspelled text or other bugs in this document, hardware or software, 

please contact support@weinzierl.de. 

1.3 License Agreement 

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THE 

SOFTWARE OF WEINZIERL ENGINEERING GMBH. BY USING THE SOFTWARE YOU ARE 

AGREEING TO THE CONDITIONS OF THIS LICENSE AGREEMENT. DO NOT USE THE 

SOFTWARE IF YOU DO NOT AGREE THE TERMS OF THIS LICENSE AGREEMENT. IN 

THIS CASE YOU MAY RETURN THE COMPLETE PACKAGE WITHIN A PERIOD OF TWO 

WEEKS WHERE YOU PURCHASED IT. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANT-

ABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN 

NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DAMAGES OR 

OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 

IN THE SOFTWARE. 

1.3.1 Definitions 

"Firmware" means the software already stored into the micro controller of the KNX BAOS 

Module. 

http://www.knx.org/
mailto:support@weinzierl.de


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 11/133 

"SDK" is a Software Development Kit, which means all provided software to develop, write and 

compile software for the target which is using the KNX BAOS Module. This means the Demo 

Sources, the ETS®/MT® projects and databases and the documentation. 

"Tools" are the provided software tools by Weinzierl Engineering GmbH. This means Net'n 

Node and TraceMon. 

1.3.2 Permitted Uses 

Subject to the terms and conditions of this agreement and restrictions and exceptions, Weinzierl 

Engineering GmbH grants you a non-exclusive, non-transferable, limited license without fees to 

a) reproduce and use internally the SDK and Tools for the purposes of developing 

applications that communicate with KNX BAOS Modules from Weinzierl Engineering 

GmbH. 

b) develop and distribute all software done with the SDK, but not the SDK itself. 

c) reproduce and distribute the resulting software in binary form and resulting ETS 

databases for the sole purpose of running your application. 

1.3.3 Restrictions 

a) The Weinzierl Firmware (installed in flash of the KNX BAOS Module) is limited to be 

used on Weinzierl modules. It is not allowed to distribute it. 

b) The Weinzierl SDK is limited to be used for Weinzierl modules or for use on appropriate 

computers/hardware in conjunction to these Weinzierl modules. It is not allowed to 

distribute the Weinzierl SDK. 

c) You may not and you agree not to, or to enable others to, duplicate, de-compile, reverse 

engineer, disassemble, attempt to derive the source code of, de-crypt, modify, or create 

derivative works of the Weinzierl firmware, or any part thereof. 

1.3.4 Overview of Restrictions/Permissions 

Subject Restrictions/Permissions 

Firmware (in module) Not allowed to copy. 

SDK and Tools Allowed to copy only internally. 

Source code of demo application and ETS 

databases 

Allowed to copy in binary form in conjunction 

with Weinzierl hardware. 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 12/133 

2 Overview 

KNX is a well-established standard for modern electrical devices in house installations. It 

connects the devices by a bus system and thus all can communicate to each other. This 

communication is implemented by KNX messages which are sent via the bus. Furthermore the 

devices are powered by the bus (except for the RF 840). 

Once installed, the devices must be configured and commissioned by ETS®. This connects the 

devices to each other in a logical way. E. g. which switch turns on what light? ETS is a 

standardized tool by the KNX organization. 

All devices are categorized in sensors, actuators or both. Sensors tell other devices what to do 

(e. g. light switch, dimmer, heat control). Actuators are devices which receive messages from 

sensors and act accordingly (e. g. light, shutter). 

The purpose of the KNX BAOS Modules is to help developing KNX hardware with little effort 

(the hardware must only support a UART serial interface at TTL level 3.3 V). The KNX BAOS 

Module is connected to the KNX bus. It handles the whole KNX communication, configuration 

and management. The other side, the application, must implement the communication to the 

KNX BAOS Modules. An example application is included in this starter kit. 

The KNX BAOS Module serves as an interface 

access at the telegram and BAOS level. The telegram 

access is for more experienced usage and offers the 

possibility to manage KNX messages by the 

application itself. 

The BAOS access uses data points (communication 

objects) for communication. A data point represents a 

numeric value which automatically generates (if 

configured so) KNX activity by change. This works 

also vice versa. If any KNX activity changes the value 

of the data point, the application will be notified. 

This way, the application can interact with all devices 

on the KNX bus. 

Structure of this manual: 

 The first chapter "Quick Start" of this manual are for quick entry into the world of BAOS. 

It is not essential for the understanding of BAOS, but for a fast commissioning of the 

hardware. 

 The next chapters, starting from "The Starter Kit" ending at "BAOS Protocol", are the 

main part of this manual. They tell everything about working with the hardware and 

developing BAOS applications. 

 The remaining chapters, starting at "About KNX", are for advanced usage. They tell 
more about the background of KNX, ETS and creating own ETS databases.  

KNX 

Transport Layer

Network Layer

Link Layer

Physikal Layer

connection
less

connection
orientated

BAOS ACCESS

Application Layer

Management
Download

Communication 
Objects

Telegram Access



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 13/133 

3 Quick Start 

This chapter is a quick start for commissioning the hardware. 

3.1 Standard Kit (BAOS Modules 830 and 832) 

The BAOS Starter Kit contains the following hardware parts: 

 Two KNX BAOS Modules 830 and 832. 

 One Development Board. 

3.1.1 Download the Software 

The software and documentation are available for download at the Weinzierl web page at 

http://www.weinzierl.de. Download the following and you can start: 

 KnxBAOS 83x ETS Projects for Demo. 

ETS is the standard configuration software for all KNX devices. For now only the generic 

solution is needed. 

3.1.2 Hardware Setup 

 

Assemble the KNX BAOS Module 830 to the Development Board as shown in the figure above. 

Make sure, the jumpers are set as follows: 

- X13 and X14 (Vcc-Sel) must be closed. 

- X8 (µC-BAOS) must be closed at position 2-3. 

- X9 (µC-USB) must be closed at position 2-3. 

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 14/133 

 

To take the Development Board with the KNX BAOS Module 830 in operation state, the 

following items and steps are necessary: 

 A KNX power supply with choke. 

 A KNX USB interface to configure (commission) the board via ETS. 

 Make sure the KNX BAOS Module is correctly connected to the Development Board. 

 Connect the KNX bus (polarity is protected). 

 Connect Micro-USB to a PC to power the Development Board (not in case of Module 

832). 

3.1.3 First Commissioning with ETS 

ETS (Engineering Tool Software) is a manufacturer independent configuration tool to configure 

KNX systems. It can be downloaded from the KNX-Association page at http://www.knx.org. A 

more detailed introduction is in chapter "Commissioning with ETS". 

Configure ETS to use the KNX USB Interface in the Bus folder. Look into the list of Discovered 

Interfaces and select the one, which is connected to the KNX bus. Test and Select the 

interface. Go back to the Overview folder. 

For demonstration a simple project for 830 is available in the archive 

 

Weinzierl_83x_KNX_BAOS_ETS_Projects_for_Demo.zip. 

http://www.knx.org/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 15/133 

 

Unpack it and import the project 

 

Weinzierl_83x_KNX_BAOS_ETS_Projects_for_Demo/ 

ETS_Project_using_generic_ETS_entry/ 

Project.knxproj 

 

in ETS. 

The project configures the board to simply handle its own LED. Open the project, select Project 

Root as view, select the device KNX BAOS 830 with right mouse button and Download/Full 

download. 

 Press the learn button S1 on the Development Board (red LED must light up). 

(In case of Module 832, use button S8.) 

 After the download is finished, press the two push buttons S4 and S5 on the 

Development Board to switch the LED D3 on and off. 

The Development Board acts now as both sensor and actuator. Pushing the buttons S4 and S5, 

the BAOS Module generates a KNX telegram on the bus. This can be verified this by selecting 

Diagnostics in ETS, starting the Group Monitor and watching the telegrams. Furthermore 

ETS can generate a telegram to switch the LED on or off: Use Group Address 3/3/1, set the 

Value to 1 (on) or 0 (off) and select Write. The LED should act accordingly. 

3.2 Standard Kit (BAOS Module RF 840) 

The BAOS Starter Kit contains the following hardware parts: 

 One KNX BAOS Module RF 840. 

 One Development Board. 

3.2.1 Download the Software 

The software and documentation are available for download at the Weinzierl web page at 

http://www.weinzierl.de. Download the following and you can start: 

 KnxBAOS 840 ETS Projects for Demo. 

ETS is the standard configuration software for all KNX devices. For now only the generic 

solution is needed. 

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 16/133 

3.2.2 Hardware Setup 

 

Assemble the KNX BAOS Module RF 840 to the Development Board as shown in the figure 

above. Make sure, the jumpers are set as follows: 

- X13 and X14 (Vcc-Sel) must be closed. 

- X8 (µC-BAOS) must be closed at position 2-3. 

- X9 (µC-USB) must be closed at position 2-3. 

 

To take the Development Board with the KNX BAOS Module RF 840 in operation state, the 

following items and steps are necessary: 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 17/133 

 A KNX RF USB interface to configure (commission) the board via ETS. 

 Make sure the KNX BAOS Module is correctly connected to the Development Board. 

 Connect Micro-USB to a PC to power the Development Board. 

3.2.3 First Commissioning with ETS 

ETS (Engineering Tool Software) is a manufacturer independent configuration tool to configure 

KNX systems. It can be downloaded from the KNX-Association page at http://www.knx.org. A 

more detailed introduction is in chapter "Commissioning with ETS". 

Configure ETS to use the KNX USB Interface (RF) in the Bus folder. Look into the list of 

Discovered Interfaces and select the one, which uses the RF KNX bus. Test and Select the 

interface. 

Warning: Use the same domain address for the RF interface as configured in the project: 

FFFF:FFFFFFFF. 

Go back to the Overview folder. 

For demonstration a simple project for 840 is available in the archive 

 

Weinzierl_840_KNX_BAOS_ETS_Projects_for_Demo.zip. 

 

Unpack it and import the project 

 

Weinzierl_840_KNX_BAOS_ETS_Projects_for_Demo/ 

ETS_Project_using_generic_ETS_entry/ 

Project.knxproj 

 

in ETS. 

The project configures the board to simply handle its own LED. Open the project, select Project 

Root as view, select the device KNX BAOS 840 with right mouse button and Download/Full 

download. 

 Press the learn button S8 on the Development Board (red LED must light up). 

 After the download is finished, press the two push buttons S4 and S5 on the 

Development Board to switch the LED D3 on and off. 

The Development Board acts now as both sensor and actuator. Pushing the buttons S4 and S5, 

the BAOS Module generates a KNX telegram on the bus. This can be verified this by selecting 

Diagnostics in ETS, starting the Group Monitor and watching the telegrams. Furthermore 

ETS can generate a telegram to switch the LED on or off: Use Group Address 3/3/1, set the 

Value to 1 (on) or 0 (off) and select Write. The LED should act accordingly. 

3.3 Kit for Raspberry Pi (BAOS Module 838) 

If you purchased the kBerry (KNX BAOS Module 838), you have one hardware, only: 

http://www.knx.org/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 18/133 

 KNX BAOS Module 838. 

You also need the Raspberry Pi, which you have to purchase in an appropriate hardware shop. 

The software and documentation are also available for download at the Weinzierl web page at 

http://www.weinzierl.de. Download the following and you can start: 

 KnxBAOS 83x ETS Projects for Demo. 

ETS is the standard configuration software for all KNX devices. For now only the generic 

solution is needed. 

 Net'n Node Busmonitor Software. 

A powerful bus monitor and analyser for the development of KNX devices for all KNX 

media. This tool helps you to understand the KNX communication. It can also 

communicate directly with the BAOS Module for testing purposes. 

Continue reading the chapter "Programming the Raspberry Pi Board". 

  

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 19/133 

4 The Starter Kit 

This chapter is about the contents of the Starter Kit: Hard- and software components. 

4.1 Standard Kit (BAOS Modules 830 and 832) 

The complete BAOS Starter Kit contains the following hardware parts: 

 Two KNX BAOS Modules: 830 and 832. 

These modules are for developing own KNX hardware. The KNX system is implemented 

in these modules and separates your application from the KNX system, so you do not 

have to care about it. For experts it is also possible to bypass parts of this system and 

use the KNX communication more directly. 

 One Development Board. 

This board is for implementing your own application and to take your first steps into the 

world of KNX. A demo application is also available. This board can be replaced by your 

own hardware, later. 

The software and documentation are available for download at the Weinzierl web page at 

http://www.weinzierl.de. Download the following files and you can start: 

 BAOS User's Guide. 

This document. 

 BAOS V2 Protocol Description. 

The BAOS protocol is used for communication between the BAOS Module and your 

application. This document describes the protocol. 

 Data sheet KNX Module 830. 

Technical specification about the module with galvanic isolations. 

 Data sheet KNX Module 832. 

Technical specification about the module. 

 KnxBAOS 83x ETS Projects for Demo. 

ETS is the standard configuration software for all KNX devices. This project contains two 

aspects: 

 using generic ETS entry: 

It is an example with pre-configured data points and parameters using a generic 

ETS entry for KNX BAOS Modules. The generic ETS entry is intended for 

development, if an individual ETS entry is not yet available. 

 using individual ETS entry: 

It is an example with an individual ETS entry. It has been created with KNX 

manufacturer tool MT. The corresponding MT project files are included, too. 

MT is the standard software by the KNX organization to create own ETS 

databases for your own devices. 

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 20/133 

 KnxBAOS Demo Source. 

A demo application to communicate to the BAOS Module. You can use this demo 

application as your base for your own application. It is an Atmel Studio Project in C. A 

software project with source code. This software contains a serial driver for frame format 

FT1.2, a client library for the BAOS protocol and a simple demo application. The demo 

application implements an actuator and sensor channel, both can be configured to 

switching, dimming and shutter by parameters. 

 Net'n Node Busmonitor Software. 

A powerful bus monitor and analyser for the development of KNX devices for all KNX 

media. This tool helps you to understand the KNX communication. It can also 

communicate directly with the BAOS Module for testing purposes. 

 Product database for ETS 4.2/5. 

Last, but not least, the ETS product databases for each module are available at their 

respective pages. 

4.2 Standard Kit (BAOS Module RF 840) 

The complete BAOS Starter Kit contains the following hardware parts: 

 One KNX BAOS Module RF 840. 

This module is for developing own KNX hardware. The KNX system is implemented in 

this module and separates your application from the KNX system, so you do not have to 

care about it. For experts it is also possible to bypass parts of this system and use the 

KNX communication more directly. 

 One Development Board. 

This board is for implementing your own application and to take your first steps into the 

world of KNX. A demo application is also available. This board can be replaced by your 

own hardware, later. 

The software and documentation are available for download at the Weinzierl web page at 

http://www.weinzierl.de. Download the following files and you can start: 

 BAOS User's Guide. 

This document. 

 BAOS V2 Protocol Description. 

The BAOS protocol is used for communication between the BAOS Module and your 

application. This document describes the protocol. 

 Data sheet KNX Module 840. 

Technical specification about the module with galvanic isolations. 

 KnxBAOS 840 ETS Projects for Demo. 

ETS is the standard configuration software for all KNX devices. This project contains two 

aspects: 

 using generic ETS entry: 

It is an example with pre-configured data points and parameters using a generic 

ETS entry for KNX BAOS Modules. The generic ETS entry is intended for 

development, if an individual ETS entry is not yet available. 

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 21/133 

 using individual ETS entry: 

It is an example with an individual ETS entry. It has been created with KNX 

manufacturer tool MT. The corresponding MT project files are included, too. 

MT is the standard software by the KNX organization to create own ETS 

databases for your own devices. 

 KnxBAOS Demo Source. 

A demo application to communicate to the BAOS Module. You can use this demo 

application as your base for your own application. It is an Atmel Studio Project in C. A 

software project with source code. This software contains a serial driver for frame format 

FT1.2, a client library for the BAOS protocol and a simple demo application. The demo 

application implements an actuator and sensor channel, both can be configured to 

switching, dimming and shutter by parameters. 

 Net'n Node Busmonitor Software. 

A powerful bus monitor and analyser for the development of KNX devices for all KNX 

media. This tool helps you to understand the KNX communication. It can also 

communicate directly with the BAOS Module for testing purposes. 

 Product database for ETS 5. 

Last, but not least, the ETS product databases for each module are available at their 

respective pages. 

4.3 Controller only Solution 

The controller contains the same KNX BAOS software as the Modules, so all chapters about 

ETS, Net'n Node, BAOS protocol, KNX, FT1.2 protocol, common EMI and Individual ETS 

entries apply to you. 

4.4 Kit for Raspberry Pi (BAOS Module 838) 

If you purchased the kBerry (KNX BAOS Module 838), you have one hardware, only: 

 KNX BAOS Module 838. 

This module connects the Raspberry Pi to the KNX bus. The KNX system is 

implemented in this module and separates your application from the KNX system, so 

you do not have to care about it. For experts it is also possible to bypass this system 

and use the KNX communication directly. 

You also need the Raspberry Pi, which you have to purchase in an appropriate hardware shop. 

The software and documentation are also available for download at the Weinzierl web page at 

http://www.weinzierl.de. Download the following files and you can start: 

 BAOS User's Guide. 

This document. 

 BAOS V2 Protocol Description. 

The BAOS protocol is used for communication between the BAOS Module and your 

application. This document describes the protocol. 

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 22/133 

 Data sheet KNX Module 838. 

Technical specification about the module 838. 

 KnxBAOS 83x ETS Projects for Demo. 

ETS is the standard configuration software for all KNX devices. This project contains two 

aspects: 

 using generic ETS entry: 

It is an example with pre-configured data points and parameters using a generic 

ETS entry for KNX BAOS Modules. The generic ETS entry is intended for 

development, if an individual ETS entry is not yet available. 

 using individual ETS entry: 

It is an example with an individual ETS entry. It has been created with KNX 

manufacturer tool MT. The corresponding MT project files are included, too. 

MT is the standard software by the KNX organization to create own ETS 

databases for your own devices. 

 KnxBAOS Sources for Raspberry Pi. 

The software development kit (SDK) is not available at the Weinzierl web site. It is 

hosted at GitHub. To read more about the Raspberry Pi and how to download this 

software, see chapter "Programming the Raspberry Pi Board". 

 Net'n Node Busmonitor Software. 

A powerful bus monitor and analyser for the development of KNX devices for all KNX 

media. This tool helps you to understand the KNX communication. It can also 

communicate directly with the BAOS protocol for testing purposes. 

 Product database for ETS 4.2/5. 

Last, but not least, the ETS product databases for each module are available at their 

respective pages. 

In case of using the Raspberry Pi, you can skip the chapters "The Development Board", 

"Programming the Development Board" and "The Demo Application ". 

  

https://github.com/weinzierl-engineering/baos


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 23/133 

5 The Development Board 

This chapter introduces the Development Board, its application software and how to use its 

connections. 

 

The Development Board is for development and testing own software applications for its 

capability using KNX. It offers various input/output elements connected to a freely 

programmable micro-controller. 

5.1 Introduction 

The Development Board makes the entry into the KNX development as easy as possible. It 

uses the 830, 832 or 840 module which contains the communication stack. The Development 

Board contains a 32 bit micro-controller and additional elements like LEDs and buttons. 

Every Development Kit consists of two parts: 

1. The Development Board. 

2. The KNX BAOS Modules, which are located on the connectors of the Development 

Board. 

5.2 KNX BAOS Module 

The BAOS Module is located on the Development Board. It is responsible for the whole KNX 

communication and comes with a certified KNX stack. It is configured by ETS and handles the 

KNX communication. It is connected via a serial port (UART) to the Development Board. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 24/133 

 

KNX BAOS Modules: left 830, middle 832, right 840. 

For more information see chapter "KNX BAOS Modules". 

5.3 The Demo Application 

 

The demo application of the Development Board is a two channel dimming actuator and sensor. 

The buttons S4 and S5 are used as output channel. They use the data points 1 and 2 for 

sending switching and dimming telegrams respectively. The state of the actuator channel is 

shown by the LED D3. Data points 3 and 4 accept switching and dimming telegrams 

respectively. Data point 5 accepts an absolute dimming value. 

5.3.1 Data Points/Group Objects 

The data points (DP) are accessible as follows: 

DP# DPT Size Sensor/Actuator Development Board 

1 1.001 1 bit Sensor Switch S4, S5 on/off. 

This simply switches a light on and off. 

1.007 1 bit Sensor Shutter step S4, S5 open/close. 

For moving a shutter just one step. 

2 3.007 4 bit Sensor Dimming S4, S5 brighter/darker. 

This dims a light relatively. 

1.008 1 bit Sensor Shutter move S4, S5 up/down. 

Demo application

Sensor part

Actuator part

Switch   DP1

Dimmer   DP2

Switch   DP3

Dimmer   DP4

S4/S5

LED D3

Dimmer (abs.)   DP5



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 25/133 

For starting or stopping movement of a 

shutter. 

3 1.001 1 bit Actuator Switch LED D3 on/off. 

4 3.007 4 bit Actuator Dimming LED D3 relatively (up/down). 

5 5.001 8 bit Actuator Dimming LED D3 absolutely. 

The demo application uses data point #1 connected to data point #3, which simply switches the 

LED. The dimming feature is used by connecting data point #2 and #4. Dimming is triggered by 

pressing S4 or S5 long. Data point #5 is not used here, but can be used if a sensor sends 

absolute dimmer values. 

5.3.2 Parameters 

The KNX BAOS Module supports parameter bytes which can be written by the ETS. Each 

parameter can be read by the application via the BAOS protocol. The demo application reads 

parameter #1 and #2 at program start and after an ETS download. The following tables show 

the meaning of these parameters. 

Parameter #1 controls data points #1 and #2 functionalities: 

Value Meaning DP#1 Function DP#2 Function 

0 disabled not used not used 

1 switch used as 1 bit switch sensor (S4, S5) not used 

2 dimmer used as 1 bit switch sensor (S4, S5) used as 4 bit dimming sensor (S4, 

S5) 

3 shutter used as 1 bit shutter step sensor 

(S4, S5) 

used as 1 bit shutter move sensor 

(S4, S5) 

Parameter #2 controls data points #3, #4 and #5 functionalities: 

Value Meaning DP#3 Function DP#4 Function DP#5 Function 

0 disabled not used not used not used 

1 switch used as 1 bit switch 

actuator (LED D3) 

not used not used 

2 dimmer used as 1 bit switch 

actuator (LED D3) 

used as 4 bit relatively 

dimming actuator (LED 

D3) 

used as 1 byte absolutely 

dimming actuator (LED 

D3) 

If we set both parameters to 0 the sensor (button S4 and S5) does nothing and the actuator 

(LED D3) also does nothing. If set to 1, they can switch on and off the light. If set to 2, they can 

dim the light, additionally. 

5.4 Connect and commission the Hardware 

Connect and commission the Development Board and BAOS Module as described in the 

chapter "Quick Start". 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 26/133 

Note: If you want to use the BAOS Module 832, don't use the USB connection to the PC for 

now. 

The learn button (or programming button) sets a KNX device into programming mode. In this 

mode ETS can assign an individual address to the device. In our case it will be 1.1.32. This is a 

unique address for every KNX device on the installation. The default address of the BAOS 

Modules is 15.15.255. 

5.5 Monitoring KNX using Net'n Node 

 

The BAOS development kit includes the program Net'n Node. It is available for download at the 

BAOS web page. With this program you can communicate with the KNX BAOS Module without 

ETS. Install it and connect the PC to the KNX bus via bus interface, e. g. KNX USB Interface 

0311. (More info available at the Weinzierl web site at http://www.weinzierl.de) 

The download file of Net'n Node is an archive file. Unpack it and follow the READE file.  

Important: To run Net'n Node a license file is required. It can be obtained from the Registration 

web site of Net'n Node 5. 

Now open your bus interface by hitting one of buttons at the left side. 

If the buttons on the Development Board are pressed, Net'n Node shows the telegrams. Near 

the right end of the table the values can be seen. The current address of our KNX BAOS 

Module is shown in the source address (Src-Addr) column of the table. 

Net'n Node is also capable to send telegrams. Select the menu Send KNX/Group Value 

Write/DPT 05 - 8-Bit Unsigned Value - 1 byte. This opens a dialog window where we can 

select the contents of our telegram. Enter the correct Group Address for example 3/3/3. Enter 

a value (example 16) in the Data area and click the button Send. The LED of the previously 

configured BAOS Development board dims. Simultaneously the telegrams of the KNX bus are 

shown in the telegram view. 

5.6 Development Board Hardware 

This section describes the hardware of the Development Board and its usage. 

The Development Board contains a micro-controller for the user application, 4 LEDs and 4 push 

buttons for the application software. 

The KNX BAOS Module (mounted on the connectors of the Development Board) contains 

another micro-controller which handles the KNX stack. 

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 27/133 

5.6.1 Components 

 

The Development Board contains the following: 

1. The connector to the KNX bus. 

2. Learning Key (or Programming Keys) and LED for BAOS Module 830. 

3. Learning Key and LED for BAOS Module 832 or 840. 

These keys and LEDs are not for the application. They are used to program the 

individual address. (e. g. 1.1.32). The Development Board can host different KNX BAOS 

Modules (830, 832 or 840). Due to different power concepts individual LED/key pairs 

exist for each form factor. 

4. Connection to the BAOS Module 830. 

5. Connection to the BAOS Module 832 or 840. 

See section “Pinning of the KNX BAOS Modules”. 

6. SWD connectors for programming and debugging the micro-controller of the 

Development Board. 

7. Atmel SAMD20G18 Cortex M0+ micro-controller with 256 kB Flash and its 7.3728 MHz 

crystal. 

8. Programming LED and push button for the application software. This can be used 

for an application triggered learning mode. 

9. Push buttons and LEDs for the user application. 

10. Micro-USB connector: Power supply for the board and UART (FTDI) connector for 

communication to the application or the KNX BAOS Module. Configurable with jumpers. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 28/133 

11. Jumpers Vcc-Sel for power configuration: 

X13 (KNX) X14 (USB) Micro-controller USB connector Module 

open open not powered unusable unusable 

open closed powered by PC must be connected to PC 832 

closed open powered by KNX can be connected to PC 832 

closed closed powered by PC must be connected to PC 830/840 

Note: The first combination (X13 and X14 open) might work with the module 832, but 

this is not correct due to the power supply for the Development Board is done by the 

signals of the BAOS Module not the Vcc pin. Don't do this. 

 

12. Jumpers X8 and X9 for BAOS communication: 

Connectors to route the communication between the KNX BAOS Module and the micro 

controller of the Development Board or the USB port. See more next section. 

5.6.2 Jumpers for BAOS Communication 

The Jumpers X8 and X9 can be used to route the communication between the micro controller 

of the Development Board, a PC and the BAOS Module. Its schematics are shown below. 

 

The micro controller of the Development Board has two UART interfaces (UART0 and UART1). 

Both can be used, but each for a certain task and the USB interface can be connected to a PC. 

µC

PA08 - TxD0

PA09 - RxD0

PA13 - RxD1

PA12 - TxD1

UART0

UART1

USB

TxD

RxD

BAOS

TxD RxD

Jumper X8

Jumper X9

complete circuit diagram

1 2 3

1 2 3

<

<

/\

>

>

\/

<

>



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 29/133 

5.6.2.1 Communication: BAOS and Development Board 

The standard case is to connect the micro controller of the Development Board to the BAOS 

Module. The controller uses UART1 for this task (blue and light blue lines). 

 

Furthermore it is possible to use UART0 of this micro controller to communicate to a PC via the 

USB port of the Development Board. This makes some data/command exchange possible to 

the PC (red and orange lines). In the demo program of the Development Board, this is not used. 

5.6.2.2 Communication: BAOS and PC 

Developing and debugging an embedded application can be quite inconvenient and difficult. 

Especially debugging and watching variables are time consuming tasks at an embedded 

system. To avoid this, the application can also be developed on a PC. It can be connected to 

the KNX BAOS Module the way the embedded micro controller is. 

µC

PA08 - TxD0

PA09 - RxD0

PA13 - RxD1

PA12 - TxD1

UART0

UART1

USB

TxD

RxD

BAOS

TxD RxD

Jumper X8

Jumper X9

µC UART1 < --- > BAOS

µC UART0 < --- > USB

1 2 3

1 2 3

<

<

/\

>

>

\/

<

>



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 30/133 

 

To do this, connect the USB interface of the PC to the Development Board and set the jumpers 

shown below. 

 

Development Board

Microcontroller

BAOS Module

Microcontroller

KNX Transceiver

KNX Bus

Jumper

PC

USB

TxDRxD

µC

PA08 - TxD0

PA09 - RxD0

PA13 - RxD1

PA12 - TxD1

UART0

UART1

USB

TxD

RxD

BAOS

TxD RxD

Jumper X8

Jumper X9

USB < --- > BAOS

1 2 3

1 2 3

<

<

/\

>

>

\/

<

>



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 31/133 

This enables the BAOS communication directly to the PC (blue and light blue lines). Net'n Node 

can also use the direct communication to the KNX BAOS Module. The micro controller of the 

Development Board cannot communicate to the BAOS Module, but it can still listen to it. 

To use Net'n Node, 

- select View/Access Port Configuration, 

- select Create new..., 

- select BAOS FT1.2 Serial, 

- select the correct serial device name (COMx), 

- and use Test. 

- If the test is successful, a requester will ask for adding the port to the user list. Answer 

Yes. 

- Open the port, 

- choose a BAOS telegram (e. g. GetServerItem, start index: 9, number of: 1) and Send 

it. 

- A response will be displayed in the Telegram View. Double click this telegram to get a 

more comprehensive interpretation. In case of ServerItem 9, the time since last reset 

[ms] is shown in a 4 byte value. Example: 0x006BA2C6. This means the module is up 

and running since 7054022 ms, or 1 hour, 57 minutes, 34 seconds and 22 milliseconds. 

- To end this session, close the port 

Don't forget to reset the jumpers after using Net'n Node. 

5.6.2.3 Communication: Monitoring 

The last usable combination is to monitor the BAOS communication. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 32/133 

 

In this case the micro controller of the Development Board (UART1) is connected normally to 

the BAOS Module (blue and light blue lines). But a PC connected to the USB port can monitor 

the communication from the BAOS Module (red line). 

Using a FTDI USB converter cable it is also possible to monitor the communication to the 

BAOS Module. To do this, connect the FTDI cable to the Jumper X8 and use a second USB 

port of the PC. 

To use Net'n Node, 

- select View/Access Port Configuration, 

- select Create new..., 

- select BAOS FT1.2 Serial, 

- select the correct serial device name (COMx), 

- and use Test. 

- The test will now be unsuccessful, since the module will not answer Net'n Node's 

requests. The requester will ask to add the port as Spy port. Answer Yes. 

- Select Baudrate 19200, 

- select Decoder FT1.2 Data, 

- select Packetizer FT1.2 

- and make sure the Parameters are 8E1. This will decode the BAOS communication. 

- Open the port. 

µC

PA08 - TxD0

PA09 - RxD0

PA13 - RxD1

PA12 - TxD1

UART0

UART1

USB

TxD

RxD

BAOS

TxD RxD

Jumper X8

Jumper X9

µC UART1 < --- > BAOS

BAOS --- > USB

1 2 3

1 2 3

<

<

/\

>

>

\/

<

>



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 33/133 

This shows the BAOS communication between the module and the application in one way. To 

see the other way, a second COM port must be opened in the same way. 

Don't forget to reset the jumpers after using Net'n Node. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 34/133 

5.7 Schematics of the Development Board 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 35/133 

6 KNX BAOS Modules 

This chapter describes the BAOS Modules: the connections, dimensions and a firmware 

overview. 

 

KNX BAOS Modules: from left to right: 830, 832, 838 and 840 

6.1 Introduction 

The KNX BAOS Module contains a micro-controller and a KNX transceiver to handle the KNX 

communication. Its interfaces are: 

 A KNX interface to send and receive telegrams via the KNX bus (see chapter "About 

KNX" for more info). In case of 830, 832 and 838, this is also the power source for the 

module. 

 A serial port (UART) for communication to the device (Development Board, other 

hardware or, in case of 838, the Raspberry Pi). This serial port uses an FT1.2 protocol 

for data integrity (see chapter "FT1.2 Protocol") which contains either the BAOS protocol 

or the cEMI protocol. 

o The BAOS Protocol (see chapter "BAOS Protocol") is used for reading and 

writing data point values, being notified of data point value changes, reading 

parameters and device settings. 

o The cEMI Protocol (see chapter "Common EMI Protocol") offers the possibility 

to generate own KNX telegrams for the Link Layer. 

 Optionally a programming mode (learning key) and LED. The module 838 has them on 

board. 

The modular overview shows two BAOS Modules and their Development Boards, connected by 

the KNX bus. The serial port (Rxd/TxD) connects the Module and the Development Board. The 

KNX bus connects both BAOS Modules. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 36/133 

 

The main difference between the 830 and 832 are the optical couplers. 

6.2 Connection Requirements 

To use the module the following is required: 

 Connection to the KNX bus: The KNX BAOS Modules 830, 832 and 838 support a 

twisted pair (TP) KNX bus interface. This TP interface must be connected to the bus. Its 

nominal voltage is 29 V. Care must be taken about the polarity. A choke must be used 

for supplying the KNX bus with power. Without it, the bus will not work. Use an 

appropriate power supply. The typical KNX plug is black and red. 

 

 
KNX TP plug 

 

The Development Board supplies the KNX bus to the Modules 830 and 832. The 838 

kBerry has its own TP plug. 

 

The KNX BAOS Module 840 supports a radio frequency (RF) KNX bus interface and 

must be powered via the Development Board. 

Development Board

BAOS Module 830

Optical

couplers

Microcontroller

KNX Transceiver

KNX Bus

Microcontroller

Development Board

BAOS Module 832

Microcontroller

KNX Transceiver

Microcontroller

Development Board

BAOS Module 840

Microcontroller

KNX RF Transceiver

Microcontroller

KNX

RF

RxD TxD

TxDRxD TxDRxD TxDRxD



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 37/133 

 Connection to the application hardware: The UART connects the application 

hardware with the KNX BAOS Module. It is a serial port using 3 – 5 V. Two baud rates 

are available. 19200 is the default. The baud rate can be changed to 115200 via 

protocol. Data bits are 8, even parity and 1 stop bit: 8e1. 

 

Warning: Don't connect an RS-232 serial port directly to the pins of the KNX BAOS 

Module. This will certainly damage the hardware. To connect a PC or anything else 

which is RS-232 compatible, a level converter is required. 

 

Note: The KNX BAOS Module's default baud rate is 19200 after every reset. An ETS 

download also resets the module. 

 

 Learning key. A button should be connected to set the KNX BAOS Module into 

programming mode for downloading an individual address. 

 

 LED for the learning key. The programming mode should be indicated by a red LED.  

The KNX BAOS Modules 830 and 838 have optical couplers which galvanically isolate the 

application hardware from the KNX bus. If your application is powered externally, it is required 

to protect the KNX bus and the application hardware against interferences and different 

potentials. The application hardware must supply Vcc and GND to the KNX BAOS Module. It is 

required for the application side of the optical couplers. 

The KNX BAOS Module 832 supplies the application hardware with Vcc, V20 and GND. It will 

be powered by the KNX bus. This is only recommended for devices which have no other 

electrical connections (including ground). 

Since RF cannot supply power, the KNX BAOS Module RF 840 must be powered by other 

means. 

6.3 Pinning of the KNX BAOS Modules 

The pinning figures of the KNX BAOS Modules show the interfaces (KNX bus and UART) plus 

the programming key & LED. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 38/133 

KNX BAOS Module 830: 

 

The LED and programming key are coupled to the KNX bus voltage. The UART connects the 

Development Board. Vcc and GND must provide power for the isolated part of the module. 

Note: Don't mix KNX bus - and GND. 

KNX BAOS Module 832: 

 

The KNX BAOS Module 832 has no galvanic isolation, so it can power the application via Vcc 

and V20. 

Note: KNX bus - and GND are at the same potential. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 39/133 

KNX BAOS Module 838: 

 

The KNX BAOS Module 838 is technically compatible to the 830, except it is for use with the 

Raspberry Pi. The connections to the Raspberry Pi are UART (RxD/TxD), Vcc and GND. The 

programming key & LED are on board. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 40/133 

KNX BAOS Module RF 840: 

 

6.4 Dimensions of the KNX BAOS Modules 

KNX BAOS Module 830: 

 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 41/133 

KNX BAOS Module 832: 

 

KNX BAOS Module 838: 

 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 42/133 

KNX BAOS Module RF 840: 

 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 43/133 

6.5 Modular Overview of the Firmware 

The firmware has a modular design. The most 

important modules are shown in the right figure. 

The firmware contains a certified KNX 

communication stack, which conforms to the OSI 

model. It also manages the KNX group object 

table, association table and address table, so the 

application does not need to care about them. 

The BAOS protocol Server handles up to 1000 

data points and up to 70 kByte for parameters. 

The data points can be modified by the 

application and by KNX telegrams. The 

application is automatically notified about a 

change of a data point value. 

The FT1.2 Frame Handler, which embeds the 

BAOS Protocol, ensures data integrity. 

Warning: Do not alter or program the micro-

controller of the KNX BAOS Module. You might 

render your device to be permanently unusable. 

6.6 Reset all Configurations of the BAOS Module to Default 

ETS can configure the KNX BAOS Module as any KNX device. It is possible to reset the 

configuration without ETS. This might be necessary if it cannot be reset to default state with 

ETS. To do this, a master reset must be performed. 

 The module must be disconnected from power for a few seconds. 

 Hold the learning button down and reconnect power. 

 Keep the button down for at least 3 seconds, and then release it. 

The learning LED flashes for a very short time and about 3 seconds later, the module is up and 

running again with all configurations reset to default. The individual address is now 15.15.255. 

6.7 KNX IP BAOS Devices 

KNX IP BAOS devices use an Ethernet/IP interface to the application. If you don't want to use a 

serial connection to you PC and use an Ethernet/IP interface, the following devices might 

interest you. 

 

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Management

Download

BUS

GO

Table

Assoc

Table

Address

Table

Connection

Less

Connection

Oriented

Group

Objects

UART Connection

BAOS Protocol Server

FT1.2 Frame Handler

FT1.2 Frame Handler

BAOS Protocol Client

Application

KNX Device with BAOS Module

T
e

le
g

ra
m

 A
c
ce

ss

B
A

O
S

 M
o
d

u
le

M
C

U
 f
o
r 

A
p

p
l.

BAOS
Access



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 44/133 

 

The KNX IP BAOS 771 and 772 offer an Ethernet interface 10Base-T (LAN RJ-

45) for connecting a PC or a similar device. The 771 supports 250, and the 772 

up to 1000 data points. The BAOS protocol is embedded into IP instead of FT1.2. 

More info is available at http://www.weinzierl.de. 

 

The KNX IP BAOS 777 offers the same interface as the 771/772 and up to 2000 

data points. It features an internal web server which enables a PC to manage the 

KNX devices via the 777 with a web browser. This browser can be used to 

visualize a building structure and its connected sensors and actuators. 

Furthermore a display in front of the 777 can be used to configure some basic 

settings. 

More info is available at http://www.weinzierl.de. 

  

http://www.weinzierl.de/
http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 45/133 

7 Commissioning with ETS 

In this chapter the demo project of the BAOS Module and its configuration is described. 

To use and configure the BAOS Module, the ETS (Engineering Tool Software) is used. ETS 

runs on computers using the Microsoft Windows operating system. 

This tool requires so-called product databases, which describes KNX devices. The BAOS 

Module's product database is available in a generic and an example individual version. 

The generic database can be used for configuring the BAOS Module. It allows selecting data 

point types. As long as we are developing our application this is a useful approach. Later, when 

the application is ready for release, an individual database can be created, which is more 

convenient for the commissioner. How to do this is described later in the chapter "Individual 

ETS Entries". For now the generic database is used. 

The demo project uses this generic database and has already configured the BAOS Module. 

We will use this project, now. 

7.1 Install ETS 

If ETS is not installed, download and install it from the KNX download page at 

http://www.knx.org. Version 5 suits fine for working with the KNX BAOS Module. 

After downloading the executable file, start it (double click) and follow the install instructions. 

7.2 Install ETS License 

A license might also be necessary to run ETS. The free demo license allows 5 devices per 

project. If more are needed, a full license is available to purchase at the KNX Online Shop. 

7.3 Import a Project 

Start ETS and import the test project: 

Select the file to import: 

Weinzierl_8xx_KNX_BAOS_ETS_Projects_for_Demo/ 

ETS_Project_using_generic_ETS_entry/ 

Project.knxproj. 

http://www.knx.org/
https://my.knx.org/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 46/133 

Now open the new Project by double-clicking it. Select 

Buildings and choose Project Root to see the whole project. In 

the Topology, if we expand 1 Main Area and all its children, we 

see the device KNX BAOS 8xx. 

7.4 Topology 

The topology is a hierarchical structure which contains the devices of a KNX installation. 

7.4.1 Areas 

 

A KNX installation contains some connected devices, each addressed by its own individual 

address. The individual address is a three number address, like 1.1.1. The first number denotes 

the area of the network. 

Big KNX installations can have up to 15 areas, so the individual address can range from 1.x.x to 

15.x.x. 

7.4.2 Lines 

The second number denotes the line. An area can hold up to 15 lines, so the individual address 

can range from x.1.x to x.15.x. 

7.4.3 Devices 

The third number denotes the device. 255 devices can be addressed in the range from x.x.1 to 

x.x.255. 

The device KNX BAOS 8xx in this demo project has the individual address 1.1.32. 

7.5 Parameters 

Now it is time to see the parameters of the BAOS 8xx. Select the device and display its 

parameter. 

According to the demo application of the Development Board, the data points are configured as 

in the following figure. 

 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 47/133 

 

The description text of the data point, which is only visible if you enabled a data point, is just a 

text field which is not downloaded into the KNX device. It stays in the ETS project just for 

information. It helps the commissioner to give a name to every data point. 

The application must know about the usage of the data points, so we use the parameter bytes 

to inform our application about it. The demo application uses 2 parameter bytes. These 

parameter bytes can be changed by ETS. The application reads them at start up time and after 

an ETS download. To access the parameters in the application, the GetParameterByte.Req 

command is used. See KnxBAOS_Protocol_v2.pdf for more info. 

We already read about the interpretation of the parameter bytes in the section "The Demo 

Application". Here for our case, we use the following values: 

Value 2 of parameter #1 means 

 Channel 1: data point #1 used as 1 bit switch sensor (S4, S5) and 

 Channel 1: data point #2 used as 4 bit dimming sensor (S4, S5). 

Value 2 of parameter #2 means 

 Channel 2: data point #3 used as 1 bit switch actuator (LED D3), 

 Channel 2: data point #4 used as 4 bit relatively dimming actuator (LED D3) and 

 Channel 2: data point #5 used as 1 byte absolutely dimming actuator (LED D3). 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 48/133 

 

The description of the parameters is also not downloaded into the module. It is only for 

information to ease the use of the parameter bytes. 

7.6 Group Addresses 

The data points are linked together by group addresses: 

 Data point #1 and data point #3 using the group address 3/3/1. 

 Data point #2 and data point #4 using the group address 3/3/2. 

 Data point #5 is alone in the group address 3/3/3. 

These group addresses contain all data points which have to take action if someone sends a 

value to this address. There is normally one data point, which sends a value to such a group 

address and all other data points in this group address listens to this event and act accordingly. 

 

Example: To switch a light on or off, we need one data point from the sensor (the light switch) 

which sends the 1-bit value. The data point type must be DTP 1 (1 bit) for all connected data 

points. All other data points in this group address will listen. These are the data points from all 

the actuators (light bulbs, etc.). The group address 3/3/1 can be a freely chosen address, but it 

must be unique in the KNX installation. 

Group address 3/3/3 (an absolute dimming value) is used in this demo project as test for Net'n 

Node (see section "Monitoring KNX using Net'n Node"). Some sensors can use such value to 

tell the actuator to dim a light to a certain value. This value has the type DPT 5 (1 byte) and 

ranges from 0 to 100. 0 is off and 100 is the brightest light. 

7.7 Download 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 49/133 

Connect the Development Board to the KNX bus and the PC to a KNX Interface. Press the 

Learn button on the board (red LED must light up). Select the device KNX BAOS 8xx and use 

menu Download/Full download. 

The device is now configured. Press the buttons S4 and S5. The LED D3 is now switched on 

and off via group address 3/3/1. 

If you press S4 and S5 long, the LED dims lighter or darker (via group address 3/3/2). 

The Telegrams can be monitored with Net'n Node, as described in section "Monitoring KNX 

using Net'n Node". 

7.8 Conclusion 

The generic database has the advantage, that all data points can be configured as any type. 

This is the usual way while development. For commissioning it is inconvenient since the installer 

has to define the correct type for every data point. With an individual database all data point 

types can be defined like the application expects them and only these data points can be made 

visible which are really needed. 

How to create an individual database we will see in chapter "Individual ETS Entries". 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 50/133 

8 Programming the Development Board 

This chapter describes how to program the Development Board using an IDE. 

The demo application is an example software, which handles some push buttons and some 

LEDs. Its sources are also provided, which can be used as a starting point for developing own 

applications. Basic knowledge in programming in C language is assumed. 

The source is written in C, suitable for the freely available WINAVR (GNU) compiler. You can 

create own applications based on the Atmel Cortex micro-controller. For information about this 

controller, see 

Atmel ARM-based 32-bit Micro-controller SAM D20 

at the Atmel web site. 

8.1 Additional Hardware 

To program the Development Board the following additional hardware, besides a KNX 

installation, is needed: 

 A JTAG interface (like AVR JTAGICE3) to program the board. 

 A PC which has installed Atmel Studio 7 or higher and ETS 5 or higher. 

8.2 Installation of IDE and Compiler 

Atmel Studio is the IDE (integrated development environment) based on Microsoft Visual 

Studio. It is available for free at the Atmel web site. It uses the compiler set WINAVR (GNU). If 

you have already installed Atmel Studio make sure you have at least version 7. 

You need a programming tool to write the software to the micro-controller of the Development 

Board. ATJTAGICE3 can do this and is available at the Atmel web site. Also download Atmel 

Studio, which is not included in the starter kit. 

8.3 First Debugging Steps 

Connect the SWD connector of the Development Board to the programming tool 

(ATJTAGICE3). The programming tool is connected to the PC. Furthermore connect the 

Development Board to the KNX bus. The Development Board gets its power from the USB 

interface. Connect it to the PC. 

http://www.atmel.com/devices/ATSAMD20G18.aspx?tab=overview
http://www.atmel.com/
http://www.atmel.com/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 51/133 

The following figure shows the hardware build-up. 

 

In this figure, the KNX bus is provided by the white box. It consists of a power supply including a 

choke and a KNX USB Interface. 

 

The build-up for RF is simpler, but some kind of RF interface is needed for the PC/ETS. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 52/133 

Unpack the archive 

Weinzierl_8xx_KNX_BAOS_Demo_Source.zip, 

start Atmel Studio and open the project 

Weinzierl_8xx_KNX_BAOS_Demo_Source/ 

Sources/ 

Weinzierl_8xx_KNX_BAOS_Demo_Project.atsln. 

Select the project and choose the menu Project/Properties. Check whether everything is 

configured correctly: 

Tab Parameter Development Board 

Device Device Name ATSAMD20G18 

Tool Selected debugger/programmer JTAGICE3 (or similar) 

 Interface SWD 

 Programming settings Erase only program area or Erase entire chip 

Now build the demo application with menu Build/Build Solution and start it with menu 

Debug/Start Debugging and Break. 

A few seconds later the application starts and stops at the entrance of the main() function: 

int main(void) 

{                                 <= EXECUTION STOPS HERE 

    App_Init(); 

 

    while(TRUE) 

    { 

        App_Main(); 

    } 

 

    return 0; 

} 

Now we can go through the program step by step using the keys F10 and F11. To continue the 

program use F5. 

8.4 Download a Binary Application 

If you want to download a binary application into the micro-controller of the Development Board, 

do the following: 

1. Start Atmel Studio. 

2. Choose menu Extras/Device Programming which shows a dialog window. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 53/133 

3. Use the correct tool (e. g. JTAGICE3) for the Development Board: 

Device: ATSAMD20G18 

and 

Interface: SWD. 

Push the button Apply to establish the connection. Verify it by pushing the button 

Device signature Read. It must show a hexadecimal value, which is the device 

signature. Example: 0x10001205. 

4. Go to tab Memories. Load the ELF file. An example is included in the archive  

 

Weinzierl_8xx_KNX_BAOS_Demo_Source.zip. 

 

Unpack the archive and use the file 

 

Weinzierl_8xx_KNX_BAOS_Demo_Source/ 

Binary/ 

Weinzierl_8xx_KNX_BAOS_Demo.elf 

 

to program the Flash of the Development Board. 

5. Make sure Erase Flash memory before programming check-mark is set 

6. Program the device by pressing the button Program. 

Now the Development Board is programmed with the binary file. 
  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 54/133 

9 The Demo Application 

This chapter is about the basics of the demo application and how to use the BAOS frame work. 

The application uses a main loop at its top level, which calls the sensor and actuator module 

cyclically. The sensor part handles the buttons and sends its events to the BAOS protocol client. 

The actuator part handles the LEDs according to the events received from the BAOS protocol 

client. 

The FT1.2 handler (via timer handler) and the serial driver use 2 interrupts: timer and 

communication. The communication interrupt occurs for every sent or received character at the 

UART port. The timer interrupt calls the timer handler every millisecond which manages a global 

counter and the timeouts for the FT1.2 handler. 

 

9.1 Software Modules 

Application Hardware

Main loop

Timer Interrupt

(every 1 ms)

UART0 Interrupt

(TxD sent one character

or RxD received one character)

Sensor, Actuator

and ProgMode

BAOS protocol client

FT1.2 handler

(KnxFt1.2.c)

Serial driver

(KnxSer.c)

UART Hardware

Timer

(KnxTm.c)

BAOS Module

Microcontroller

Transceiver

KNX Bus

RxD TxD



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 55/133 

9.1.1 Main Loop Module 

The main loop module contains only one source file: 

Main.c is the main entry. It initializes all components, like system and application, and enters a 

never ending loop. This main loop contains the BAOS process and one application, called both 

cyclically. 

AppBoard_PortsInit();  // Set board-configurations 

KnxBaos_Init();   // Initialize BAOS 

App_Init();    // Set start-configuration for demo-application 

 

while(TRUE)    // Never ending main loop 

{ 

 KnxBaos_Process(); // Handle KNX BAOS communication 

 App_Main();   // Call main loop 

} 

9.1.2 Sensor, Actuator and ProgMode Module 

App.c contains the initialization function App_Init(), called from main(). 

AppKey_Init();  // Initialize our two push buttons 

AppActuator_Init(); // Initialize actuators 

AppSensor_Init();  // Initialize sensors 

AppProgMode_Init(); // Initialize programming mode handler 

In this call, it initializes all components: key handler, actuator, sensor and programming mode 

parts. 

App_Main() is called cyclically from the main loop. It executes a state machine, which does the 

following: 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 56/133 

 

1. Request the programming mode. The key S3 and the LED D2 on the Development 

Board are for an application driven programming mode. The state machine gets the 

current programming mode from the BAOS module and updates the LED D2. 

2. Get download counter. The download counter is a ServerItem of the BAOS module 

which counts the ETS downloads. This value is stored in an internal variable, which can 

be read by calling the function App_GetDownloadCounter(). In this demo application it is 

just an example and is not used further. 

3. Retrieve some parameter bytes from the BAOS Module. All parameter bytes, the 

application needs to know for running the sensor and actuator, are requested. 

At the end of this initialization, the key handler, actuator part, sensor part and programming 

mode handler are executed in every loop. This is the application's main work. 

BAOS protocol client

Wait for

parameters

Request

programming mode

START

GetServerItem

prog. mode

Receive

prog. mode

Wait for

programming mode

Request

download counter

Wait for

download counter

GetServerItem

download counter

Receive

download counter

Request

parameters

GetParameterBytes

Receive

parameter byte

Running

(sensor and actuator active)

Reset indication

no

time out

send

receive
time out

time out

send

receive

send

receive

last parameter byte received?

yes

receive



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 57/133 

In case of a reset indication (e. g. BAOS Module reboots after an ETS download), the 

application will be notified and the state machine starts again. See App.c. 

/// Handle reset indication. 

/// 

/// BAOS has been reset (could be due to a change of the parameters via ETS). 

 

void App_HandleResetIndication(void) 

{ 

    m_eState = REQUEST_PROG_MODE;    // Initialize state machine 

} 

ETS sets the parameter bytes. In the demo application, we use only two parameter bytes. See 

App.h. 

/// Parameter byte assignment 

/// 

/// Parameter bytes used by this application: 

/// 

/// PB#1: Configuration for DP#1 and #2 

/// PB#2: Configuration for DP#3, #4 and #5 

 

enum PbUsage_tag 

{ 

    PB_UNUSED      =  0,             // PB#0 is never used 

    PB_FIRST       =  1,             // First used parameter byte 

    PB_SWITCH_TYPE =  1,             // PB#1 

    PB_LIGHT_TYPE  =  2,             // PB#2 

    PB_MAX         =  2              // All remaining param. bytes not used 

}; 

Only PB_SWITCH_TYPE and PB_LIGHT_TYPE are used as parameter bytes. These 

parameter bytes are used in the actuator and sensor part. 

AppActuator.c contains the actuator part of the application. It handles the LEDs according to 

the BAOS indications. The function AppActuator_HandleDatapointValueInd() gets called for 

every data point change from the KNX bus. 

switch(nDpId) 

{ 

 case DP_LED0_SWITCH_I:   // Switch object selected 

 

  if((m_nLightType == LT_SWITCH) 

            || (m_nLightType == LT_DIMMER)) 

            { 

   if(nDpLength == 1) // We expect 1 byte data length 

   { 

    if(*pData == SWITCH_ON)   // Switch on 

    { 

     AppDim_Switch(TRUE); 

    } 

    else if(*pData == SWITCH_OFF)  // Switch off 

    { 

     AppDim_Switch(FALSE); 

    } 

   } 

  } 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 58/133 

 

  break; 

 

 case DP_LED0_DIM_RELATIVE_I:  // Relative dimming object selected 

 

  if(m_nLightType == LT_DIMMER) // We expect to be a dimmer 

  { 

   if(nDpLength == 1) // We expect 1 byte data length 

   { 

    AppDim_DimRelative(*pData); 

   } 

  } 

 

  break; 

 

 case DP_LED0_DIM_ABSOLUTE_I:  // Absolute dimming object selected 

 

  if(m_nLightType == LT_DIMMER) // We expect to be a dimmer 

  { 

   if(nDpLength == 1) // We expect 1 byte data length 

   { 

    AppDim_DimAbsolute(((uint16_t)*pData)*255/100); 

   } 

  } 

 

  break; 

 

 default:     // Ignore all other data points 

  break; 

} 

nDpId is the data point number which has been changed. If this number is one of our data 

points we are handling (DP_LED0_xxx), the corresponding code case is executed. 

Next we check whether and how the data point is used by checking the corresponding 

parameter byte. This parameter byte is stored in m_nLightType. If its value is LT_SWITCH only 

the data point DP_LED0_SWITCH_I is active. In case of LT_DIMMER all three data points are 

active. 

nDpLength contains the size of the new data point value. It must match the size we expect for 

our application. If the ETS is misconfigured to use a bigger size than 1 byte, we ignore the 

indication. 

pData id a pointer to a byte array which contains the new data point value. In our case, we 

accept only 1 byte. 

If all these conditions are met, we act on the LED and call the function AppDim_xxx() to switch 

in on, off or dim. The absolute dimming value from the KNX bus can range from 0 to 100 %. We 

map this to the range 0 to 255, since the function AppDim_DimAbsolute() accepts this range. 

AppSensor.c contains the sensor part of the application. It gets key events and sends BAOS 

commands. 

nEvent = AppKey_GetKeyEvent(1);   // Get event for key S4 

 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 59/133 

switch(nEvent) 

{ 

 case KEY_EV_LONG:     // Key long pressed 

  if(m_nSwitchType == ST_DIMMER) // Data point used as dimmer? 

  { 

   nValue = DIM_REL_DIRECTION_UP | DIM_REL_100; 

 

   KnxBaos_SendValue( 

    DP_SWITCH_DIM_OR_MOVE_O, DP_CMD_SET_SEND_VAL, 1, 

                        &nValue); 

 

                  // DatapointID: 2, Command: send value, Length: 4 bit 

  } 

  break; 

 

 case KEY_EV_SHORT:    // Key short pressed 

  if((m_nSwitchType == ST_SWITCH) // Data point used as switch? 

  || (m_nSwitchType == ST_DIMMER)) // or as dimmer? 

  { 

   nValue = SWITCH_ON;  // Value: 1 -> LED-ON telegram 

 

   KnxBaos_SendValue( 

    DP_SWITCH_OR_STEP_O, DP_CMD_SET_SEND_VAL, 1, &nValue); 

 

   // DatapointID: 1, Command: send value 

  } 

  break; 

 

 case KEY_EV_RELEASE:    // Key released after long pr. 

 

  if(m_nSwitchType == ST_DIMMER) // Data point used as dimmer? 

  { 

   nValue = DIM_REL_DIRECTION_UP | DIM_REL_STOP; 

   // DPT_Control_Dimming: stop increasing LED light 

 

   KnxBaos_SendValue( 

    DP_SWITCH_DIM_OR_MOVE_O, DP_CMD_SET_SEND_VAL, 1, 

                        &nValue); 

 

   // DatapointID: 2, Command: send value 

  } 

  break; 

 

 case KEY_EV_NONE:     // State of key not changed 

  break; 

} 

AppKey_GetKeyEvent() returns the current key event. The key events can be a long press, a 

short press, a release and no key pressed. The long press event is followed by the release 

event after the user releases the switch. A short press is not followed by a release. 

Every case contains one statement which check whether a certain data point is in use or not 

(m_nSwitchType). This is controlled by the parameter bytes, which are retrieved at start of the 

application and at a reset indication from the KNX BAOS Module. 

If the parameter byte for our switch is ST_SWITCH we change the value of data point #1 only 

by a short key press (simple switch). If the parameter byte is ST_DIMMER, we change data 

point #1 at a short press or data point #2 if the switch is long pressed (dimming). 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 60/133 

nValue contains the new value for the data point. The function KnxBaos_SendValue() needs a 

byte array for this value because these values can have up to 14 bytes. In our case we use only 

1 byte, so we just send the address of nValue to the function. 

The key number for the key events is mapped in AppKey.h: 

#define APP_KEY_COUNT       3             // Count of application keys 

#define IS_KEY_PRESSED_0    GET_KEY_S3    // Port pin for channel 0 

#define IS_KEY_PRESSED_1    GET_KEY_S4    // Port pin for channel 1 

#define IS_KEY_PRESSED_2    GET_KEY_S5    // Port pin for channel 2 

#define IS_KEY_PRESSED_3    GET_KEY_S6    // Port pin for channel 3 

#define IS_KEY_PRESSED_4    GET_KEY_S7    // Port pin for channel 4 

In this case the key S3 is mapped to key #0, S4 to key #1, and so on. The mapping can be 

changed along with the number of used keys. 

The time (milliseconds) for a long press is also defined in this file: 

#define KEY_TIME_LONG 300 

AppProgMode.c contains the programming mode handler of the application. It handles the key 

S3 and LED D2. 

AppDim.c handles the LED. It performs the dimming of the LED as well as the switching on and 

off. AppDim.h defines the maximum value of the LED for 100% brightness and its timing for 

every dimming step (4 milliseconds delay): 

#define DIM_MAX_VALUE 0xFF              // Max. Brightness 

#define DIM_MIN_VALUE 0x00              // Min. Brightness 

 

#define DIM_RAMP_TIME 0x04              // Delay in ms for every dimming step 

AppLedPwm.c is also part of the LED handling. It maintains the software PWM which controls 

the LED. 

AppKey.c is the driver for handling the push buttons on the Development Board. It also handles 

their de-bouncing, long/short presses and releases. 

AppBoard.c initializes the ports of our micro-controller at the Development Board. See 

AppBoard.h for which port is connected to the components on the board. 

9.1.3 BAOS Protocol Client Module 

KnxBaos.c and KnxBaosHandler.c contain the implementation of the object server protocol, 

which is the core protocol of the BAOS. They mainly contain routines for sending and receiving 

telegrams. 

9.1.4 FT1.2 Handler Module 

KnxFt12.c handles the FT1.2 protocol which is used by the communication with the BAOS 

Module. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 61/133 

KnxBuf.c handles receive buffer for FT1.2. 

9.1.5 Serial Driver Module 

KnxSer.c is the low level serial driver used by the communication with the KNX BAOS Module. 

9.1.6 Timer module 

KnxTm.c is the system timer and contains some convenience functions for timer usage. The 

following function returns the current up time in milliseconds. It starts counting after a reset of 

the application. 

uint32_t KnxTm_GetTimeMs(void);         /* 0x00000000 - 0xffffffff */ 

The function KnxTm_GetTimeMs() retrieves the current timer value. 

Warning: The timer does not start immediately after a reset or power up. 

Using KnxTm_SleepMs() is dangerous if it is used for more than 10 ms, since this is a busy 

wait. The BAOS communication can fail in this case. It is better to perform delays like this in the 

main loop: 

{ 

    static uint32_t nTimeStamp; 

    static enum eState_t nState = IDLE; 

 

    switch(nState) 

    { 

        case IDLE: 

 

            /* Store current time stamp for wainting. */ 

 

            nTimeStamp = KnxTm_GetTimeMs(); 

            nState = WAITING; 

            break; 

 

        case WAITING: 

 

            /* Wait for the 200 ms. */ 

            /* i. e. Return control to the main loop. */ 

 

            if(KnxTm_GetDelayMs(nTimeStamp) >= 200) 

            { 

                nState = RUNNING; 

            } 

            break; 

 

        case RUNNING: 

 

            /* Time has elapsed. */ 

            /* Do something here and start waiting again. */ 

 

            nState = IDLE; 

            break; 

    } 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 62/133 

} 

9.1.7 Header Files 

StdDef.h defines some macros which are helpful. It's a good idea if you familiarize yourself with 

the content of this file since its macros are used in nearly every source file. Some common 

typedefs are defined there, in case a compiler does not come up with these types: 

// General type defines. These are normally defined in "stdint.h", which 

// comes from the compiler. But if some types are missing, we can define 

// them here. 

 

#ifndef ___bool_t_defined 

typedef unsigned char       bool_t;      //  1 Bit variable 

#define __bool_t_defined 1 

#endif 

 

#ifndef ___int8_t_defined 

typedef char                int8_t;      //  8 Bit variable 

typedef unsigned char       uint8_t;     //  8 Bit variable (unsigned) 

#define __int8_t_defined 1 

#endif 

 

#ifndef ___int16_t_defined 

typedef int                 int16_t;     // 16 Bit variable 

typedef unsigned int        uint16_t;    // 16 Bit variable (unsigned) 

#define __int16_t_defined 1 

#endif 

 

#ifndef ___int32_t_defined 

typedef long                int32_t;     // 32 Bit variable 

typedef unsigned long       uint32_t;    // 32 Bit variable (unsigned) 

#define __int32_t_defined 1 

#endif 

9.2 Creating Own Applications 

In order to make your own applications, the files App.c, AppSensor.c and AppActuator.c are 

the central place. The function App_Init() does the initialization. The function App_Main() is 

cyclically called by main(). It must not happen that the function App_Main() is blocked because 

the interrupts would be still enabled, but the processing of received data and the transmission of 

data would be stopped. 

Use the function AppKey_GetKeyEvent() to query the buttons and use defines like 

SET_LED_D3 from AppBoard.h to control the LED. 

9.2.1 Use Cases 

The most important cases are to set and get the data point values and to get parameter bytes. 

This can be done by using the BAOS protocol. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 63/133 

9.2.1.1 Set Data Point Value 

To set a new value to a data point and send it to the KNX bus, do the following: 

uint8_t nValue = 0; 

KnxBaos_SendValue(2, DP_CMD_SET_SEND_VAL, 1, &nValue); 

This sets the new value 0 of data point #2 to have one byte size (1). This value change is sent 

to the KNX bus. Take care to correctly configure this data point to one byte size by ETS. 

Keep always in mind the function KnxBaos_SendValue() accepts a byte array as value. Since 

we have here only one byte, we can use &nValue. But sending a value of more bytes might 

require a conversion of endianess, since network communication is always defined in big 

endian, whereas some micro-controllers use little endian. In memory a 4 byte value 

0x11223344 is stored in big endian like this: 

11 22 33 44 

The same value is stored in little endian like this: 

44 33 22 11 

So we must be careful for values longer than 1 byte. 

9.2.1.2 Get Data Point Value 

If a data point value gets changed by the KNX bus the routine 

App_HandleDatapointValueInd() is called: 

/// Handle the DatapointValue.Ind data. 

/// 

/// A KNX telegram can hold more than one data. This functions gets called 

/// for every single data in a telegram array. 

/// 

/// @param[in] nDpId Current data point ID from telegram 

/// @param[in] nDpState Current data point state from telegram 

/// @param[in] nDpLength Current data point length from telegram 

/// @param[in] pData Pointer to byte data from telegram 

/// 

void AppActuator_HandleDatapointValueInd( 

    uint16_t nDpId, uint8_t nDpState, 

    uint8_t nDpLength, uint8_t* pData) 

{ 

    switch(nDpId) 

    { 

        case 1: 

            [...] 

            break; 

        case 2: 

            [...] 

            break; 

        case 3: 

            [...] 

    } 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 64/133 

} 

Note: The first data point is always 1 (not 0). 

It is always a good idea to check the size of the data point value stored in the byte array pData. 

Unless we do not check nDpLength, the access to pData can cross the array boundary. 

If we do not want to wait for a notification whether a data point has changed (indication), we can 

explicitly request the current data point value, like this:  

KnxBaos_GetDpValue(nDpId, nN); 

This requests the current values of data point nDpId and the following nN data points. After 

sending this request we will be informed by App_HandleGetDatapointValueRes(): 

/// Handle the GetDatapointValue.Res data. 

/// 

/// A KNX telegram can hold more than one data. This functions gets called 

/// for every single data in a telegram array. 

/// 

/// @param[in] nDpId Current data point ID from telegram 

/// @param[in] nDpState Current data point state from telegram 

/// @param[in] nDpLength Current data point length from telegram 

/// @param[in] pData Pointer to byte data from telegram 

/// 

void App_HandleGetDatapointValueRes( 

    uint16_t nDpId, uint8_t nDpState, 

    uint8_t nDpLength, uint8_t* pData) 

{ 

} 

For every data point we requested, this function gets called. pData contains the value and 

nDpLength its size. 

The parameters of this routine are the same as in App_HandleDatapointValueInd(), which is 

called automatically if a KNX telegram changes a data point value. 

9.2.1.3 Get Parameter Byte 

ETS can set parameter bytes while download. These parameters can be used to configure 

device behaviour. E. g. set a time out, a lighting value or a temperature threshold. These 

parameters are organized byte wise. To access some bytes do the following: 

KnxBaos_GetParameterByte(nStartByte, nNumberOfBytes); 

This requests nNumberOfBytes starting at byte nStartByte. There are 250 bytes available in 

the generic ETS database, starting at byte #1. After sending this request we will be informed by 

KnxBaos_OnGetParameterByteRes(): 

/// Handle the GetParameterByte.Res data. 

/// 

/// A KNX telegram can hold more than one data. This functions gets called 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 65/133 

/// for every single data in a telegram array. 

/// 

/// @param[in] nIndex Current byte number (channel) 

/// @param[in] nByte Current byte value from telegram 

/// 

void App_HandleGetParameterByteRes( 

    uint16_t nIndex, uint8_t nByte) 

{ 

} 

This routine is called for every byte we requested. The value is delivered in nByte. nIndex is 

the current byte index (number) of the request. 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 66/133 

10 Programming the Raspberry Pi Board 

To use the KNX BAOS 838 kBerry, the Raspberry Pi board must be programmed to 

communicate to the KNX bus via the BAOS protocol. The software is available at GitHub. Basic 

knowledge in programming in C++ language and Linux is assumed. 

10.1 Download the Operating System 

First we have to prepare the operating system of the Raspberry Pi. Download the latest 

Raspbian Lite at https://www.raspberrypi.org and store it to the SD-card. See README.md for 

more information about it. You can also use the standard version of Raspbian, but "Lite" is 

sufficient. 

After storing the image to the SD-card, mount it to the Raspberry Pi. 

10.2 Connect the Pi and kBerry 

Connect the KNX BAOS 838 kBerry Module to the Raspberry Pi as shown in the following 

pictures. Models with a 40 pin connector have to connect the module as shown on the right 

picture. For more information about the pinning of the module, see section “Pinning of the KNX 

BAOS Modules”. 

 

Connect the KNX BAOS 838 kBerry Module to the KNX Bus and the Raspberry Pi to an 

Ethernet network. Finally power the Raspberry Pi with at the micro USB connector. It should 

boot now and in a few minutes you can connect it via ssh pi@raspberrypi. The password is 

raspberry. If your network does not support network names, you have to use the IP address. 

See Raspberry Pi web page for more information about commissioning it. 

10.3 Prepare the Operating System 

https://github.com/weinzierl-engineering/baos
https://www.raspberrypi.org/
https://www.raspberrypi.org/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 67/133 

10.3.1 Optionally re-size the File System 

If you have successfully connected the Raspberry Pi, re-size the file system, since the image is 

certainly smaller than the real SD-card. This step is optional, but the free space in the file 

system will be very small after installing and compiling the kBerry software. 

Start the configuration program. 

sudo raspi-config 

Select the menu entry Expand Filesystem and choose <Select> by hitting the tabulator key 

and then Enter. A few moments later the message "Root partition has been resized." will 

appear. 

10.3.2 Release the Serial Console 

Now we have to release the serial console to use it for communication to the KNX BAOS 

Module 838. Remove the serial device ttyAMA0 or serial0 from the boot command of the 

kernel and reboot the system. Since we are still running raspi-config, we can now select 

Advanced Options and there Serial to disable the login shell at the serial port. 

Exit the configuration program and do not reboot the system, yet. Change enable_uart=0 in 

/boot/config.txt and reboot the system: 

sudo sed –ie "s/enable_uart=0/enable_uart=1/g" /boot/config.txt 

sudo systemctl reboot 

Warning: The Raspberry Pi 3 does not use the correct baud rate in Raspian out of the box, so 

kBerry will not work. To fix this, the overlay pi3-miniuart-bt-overlay must be activated. 

Only Raspberry Pi 3: 

sudo sh -c "echo dtoverlay=pi3-miniuart-bt-overlay >>/boot/config.txt" 

 

All Raspberry Pi (including 3): 

sudo sed -ie "s/console=[a-Z]*0,[0-9]* //g" /boot/cmdline.txt 

sudo systemctl reboot 

10.3.3 Install Software 

A few minutes later, reconnect to the Raspberry Pi and install the software we need. For this, 

the Pi must have internet access. 

sudo apt-get update 

sudo apt-get install git cmake libboost-dev screen 

screen is not really necessary, but it makes it more convenient to work on the Pi. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 68/133 

screen 

Now we are in a screen environment and can switch to more console as we like: Enter a new 

console with CTRL-A c, Switch to the next console with CTRL-A n, to the previous with CTRL-

A p, and so on. See man screen for more info. 

10.4 Install BAOS Software 

Download the BAOS software from GitHub and compile it (remove the multiple thread build "-j5" 

from the make command, or the Pi will certainly run out of memory). 

git clone https://github.com/weinzierl-engineering/baos 

cd baos 

sed -ie "s/-j[0-9]*//g" build_unix.sh 

sh build_unix.sh 

This might take quite a lot of time (about 3 hours). 

10.5 Use BAOS Software 

10.5.1 Read a Server Item 

The samples include in the BAOS SDK include one for the serial port. This can be used for 

communicating to the kBerry Module. Edit file samples/c++/BaosSerial.cpp. Look for 

connector->open("COM8"); 

and change COM8 to the correct serial port: /dev/ttyAMA0. Compile the software again and 

execute it. 

cd build_unix 

make && make install 

bin/sample_BaosSerial 

It prints the serial number of the KNX BAOS 838 kBerry Module. 

13:52:04:651 [] Console Logger Started 

13:52:04:701 [BaosSerial] Serial Number: 00 C5 00 00 00 00 

13:52:04:758 [BaosSerial] 0 items found 

This sample application reads the data point configurations, also. To do, we need to configure 

the kBerry with ETS. 

10.5.2 First Commissioning with ETS 

Configure ETS to use the KNX USB Interface in the Bus folder. Look into the list of Discovered 

Interfaces and select the one, which is connected to the KNX bus. Test and Select the 

interface. Go back to the Overview folder. 

For demonstration a simple project for 830 is available in the archive 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 69/133 

 

Weinzierl_83x_KNX_BAOS_ETS_Projects_for_Demo.zip. 

 

Unpack it and import the file 

 

Weinzierl_83x_KNX_BAOS_ETS_Projects_for_Demo/ 

ETS_Project_using_generic_ETS_entry/ 

Project.knxproj 

 

in ETS. 

The project configures five data points: 

1. Sensor switch on/off (1 bit) 

2. Sensor dimming up/down (4 bits) 

3. Actuator switch on/off (1 bit) 

4. Actuator dimming up/down (4 bits) 

5. Actuator dimming absolute (1 byte) 

Open the project, select Project Root as view, select the device KNX BAOS 8xx with right 

mouse button and Download/Full download. 

Execute the software again. 

bin/sample_BaosSerial 

It prints the serial number of the KNX BAOS 838 kBerry Module and the five data point 

configurations. 

10:35:16:760 [] Console Logger Started 

10:35:16:831 [BaosSerial] Serial Number: 00 C5 00 00 00 00 

10:35:17:510 [BaosSerial] 5 items found 

10:35:17:513 [BaosSerial] Id: 1, Datapoint type 1, Size: 1 Bits 

10:35:17:516 [BaosSerial] Id: 2, Datapoint type 3, Size: 4 Bits 

10:35:17:519 [BaosSerial] Id: 3, Datapoint type 1, Size: 1 Bits 

10:35:17:522 [BaosSerial] Id: 4, Datapoint type 3, Size: 4 Bits 

10:35:17:524 [BaosSerial] Id: 5, Datapoint type 5, Size: 1 Bytes 

10.5.3 Listening to Data Points 

The sample BaosEventListener listens to events. So if any configured data point is changed 

from the KNX bus, this application recognises it. 

Edit file samples/c++/BaosEventListener.cpp. Look for 

std::string name = "Baos-Sample"; 

ScopedBaosConnection connection(name, true); 

and replace these lines with 

std::string name = "/dev/ttyAMA0"; 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 70/133 

ScopedSerialBaosConnection connection(name, true); 

Compile the software again and execute it. 

cd build_unix 

make && make install 

bin/sample_BaosEventListener 

The output looks like this: 

13:34:19:822 [] Console Logger Started 

13:34:19:829 [kdrive.baos.BaosConnection] Connect /dev/ttyAMA0 

So far, the program starts and connects to the serial port. 

13:34:19:846 [kdrive.baos.ProtocolDecoder] Tx : A7 

13:34:19:868 [kdrive.baos.ProtocolDecoder] Rx : A8 FF FF 00 C5 00 00 00 00 00 04 

The program requests an PEI identification (A7), which is answered by an confirm (A8) with the 

following information: 

 Individual KNX address (0xFFFF = 15.15.255) of the kBerry BAOS module. 

 Serial number (0x00C500000000) 

 Reserved byte (0x00) 

 Supported features (0x04 = cEMI) 

The next telegrams are BAOS specific. The description of data point #1 is requested and the 

response tells about its configuration (0x57 = transmit, write, communication, low priority) and 

type (0x01 = 1 bit). See chapter "BAOS Protocol" for more information. 

13:51:13:823 [kdrive.baos.ProtocolDecoder] Tx : RequestFunctions::GetDatapointDescription 

F0 03 00 01 00 01 

13:51:13:846 [kdrive.baos.ProtocolDecoder] Rx : ResponseFunctions::GetDatapointDescription 

F0 83 00 01 00 01 00 01 00 57 01 

The value of data point #1 is requested. Its value is 0. 

13:51:13:856 [kdrive.baos.ProtocolDecoder] Tx : RequestFunctions::GetDatapointValue 

F0 05 00 01 00 01 00 

13:51:13:878 [kdrive.baos.ProtocolDecoder] Rx : ResponseFunctions::GetDatapointValue 

F0 85 00 01 00 01 00 01 00 01 00 

13:51:13:881 [BaosEventListener] Received datapoint value for id 1 00 

Start Net'n Node (see section "Monitoring KNX using Net'n Node" for more info about Net'n 

Node and the installation of a license file). 

Connect Net'n Node to your KNX bus (left vertical tool bar: Scan for interfaces and open the 

one, which connects you to your KNX bus). Select Menu Send KNX/Group Value Write/DPT 1 

– Binary – 1 bit. In the dialog use Group Address 3/3/1 and send the value TRUE. 

The application running at the Raspberry Pi shows some output, like this. 

13:59:56:888 [kdrive.baos.ProtocolDecoder] Rx : 

IndicationFunctions::DatapointValueIndication 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 71/133 

F0 C1 00 03 00 02 00 03 18 01 01 00 01 18 01 01 

13:59:56:925 [BaosEventListener] Received datapoint value for id 3 01 

13:59:56:928 [BaosEventListener] Received datapoint value for id 1 01 

Since ETS has configured data point #1 and #3 to be in group address 3/3/1, the send request 

of Net'n Node causes the update (value indication) of both data points. 

Press Enter to exit the application. 

For more information about the BAOS SDK, see Weinzierl web page for kBerry. 

To shut down the system, exit all screen sessions and enter 

sudo systemctl poweroff 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 72/133 

11 BAOS Protocol 

In this chapter describes the basics of the BAOS protocol. 

11.1 BAOS Frame 

The BAOS protocol is a protocol between the Development Board and the BAOS Module. Its 

format is as follows: 

 

The main service for BAOS is always 0xF0. The sub service is the command, whether to read, 

write an item. The items are the datapoints/parameter bytes/server items/etc. 

 

First item ID

01234567

Byte 0 Byte 1

Byte 2

01234567

01234567

Byte 3

Byte 8 Byte n-1

01234567

01234567 01234567

BAOS protocol

Main service

0xF0
Sub service

Start

item

First item data

...

Byte 5Byte 4

0123456701234567

Error code or

BAOS protocol

Number

of items

Byte 6

01234567

Byte 7

01234567

BAOS protocol

Next item ID

Byte n+2 Byte m-1

01234567 01234567

Next item data

...
Byte n

01234567

Byte n+1

01234567

BAOS protocol

Last item ID

Byte q+2 Byte l-1

01234567 01234567

Last item data

...
Byte q

01234567

Byte q+1

01234567

BAOS protocol

... More items ...



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 73/133 

11.2 Some Important Services and their Responses 

11.2.1 GetDatapointValue.Req 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x05 Subservice code 

+2 StartDatapoint 2  ID of first data point 

+4 NumberOfDatapoints 2  Maximal number of data points to return 

+6 Filter 1  Criteria which data point shall be retrieved 

11.2.2 GetDatapointValue.Res 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x85 Subservice code 

+2 StartDatapoint 2  As in request 

+4 NumberOfDatapoints 2  Number of data points in this response 

+6 First DP ID 2  ID of first data point 

+8 First DP state 1  State byte of first data point 

+9 First DP length 1  Length byte of first data point 

+10 First DP value 1 – 14  Value of first data point 

... ... ... ... ... 

+n – 4 Last DP ID 2  ID of last data point 

+n – 2 Last DP state 1  State byte of last data point 

+n – 1 Last DP length 1  Length byte of last data point 

+n Last DP value 1 – 14  Value of last data point 

Example: Read values of data point #1 and #2 

Data point #1 is configured as a 1 bit value (= 0) and #2 is a 2 byte value (= 0x8899). 

APP:  F0 05 0001 0002                                 GetDatapointValue.Req 

BAOS: F0 85 0001 0002 0001 00 01 00 0002 00 02 88 99  GetDatapointValue.Res 

 

11.2.3 DatapointValue.Ind  

DatapointValue.Ind is not a request/response service. It is an automatic notification if a value of 

a data point changes. 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0xC1 Subservice code 

+2 StartDatapoint 2  ID of first data point 

+4 NumberOfDatapoints 2  Number of data points in this indication 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 74/133 

+6 First DP ID 2  ID of first data point 

+8 First DP state 1  State byte of first data point 

+9 First DP length 1  Length byte of first data point 

+10 First DP value 1 – 14  Value of first data point 

... ... ... ... ... 

+n – 4 Last DP ID 2  ID of last data point 

+n – 2 Last DP state 1  State byte of last data point 

+n – 1 Last DP length 1  Length byte of last data point 

+n Last DP value 1 – 14  Value of last data point 

Example: Data point #3 has been changed by a KNX message. 

It is configured as a one byte value (= 0x55). 

BAOS:         F0 C1 0003 0001 0003 81 55                  DatapointValue.Ind 

11.2.4 SetDatapointValue.Req 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x06 Subservice code 

+2 StartDatapoint 2  Lowest ID of data points to set 

+4 NumberOfDatapoints 2  Number of data points to set 

+6 First DP ID 2  ID of first data point 

+8 First DP command 1  Command byte of first data point 

+9 First DP length 1  Length byte of first data point 

+10 First DP value 1 – 14  Value of first data point 

... ... ... ... ... 

+n – 4 Last DP ID 2  ID of last data point 

+n – 2 Last DP command 1  Command byte of last data point 

+n – 1 Last DP length 1  Length byte of last data point 

+n Last DP value 1 – 14  Value of last data point 

11.2.5 SetDatapointValue.Res 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x86 Subservice code 

+2 StartDatapoint 2  As in request 

+4 NumberOfDatapoints 2 0x0000  

+6 ErrorCode 1 0x00  

Example: Set value of data point #5 

Data point #5 is configured as a 1 bit value and will be changed to 1. The new value will also be 

sent to the KNX bus. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 75/133 

APPLICATION:  F0 06 0005 0001 0005 03 01 01            SetDatapointValue.Req 

BAOS:         F0 86 0005 0000 00                       SetDatapointValue.Res 

11.2.6 GetParameterByte.Req 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x07 Subservice code 

+2 StartByte 2  Index of first byte 

+4 NumberOfBytes 2  Maximal number of bytes to return 

11.2.7 GetParameterByte.Res 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x87 Subservice code 

+2 StartByte 2  As in request 

+4 NumberOfBytes 2  Number of bytes in this response 

+6 First byte 1  First parameter byte 

... ... ... ... ... 

+n Last byte 1  Last parameter byte 

Example: Read parameter bytes #8 - #16 

The parameter bytes have the values 0x11, 0x22, ... 0x88. 

APPLICATION:  F0 07 0008 0008                          GetParameterByte.Req 

BAOS:         F0 87 0008 0008 11 22 33 44 55 66 77 88  GetParameterByte.Res 

The BAOS protocol offers more services. For complete information about these services, 

commands, error codes, etc. see document KnxBAOS_Protocol_v2.pdf. 

11.3 BAOS Server Items 

Server items are internal data of the BAOS module. These data deliver information about 

internal states of the module and some of them can be changed to alter the behaviour of the 

BAOS module.  

11.3.1 GetServerItem.Req 

Offset Field Size Value Description 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x01 Subservice code 

+2 StartItem 2  ID of first item 

+4 NumberOfItems 2  Maximal number of items to return 

11.3.2 GetServerItem.Res 

Offset Field Size Value Description 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 76/133 

+0 MainService 1 0xF0 Main service code 

+1 SubService 1 0x81 Subservice code 

+2 StartItem 2  As in request 

+4 NumberOfItems 2  Number of items in this response 

+6 First item ID 2  ID of first item 

+8 First item data length 1  Data length of first item 

+9 First item data 1 – 255  Data of first item 

... ... ... ... ... 

+n – 3 Last item ID 2  ID of last item 

+n – 1 Last item data length 1  Data length of last item 

+n Last item data 1 – 255  Data of last item 

Example: Read the serial number 

This reads the server item #8 (serial number). The answer from the BAOS contains the serial 

number 0x112233445566. 

APPLICATION:  F0 01 0008 0001                              GetServerItem.Req 

BAOS:         F0 81 0008 0001 0008 06 11 22 33 44 55 66    GetServerItem.Res 

The following table shows all available server items for the 8xx BAOS module. 

ID Description Size Access Indication 

1 Hardware type 

Used to identify the hardware type. The coding is 

manufacturer specific. It is mapped to the property 

PID_HARDWARE_TYPE in the device object. 

6 R No 

2 Hardware version 

Version of the ObjectServer hardware. Coding Example: 

0x10 = Version 1.0 

1 R No 

3 Firmware version 

Version of the ObjectServer firmware. Coding Example: 0x10 

= Version 1.0 

1 R No 

4 KNX manufacturer code DEV 

KNX manufacturer code of the device, not modified by the 

ETS. It is mapped to the property PID_MANUFACTURER_ID 

in the device object. 

2 R No 

5 KNX manufacturer code APP 

KNX manufacturer code loaded by ETS. It is mapped to 

bytes 0 and 1 of the property PID_APPLICATION_VER in the 

application object. 

2 R No 

6 Application ID (ETS) 

ID of the application loaded by ETS. It is mapped to bytes 2 

and 3 of the property PID_APPLICATION_VER in the 

application object. 

2 R No 

7 Application version (ETS) 1 R No 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 77/133 

Version of the application loaded by ETS. It is mapped to 

byte 4 of the property PID_APPLICATION_VER in the 

application object. 

8 Serial number 

Serial number of the device. It is mapped to the property 

PID_SERIAL_NUMBER in the device object. 

6 R No 

9 Time since reset 

Uptime of the module in milliseconds. 

4 R No 

10 Bus connection state 

State of the KNX bus connection (0 = disconnected, 1 = 

connected). This ServerItem sends an indication every time 

its value has changed. 

1 R Yes 

11 Maximum buffer size 

Maximum size of BAOS buffer size in bytes. 

2 R No 

12 Length of description string 

The BAOS module does not support the storing of description 

strings for the group objects, because it would lead to very 

long download times. So this valus will always return 0. 

2 R No 

13 Baudrate 

The current baudrate of the BAOS protocol: 0 = unknown, 1 = 

19200 baud, 2 = 115200 baud. If this value is changed, the 

communication to the BAOS module must be established 

again. Care must be taken changing the baud rate, since the 

module will reset it to 19200 baud at a reset (also after ETS 

download). 

1 R/W No 

14 Current buffer size 

Current size of BAOS buffer size in bytes. 

2 R/W No 

15 Programming mode 

Current state of the programming mode (LED) of the BAOS 

module. This ServerItem sends an indication every time its 

value has changed. 

1 R/W Yes 

16 Protocol Version (Binary) 

Version of the ObjectServer binary protocol. Coding 

Example: 0x20 = Version 2.0 

1 R No 

17 Indication Sending 

Is sending of indications active? 0 = off, 1 = active. This 

controlls the sending of both indications: ServerItems and 

Datapoints. 

1 R/W No 

20 Individual Address 

The individual KNX address of the device. 

2 R/W Yes 

37 Device friendly name 

A NULL terminated string of the user given name of this 

device. Maximum of 30 bytes. 

30 R/W Yes 

38 Maximum datapoints 

Maximum number of datapoints this module supports. 

2 R No 

39 Configured datapoints 2 R No 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 78/133 

Number of configured datapoints. 

40 Maximum parameter bytes 

Number of available parameter bytes. 

2 R No 

41 Download counter 

ETS download counter. 

2 R No 

Important: All values which are longer than one byte are big-endian interpreted. 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 79/133 

12 About KNX 

In this chapter describes the basics of KNX and its usage in the BAOS Modules. 

The standardized bus system KNX plays a more and more important role in building 

automation. A lot of devices use this protocol. 

In general the KNX system is a bus system for building control. All connected devices are 

communicating over the same bus. The information is transported via a communication stack. 

Every single device connected to this bus has its own micro-controller on board. There is no 

central control device. The bus is structured completely decentralized. 

One main advantage of this design is fault tolerance. An error within one device has little effect 

on the others. All connected participants are operating independently. 

Connected to the KNX bus are sensors and actuators. The sensors are generating telegrams. 

The actuators receive these messages and act accordingly. It's also possible a device is a 

sensor and an actuator. So it's possible to send and receive data. 

12.1 KNX Twisted Pair Bus System 

A minimum TP1 KNX installation consists of the following components: 

 a KNX power supply (PS) unit containing a choking coil (Ch) 

 bus devices (DVC): some sensors (at least one) 

 bus devices (DVC): some actuators (at least one)  

A more complex KNX installation has additionally the following components: 

 Line coupler (LC) to connect more devices (DVC) to a line. 

 Backbone coupler (BC) to connect more areas. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 80/133 

The KNX bus in its maximum expansion can hold many devices. The topology is basically like 

this: 

 

The KNX twisted pair bus system (KNX TP) provides to all connected devices data and the 

operating voltage over the same two-wire line. The nominal bus voltage is 29 V. 

The bus transfer rate is 9600 bit/s respective about 50 telegrams per second transfer rate. 

12.1.1 KNX Twisted Pair Telegrams 

The information exchange between KNX devices is based on telegrams. A telegram is a clear 

defined sequence of bytes. It is segmented in several fields. Here is a standard connection less 

KNX telegram. A standard connection less telegram is mainly used for data exchange between 

KNX devices (sensors and actuators). Connection oriented telegram are generally used for 

downloads by the ETS. Standard telegrams have a data length up to 15 bytes. For more data 

an extended frame is used, which can hold up to 254 bytes of data. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 81/133 

Standard frame: 

 

The fields of this telegram are: 

The KNX control field has the following information: 

 Bit #7: Frame type: 

o 1 = L_Data_Standard frame 

o 0 = L_Data_Extended frame  

 Bit #6: Poll data/data: 

o 0 = L_Data frame 

o 1 = L_Poll_Data frame 

 Bit #5: Repeat flag: 

o 0 = repeated L_Data_Standard frame 

o 1 = not repeated L_Data_Standard frame 

 Bit #4: unused, must be 1 

 Bit #3 - 2: Priority, leave this at 11 

 Bit #1 - 0: unused, must be 00 

The source address describes the sender address (individual address). 

Address type:

0 = Individual Adr.

1 = Group Adr.

Byte 0 Byte 1

Source adr.

Line: 0-15

01234567 01234567

Byte 2 Byte 3

Byte 4 Byte 5

Source address

Device: 0-255

Group. adr.

Main: 0-31

Group address

Group: 0-255

Grp. adr.

Mid.: 0-7

01234567 01234567

01234567 01234567

Routing

counter

Data len.

1-15

Byte 6 Byte 7

Byte 8 Byte n

01234567 01234567

01234567 01234567

TPCI
Sequence

0-15
APCI

extended

APCI or data

Information data

(0 - 14 bytes)

...
01234567

Byte n+1

Checksum

(bytes 0-n)

KNX Frame

KNX Frame

KNX Frame

Source adr.

Area: 0-15
KNX control field

Ind. adr.

Area: 0-15

Ind. adr.

Line: 0-15

Ind. address

Device: 0-255



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 82/133 

The group address determines which bus devices will receive the telegram. The target 

address is a group address, which can address many devices at the same time. Byte #5, bit #7 

determines the address type: 1 = group address. 

The individual address determines which bus devices will receive the telegram. The target 

address is an individual address, which addresses exactly one device. Byte #5, bit #7 

determines the address type: 0 = individual address. 

For more info about addressing, see Section “Addressing Modes”. 

The routing counter determines how many hops remain. The counter is decremented every 

time a frame passes a coupler. At the value 0 the frame will be removed. 

The data length field describes the number of information bytes in this frame (starting at byte 

#7). 

The extended application protocol control information (APCI) is the service code from/for 

the application layer. But it can also contain information data. This is the case for ValueWrite 

telegrams. In this case the remaining information data bytes are not necessary and are skipped. 

The information data are the telegram payload. The size of this field can range from zero to 14 

bytes for standard frames. In case of zero bytes the extended APCI can hold the data. 

The checksum validates the frame. It is calculated by xor'ing all bytes and at last by 0xFF: 

chksum = b0 xor b1 xor b3 xor ... xor bn xor 0xFF. 

For more information see KNX System Specifications/03_02_02 Communication Medium 

TP 1 available at the KNX Specifications page. 

12.1.2 Telegram Timings 

When an event occurs (e. g. push-button is pressed), the bus device sends a telegram to the 

bus. The transmission starts after the bus has been unoccupied for at least the time period t1. 

Once the transmission is complete, the telegram must be acknowledged (ACK) after time t2. All 

addressed bus devices acknowledge the reception of the telegram simultaneously. 

 

Telegram

(ca. 8 - 20 ms)

t1

(ca. 5 ms)

Ack.

t2

(ca. 1.35 ms)

http://www.knx.org/knx-en/knx/technology/specifications/index.php


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 83/133 

12.1.3 Bus monitoring with Net'n Node 

It is possible to monitor the KNX communication with Net'n Node. In the Acess Port 

Configuration panel use Busmon as Layer. In this case all telegrams (including 

acknowledgements) are visible in the telegram list. In this mode no routing and filtering is active 

since this is done in upper layers. Sending telegrams in Net'n Node is not possible in bus 

monitor mode. 

Selecting Link Layer again, shows all telegrams from the link layer and enables to edit and 

send telegrams again. 

12.2 KNX Radio Frequency Bus System 

Radio Frequency RF is the wireless alternative in the KNX standard. In locations that are ideally 

suited for cabling KNX RF is used for wireless data transmission within a floor or a complete 

building. 

KNX RF uses a Frequency Shift Keying (FSK) for data modulation frequency with a central 

frequency of 868.3 MHz. With data rates of 16384 baud a similar count of frames can be 

transmitted as on TP. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 84/133 

12.2.1 KNX Radio Frequency Telegrams 

 

The first data block follows with some control information and the serial number or the domain 

address. The first block has a fixed length of 10 data bytes and an own checksum of 2 bytes. 

The application data starts in block 2, which has a maximum length of 16 byte plus 2 bytes 

checksum. For longer telegrams additional blocks may follow. The coding of the data in block 2 

and following are according to the telegram content used for twisted pair. 

Source adr.

Line: 0-15

Source address

Device: 0-255

Group. adr.

Main: 0-31

Group address

Group: 0-255

Grp. adr.

Mid.: 0-7

TPCI
extended

APCI or data

Information data

(0 - 8 bytes)

...

Source adr.

Area: 0-15

Ind. adr.

Area: 0-15

Ind. adr.

Line: 0-15

Ind. address

Device: 0-255

KNX control field

Block 1

Byte 0 Byte 1

01234567 01234567

Byte 2

01234567

Length (Byte 1 - 9) C-Field 0x44 Esc 0xFF RF-Info

Byte 3

01234567

Block 1

Byte 4 Byte 5

01234567 01234567

Byte 6

01234567

Serial number or domain address

Byte 7

01234567

Block 1

Byte 8 Byte 9

01234567 01234567

Byte 10

01234567

Serial number or domain address CRC hi (Byte 0 - 9)

Byte 11

01234567

Block 2

Byte 12 Byte 13

01234567 01234567

Byte 14

01234567

Byte 15

01234567

Block 2

Byte 16 Byte 17

01234567 01234567

Byte 18

01234567

Byte 19

01234567

Block 2

Byte 20

01234567

Byte n

01234567

CRC hi (Byte 12 - n-1)

Byte n+1

01234567

L/NPCI 0xE6

CRC lo (Byte 0 - 9)

CRC lo (Byte 12 - n-1)

APCI



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 85/133 

The fields of this telegram are: 

The C-Field has the following information: 

 Always Send/No reply = 0x44 

The RF Info has the following information: 

 Bit #7 - 4: unused, must be 0000 

 Bit #3 - 2: Signal strength: 

o 00 = no data 

o 01 = weak 

o 10 = medium 

o 11 = strong 

 Bit #1: State of battery: 

o 0 = weak 

o 1 = OK 

 Bit #0: Unidirectional flag: 

o 0 = sent by bidirectional device 

o 1 = sent by unidirectional device 

The Serial number or domain address is used to separate more RF networks. All connected 

devices must have the same domain address. 

The KNX control field has the following information: 

 Bit #7 - 4: usually 0000 

 Bit #3 - 0: Extended frame format (EFF): 

o 0000 = L_Data_Extended frame 

o 01xx = LTE-HEE extended address type 

The source address describes the sender address (individual address). 

The group address determines which bus devices will receive the telegram. The target 

address is a group address, which can address many devices at the same time. Byte #17, bit #7 

determines the address type: 1 = group address. 

The individual address determines which bus devices will receive the telegram. The target 

address is an individual address, which addresses exactly one device. Byte #17, bit #7 

determines the address type: 0 = individual address. 

For more info about addressing, see Section “Addressing Modes”. 

The L/NPCI has the following information: 

 Bit #7: Destination address flag (DAF): 

o 1 = Group address 

o 0 = Individual address 

 Bit #6 - 4: Repetition counter. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 86/133 

 Bit #3 - 1: Data Link Layer Frame Number. 

 Bit #0: Serial number/domain address: 

o 0 = Block 1 contains the serial number 

o 1 = Block 1 contains the domain address 

The TPCI has the following information: 

 Bit #5 - 2: Sequence number. 

 Bit #1 - 0: High bits of APCI. 

The transport protocol control information (TPCI) is a code from the transport layer. 

The application protocol control information (APCI) is a code from the application layer. 

There are two different sizes for the APCI. Some services support a four bit APCI (like 

A_GroupValue_Write), but the most (management) services requires ten bits and the APCI 

reaches up to the end of byte #7. If only four bits are used, the last 6 bits can be used as data. 

This is used in a write or in a response of a group object, when the group object value size is 

equal or less than six bits. 

The extended application protocol control information (APCI) is a code from the application 

layer. But it can also contain information data. This is the case for ValueWrite telegrams. In this 

case the remaining information data bytes are not necessary and are skipped. 

The information data are the telegram payload. The size of this field can range from zero to 8 

bytes. In case of zero bytes the extended APCI can hold the data. 

The checksum validates the block. It is calculated according to IEC 870-5. 

For more information see KNX System Specifications/03_02_05 Communication Medium 

RF available at the KNX Specifications page. 

12.3 Addressing Modes 

KNX provides mainly three different addressing modes. 

 An individual address must be unique within a KNX installation. A device is 

addressed this way while configuring it via ETS. 

 
 Communication between devices in an installation is carried out via group 

addresses. 

Byte 0

Line: 0-15

01234567

Byte 1

Device: 0-255

01234567

Area: 0-15

http://www.knx.org/knx-en/knx/technology/specifications/index.php


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 87/133 

The default in ETS is a 3-level (main group/middle group/subgroup) structure. 

 
 The group address 0/0/0 is reserved for broadcast messages. This message is for 

all available devices and is used for downloading an individual address. 

12.4 Data Point Types 

The data point type describes the size, the range and its representation of a value. The most 

common types are:  

Base 

type 

DPT Name Encoding (Representation) Value range Size 

(bits) 

boolean 1.001 DPT_Switch 0 = Off, 1 = On 0 – 1 1 

 1.007 DPT_Step 0 = Decrease, 1 = Increase 0 – 1 1 

 1.008 DPT_UpDown 0 = Up, 1 = Down 0 – 1 1 

uint4 3.007 DPT_Control_Dimming 0x08 - 0x0F = Increase, 

0x01 - 0x07 = Decrease, 

0x00 = Stop dimming 

0x00 - 0x0F 4 

uint8 4.001 DPT_Char_ASCII 0 - 127 = ASCII Character 0x00 - 0x7F 8 

 4.002 DPT_Char_8859_1 0 - 255 = Latin 1 Character (ISO 8859.1) 0x00 - 0xFF 8 

 5.001 DPT_Scaling 0 - 255 = Scaling in Percent (128 = 50%) 0x00 - 0xFF 8 

 5.004 DPT_Percent_U8 0 - 255 = Scaling in Percent (0% - 255%) 0x00 - 0xFF 8 

int8 6.001 DPT_Percent_V8 -128 - 127 = Relative value in Percent (-

128% - 127%) 

0x00 - 0xFF 8 

 6.010 DPT_Value_1_Count -128 - 127 = Counter pulse 0x00 - 0xFF 8 

uint16 7.001 DPT_Value_2_Ucount 0 - 65535 = Counter value 0x0000 - 0xFFFF 16 

int16 8.001 DPT_Value_2_Count -32768 - 32767 = Counter value 0x0000 - 0xFFFF 16 

 8.010 DPT_Percent_V16 -32768 - 32767 = Value in percent (-

327.68% - 327.67%) 

0x0000 - 0xFFFF 16 

float16 9.001 DPT_Value_Temp -273 - 670760 = Temperature value 

(Celsius) 

-671088.64 - 

670760.96 

16 

unint32 12.001 DPT_Value_4_Ucount 0 - 4294967295 = Counter value 0x00000000 - 

0xFFFFFFFF 

32 

int32 13.001 DPT_Value_4_Count -2147483648 - 2147483647 = Counter 

value 

0x00000000 - 

0xFFFFFFFF 

32 

For more info see KNX System Specifications/03_07_02 Datapoint Types available at the 

KNX Specifications page. 

12.5 Virtual Memory Map of the BAOS Module 

KNX uses a virtual memory mapping mechanism to access certain memory regions via the bus. 

These memory regions contain information mainly configured by the ETS. 

The following figure shows the real memory map of the KNX BAOS Module and its virtual 

memory map. The virtual memory map is for the ETS to read and write the configuration. The 

most important part for the application is the User RW memory. It is divided in MCB parts. 

Byte 0

Main: 0-31

01234567

Byte 1

Sub: 0-255

01234567

Mid: 0-7

http://www.knx.org/knx-en/knx/technology/specifications/index.php


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 88/133 

 

The KNX Stack uses three configuration tables to handle group communication: 

 MCB 1: Address table 

 MCB 2: Association table 

 MCB 3: Group object table 

The tables are downloaded by ETS. 

The following sections show the MCB parts (User RW) and their addresses. 

12.5.1 Address Table (MCB 1) 

 Virtual address range: 0x01000 - 0x017D1 

 Real address range: 0x00026800 – 0x00026FD1 

 Size: 0x007D2 

The Address Table contains all group addresses, which are used by the device to send or 

receive the group telegrams via Group Objects (also called Communication Objects or Data 

Points). The Address Table has a two byte length field followed by the Group Addresses. The 

Group Addresses have to be sorted. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 89/133 

 

A Group Address is a two octet value which is sent on the medium as it is stored in the Group 

Address Table. 

12.5.2 Association Table (MCB 2) 

 Virtual address range: 0x017D2 – 0x02773 

 Real address range: 0x00026FD2 – 0x00027F73 

 Size: 0x00FA2 

The Association Table holds the relations between the Group Addresses and the Group Objects 

(see below). Every entry in this table is a link of a Group Address to a Group Object. So each 

entry consists of a connection number and Group Object number. 

The table has a two byte length field followed by the associations. 

 

MCB 1 + 0: Number of entries 

Byte 0

Group. adr.

Main: 0-31

Grp. adr.

Mid.: 0-7

01234567

Byte 1

Group address

Group: 0-255

01234567

Address Table:

MCB 1 + 2: Group Address #1  

MCB 1 + 4: Group address #2  

MCB 1 + 6: Group Address #3  

MCB 1 + 8: Group address #4  

MCB 1 + a: etc.              

1400: 00 05    5 entries                

Example:

1402: 15 0d    Group Address #1: 2/5/13 

1404: 15 0e    Group Address #2: 2/5/14 

1406: 15 0f    Group address #3: 2/5/15 

1408: 1a 01    Group Address #4: 3/2/1  

140a: 1a 02    Group address #5: 3/2/2  

Group Address

MCB 2 + 00: Number of entries                     

Association Table:

MCB 2 + 02: Index into Address Table | ComObject #

MCB 2 + 06: Index into Address Table | ComObject #

1500: 00 07    7 entries              

Example:

1502: 00 04 00 01    AT entry #4 | Object #1

1506: 00 05 00 02    AT entry #5 | Object #2

MCB 2 + 0a: Index into Address Table | ComObject #

MCB 2 + 0e: Index into Address Table | ComObject #

MCB 2 + 12: Index into Address Table | ComObject #

MCB 2 + 16: Index into Address Table | ComObject #

150a: 00 04 00 05    AT entry #4 | Object #5

150e: 00 05 00 06    AT entry #5 | Object #6

1512: 00 03 00 07    AT entry #3 | Object #7

1516: 00 01 00 05    AT entry #1 | Object #5

151a: 00 02 00 06    AT entry #2 | Object #6MCB 2 + 1a: etc.                                  

Byte 0

01234567

Index into

Address Table

Byte 1

01234567

ComObject

number

Association entry

Byte 2

01234567

Byte 3

01234567



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 90/133 

12.5.3 Group Object Table (MCB 3) 

 Virtual address range: 0x02774 – 0x02F45 

 Real address range: 0x00027F74 – 0x00028745 

 Size: 0x007D2 

Group Objects (also known as Communication Objects) represent the KNX Data Points which 

are used for runtime communication. The Group Object Table stores the descriptors of the 

Group Objects. 

Group Objects are part of the KNX application layer and represent the interface between the 

application and the KNX Stack. Using Group Objects, the application is able to send data to and 

receive data from the KNX bus via Group Telegrams. The application accesses the Group 

Objects via their indices, the Group Object numbers. The application has no knowledge about 

the Group Addresses used on the network. 

 

The Group Object Table is a sorted list of Group Objects. The index of the Group Object Table 

is the Group Object number. The first Group Object has the index #1. The Group Object 

numbers are referenced in the Association Table. 

The Group Object Table has a two byte length field. Each Group Object descriptor consists of a 

byte holding configuration flags and a byte indicating the size of the Group Object value. 

The flags have the following coding: 

 Bit #7: Update (from response frame): 

o 0 = Value will not be changed by a response frame from the bus (use this as 

default). 

o 1 = Value will be changed by a response frame from the bus (flags W, C must 

also be enabled). 

 Bit #6: Transmit (send): 

MCB 3 + 0: Number of ComObjects        

ComObjects:

MCB 3 + 2: ComObject #1: flags | length

MCB 3 + 4: ComObject #2: flags | length

1600: 00 05    5 ComObjects   

Example:

1602: 57 00    -T-W-C | 1 bit 

1604: 57 03    -T-W-C | 4 bit 

MCB 3 + 6: ComObject #3: flags | length

MCB 3 + 8: ComObject #4: flags | length

MCB 3 + a: ComObject #5: flags | length

1606: 57 00    -T-W-C | 1 bit 

1608: 57 03    -T-W-C | 4 bit 

160a: 57 07    -T-W-C | 1 byte

MCB 3 + c: etc.                        160c: etc.                    

Flags

01234567

U

Length

01234567

DataType of

ComObject

ComObject entry

T
R

I
W R C Prio



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 91/133 

o 0 = Changed value will not be sent to the bus. 

o 1 = Changed value will be sent to the bus (flag C must also be enabled). 

 Bit #5: Read on Init.: 

o 0 = Value is not read at initialization time. 

o 1 = Value is read at initialization time (flags U, T, W, C must also be enabled). 

 Bit #4: Write via bus: 

o 0 = Value is not writable. 

o 1 = Value is writable from bus (flag C must also be enabled) 

Input data points (actuators) should set this to 1, so the value can be written by a 

KNX telegram. 

 Bit #3: Read via bus: 

o 0 = Value is not readable (use this as default). 

o 1 = Value is readable from bus (use this only if you want to use GroupValueRead 

requests, flag C must also be enabled). Input data points (actuators) should set 

this to 1, so the value can be read by other KNX devices. Only one actuator in 

every Group Address should enable this. 

 Bit #2: ComObject (Data Point) enabled: 

o 0 = disabled 

o 1 = enabled (i.e. linked by ETS to group address) 

 Bit #1 - 0: Priority, leave it to 11 (low). 

The length field defines the data length of the Group Object. 

Length Field Type Value Size Length Field Type Value Size 

VTYPE_BIT_1 0 1 Bit VTYPE_BYTE_5 15 5 Bytes 

VTYPE_BIT_2 1 2 Bits VTYPE_BYTE_7 16 7 Bytes 

VTYPE_BIT_3 2 3 Bits VTYPE_BYTE_9 17 9 Bytes 

VTYPE_BIT_4 3 4 Bits VTYPE_BYTE_11 18 11 Bytes 

VTYPE_BIT_5 4 5 Bits VTYPE_BYTE_12 19 12 Bytes 

VTYPE_BIT_6 5 6 Bits VTYPE_BYTE_13 20 13 Bytes 

VTYPE_BIT_7 6 7 Bits VTYPE_BYTE_15 21 15 Bytes 

VTYPE_BYTE_1 7 1 Bytes VTYPE_BYTE_16 22 16 Bytes 

VTYPE_BYTE_2 8 2 Bytes VTYPE_BYTE_17 23 17 Bytes 

VTYPE_BYTE_3 9 3 Bytes VTYPE_BYTE_18 24 18 Bytes 

VTYPE_BYTE_4 10 4 Bytes VTYPE_BYTE_19 25 19 Bytes 

VTYPE_BYTE_6 11 6 Bytes VTYPE_BYTE_20 26 20 Bytes 

VTYPE_BYTE_8 12 8 Bytes VTYPE_BYTE_21 27 21 Bytes 

VTYPE_BYTE_10 13 10 Bytes … … … 

VTYPE_BYTE_14 14 14 Bytes VTYPE_BYTE_54 60 54 Bytes 

12.5.4 Application Header (MCB 4.1) 

 Virtual address range: 0x02F46 – 0x02F59 

 Real address range: 0x00028746 – 0x00028759 

 Size: 0x00014 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 92/133 

The Application Header contains some internally used data, like stack type, etc. 

12.5.5 BAOS Header Block (MCB 4.2) 

 Virtual address range: 0x02F5A – 0x02FA0 

 Real address range: 0x0002875A – 0x000287A0 

 Size: 0x00047 

The BAOS Header Block contains pointer and sizes of data used by the BAOS firmware. 

12.5.6 BAOS Internals (MCB 4.3) 

 Virtual address range: 0x02FA1 – 0x02FC1 

 Real address range: 0x000287A1 – 0x000287C1 

 Size: 0x00021 

The BAOS Internals contains information and flags for the BAOS firmware. The device friendly 

name is stored there and the flag for sending indications. 

12.5.7 Data Point Types (MCB 4.4) 

 Virtual address range: 0x02FC2 - 0x033A9 

 Real address range: 0x000287C2 – 0x00028BA9 

 Size: 0x003e8 

The Data Point Types are used for the generic ETS database. In the generic database each 

data point can be set to a certain type (disabled, 1 bit, 4 bit, 1 byte, etc.). There are these types 

stored. 

If an individual database for ETS is used, this region is free to use. 

12.5.8 Data Point Descriptions (MCB 4.5) 

 Virtual address range: 0x033AA – 0x033AA 

 Real address range: 0x00028BAA – 0x00028BAA 

 Size: 0x0001 

The Data Point Descriptions are not used for the KNX BAOS 830, 832 and 838 Modules. It 

would lead to very long ETS download times. So the descriptions remain in the ETS database 

only. This Sub-MCB contains only one dummy byte. 

The KNX BAOS 777 device, for example, uses description strings. 

12.5.9 Parameter Bytes (MCB 4.6) 

 Virtual address range: 0x033AB – 0x034A4 

 Real address range: 0x00028BAB – 0x00028CA4 

 Size: 0x00FA 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 93/133 

All Parameter Bytes of the BAOS module are stored in this region. The generic ETS database 

offers 250 bytes. If an own database is created, the number of parameter bytes can be changed 

as long as virtual memory is available. 

12.5.10 Free Virtual Memory 

 Virtual address range: 0x034A5 – 0x15FFF 

 Real address range: 0x00028CA5 – 0x0003B7FF 

 Size: 0x12B5B 

This region is free to use. It can be used to store more parameter bytes. For this, the creation of 

an ETS database is necessary. See chapter "Individual ETS Entries". 

12.6 Access Protection 

Nearly every item in the KNX world can be read and write protected. Most of the properties are 

writing protected by an access key and readable by everyone. KNX defines 4 access levels, 

each to reading and writing: 

 Level 0: Access for system manufacturer. This access level is completely restricted and 

only accessible for Weinzierl Engineering. Do not use it. 

 Level 1: Access for device manufacturer. This access level is mainly for changing 

production properties, like serial number, manufacturer ID, etc. Its access key is 

0x12345678. This can be changed as described below. It is recommended to change 

this key and to keep it secret. 

 Level 2: Access for tools. This access level is used by tools like the ETS. Its access key 

is 0xFFFFFFFF. This can be changed as described below. It is recommended to leave 

this key as it is. It can be changed by the end customer as he likes. In ETS this key must 

also be set (BCU Key). 

 Level 3: Access for everyone. This access level is not protected in any way. So it is 

accessible for everyone and has no key. 

An access key can be changed if you have access to its level. I. e. you know the key. 

12.6.1 Access via Net'n Node 

Start Net'n Node and connect it to the KNX bus which is also connected to the KNX BAOS 

Module. See section "Monitoring KNX using Net'n Node" for more information about this tool. 

Select menu Tools/Access Protection to manage access keys. In the dialog enter the correct 

individual address and the key FFFFFFFF in Authorize with device/Key. Press Test Key and 

look at the Returned Level. It should read 2, so you have access for level 2. 

Enter the key for level 1: 12345678 and hit Test Key again. Now it should read level 1. Change 

the key in New Key as you like (e. g. 11223344) and remember it very hard. Hit Set Key and 

the new authorization key for level 1 is stored. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 94/133 

This key is, for example, needed to change some properties of the KNX BAOS Module. See 

next section. 

12.7 Important Properties 

Every KNX device has its own set of properties. Some of them can only be read and store just 

information, some can be written and some will act accordingly. Here are the most important 

ones. 

12.7.1 The 0 - Device Object 

11 - Serial Number: Serial number of the device. This 6 bytes value can be written if the access 

key level 1 is set. The first 2 bytes of the serial number must be identical to the manufacturer 

identifier. The remaining 4 bytes are manufacturer specific, but they must be unique. The 

prefixed manufacturer ID ensures, that all serial numbers in the KNX world are unique. 

12 - Manufacturer Identifier: ID of the manufacturer given from the KNX Association. This 2 

bytes value can be written if the access key level 1 is set. Warning: This value must match to 

the ETS database or else the download will fail. 

15 - Order Info: This 10 bytes value is an identifier for your product a catalogue. It is used for 

ordering more much products. This value is shown by ETS in Diagnostic/Device Info. To change 

the value access key level 1 is required. 

19 - Manufacturer Data: This 4 bytes value can be some manufacturer specific information 

about this device, e. g. manufacturing date. Access key level 1 is required. 

21 - Description: This 30 bytes value is a string, which stores the device friendly name, also 

seen in ETS. It is an ASCII string and defaults to "KNX BAOS 83x" or "KNX BAOS 840". 

25 - Version: This 2 bytes value is a read only value. It shows the version of the BAOS 

firmware. 

30 - Download Counter: This 2 bytes value is a read only value. It shows the number of ETS 

downloads. 

54 - Programming Mode: This 1 byte value shows the state of the programming mode. It has 

only two possible values: 0 = off, 1 = on. To write a new individual address to a KNX device, the 

programming mode must be active (on). This is normally done by pushing the Learn key. 

Writing this property is an alternative to switch the programming mode by key. 

57 - Subnetwork Address: This 1 byte value shows the first part of the individual address. It 

can also be written to change the individual address. 0x12 means 1.2.x. The last part is stored 

in the next property. 

58 - Device Address: This 1 byte value shows the second part of the individual address. It can 

also be written to change the individual address. 0x20 means x.x.32. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 95/133 

78 – Hardware Type: This 6 byte value is the hardware type identifier for the device. The first 

byte must be 0, since all other values are for future use and will be defined by the KNX 

Association. The next 2 bytes are the manufacturer identifier, the next 2 bytes identify the BAOS 

module (0x0800) and the last byte the variant (TP = 0x03, RF = 0x04). 

82 – RF Domain Address: This 6 byte value is the domain address used by RF medium. It is 

used to separate groups of devices from other groups. For TP the line and area topology do 

this, but since RF is sending its telegrams over air, the domain address is the key to separate 

such groups. This is, of course, also important to protect the own installation from another KNX 

RF installation in the neighbourhood. 

12.7.2 The 1 - Address Table Object 

The Address Table is written and managed by the ETS. Its values can be read, but care must 

be taken to write anything. 

12.7.3 The 2 - Association Table Object 

The Association Table is written and managed by the ETS. Its values can be read, but care 

must be taken to write anything. 

12.7.4 The 9 - Group Object Table Object 

The Group Object Table is written and managed by the ETS. Its values can be read, but care 

must be taken to write anything. 

12.7.5 The 3 - Application 1 Object 

The Application 1 Object stores some information of the BAOS application. 

12.7.6 The 4 - Application 2 Object 

The Application 2 Object is an unused entry. It is specified for an alternative application, but it is 

not used. 

12.7.7 The 8 - cEMI Server Object 

The Common EMI server object id used to communicate and change the mode of the BAOS 

Module. It can be used by Net'n Node to read and write KNX telegrams via the BAOS Module. It 

can also be used to switch the BAOS Module to certain communication modes (like bus 

monitor). 

51 – Medium Type: This 2 byte value shows all the media types, the device supports. Every 

medium is represented by its designated bit: 

 Bit #5: 1 = IP 

 Bit #4: 1 = RF 

 Bit #1: 1 = TP 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 96/133 

For BAOS Modules 830, 832 and 838, only TP (= 0x0002) is supported. 

52 – Communication Mode: Current communication mode of the BAOS Module. This is used 

to switch the module to different communication modes, like sending/receiving own KNX 

telegrams via cEMI protocol. 

Normally the module is in BAOS mode (0xF0). To use own KNX telegrams via cEMI protocol, 

the mode must be changed to Link Layer mode (0x00). 

See also section "cEMI in the Application" for an example using this property. 

54 – Additional Information Types: If present, holds all supported additional info types for 

cEMI telegrams. In case of KNX BAOS RF 840, only the type 0x02 is supported, which contains 

one byte RF Info, 6 bytes domain address or serial number and one byte RF LFN. 

For more info see KNX System Specifications/03_06_03 EMI_IMI available at the KNX 

Specifications page. 

64 – cEMI Supported Communication Modes: This 16 bit mask shows all the supported 

communication modes, which can be used: 

 Bit #3: 1 = Local Transport Layer mode available 

 Bit #1: 1 = Link Layer bus monitor mode available 

 Bit #0: 1 = Link Layer mode available  

For BAOS Modules 830, 832 and 838, the mask is 0x000B. 

12.7.8 The 19 – RF Medium Object 

56 – RF Domain Address: This property is a copy of property "0 – Device Object/82 – RF 

Domain Address". 

  

http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 97/133 

13 How to Change Production Parameters 

Every KNX BAOS Module contains a set of parameters to identify it as a product. These 

parameters can be changed permanently, so even a master reset cannot restore them to 

default values. Such parameter, like the serial number, manufacturer data, etc. should never be 

changed after shipping out the device which contains the KNX BAOS Module. 

13.1 BAOS Module Config Tool 

To change these production values permanently, a tool is available at the BAOS web page. 

Download from http://www.weinzierl.de, install KnxBAOS Module Config and start it. 

This tool can change the production values. It has its own manual. 

13.2 Net'n Node 

It is also possible to change these production values with Net'n Node, since they are all 

accessible via properties. See sections "Access Protection" and "Important Properties": 

 Start Net'n Node and connect it to the KNX bus which is also connected to the KNX 

BAOS Module. 

 Use menu Tools/Edit Properties to read the current production values. Enter the 

individual address of the KNX BAOS Module (default 15.15.255) and hit Scan. After a 

while the dialog window shows the properties of the module. 

 Unfold 0 Device Object, select it and read all values of the properties by hitting Read. 

After a while the values show up. 

 Change some values (see section "Important Properties" for more info about these 

properties): 

11 Serial Number, 

12 Manufacturer Identifier, 

15 Order Info, 

19 Manufacturer Data and 

78 Hardware Type. 

 Enter the level 1 access key in Authorize: Enable Use authorize and enter the key. 

 Select each changed property and hit Write to write its value back to the module. 

 All values should now be updated. Even a master reset cannot change them. 

  

http://www.weinzierl.de/


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 98/133 

14 FT1.2 Protocol 

The communication between the Development Board and the KNX BAOS Module uses the 

ObjectServer or the cEMI protocol. These protocols are encapsulated in the FT1.2 protocol for 

reliability reasons. The typical device architecture looks like this: 

 

14.1 General 

The FT1.2 protocol is based on the international standard IEC 60870-5-1 and 60870-5-2. An 

asymmetric transmission procedure is used. I. e. the host initiates a message transfer and the 

KNX BAOS Module sends a response. The protocol is restricted to point-to-point (no address 

field) communication. 

14.2 Physical 

14.2.1 Interface 

The module and application are connected via a 3-wire connection: 

 RxD: Received data 

 TxD: Transmit data 

 GND: 0 V Ground 

 additional for 830 and 840: Vcc: Power supply  

Data transmission is performed with 8 data bits, even parity and 1 stop bit. The default 

transmission rate is 19200 baud. Frames have a fixed or variable length. 

Host

Microcontroller

BAOS Module

Microcontroller

Transceiver

KNX Bus

Application

FT1.2



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 99/133 

14.2.2 Timings 

The timing of the FT1.2 communication between the application and the KNX BAOS Module are 

shown in the next figure. The application sends an FT1.2 frame to the KNX BAOS Module 

which acknowledges it. After a while the module sends a response frame to the application 

which also acknowledges it. 

 

14.3 FT1.2 Frame Format 

The FT1.2 protocol ensures data integrity by using a defined header, a check-sum and a 

stopping character. There are two frame variants: a fixed frame for reset requests and a 

variable frame length for containing data. 

An FT1.2 reset frame looks like this: 

 

To request a reset of internal counters and states, send an FT1.2 reset request: 

01234567

Byte 0

Start character

0x10

Byte 1

01234567

FT1.2 Frame

01234567 01234567

Byte 2 Byte 3

Checksum

0x40

Stop character

0x16

Reset

0x40



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 100/133 

10 40 40 16                                           RESET_REQ 

Note: This is not a reboot of the KNX BAOS Module software. It only resets internal registers 

and states of the stack. 

An FT1.2 data frame looks like this: 

 

The FT1.2 control field has the following information: 

 Bit #7: Direction: 

0 = Host (application) to KNX BAOS Module 

1 = KNX BAOS Module to Host (application)  

 Bit #6: 1 

 Bit #5: Frame count bit (toggled at each new message), must be 1 after a reset. 

 Bit #4 - 0: 10011 

  

01234567 01234567

Byte 0 Byte 1 Byte 2 Byte 3

Start character

0x68

Byte 4

Length (bytes 4-n)
Length

(repeated)

Start character

0x68 (repeated)

01234567 01234567 01234567

FT1.2 Header Frame

Byte 5 Byte n

01234567 01234567

Information data

(0 - n bytes)

...
01234567 01234567

Byte n+1 Byte n+2

Checksum

(bytes 4-n)

Stop character

0x16

FT1.2 End FrameFT1.2 Information Frame

FT 1.2 control field



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 101/133 

15 BAOS Frame Embedded in an FT1.2 Frame 

The BAOS protocol is encapsulated into the FT1.2 frame for data integrity. 

An FT1.2 frame using the BAOS protocol looks as follows: 

 

For the FT1.2 control field bits, see section “FT1.2 Frame Format”. 

  

01234567 01234567

Byte 0 Byte 1 Byte 2 Byte 3

Start character

0x68

Byte 4

Length (bytes 4-n)
Length

(repeated)

Start character

0x68 (repeated)

01234567 01234567 01234567

FT1.2 Header Frame

01234567 01234567

Byte n+1 Byte n+2

Checksum

(bytes 4-n)

Stop character

0x16

FT1.2 End Frame

FT 1.2 control field

 

First item ID

01234567

Byte 5 Byte 6

Byte 7

01234567

01234567

Byte 8

Byte 13 Byte n

01234567

01234567 01234567

BAOS protocol

Main service

0xF0
Sub service

Start

item

First item data

...

Byte 10Byte 9

0123456701234567

Error code or

BAOS protocol

Number

of items

Byte 11

01234567

Byte 12

01234567

BAOS protocol

... More items ...



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 102/133 

16 Common EMI Protocol 

In this chapter, we learn how to access the link layer of the stack and its management via the 

cEMI protocol with examples. 

The message routing is implemented in the module stack. It offers the possibility to disable the 

BAOS protocol and to send/receive telegrams directly to/from a certain layer of the 

communication stack. In principal there are two reasonable short cuts: 

 Telegram access via the link layer (LL). This access also gives/takes telegrams like 

the network layer access. The group address filtering is also active. So group messages 

which are not intended for this device will be filtered out. To disable this filtering the 

length of the group address table must be set to zero. 

Broadcast messages can also be received as well as all directly addressed telegrams 

for this device. 

 Access to the management server. This is not really an access to the KNX bus, 

because the management server is responsible for internal organization of the device. 

So the cEMI telegrams are not sent to the bus. They are handled internally.  

16.1 Link Layer Access 

The cEMI telegram format for the link layer contains the KNX telegram as follows: 

 

The Message code determines the kind of message: 

01234567

Message code

Source adr.

Area: 0-15

Source adr.

Line: 0-15

01234567 01234567

Source address

Device: 0-255

01234567

01234567

01234567 01234567

L (information length,

bytes y-z)

01234567 01234567

TPDU APDU + data

cEMI protocol

cEMI protocol

AddIL

(bytes 2-x)

Byte 0 Byte 1 Byte 2 Byte 3

Byte x+5

Byte x+6 Byte x+7 Byte x+8 Byte y

Group. adr.

Main: 0-31

Grp. adr.

Mid.: 0-7

Ind. adr.

Area: 0-15

Ind. adr.

Line: 0-15

Group address

Group: 0-255

Ind. address

Device: 0-255

TypeID

Additional info (can be omitted)

Len (bytes 4-n) Info

01234567

Byte n

...

cEMI protocol

Byte n+1 Byte n+2 Byte m

... 7 6 5 4 3 2 1 0

InfoLen

More additional info (can be omitted)

TypeID

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 ...

...

...

01234567

Byte x

01234567

Control field 1

01234567 01234567 01234567

cEMI protocol

Control field 2

Byte x+1 Byte x+2 Byte x+3 Byte x+4

01234567

Byte z

...



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 103/133 

 L_Data.req: 0x11 

 L_Data.con: 0x2E 

 L_Data.ind: 0x29 

 L_Busmon.ind: 0x2B 

The AddIL is the length of the additional info. This additional info can be omitted in which case 

the AddIL is 0. The additional info has the following structure: 

 TypeID: Determines the type of additional information. 

o 0x00: reserved 

o 0x02: RF medium information (Len = 8) 

o 0x03: Bus-monitor status information (Len = 1) 

o 0x04: Relative time stamp (Len = 2)  

 Len: length of current additional info. 

 Info: Current additional info. 

Control field 1: 

 Bit #7: Frame type: 

o 1 = Standard frame 

o 0 = Extended frame 

 Bit #6: unused, must be 0 

 Bit #5: Repeat flag: 

o 0 = repeat frame if error 

o 1 = do not repeat 

 Bit #4: System broadcast flag: 

o 0 = system broadcast 

o 1 = broadcast 

 Bit #3 - 2: Priority, leave this to 11 

 Bit #1: ACK request (= 1) 

 Bit #0: Confirm flag (1 = error) 

Control field 2: 

 Bit #7: Destination address type: 

o 0 = Individual address 

o 1 = Group address 

 Bit #6 - 4: Hop count 

 Bit #3 - 0: EFF (extended frame format): 

o 0000 = Standard frame (long frame: APDU > 15 bytes) 

o 01xx = LTE frame 

L: Information length of data (TPDU not included). 

16.1.1 cEMI in the Application 

Common EMI is used to send read and write requests directly to the KNX stack without the use 

of the BAOS protocol. Such a read or write request does not involve a data point. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 104/133 

To achieve this, the BAOS Module must be in the communication mode Link Layer. This is done 

by sending an M-PropWrite Request. 

16.1.1.1 Set Module to Link Layer Mode 

To set the BAOS Module into Link Layer mode, send the following telegram: 

uint8_t aBuffer[] = 

{ 

    0x08,                // Length of this array 

    0xF6,                // cEMI service code: M_PropWrite.req 

    0x00, 0x08,          // cEMI Object type (cEMI server) 

    0x01,                // cEMI Object instance 

    0x34,                // cEMI Property ID (Communication Mode) 

    0x10,                // cEMI Number of elements (high nibble) 

    0x01,                // cEMI Start index (incl. low nibble of prev. byte) 

    0x00                 // cEMI Data: Link Layer Mode (=00) 

}; 

 

KnxFt12_Write(aBuffer);  // Send M_PropWrite.req 

 

16.1.1.2 Set Module back to BAOS Mode 

Now the Module accepts own telegrams in the cEMI format. To use the BAOS protocol again, 

use this M_PropWrite.req again, but change the data to 0xF0: 

uint8_t aBuffer[] = 

{ 

    0x08,                // Length of this array 

    0xF6,                // cEMI service code: M_PropWrite.req 

    0x00, 0x08,          // cEMI Object type (cEMI server) 

    0x01,                // cEMI Object instance 

    0x34,                // cEMI Property ID (Communication Mode) 

    0x10,                // cEMI Number of elements (high nibble) 

    0x01,                // cEMI Start index (incl. low nibble of prev. byte) 

    0xF0                 // cEMI Data: BAOS Mode (=F0) 

}; 

 

KnxFt12_Write(aBuffer);  // Send M_PropWrite.req 

 

16.1.1.3 Write Value to a Group Object 

As long the module is in Link Layer mode, we can create own telegrams. 

Writing a value to a data point normally causes a KNX telegram to be sent to a certain group 

object. This group object delivers the value to the actuator(s). It is also possible to write to such 

a group object without any data point involved. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 105/133 

As an example if a group object 3/3/3 is configured as absolute dimming value (1 byte) to a 

dimmer input, we can write a value 0 - 100 to change the light. Technically we can use values 

up to 255, but an absolute dimming value is defined from 0 - 100. 

uint8_t aBuffer[] = 

{ 

    0x0C,                 // Length of this array 

    0x11,                 // cEMI service code: L_Data.req 

    0x00,                 // cEMI Additional info length 

    0x9C,                 // cEMI KNX control field 1 

    0xE0,                 // cEMI KNX control field 2 

    0x11, 0x20,           // cEMI source address 1.1.32 

    0x1B, 0x03,           // cEMI group address 3/3/3 

    0x00,                 // cEMI TPDU 

    0x00,                 // cEMI APDU + APCI 

    0x80,                 // cEMI APCI 

    0x64                  // cEMI data byte (= 100) 

}; 

 

KnxFt12_Write(aBuffer);   // Send L_Data.req 

This writes the value 100 to the group object 3/3/3. 

16.1.1.4 Read Value from a Group Object 

Reading a value from a group object, the following example can do this: 

uint8_t aBuffer[] = 

{ 

    0x0B,                 // Length of this array 

    0x11,                 // cEMI service code: L_Data.req 

    0x00,                 // cEMI Additional info length 

    0x9C,                 // cEMI KNX control field 1 

    0xE0,                 // cEMI KNX control field 2 

    0x13, 0x03,           // cEMI source address 1.3.3 

    0x1A, 0x03,           // cEMI group address 3/2/3 

    0x00,                 // cEMI TPDU 

    0x00,                 // cEMI APDU + APCI 

    0x00                  // cEMI APCI 

}; 

 

KnxFt12_Write(aBuffer);   // L_Data.req 

The response can be handled in KnxBaos_Process(), File: KnxBaos.c: 

void KnxBaos_Process(void) 

{ 

    bool_t bAccept;                     // Accept the current telegram? 

 

    // First proceed the receive job 

    if(KnxFt12_Read(m_pBaosRcvBuf))     // Poll telegrams from BAOS 

    { 

        bAccept = FALSE;                // Initialize telegram to be ignored 

 

        [...]                           // Check telegram service code 

        [...]                           // Set bAccept = TRUE, if accepted 

 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 106/133 

        if(bAccept == TRUE)             // Have we accept the telegram? 

        { 

            [...]                       // Handle telegram data 

        } 

        else 

        { 

            // Here we can handle all received telegrams in 

            // m_pBaosRcvBuf[]. m_pBaosRcvBuf[0] stores the length, 

            // the following bytes are cEMI telegrams. 

        } 

    } 

    [...] 

} 

The buffer m_pBaosRcvBuf[] will contain this response (the length byte at index 0 is not part of 

cEMI): 

05 AB 01 40 00 15                                    PC_GetValue.con 

Note: More information about cEMI telegrams can be found in the KNX System 

Specifications/03_06_03 EMI_IMI available at the KNX Specifications page. 

16.1.2 Send Group Telegrams using Net'n Node 

Start Net'n Node, use View/Access Port Configuration and Create new... port access and 

use KNX FT1.2 Serial. If it successfully Opens the port, choose Select Send KNX Group 

Value Write. In the dialog enter the values (see examples below) and Send it. A response will 

be displayed in the Telegram View. 

 DPT 01 - Binary - 1 bit 

o Group Address: 4/3/2 

o Data: TRUE 

The telegrams send and received look like these: 

PC:         11 00 BC E0 00 00 23 02 01 00 81    L_Data.req 

Module:     2E 00 BC E0 FF FF 23 02 01 00 81    L_Data.con 

Net'n Node can also monitor the KNX bus. For this, additionally open a KNX bus interface (e. g. 

USB TP). The telegram we caused on the bus looks like this: 

KNX-Bus:    29 00 BC E0 FF FF 23 02 01 00 81    L_Data.ind 

Here we sent a telegram to group address 4/3/2 containing a 1 bit value of TRUE (1). 

 DPT 05 - 8-Bit Unsigned Value - 1 byte 

o Group Address: 8/4/3 

o Data: 170 

The telegrams send and received look like these: 

PC:         11 00 BC E0 00 00 44 03 02 00 80 AA    L_Data.req 

http://www.knx.org/knx-en/knx/technology/specifications/index.php


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 107/133 

KNX-Bus:    29 00 BC E0 FF FF 44 03 02 00 80 AA    L_Data.ind 

Module:     2E 00 BC E0 FF FF 44 03 02 00 80 AA    L_Data.con 

Here we sent a telegram to group address 8/4/3 containing a 1 byte value of 0xAA (170). 

 DPT 08 - 2-Octet Signed Value - 2 bytes 

o Group Address: 15/7/254 

o Data: -2  

The telegrams send and received look like these: 

PC:         11 00 BC E0 00 00 7F FE 03 00 80 FF FE    L_Data.req 

KNX-Bus:    29 00 BC E0 FF FF 7F FE 03 00 80 FF FE    L_Data.ind 

Module:     2E 00 BC E0 FF FF 7F FE 03 00 80 FF FE    L_Data.con 

Here we sent a telegram to group address 15/7/254 containing a 2 byte value of 0xFFFE (-2).  

If we want to read a value, we have to use a group address which is connected to a real data 

point of a real KNX device. For this, select Send KNX Group Value Read. In the dialog enter 

the group address (example 1/2/1) and select the Send button. A response will be displayed in 

the Telegram View. 

PC:         11 00 9C E0 00 00 0A 01 01 00 00    L_Data.req 

KNX-Bus:    29 00 BC E0 FF FF 0A 01 01 00 00    L_Data.ind 

KNX-Bus:    29 00 BC E0 11 01 0A 01 01 00 41    L_Data.ind 

Module:     2E 00 BC E0 FF FF 0A 01 01 00 00    L_Data.con 

Module:     29 00 BC E0 11 01 0A 01 01 00 41    L_Data.ind 

Why are there two telegrams on the KNX bus and two from the module? 

The first telegram from the PC is an L_Data request to read the value in group address 1/2/1. 

This request is sent to the bus (first telegram on the KNX bus). It origins from our BAOS module 

(hence the individual address 15.15.255 (0xFFFF). The second telegram on the bus is the 

answer. There is a KNX device (1.1.1) whose data point has the 1 bit value 1 (coded into the 

last byte 0x41). The two last telegrams from the BAOS module are the corresponding telegrams 

from the KNX bus. The first one is the confirmation of our request. The second one is the 

indication of the answer to our request. This answer contains the value we wanted to know. 

If we query a group address (example 8/2/1) which is not connected to any device, the 

telegrams would look like these: 

PC:         11 00 9C E0 00 00 42 01 01 00 00    L_Data.req 

KNX-Bus:    29 00 BC E0 FF FF 42 01 01 00 00    L_Data.ind 

Module:     2E 00 BC E0 FF FF 42 01 01 00 00    L_Data.con 

We see the two answer telegrams are missing, since there is no device which can respond our 

request. 

16.2 Management Server Access 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 108/133 

Properties are a quite central information and management part of KNX devices. They hold lots 

of information about it and some of them can be changed to make an effect. They can be 

accessed via the KNX bus but it is also possible to access them via the serial (UART) port using 

cEMI. 

The host interface of the KNX BAOS Modules 83x allows access to the KNX Properties via the 

so-called M_Prop Services. M_Prop Services are part of the KNX specification for common EMI 

servers. All property elements which are present in the KNX Module are accessible via the bus 

as well as via the host interface. Due to historical reasons the protocols for the two ways are 

different. Mainly the addressing of the interface objects is different. An interface objects is a 

container for properties. The first object in a KNX device is always the so-called device object. It 

is addressed by the object index which is 0, because it is the first one. And there is an object 

instance number which starts at 1. Each property is addressed as an array with number of 

elements (4 bit) and a start index (12 bit). 

The cEMI telegram format for the management server contains the service as follows: 

 

The Message code determines the kind of message: 

 M_PropRead.req: 0xFC 

 M_PropRead.con: 0xFB 

 M_PropWrite.req: 0xF6 

 M_PropWrite.con: 0xF5 

 M_Reset.req: 0xF1 

 M_Reset.ind: 0xF0 

Interface Object Type, Object Instance and Property ID determine the access to the 

management service. 

Number of Elements and Start Index determine the structure and size of the Data. 

16.2.1 Property Access Examples with Net'n Node 

Example: Read the property Programming Mode. 

01234567

Message code

01234567 01234567 01234567

cEMI protocol

Interface Object Type

(high and low byte)

Byte 0 Byte 1 Byte 2 Byte 3

01234567

Byte 4

cEMI protocol

Byte 5 Byte 6 Byte 7

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 0 ... 01234567

Byte n

Object Instance Property ID

Nr. of

Elements
Start Index Data (length depend on type of property)



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 109/133 

Start Net'n Node, use View/Access Port Configuration and Create new... port access and 

use KNX FT1.2 Serial. If it successfully Opens the port, choose Send KNX Local services 

M_PropRead.req. In the dialog enter the values (see below) and Send it. A response will be 

displayed in the Telegram View. 

 M_PropRead.Req/Con 

o InterfaceObjectType: 0 (Device Object) 

o ObjectInstance: 1 

o PropertyId: 54 (Programming Mode) 

o NrOfElem: 1 

o StartIndex: 1 

The telegrams send and received look like these: 

PC:         FC 00 00 01 36 10 01        M_PropRead.Req 

Module:     FB 00 00 01 36 10 01 00     M_PropRead.Con 

The answer can be interpreted by Net'n Node. Just click on the second telegram to see it. The 

answer shows the data = 0 which means the programming mode is off. 

To send this in the application, we have to add the length byte: 

uint8_t aBuffer[] = 

{ 

    0x07,             // Length of this array 

    0xFC,             // cEMI service code: M_PropRead.req 

    0x00, 0x00,       // cEMI Interface Object Type 0 

    0x01,             // cEMI Object Instance 1 

    0x36,             // cEMI PropertyId: 54 (Programming Mode) 

    0x10,             // cEMI Number of Elements 1, Start Index 1 (high part) 

    0x01,             // cEMI Start Index 1 (low part) 

}; 

 

KnxFt12_Write(aBuffer);   // M_PropRead.req 

Example: Write the property. We will activate the programming mode this way. 

 M_PropWrite.Req/Con 

o InterfaceObjectType: 0 (Device Object) 

o ObjectInstance: 1 

o PropertyId: 54 (Programming Mode) 

o NrOfElem: 1 

o StartIndex: 1 

o Data/Length: 01/1 

The telegrams send and received look like these: 

PC:         F6 00 00 01 36 10 01 01     M_PropWrite.Req 

Module:     F5 00 00 01 36 10 01        M_PropWrite.Con 

The red LED must be on now. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 110/133 

Example: Read the serial number of the module. The serial number is located in the device 

object (type = 0x0000, instance = 0x01) with the property identifier (PID) PID_SerialNumber = 

0x0B). 

M_PropRead and M_PropResp Services in cEMI Format: 

PC:         FC 00 00 01 0B 10 01                      M_PropRead.Req 

Module:     FB 00 00 01 0B 10 01 00 C5 00 00 00 00    M_PropRead.Con 

                                 ^^^^^^^^^^^^^^^^^ 

                                   serial number 

Some more PIDs of interest for BAOS applications (device object = 0, instance = 1): 

PID name PID# Value type 

PID_SERIAL_NUMBER 11 PT_GENERIC06 

PID_MANUCATURER_ID 12 PT_UINT 

PID_ORDER_INFO 15 PT_GENERIC10 

PID_VERSION 25 PT_VERSION 

PID_DOWNLOAD_COUNTER 30 PT_UINT 

PID_PROGMODE 54 PT_BITSET8 

PID_SUBNET_ADDR 57 PT_UCHAR 

PID_DEVICE_ADDR 58 PT_UCHAR 

PID_HARDWARE_TYPE 78 PT_GENERIC06 

Example: Reset some states of the BAOS Module. 

 M_Reset.Req/Ind 

The telegrams send and received look like these: 

PC:         F1     M_Reset.Req 

Module:     F0     M_Reset.Ind 

The module resets some counters and states (e. g. clears programming mode) and sends an 

indication to confirm the reset. 

For an overview about important properties, see section “Important Properties”. 

16.3 cEMI Frame Embedded in an FT1.2 Frame 

The cEMI protocol is also encapsulated into the FT1.2 frame for data integrity. Net'n Node 

encapsulates these cEMI telegrams automatically into FT1.2 frames. Keep this in mind if you 

want to communicate with your own micro controller to the BAOS module with cEMI. The demo 

code includes routines for this. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 111/133 

An FT1.2 frame using the cEMI protocol looks as follows: 

 

The FT1.2 Control Field bits, see section “FT1.2 Frame Format”. 

The Message Code, TypeID, Control field 1 and 2, see chapter “Common EMI Protocol”. 

For more information about the FT1.2 protocol see KnxBAOS_Protocol_v2.pdf, Appendix E. 

The example of reading the serial number uses these cEMI telegrams, which are embedded 

into an FT1.2 frame: 

PC:     68 08 08 68 53 FC 00 00 01 0B 10 01 6C 16                     M_PropRead.Req 

Module: 68 0E 0E 68 D3 FB 00 00 01 0B 10 01 00 C5 00 00 00 00 B0 16   M_PropRead.Con 

                                            ^^^^^^^^^^^^^^^^^ 

                                              serial number 

  

01234567 01234567

Byte 0 Byte 1 Byte 2 Byte 3

Start character

0x68

Byte 4

Length (bytes 4-z)
Length

(repeated)

Start character

0x68 (repeated)

01234567 01234567 01234567

FT1.2 Header Frame

01234567 01234567

Byte z+1 Byte z+2

Checksum

(bytes 4-z)

Stop character

0x16

FT1.2 End Frame

FT 1.2 control field

01234567

Message code

Source adr.

Area: 0-15

Source adr.

Line: 0-15

01234567 01234567

Source address

Device: 0-255

01234567

01234567

01234567 01234567

L (information length,

bytes y-z)

01234567 01234567

TPDU APDU + data

cEMI protocol

cEMI protocol

AddIL

(bytes 7-x)

Byte 5 Byte 6 Byte 7 Byte 8

Byte x+5

Byte x+6 Byte x+7 Byte x+8 Byte y

Group. adr.

Main: 0-31

Grp. adr.

Mid.: 0-7

Ind. adr.

Area: 0-15

Ind. adr.

Line: 0-15

Group address

Group: 0-255

Ind. address

Device: 0-255

TypeID

Additional info (can be omitted)

Len (bytes 9-n) Info

01234567

Byte n

...

cEMI protocol

Byte n+1 Byte n+2 Byte m

... 7 6 5 4 3 2 1 0

InfoLen

More additional info (can be omitted)

TypeID

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 ...

...

...

01234567

Byte x

01234567

Control field 1

01234567 01234567 01234567

cEMI protocol

Control field 2

Byte x+1 Byte x+2 Byte x+3 Byte x+4

01234567

Byte z

...



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 112/133 

17 Individual ETS Entries 

This chapter shows how to create an individual ETS entry as an example. 

To create individual entries, the following is required: 

 The KNX Manufacturer Tool (MT) and a valid license. 

 The KNX Engineering Tool Software (ETS) and a valid license. 

 This Weinzierl KNX BAOS Starter Kit. 

The MT is used to define and create own Object Lists, Parameters and group objects for ETS. 

The result of this tool is a test project containing the product. 

This test project can be used while development. After development it can be registered and a 

product is derived from this project. 

To achieve this, the following is required: 

 KNX membership 

 ISO 9001 certification 

 Certification of the product  

Facts good to know about the KNX BAOS Module for working with MT: 

 Profile Class: System B 

 Interface: Serial asynchronous 

 Protocol: FT1.2 based 

 Address Table: starting at address 0x1000 

 Association Table: starting at address 0x17D2 

 ComObjects Table: starting at address 0x2774, 1000 pre-defined 

 Parameters: starting at address 0x33AB, 250 parameters each 1 byte. 

(MCB 4 starts at 0x2F46 and is segmented in SUB_MCBs. The parameters start at 

SUB_MCB 5, which has an offset of 0x465. So their address start at 0x2F46 + 0x465 = 

0x33AB. See also section “Binary Import”.) 

GO number DPT Length 

0 not available not available 

1 – 1000 01, 02, ... 18 1 bit ... 14 bytes 

Note: The terms Group Object and Communication Object are synonyms. Communication 

Object is used in Manufacturer Tool, ETS and other tools. Group Object is the only term used in 

the rest of the KNX specifications and is therefore considered as the only correct one. Both 

terms will however be used here because it is here were practice and theory meet. 

Communication Object will only be used when absolutely necessary, e. g. in the context of 

Manufacturer Tool. 

17.1 Example for Creating an Individual ETS Database 

http://www.knx.org/knx-en/software/manufacturer-tool/about/index.php
http://www.knx.org/knx-en/software/ets/about/index.php


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 113/133 

To create a database, start MT and do the following: 

17.1.1 Project 

Create a new project by selecting menu File/New/Project..., select KNX MT Project and 

browse for a location to store the project, enter a name (e. g. My_KNX_BAOS) and hit OK. 

In the dialog window it is recommended to select Target ETS Version ETS 4 (knxprod) since a 

lot of users still use ETS 4. KNX BAOS RF 840 needs ETS 5, since RF is not fully supported in 

ETS 4. For manufacturer select either your own name or M-00FA KNX Association and hit 

OK. 

The KNX BAOS Modules have the manufacturer code 00C5, which is the code for Weinzierl 

Engineering GmbH. This code must match to the one stored in the device's ETS database. If we 

create a device with MT using a different code (here 00FA) we must also change this code in 

the KNX BAOS Module. ETS refuses to download the configuration if the manufacturer codes 

mismatch. See chapter “How to Change Production Parameters” for changing the manufacturer 

code. 

17.1.2 Create New Application 

Now it is necessary to create an application. This describes the configuration of the KNX BAOS 

Module. 

Click the project name in the Solution Explorer (My_KNX_BAOS) and use the menu 

Project/Add New Item..., select Application Program, edit its name (e. g. 

My_KNX_BAOS_App.mtxml) and hit Add. Enter values in the dialog window: 

 Application Number: 0001h 

 Application Version: 01h 

 Name: My_KNX_BAOS_App 

 Mask Version: [07B0h] System B 

17.1.3 Create New Hardware 

The product is not only a software application. It is also a hardware which we must add, too. 

Click the project name in the Solution Explorer (My_KNX_BAOS) and use the menu 

Project/Add New Item..., select Hardware, edit its name (e. g. My_KNX_BAOS_Hw.mtxml) 

and hit Add. Enter values in the dialog window: 

 Serial Number: SN2016-02-16 

 Version Number: 0001h 

 Hardware Name: My_KNX_BAOS_Hw 

 Order Number: ON2016-02-16 

 Product Name: My_KNX_BAOS_Product 

and hit OK. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 114/133 

Link the hardware to the application: Open the hardware by double clicking its name in the 

Solution Explorer. In the newly opened tab select the hardware name (the name containing the 

serial number). Use right mouse button menu Add new Hardware2Program and select the 

application program [0001 10] My_KNX_BAOS_App. Choose the correct medium type (TP or 

RF) and hit OK. 

For TP, enter the bus current by selecting the Hardware. In the main table enter 3 (for 3 

ampere) at the Bus Current column.  

17.1.4 Binary Import 

Unpack the archive 

Weinzierl_8xx_KNX_BAOS_ETS_Projects_for_Demo.zip 

Edit the application by selecting the application tab and then its name (e. g. 

My_KNX_BAOS_App). Use right mouse button menu Import binary data, browse to the s37-

file which is in the archive. 

Weinzierl_8xx_KNX_BAOS_ETS_Projects_for_Demo/ 

ETS_Project_using_individual_ETS_entry/ 

MT_Import_Files/ 

APP_BAOS_8xx_255_Parameter_Bytes.s37, 

open it and hit OK. 

Note: s37 file with 1000 parameter bytes: Don't use the 

APP_BAOS_8xx_1000_Parameter_Bytes.s37 file. It contains 1000 parameter bytes, which 

are used in the example below in section “Example to create more Parameter Bytes”. 

This adds a code segment to the application. Check this by selecting the application window 

and unfold the tree until the static entry shows its children. There is a Load Procedures entry. 

Click it and see a small table. It contains three Merge-Ids. Merge-Id 02h contains MCB 4. 

 

obj=#04 denotes MCB 4. This MCB is segmented in SUB_MCBs, which are denoted by 

start=000xh. Every SUB_MCB has a certain length. This length is defined in the first 4 

bytes of data={xx xx xx xx...}. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 115/133 

 SUB_MCB 1 "Application Header" starts at offset 0x00000000 and has a length of 

0x00000014. 

 SUB_MCB 2 "BAOS Header" starts at offset 0x00000014 and has a length of 

0x00000047. 

 SUB_MCB 3 "BAOS Internal Data" starts at offset 0x0000005B and has a length of 

0x00000021. 

 SUB_MCB 4 "Data point Types" starts at offset 0x0000007C and has a length of 

0x000003E8. 

 SUB_MCB 5 "Data point Descriptions" starts at offset 0x00000464 and has a length of 

0x00000001. Is not used to store the descriptions into the KNX BAOS Module, since it 

would take too much time for downloading them and it would consume too much 

memory. So the descriptions remain in the ETS. 

 SUB_MCB 6 "Parameter Bytes" starts at offset 0x00000465 and has a length of 

0x000000FA. This offset we need later. So the resulting address for the first Parameter 

Byte is 0x2F46 + 0x0465 = 0x33AB. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 116/133 

 

The ComObject flags (byte 0) and ComObject Value Field Type (byte 1) coding, see section 

"Group Object Table (MCB 3)". 

The ComObject RAM flags are for run time use. Each ComObject has one byte. This byte 

indicates whether everything is OK, an error occurred or a transmission is in progress, etc. 

1000: Number of entries

Byte 0

Group. adr.

Main: 0-31

Grp. adr.

Mid.: 0-7

01234567

Byte 1

Group address

Group: 0-255

01234567

Address Table:

1002: Group address #1 

1004: Group address #2 

1006: Group address #3 

1008: Group address #4 

100a: Group address #5 

100c: etc.             

1000: 00 06    6 entries                

Example:

1002: 15 0d    Group address #1: 2/5/13 

1004: 15 0e    Group address #2: 2/5/14 

1006: 15 0f    Group address #3: 2/5/15 

1008: 15 10    Group address #4: 2/5/16 

100a: 1a 01    Group address #5: 3/2/1  

100c: 1a 02    Group address #6: 3/2/2  

Group Address

17d2: Number of entries                     

Association Table:

17d4: Index into Address Table | ComObject #

17d6: Index into Address Table | ComObject #

17d2: 00 07    7 entries              

Example:

17d4: 04 01    AT entry #4 | Object #1

17d6: 05 02    AT entry #5 | Object #2

17d8: Index into Address Table | ComObject #

17da: Index into Address Table | ComObject #

17dc: Index into Address Table | ComObject #

17de: Index into Address Table | ComObject #

17d8: 04 05    AT entry #4 | Object #5

17da: 05 06    AT entry #5 | Object #6

17dc: 03 07    AT entry #3 | Object #7

17de: 01 05    AT entry #1 | Object #5

17e0: 02 06    AT entry #2 | Object #617e0: etc.                                  

Byte 0

01234567

Index into

Address Table

Byte 1

01234567

ComObject

number

2774: Number of ComObjects         

ComObjects:

2776: ComObject #1 | flags | length

2778: ComObject #2 | flags | length

2774: 03 e8          1000 ComObjects               

Example:

2776: 47 00    Transmitt, Comm., Low Pri, 1 bit    

2778: 47 03    Transmitt, Comm., Low Pri, 4 bit    

277a: ComObject #3 | flags | length

277c: ComObject #4 | flags | length

277e: ComObject #5 | flags | length

277a: 17 00    Write,     Comm., Low Pri, 1 bit    

277c: 17 03    Write,     Comm., Low Pri, 4 bit    

277e: 17 07    Write,     Comm., Low Pri, 1 byte   

2780: etc.                         2780: etc.                                         

Byte 0

01234567

U

Byte 1

01234567

Value Field

Type

Association entry

ComObject entry

T
R

I
W R C Prio

points to entry #4 (2/5/16)

points to ComObject #2



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 117/133 

 

The Parameters are application specific. Each parameter is one byte. They can be changed via 

ETS. The application can use the BAOS protocol to read the values. 

In case of the KNX BAOS Module the following parameters are used: 

Address Usage 

0x33AB Sensor: 0 = disabled, 1 = switch, 2 = dimmer, 3 = shutter 

0x33AC Actuator: 0 = disabled, 1 = switch, 2 = dimmer 

0x33AD - 0x34A3 Not used 

The ComObject RAM Flags determine the data point current state. The values are as follows: 

 Bit #7: Used for return value: 

o 0 = OK 

o 1 = Error  

 Bit #6 - 5: unused 

 Bit #4: Value valid: 

o 0 = Validity of value is unknown 

o 1 = Object has already been received 

 Bit #3: External update: 

o 0 = No external update 

o 1 = Object has been updated via telegram 

 Bit #2: Read request: 

o 0 = No read request 

o 1 = Object wants to send a read request 

 Bit #1 - 0: Status: 

o 00 = OK 

o 01 = Error 

o 10 = Transmit in progress 

o 11 = Transmit requested 

17.1.5 Create Address and Association Table 

Edit the application by selecting the application tab and then its name (e. g. 

My_KNX_BAOS_App). Use right mouse button menu Add new/Address Table and enter the 

Properties at the right side: 

 Max Entries: 03e8h 

This creates place for up to 1000 (= 0x3e8) table entries. 

33ab: Parameter #1

Parameters:

33ac: Parameter #2

33ad: Parameter #3

33ab: 02  

Example:

33ac: 02  

33ad: 00  

33ae: etc.        33ae: etc.

1b000: DataPointType #1

ComObject RAM Flags:

1b001: DataPointType #2

1b002: DataPointType #3

1b000: 00  

Example:

1b001: 02  

1b002: 08  

1b003: etc.            1b003: etc.



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 118/133 

Use right mouse button menu at the application name again Add new/Association Table and 

enter the Properties at the right side: 

 Max Entries: 03e8h 

17.1.6 Create Visible Data Points 

The KNX BAOS Module has 1000 ComObjects. 

To create a light switch which can handle one LED (switching it on/off and dimming it), we 

declare the following ComObjects: 

Object #1 is switch output, connected to object #3 which is LED switching input. 

Object #2 is dimming output, connected to object #4 which is LED dimming input. 

So object #1 and #3 are 1 bit (DPT 1.001) and object #2 and #4 are 4 bit (DPT 3.007). 

Define wanted data points. 

Go to the application by selecting the application tab and then its name (e. g. 

My_KNX_BAOS_App). Use right mouse button menu Add new/ComObject and create the 

following ComObjects: 

Function 

Text 

Internal 

Name 

Number Object 

Flags 

Object 

Size 

Text Create 

ComObjectRef 

on/off Obj1 0001h Output 1 Bit Sensor switch True 

brighter/darker Obj2 0002h Output 4 Bit Sensor dim True 

on/off Obj3 0003h Input 1 Bit Actuator switch True 

brighter/darker Obj4 0004h Input 4 Bit Actuator dim True 

absolute Obj5 0005h Input 1 Byte Actuator dim True 

Define types of wanted data points. 

Go to the ComObjects table and define the data point types of every ComObject as follows: 

ComObject Number Data point Type 

0001h [1.1] DPT_Switch 

0002h [3.7] DPT_Control_Dimming 

0003h [1.1] DPT_Switch 

0004h [3.7] DPT_Control_Dimming 

0005h [5.1] DPT_Scaling 

17.1.7 Button for Switching and Dimming 

Add parameter types for button. 

To add parameter types for our wanted data points, select Static in the left tree and choose right 

mouse button menu Add new/ParameterTypeRestriction. Enter these values in the dialog 

window: 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 119/133 

 Internal Name: ButtonFunction_t 

and hit OK. A variable names "ButtonFunction_t" of enum type exists now in Parameter Types. 

We must add now the possible values for this type. Select ButtonFunction_t in the tree and 

choose right mouse button menu Add new Enumeration Value. Enter these values in the 

dialog window 

 Text: Disabled 

 Value: 0000h 

and hit OK. Add two more values 

 Text: Switch 

 Value: 0001h 

hit OK and add the last value 

 Text: Dimmer 

 Value: 0002h 

and hit OK. 

Add memory parameters. 

If the left tree shows an entry Parameters or ParameterRefs, select Parameters and delete all 

entries in the table. Do the same with ParameterRefs. 

To add a memory parameter (i. e. parameter byte), select Static in the left tree and choose right 

mouse button menu Add new/Memory Parameter. Enter these values in the dialog window: 

 Access: ReadWrite 

 Bit Offset: 00h 

 Code Segment: [Rel#04h] 

 Internal Name: Button 

 Offset: 0465h 

 Parameter Type: ButtonFunction_t 

 Text: Function 

 Create ParameterRef: True 

and hit OK. 

Add two more memory parameters for each button. 

To add a memory parameter, select Static in the left tree and choose right mouse button menu 

Add new/Memory Parameter. Enter these values in the dialog window: 

 Access: None 

 Bit Offset: 00h 

 Code Segment: [Rel#04h] 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 120/133 

 Internal Name: DPT-Value_GO1 

 Offset: 0467h 

 Parameter Type: ButtonFunction_t 

 Text: DPT-Value_GO1 

 Create ParameterRef: True 

and hit OK. Create the second parameter with these values 

 Access: None 

 Bit Offset: 00h 

 Code Segment: [Rel#04h] 

 Internal Name: DPT-Value_GO2 

 Offset: 0468h 

 Parameter Type: ButtonFunction_t 

 Text: DPT-Value_GO2 

 Create ParameterRef: True 

and hit OK. 

Unfold the dynamic part. Channel 1 should already exist. If not create the channel by selecting 

Dynamic and choose right mouse button menu Add new Channel. Enter Channel 1 and 

number 1. 

If Channel 1 already contains a ParameterBlock, delete it. Select Channel 1 and choose right 

mouse button menu Add new/ParameterBlock. Enter these values in the dialog window 

 Name: PageButton 

 Text: Sensor 

and hit OK. 

Add a parameter to the Parameter Block. Select PageButton and choose right mouse button 

menu Add new/ParameterRefRef. Select Button in the dialog window and hit OK. 

Add a choice to the Parameter Block. Select PageButton and choose right mouse button menu 

Add new/Choose. Enter these values in the dialog window 

 Parameter: [0001h] Button 

 Create all Whens (enum only): False 

 Create Default when: False 

and hit OK. 

Select the newly created Button choice and choose right mouse button menu Add new When. 

Enter these values in the dialog window 

 Default: False 

 Test: [0000h] Disabled 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 121/133 

and hit OK. Add two more tests [0001h] Switch and [0002h] Dimmer. 

Add some parameters and ComObjects to the tests. The test (Disabled) does not contain 

anything, so we skip to the next. Select (Switch) and choose right mouse button menu 

Menu Item to select 

Add new/ComObjectRefRef [0001h 0001h] Obj1-on/off 

Add new/ParameterRefRef [0002h] DPT-Value_GO1 

Go to Static/ComObjectRefs and locate Obj1 (Sensor switch, on/off) there. Select it and 

choose right mouse button menu Copy. Choose right mouse button menu Paste. This creates a 

copy of Obj1. It is located at the end of the list. 

Go to Static/ParameterRefs and copy/paste DPT-Value_GO1 in the same way. 

In the Dynamic section, select (Dimmer) and choose right mouse button menu 

Menu Item to select 

Add new/ComObjectRefRef [0001h 0006h] Obj1-on/off 

Add new/ParameterRefRef [0004h] DPT-Value_GO1 

Add new/ComObjectRefRef [0002h 0002h] Obj2-brighter/darker 

Add new/ParameterRefRef [0003h] DPT-Value_GO2 

17.1.8 Light for Switching and Dimming 

Add parameter types for light. 

To add parameter types for our wanted data points, select Static in the left tree and choose right 

mouse button menu Add new/ParameterTypeRestriction. Enter these values in the dialog 

window: 

 Internal Name: LightFunction_t 

and hit OK. A variable names "LightFunction_t" of enum type exists now in Parameter Types. 

We must add now the possible values for this type. Select LightFunction_t in the tree and 

choose right mouse button menu Add new Enumeration Value. Enter these values in the 

dialog window 

 Text: Disabled 

 Value: 0000h 

and hit OK. Add two more values 

 Text: Switch 

 Value: 0001h 

hit OK and add the last value 

 Text: Dimmer 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 122/133 

 Value: 0002h 

and hit OK. 

Add memory parameters. 

To add a memory parameter, select Static in the left tree and choose right mouse button menu 

Add new/Memory Parameter. Enter these values in the dialog window: 

 Access: ReadWrite 

 Bit Offset: 00h 

 Code Segment: [Rel#04h] 

 Internal Name: Light 

 Offset: 0466h 

 Parameter Type: LightFunction_t 

 Text: Function 

 Create ParameterRef: True 

and hit OK. 

Add two memory parameters for each Light. 

To add a memory parameter, select Static in the left tree and choose right mouse button menu 

Add new/MemoryParameter. Enter these values in the dialog window: 

 Access: None 

 Bit Offset: 00h 

 Code Segment: [Rel#04h] 

 Internal Name: DPT-Value_GO3 

 Offset: 0469h 

 Parameter Type: LightFunction_t 

 Text: DPT-Value_GO3 

 Create ParameterRef: True 

and hit OK. Create the second parameter with these values 

 Access: None 

 Bit Offset: 00h 

 Code Segment: [Rel#04h] 

 Internal Name: DPT-Value_GO4 

 Offset: 046Ah 

 Parameter Type: LightFunction_t 

 Text: DPT-Value_GO4 

 Create ParameterRef: True 

and hit OK. Create the third parameter with these values 

 Access: None 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 123/133 

 Bit Offset: 00h 

 Code Segment: [Rel#04h] 

 Internal Name: DPT-Value_GO5 

 Offset: 046Bh 

 Parameter Type: LightFunction_t 

 Text: DPT-Value_GO5 

 Create ParameterRef: True 

and hit OK. 

Create channel 2 by selecting Dynamic and choose right mouse button menu Add new 

Channel. Enter Channel 2 and number 2. 

Select Channel 2 and choose right mouse button menu Add new/ParameterBlock. Enter 

these values in the dialog window 

 Name: PageLight 

 Text: Actuator 

and hit OK. 

Add a parameter to the Parameter Block. Select PageLight and choose right mouse button 

menu Add new/ParameterRefRef. Select Light in the dialog window and hit OK. 

Add a choice to the Parameter Block. Select PageLight and choose right mouse button menu 

Add new/Choose. Enter these values in the dialog window 

 Parameter: [0005h] Light 

 Create all Whens (enum only): False 

 Create Default when: False 

and hit OK. 

Select the newly created Light choice and choose right mouse button menu Add new When. 

Enter these values in the dialog window 

 Default: False 

 Test: [0000h] Disabled 

and hit OK. Add two more tests [0001h] Switch and [0002h] Dimmer. 

Add some parameters and ComObjects to the tests. The test (Disabled) does not contain 

anything, so we skip to the next. Select (Switch) and choose right mouse button menu 

Menu Item to select 

Add new/ComObjectRefRef [0003h 0003h] Obj3-on/off 

Add new/ParameterRefRef [0006h] DPT-Value_GO3 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 124/133 

Go to Static/ComObjectRefs and locate Obj3 (Switch, on/off) there. Select it and choose right 

mouse button menu Copy. Choose right mouse button menu Paste. This creates a copy of 

Obj3. It is located at the end of the list. 

Go to Static/ParameterRefs and copy/paste DPT-Value_GO3 in the same way. 

Select (Dimmer) and choose right mouse button menu 

Menu Item to select 

Add new/ComObjectRefRef [0003h 0007h] Obj3-on/off 

Add new/ParameterRefRef [0009h] DPT-Value_GO3 

Add new/ComObjectRefRef [0004h 0004h] Obj4-brighter/darker 

Add new/ParameterRefRef [0007h] DPT-Value_GO4 

Add new/ComObjectRefRef [0005h 0005h] Obj5-brighter/darker 

Add new/ParameterRefRef [0008h] DPT-Value_GO5 

17.1.9 Hide Unwanted Data Points 

To hide all unwanted data points (if there are any) select Dynamic and choose right mouse 

button menu Add new Channel. Enter Channel 0 and number 0. 

Select Channel 0 and choose right mouse button menu Add new/ParameterBlock. Enter 

these values in the dialog window 

 Name: HiddenPage 

 Text: Hidden Page 

and hit OK. 

Create a flag for hiding the data points: create an enum type by selecting Static and choose 

right mouse button menu Add new/ParameterTypeRestriction. Enter these values in the 

dialog window 

 Base: Value 

 Internal Name: HideFlag_t 

 Size in bit: 0001h 

and hit OK. Enter values for enum type by selecting its name and choose right mouse button 

menu Add new Enumeration Value. Enter these values in the dialog window 

 Text: Shown 

 Value: 0000h 

and hit OK. Add one more value 

 Text: Hidden 

 Value: 0001h 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 125/133 

and hit OK. Create the parameter by selecting Parameters and Unions and choose right mode 

button menu Add new/VirtualParameter. Enter these values in the dialog window 

 Access: None 

 Internal Name: HideFlag 

 Parameter Type: HideFlag_t 

 Text: HideFlag 

 Create ParameterRef: True 

and hit OK. 

Add this parameter to the page HiddenPage by selecting the page name and choose right 

mouse button menu Add new/ParameterRefRef. Enter the parameter [000Ah] HideFlag and 

hit OK. 

Add a choice to the HiddenPage. Choose right mouse button menu Add new/Choose. Enter 

these values in the dialog window 

 Parameter: [000Ch] HideFlag 

 Create all Whens (enum only): False 

 Create Default when: False 

and hit OK. 

Select the newly created HideFlag choice and choose right mouse button menu Add new 

When. Enter these values in the dialog window 

 Default: False 

 Test: [0000h] Shown 

and hit OK. Add one more test [0001h] Hidden. 

Select ComObjectRefs, go to the list and select all items which should be invisible (item #0, #8 

to #1000, if there are any). Copy (right mouse button at first (empty) column) and paste them to 

(Hidden).  

17.1.10 Preview the Work so far 

To check the work so far, select the name of the application and choose menu View/ETS4 

Preview. 

Select ObjectList and change some parameters (e. g. Lighting Actuator/Function). See if the 

ObjectList changes. Some entries should appear, some vanish according to our configuration in 

MT. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 126/133 

 

Close the preview window and continue.  

17.1.11 Create New Product 

Click the project name in the Solution Explorer (My_KNX_BAOS) and use the menu 

Project/Add New Item..., select Catalog, edit its name (e. g. My_KNX_BAOS_Cat.mtxml) and 

hit Add. 

Select Catalog in the newly opened tab and use right mouse button menu Add New 

CatalogSection. Enter values in the dialog window: 

 Name: My_KNX_BAOS 

 Number: CN2016-10-26 

and hit OK. Enter values in the second dialog window and hit OK. Now the line Delete me after 

creating... can be deleted. 

Select the newly created entry and use right mouse button menu Add New CatalogItem. Select 

your values (since we have only one hardware/program/product we cannot change anything) in 

the dialog window and hit OK.  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 127/133 

17.1.12 Export the Project 

Export project for testing 

Select name of the application (e. g. My_KNX_BAOS_App) and choose menu View/ETS4 

Preview and check this preview. 

Build all choosing menu Build/Build Solution and create a test project using menu Edit/Create 

test project. Select your catalog item and hit OK. Save the knxproj-file. This is the test project 

which can be imported in ETS. 

Clean up 

Delete Readme.txt. 

Note: A test project is needed to import the unregistered product database entry in ETS. 

17.2 Test the Individual ETS Database in ETS 

To test the database, start ETS and do the following: 

Import the test project created by MT into ETS. Select the Projects tab and Import... from the 

tool bar. Follow the dialog window and load the project file. 

Open the imported project and create a topology in the Devices view: Select the new created 

device and set the individual address in the Properties panel (e. g. 1.1.32). This automatically 

creates the topology 2 New area and 1.1 New line containing the device at 1.1.32. 

Create two Group Addresses in the Group Addresses view: New main group/New middle 

group/Switch and New main group/New middle group/Dim. 

Go back to the device, view and enable all data points in the Parameters tab: 

Enable both Lighting Sensor and Lighting Actuator as Dimmer. 

Drag the data points 1: Sensor switch and 3: Actuator switch to the group address Switch. 

Drag the data points 2: Sensor dim and 4: Actuator dim to the group address Dim. 

Finally press the learning key on the Development Board and select Download/Full download.  

Switching and dimming of the LED is possible now. 

17.3 Example to create more Parameter Bytes 

Sometimes 250 parameter bytes are not enough. The BAOS Module has quite a lot flash 

memory which can be used for more parameter bytes. This example shows how to create such 

a database. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 128/133 

17.3.1 Project 

Create a new MT project containing 

 Hardware.mtxml 

 Catalog.mtxml 

 Application.mtxml  

as shown in section, “Example for Creating an Individual ETS Database”. 

17.3.2 Binary Import 

Edit the application by selecting the application tab and then its name (e. g. 

My_KNX_BAOS_App). Use right mouse button menu Import binary data, browse to the s37-

File which is also in the archive mentioned above: 

Weinzierl_8xx_KNX_BAOS_ETS_Projects_for_Demo/ 

ETS_Project_using_individual_ETS_entry/ 

MT_Import_Files/ 

APP_BAOS_8xx_1000_Parameter_Bytes.s37, 

open it and hit OK. 

17.3.3 Using Objects 

For every active group object you have to set the value of the used DPT in the DP types block. 

 Location: Object x -> [Rel#04] + 007Ch + (x - 1); (x ≤ 1000) 

 Example: Object 2 has DPT 1.007 

Create a hidden memory parameter with default value 0x01 on location [Rel#04] + 

007Dh. 

 Info: Take care that the stored DPT is always in line with the DPT of the active object.  

17.3.4 Using Parameters 

Set your parameters in the Parameter bytes block. 

 Location: Parameter x -> [Rel#04] + 0465h + (x - 1); (x ≤ 1000) 

 Example: Parameter byte 2 

Create a memory parameter on location [Rel#04] + 0466h.  

17.3.5 Additional Settings 

Device friendly name: 

 Location: [Rel#04] + 005Bh 

 Size: 30 bytes  

Send Indications. 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 129/133 

 Location: [Rel#04] + 0079h 

 Value: 01h = activated/00h = deactivated 

 Default value: 01h = activated  

17.3.6 Speed up ETS Download 

If you have, for example, 500 parameter bytes you can speed up your ETS download. 

 Adapt load procedures and size of code segment. 

 Adapt size of SUB_MCB_6 via hidden parameter: 

o Location: [Rel#04] + 0037h (2 byte value) 

o Value: 01F4h = 500 parameter bytes 

 Adapt size of Parameter bytes block via hidden parameter: 

o Location: [Rel#04] + 0054h (2 byte value) 

o Value: 01F4h = 500 parameter bytes  

For detailed information please contact Weinzierl Engineering GmbH. 

  



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 130/133 

18 KNX Certification 

In order to ensure compliance with the KNX system requirements, any KNX device, which: 

 Has a KNX logo 

 Is managed by ETS  

must undergo a certification process. In this KNX certification process, the device is tested 

according to the requirements of the KNX standard. 

Following requirements have to be fulfilled for a KNX certification of a product: 

 The manufacturer has to be a member (Shareholder or licensee) of the KNX 

Association. The sign up process is managed by the KNX Association. For more 

information see knx.org -> KNX members -> Joining/Fees 

 The manufacturer must have a quality management system according to the ISO 900x 

with certificate issued. For more information see KNX Specification Vol. 5 available at 

the KNX Specifications page. 

 The manufacturer has to provide a CE declaration for his product to ensure hardware 

requirements according to applicable standards. A KNX device has to comply with the 

following hardware requirements: 

o Environmental conditions 

o Electrical safety 

o Functional safety 

o Electromagnetic compatibility (EMC) 

All hardware requirements are listed in the KNX Specification, Vol. 4 available at the 

KNX Specifications page. 

 After product development, the manufacturer has to register the product which shall be 

certified. The whole registration process is managed by the KNX Association. 

 The required tests for system conformity are explained in the KNX Specification Vol. 8. 

They can be done after a completed registration of the product.  

If a device is based on KNX BAOS Module 830, 832 or 838, the device inherits the certified 

status of it. Therefore only the application specific tests (inter-working/functionality) are required. 

For further details please contact info@weinzierl.de. 

  

http://www.knx.org/
http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php
mailto:info@weinzierl.de


KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 131/133 

19 Glossary 

Acronym Definition 

AL Application Layer 

cEMI Common External Message Interface 

DPT Data Point Type 

EMI external message interface 

ETS Engineering Tool Software 

GO Group Object 

ISR Interrupt Service Routine 

JTAG Join Test Action Group 

KNX Standard for building automation 

KNX-TP KNX on twisted pair 

LL Link Layer 

LSB/MSB Least Significant Byte/Most Significant Byte 

MCB Memory Control Block 

MT Manufacturing Tool 

MTXML File format of MT  (xml) 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 132/133 

Acronym Definition 

NL Network Layer 

OSI Open System Interconnection Reference Model 

PID Property ID 

RAM Random Access Memory 

ROI Read On Initialization 

s19, s28, s37 ASCII-base file format to encode binary files from Motorola 

S-Mode System configuration mode (ETS) 

System1 Device model of KNX devices (implemented at BCU1) 

System2 Device model of KNX devices (implemented at BCU2) 

System7 Device model of KNX devices 

SystemB Device model of KNX devices (table count > 255) 

TL Transport Layer 

TP Twisted Pair 

TP1 Twisted Pair 1 (KNX medium) 

TP-UART-IC Twisted Pair Universal Asynchronous Receive and Transmit IC (Siemens) 

USART Universal Synchronous Asynchronous Receive and Transmit 



KNX BAOS Starter Kit 

WEINZIERL ENGINEERING GmbH 

 Page 133/133 

Acronym Definition 

WzEn Weinzierl Engineering 

XML Extensible Markup Language 

 


