
KNX BAOS
Development Kit 1.4

Users Guide
BAOS Modules 0820/0822

Users Guide

KNX BAOS Development Kit 1.4 Users Guide
BAOS Modules 0820/0822
Edition 1

Copyright © 2013 Weinzierl Engineering GmbH. All Rights reserved.

The KNX BAOS Modules 0820 and 0822 allow a jump start into KNX device development with minimal
costs. Both versions include a KNX transceiver and a microcontroller with certified KNX Stack. The
communication with the module is performed via a serial interface (UART/TTL) based on FT1.2 frame
format. The module provides access to communication objects (application layer) as well as to KNX
telegrams (link layer).

The KNX BAOS Module 0820 provides electrical isolation and is suitable for devices with separate
power supply. The KNX BAOS Module 0822 version offers direct coupling and provides a power
supply for the application from the bus.

For the development we provide tools and a generic ETS entry with up to 250 group objects
(communication objects). For a quick start in the development, we recommend our starter kit with a
demo project in source code for ATmega and GNU compiler.

The KNX BAOS Modules are suitable for the development of KNX devices with small and medium
quantities. By using the BAOS modules the development of KNX certified devices with an individual
ETS database is possible of course. The protocol description and our demo tool can be found at our
web page1.

For products with higher volume an integration with a KNX stack could be an alternative. We will
advice you on request.

For comments or questions please feel free to contact support@weinzierl.de .

1 http://www.weinzierl.de

http://www.weinzierl.de
mailto:support@weinzierl.de
http://www.weinzierl.de

iii

Preface vii
1. Document Conventions .. vii
2. License Agreement ... viii

2.1. Definitions .. viii
2.2. Permitted Uses .. viii
2.3. Restrictions ... ix
2.4. Overview of Restrictions/Permissions .. ix

3. About Us ... ix
3.1. The Company .. ix
3.2. Our Services And Products .. ix
3.3. Our focus: KNX .. x

4. Feedback .. x

1. Overview 1

2. The Demonstration Board 3
2.1. Introduction .. 3

2.1.1. The Demo Board ... 3
2.1.2. How To Connect The Device .. 3
2.1.3. Commissioning with ETS ... 4

2.2. The Demo Application .. 4
2.2.1. Data Points/Group Objects ... 4
2.2.2. Parameters ... 5
2.2.3. First Test ... 6
2.2.4. The Demo Application Framework .. 6

2.3. Set The Demo Board Back To Delivery State ... 6
2.4. Hardware ... 6

2.4.1. Demo Board (Base Board) ... 7
2.4.2. Fuses Of The ATmega .. 7
2.4.3. BAOS Module ... 8

2.5. Schematics Of The Demo Board ... 9

3. The Development Board 11
3.1. Introduction .. 11

3.1.1. The Development Board .. 11
3.1.2. How To Connect The Device .. 12
3.1.3. Commissioning With ETS ... 13

3.2. The Demo Application .. 13
3.2.1. Data Points/Group Objects ... 13
3.2.2. Parameters .. 14
3.2.3. First Test ... 15
3.2.4. The Demo Application Framework .. 15

3.3. Set The Development Board Back To Delivery State .. 15
3.4. Hardware ... 15

3.4.1. Development Board (Base Board) .. 16
3.4.2. Jumper Usages ... 17
3.4.3. Fuses Of The ATmega ... 18
3.4.4. BAOS Module ... 19

3.5. Schematics Of The Development Board .. 20

4. BAOS Modules 21
4.1. Pinning Of The BAOS Modules ... 22
4.2. Hardware Requirements ... 24
4.3. Modular Overview Of The Firmware .. 25
4.4. Other BAOS Devices .. 26

Users Guide

iv

5. Generic ETS Database 27

6. The Application Framework 31
6.1. Creating Own Applications .. 38
6.2. Common Cases ... 38

6.2.1. Set Data Point Value ... 38
6.2.2. Get Data Point Value ... 38
6.2.3. Get Parameter Byte ... 40

6.3. Special Cases .. 40
6.3.1. Write Value To A Group Object ... 40
6.3.2. Read Value From A Group Object .. 41

7. Connecting PC Via BAOS Interface 45

8. FT1.2 Protocol 47
8.1. General .. 47
8.2. Physical ... 47

8.2.1. Interface .. 47
8.2.2. Timings ... 48

8.3. FT 1.2 Frame Format ... 48

9. BAOS Protocol 51
9.1. BAOS Frame ... 51
9.2. BAOS Frame Embedded In An FT 1.2 Frame .. 54

10. Message Protocol EMI 57
10.1. EMI2 Protocol .. 57
10.2. EMI2 Frame Embedded In An FT 1.2 Frame .. 57
10.3. Access To The Network Or Link Layer ... 58
10.4. Group Telegram Communication On Network Layer .. 59
10.5. Group Telegram Communication On Link Layer .. 61

11. Programming The Base Board 65
11.1. Additional Hardware .. 65
11.2. Installation Of IDE And Compiler ... 65
11.3. First Debugging Steps .. 65
11.4. The Application Framework ... 68
11.5. Creating Own Applications .. 68

A. About KNX 69
A.1. KNX Twisted Pair Bus System .. 70
A.2. KNX Twisted Pair Telegrams .. 70
A.3. Telegram Timings ... 72
A.4. Addressing Modes ... 73
A.5. Data Point Types ... 73

B. Commissioning With ETS 75
B.1. Install ETS ... 75
B.2. Install ETS License .. 75
B.3. Create A Database .. 76
B.4. Import A Project ... 76
B.5. Import A Product .. 77
B.6. Open A Project .. 78
B.7. Commissioning A Project .. 78
B.8. Download A Configuration .. 80

C. Using Net'n Node 83

D. Individual ETS Entries 85

v

D.1. Example For Creating An Individual ETS Database .. 86
D.1.1. Project .. 86
D.1.2. Create New Application ... 86
D.1.3. Create New Hardware ... 86
D.1.4. Binary Import .. 87
D.1.5. Create Visible Data Points ... 91
D.1.6. Hide Unwanted Data Points ... 97
D.1.7. Preview The Work So Far ... 99
D.1.8. Create New Product .. 99
D.1.9. Export The Project .. 100

D.2. Test The Individual ETS Database in ETS ... 100

E. KNX Certification 103

F. Revision History 105

Index 107

vi

vii

Preface

1. Document Conventions
This documentation uses the following conventions to determine normal text from certain important
information, like input or output text, listings, tips, hints, warnings, etc.

Bold

Used to highlight system input, entered text, commands, file names, directories, name entries and
dialog buttons. Also used to highlight key input. For example:

• In Net'n Node use Add Port >> KNX via USB to connect via the KNX USB 311 device.

Italic

Any text written in italics denotes text which is not written literally. It must be replaced by the reader by
their meaningful meanings. For example:

• To scan all available properties enter Area, Line, Device and hit Scan.

Pull-quote Conventions

Terminal output and source code listings are set into a specially formatted box. For example:

The output of the date --iso-8601 command looks like:

2013-12-02

Example of a source-code listings:

#include <stdio.h>

int main(int argc, char** argv)
{
 printf("Hello World!\n");
 return 0;
}

Notes and Warnings

Last, but not least, this document uses the following visual styles to point out important aspects.

Note

This is a note which is worth to be memorized. It can help the reader in many ways or help him to
understand the preceding text.

Preface

viii

Important

This is an important note. The reader should consider its content and remember it.

Warning

A warning is the most important note. It keeps the reader from doing things which can cost him a
lot of work, time or even damage the hardware/software.

2. License Agreement
PLEASE READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THE SOFTWARE OF
WEINZIERL ENGINEERING GMBH. BY USING THE SOFTWARE YOU ARE AGREEING TO THE
CONDITIONS OF THIS LICENSE AGREEMENT. DO NOT USE THE SOFTWARE IF YOU DO NOT
AGREE THE TERMS OF THIS LICENSE AGREEMENT. IN THIS CASE YOU MAY RETURN THE
COMPLETE PACKAGE WITHIN A PERIOD OF TWO WEEKS WHERE YOU PURCHASED IT.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY,
WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.1. Definitions
"Firmware" and "SDK" mean all provided to you in binary code by Weinzierl Engineering GmbH.

"SDK" is a Software Development Kit, which means all software to develop, write and compile
software for its defined target.

"Firmware" is the software already stored into its defined target (generally a micro controller) by
Weinzierl Engineering GmbH. This firmware is provided in binary format on its hardware target and
may not be altered or changed by the user.

2.2. Permitted Uses
Subject to the terms and conditions of this agreement and restrictions and exceptions, Weinzierl
Engineering GmbH grants you a non-exclusive, non-transferable, limited license without fees to
a. reproduce and use internally the firmware, software or SDK for the purposes of developing

applications that communicate with KNX interface modules or devices from Weinzierl Engineering
GmbH.

b. develop and distribute all software done with the SDK provided by Weinzierl Engineering GmbH,
but not the SDK itself.

c. reproduce and distribute the SDK and software for the sole purpose of running your application.

Restrictions

ix

2.3. Restrictions
a. The Weinzierl Firmware (installed in ROM, EPROM, EEPROM, flash or any other circuit) is limited

to be used on Weinzierl branded modules or devices. It is not allowed to distribute the Weinzierl
Firmware without expressed written permission from Weinzierl Engineering GmbH.

b. The Weinzierl software or SDK (available on CD-ROM, or at the Weinzierl web page1.) is
also limited to be used on Weinzierl branded devices or for use on appropriate computers in
conjunction to these Weinzierl branded devices or development boards. It is not allowed to
distribute the Weinzierl software without expressed permission from Weinzierl Engineering GmbH.

c. You may not and you agree not to, or to enable others to, duplicate, decompile, reverse engineer,
disassemble, attempt to derive the source code of, decrypt, modify, or create derivative works of
the Weinzierl firmware/software, or any part thereof.

2.4. Overview of Restrictions/Permissions

Subject Restrictions/Permissions

Firmware in module Not allowed to copy.

Source code of demo application and
framework

Allowed to copy in binary form in conjunction with
Weinzierl hardware.

Software tools Not allowed to copy.

3. About Us

3.1. The Company
Weinzierl Engineering GmbH develops software and hardware components for building control
systems. The focus of our activities is Building Automation based on KNX Technology. Thanks to our
specialization in this field we are able to offer a comprehensive range of products supporting the KNX
Standard. We can advise you in the conceptual phase and develop all aspects of hardware, firmware
and application software according to your requirements, including certification of your products with
the KNX Association. In addition we develop and produce devices under our own name as well as
OEM products. For any questions feel free to contact support@weinzierl.de .

3.2. Our Services And Products
• Devices for KNX

As a solutions provider we offer complete KNX devices for this global standard of building. Convince
yourself of the performance of our pre-finished KNX Devices.

1 http://www.weinzierl.de

http://www.weinzierl.de
mailto:support@weinzierl.de
http://www.weinzierl.de

Preface

x

• Modules for KNX

You want to equip devices with KNX fast, cheap and without major development effort? Then you
should take a look at our KNX modules.

• Stacks for KNX

KNX describes a complex protocol, which means a considerable effort in the implementation and
certification. With our KNX stacks we take a lot of work from you.

• Software for KNX

This is how we complete our offer for the development of KNX: A variety of tools and software
development kits (SDKs) enables and facilitates the development of KNX client applications and
tools.

• Services for KNX

We advise you on the system design and provide on request the full development of hardware,
firmware and application software. We develop a complete solution in conjunction with your
development department.

3.3. Our focus: KNX
KNX has developed into one of the most important standards for home & building control and is
the first worldwide standard to be compliant with EN and ISO/IEC. By building on our extensive
experience we are able to offer the components and tools necessary for KNX development. Our
product spectrum centers on our stack implementations for the various standardized device models
and media of the KNX specification.

Note

For more information about KNX-systems, see the KNX web site2.

4. Feedback
In case of any errors, misspelled text or other bugs in this document, hardware or software, please
contact support@weinzierl.de .

2 http://www.knx.org

http://www.knx.org
mailto:support@weinzierl.de
http://www.knx.org

Chapter 1.

1

Overview
KNX is a well established standard for modern electrical devices in house installations. It connects
the devices by a bus system and thus all can communicate to each other. This communication is
implemented by KNX messages which are sent via the bus. Furthermore the devices are powered by
the bus.

The KNX system is organized decentralized, which means there is no central bus management and so
the communication is unlikely to fail even if other devices drop out. This makes the whole system fault
tolerant and reliable.

Once installed, the devices must be configured and commissioned by ETS. This connects the devices
to each other in a logical way. E. g. which light switch turns on what lighting? ETS is a standardized
tool by the KNX organization to commission all devices in a KNX network.

All devices are categorized in sensors, actuators or both. Sensors tell other devices what to do (e. g.
light switch, dimmer, heat control). Actuators are devices which receive messages from sensors and
act accordingly (e. g. lighting, heating, shutter). Some devices can be both, sensors and actuators (e.
g. a shutter which reports its movement).

Once the house installation is commissioned it can always be changed by removing, changing or
adding new devices. The devices must be configured again to meet the changes. Even if there is no
change in the installation the configuration can also be changed if wanted (e. g. to move some lights to
another group of lights which are all controlled by a certain switch).

Some in house devices are not KNX capable but must be, to add then to the KNX installation.
To do this, the manufacturer has to add KNX capability to them. To ease this process the KNX
BAOS 0820/0822 Module offers the possibility to connect a device to the KNX bus. This is done by
connecting the device to the BAOS Module by a serial port (UART). The BAOS Module is connected
to the KNX bus. It handles the whole KNX communication, configuration and management. The
other side, the device, must implement an application which handles the device itself. An example
application is included in this package.

The BAOS Module serves as an interface at the telegram and data point/parameter level. The
telegram level is for more experienced usage and offers the possibility to manage KNX messages by
the device itself.

A data point represents a value which automatically generates (if configured so) KNX activity by
change. This works also vice versa. If any KNX activity changes the value of the data point, the device
will be notified.

The parameters serve as configuration options. These can be read by the device.

The data point/parameter value exchange and notification is realized by the BAOS Protocol. BAOS
stands for "Bus Access and Object Server". It can handle up to 250 data points and 250 parameters.
These must be configured by ETS.

ETS needs product information about the device (including the BAOS Module) to configure it. This
information is included in this package in a generic way. It is sufficient for developing the device but it
should be developed into a more user friendly product for the use by an installer.

The resulting product information must be provided alongside with the device (containing the BAOS
Module) for certification by the KNX organization.

2

Chapter 2.

3

The Demonstration Board

The Demonstration Board is a simple board which demonstrates the usage of KNX by switching or
dimming a LED with two buttons. For development projects we recommend the Development Board.
(See Chapter 3, The Development Board)

Sources for the application (see Chapter 6, The Application Framework) and schematics (see
Section 2.5, “Schematics Of The Demo Board”) are available.

2.1. Introduction

2.1.1. The Demo Board
The Demo Board, demonstrates the usage of the BAOS Module. It uses the 0822 module which offers
a fully functional communication stack which can be used by the programmer.

Figure 2.1. The Demo Board and the BAOS Module

The Demo Board contains an 8 bit, 32 kB Flash AVR ATmega328 microcontroller and is targeted for a
demonstration of the BAOS usage.

Every Board consists of two parts:

1. The main board is the Demo Board. It contains a microcontroller and an ISP/DebugWire connector
which enables it to be freely programmed by the user.

2. The BAOS Module, which is located on the connectors of the main board. This daughter board
is responsible for the KNX communication and has its own microcontroller and firmware. The
firmware of the module is not alterable by the user.

The demo application is a one channel application for one sensor (2 push buttons) and one actor
(LED). This channel can be linked by ETS to other channels of other KNX devices and/or to its own
channel.

2.1.2. How To Connect The Device
The BAOS Module is a KNX device using the twisted pair KNX bus for power and communication.

Chapter 2. The Demonstration Board

4

Figure 2.2. How to connect the device

To take the Demo Board in operation state, the following items and steps are necessary.

• A KNX power supply with choke.

• Optionally a KNX USB interface to commission the board via ETS.

• Optionally some sensors and actors to link their channels to the channels of the board.

• Make sure the BAOS Module is correctly connected to the Demo Board.

• Connect the KNX bus (polarity is protected).

2.1.3. Commissioning with ETS
ETS (Engineering Tool Software) is a manufacturer independent configuration tool software to
configure intelligent home and building control installations with the KNX system. A short introduction
is in Appendix B, Commissioning With ETS.

For demonstration a simple project is included in KnxBAOS_Demo/KnxBAOS_Demo_ETS_Projects/
KnxBAOS_Demo.knxproj. Import the project which configures the board to simply handle its own
LEDs. Open the project, select the device KNX BAOS 82x 87x with right mouse button and
Download → Download All. Press the Learn button on the Board (red LED must light up briefly).

After the download is finished,
press the two push button S1, S3
on the Demo Board to switch the
LED on and off.

2.2. The Demo Application
The demo application of the Demo Board is a two channel dimming actuator and sensor. The state
of the actuator channel is shown by the white LED. The buttons S1 and S2 are used as independent
output channel.

2.2.1. Data Points/Group Objects
Via KNX bus the data points (DP), also known as group objects, are accessible as follows:

Parameters

5

DP# DPT Sensor/
Actuator

Demo Board

1 01 - 1 bit Sensor • Switch S1, S3 on/off. This simply switch a light on and off.

• Shutter step S1, S3 open/close. For moving a shutter just one
step.

2 03 - 4 bit Sensor • Dimming S1, S3 brighter/darker. This dims a light relatively.

• Shutter move S1, S3 up/down. For starting or stopping
movement of a shutter.

3 01 - 1 bit Actuator Switch LED on/off.

4 03 - 4 bit Actuator Dimming LED relatively (up/down).

5 05 - 8 bit Actuator Dimming LED absolutely.

The demo project KnxBAOS_Demo.knxproj uses only data point #1 connected to data point #3,
which simply switches the LED. The dimming feature must be activated in the parameter page in the
ETS. More information about data point types (DPT), see Section A.5, “Data Point Types”.

All these data points can be commissioned via the ETS tool. The Switches and the LEDs can be linked
there to perform the desired functions.

Note

In ETS take care of parameter settings as they enable or disable these data points. They can
also configure the functionality (i. e. data point types). Cf. data points #1 and #2.

2.2.2. Parameters
The BAOS Module has 250 parameters which can be changed by the ETS. Each parameter is one
byte (0-255) an can be read/written by the application via the BAOS Protocol.

Parameter #1 controls data point #1 and #2 functionality:

Value DP#1 Function DP#2 Function

0 not used not used

1 used as 1 bit switch sensor (S1, S3) not used

2 used as 1 bit switch sensor (S1, S3) used as 4 bit dimming sensor (S1, S3)

3 used as 1 bit shutter step sensor (S1, S3) used as 1 bit shutter move sensor (S1, S3)

Parameter #2 controls data point #3, #4 and #5 functionality:

Value DP#3 Function DP#4 Function DP#5 Function

0 not used not used. not used.

1 used as 1 bit switch actuator
(D2)

not used. not used.

Chapter 2. The Demonstration Board

6

Value DP#3 Function DP#4 Function DP#5 Function

2 used as 1 bit switch actuator
(D2)

used as 4 bit relatively
dimming actuator (D2)

used as 1 byte absolutely
dimming actuator (D2)

2.2.3. First Test
The factory default configuration can be changed via ETS. Press the button S3 shortly. The LED
should go on. Pressing S1 switches the LED off.

2.2.4. The Demo Application Framework
The demo application is included in this package as source code. To learn about it see Chapter 6, The
Application Framework.

2.3. Set The Demo Board Back To Delivery State
The demo application is included in this distribution. To reset the firmware back to delivery state, do
the following:

1. Install and start Atmel Studio (see Chapter 11, Programming The Base Board).

2. Choose menu Tools → Device Programming which shows a dialog window.

3. Use the correct tool (e. g. JTAGICE3) for the Demo Board: Device: ATmega328 and Interface:
ISP. Push the button Apply to establish the connection. Verify it by pushing the button Device
signature Read. It must show a hexadecimal value.

4. Go to tab Production file. Load the ELF file which is included in this distribution:

KnxBAOS_Demo/KnxBAOS_Demo_Binary_DemoBoard328/DemoBoardSoftware.elf for the
Demo Board.

5. Make sure Flash checkmark is set as well as Erase memory before programming .

6. Program the device by pressing the button Program.

Now the Demo Board should be in delivery state. This process does not only transfer the firmware, it
also resets the FUSEs. (See data sheets for details.)

Important

Setting the Demo Board back in delivery state does not reset the BAOS Module. So any data
point connections, parameter and KNX individual address remain untouched. To reset these use
the ETS tool.

2.4. Hardware
This section describes the hardware of the Demo Board, its usage and how to connect the board for
usage with the KNX bus.

The Demo Board contains an ATmega328 microcontroller for the user application. It is clocked by
a 7.3728 MHz crystal. It contains one PWM-driven LED and two push buttons witch are usable

Demo Board (Base Board)

7

by the application software. A second LED and additional push button is for the BAOS Module for
programming the KNX address.

The BAOS Module (mounted on the connectors of the Demo Board) contains another microcontroller
which handles the KNX communicaton.

2.4.1. Demo Board (Base Board)

Figure 2.3. Demo Board

The Demo Board contains the following:

1. The connector to the KNX bus.

2. Learning Key and LED. This key and LED are not for the application. They are being used to
program the KNX individual address. (e. g. 1.1.32).

3. Connection of the KNX bus to the BAOS Module.

4. Serial connection including VCC/GND, LED and Learn Key for data exchange between the the
BAOS Module and the Base Board.

5. ISP/DebugWire connector for programming the microcontroller of the Base Board.

6. The microcontroller and its crystal.

7. Two push buttons and LED which are also handled by the user application. It can be dimmed by
the microcontroller's PWM.

2.4.2. Fuses Of The ATmega
Fuse bits are a specialty of the ATmega microcontrollers. These bits control the behavior of the MCU
and its internal resources like the oscillator or the watch dog. Lock bits can protect some sections in
the flash memory to save important sections. Care must be taken to set the these bits correctly of the
ATmega328 microcontroller. If your code fails to be executed or uploaded, check the Fuse and Lock
bits. They should be set as follows:

Chapter 2. The Demonstration Board

8

BODLEVEL = 2V7
RSTDISBL = []
DWEN = []
SPIEN = [X]
WDTON = []
EESAVE = []
BOOTSZ = 2048W_3800
BOOTRST = []
CKDIV8 = []
CKOUT = []
SUT_CKSEL = EXTXOSC_8MHZ_XX_16KCK_14CK_65MS

EXTENDED = 0xFD (valid)
HIGH = 0xD9 (valid)
LOW = 0xFF (valid)

LB = NO_LOCK
BLB0 = NO_LOCK
BLB1 = NO_LOCK

LOCKBIT = 0xFF (valid)

2.4.3. BAOS Module
A piggyback board is located on the Demo Board. This is the BAOS Module which is responsible
for the whole KNX communication. The BAOS Module comes with a certified KNX stack and can be
configured with ETS. It handles the KNX communicaton and is connected via a serial port (UART) to
the Demo Board. It is powered by the bus and supplies the Demo Board, too.

Figure 2.4. BAOS Module 0822

For more information see Chapter 4, BAOS Modules.

Schematics Of The Demo Board

9

2.5. Schematics Of The Demo Board

10

Chapter 3.

11

The Development Board

The Development Board is for development and testing own software applications for its capability
using KNX. It offers various input/output elements connected to a freely programmable microcontroller.

Sources for the application (see Chapter 6, The Application Framework) and schematics (see
Section 3.5, “Schematics Of The Development Board”) are available.

3.1. Introduction

3.1.1. The Development Board
This product, the Development Board, makes the entry into the KNX development as easy as
possible. It uses either the 0820 or the 0822 module which offers a fully functional communication
stack which can be used by the programmer.

Figure 3.1. The Development Board and the BAOS Module

The Development Board contains an 8 bit, 128 kB Flash AVR ATmega128A microcontroller and is
targeted for developing own applications with the BAOS. Additional elements on this board can be
used, like the other LEDs, buttons and UART1. Even more elements can be added in the Extension
area in conjunction with the free port bits of the microcontroller.

Two RS-232 and a USB connector are available to connect various communication partners. These
connectors can be activated by the usage of the jumpers (see Section 3.4.2, “Jumper Usages”). As

Chapter 3. The Development Board

12

an example a PC can be connected via USB to the BAOS Module. In this case the PC communicates
directly to the BAOS Module. This enables development of an application on a PC before porting it to
the microcontroller.

Note

In this case the connection of the Development Board to the BAOS Module is disabled (UART0).

A DemoClient is included to demonstrate the usage of the BAOS Protocol. See Chapter 7, Connecting
PC Via BAOS Interface for more information.

It is also possible to communicate to the microcontroller of the Development Board (UART1), and thus
the own application. This will not break the connection to the BAOS Module which uses UART0.

Note

Take care of the jumper settings as they affect the functionality of the device. See Section 3.4.2,
“Jumper Usages”.

Every Development Board consists of two parts:

1. The main board is the Development Board. It contains a microcontroller, JTAG and ISP connectors
which enable it to be freely programmed by the user.

2. The BAOS Module, which is located on the connectors of the main board. This daughter board
is responsible for the KNX communication and has its own microcontroller and firmware. The
firmware of the module is not alterable by the user.

The demo application is a two channel application for one sensor (1 push button) and one actor
(LED). These channels can be linked by ETS to other channels of other KNX devices and/or to its own
channels.

3.1.2. How To Connect The Device
The BAOS Module is a KNX device using the twisted pair KNX bus for power and communication.

Commissioning With ETS

13

Figure 3.2. How to connect the device

To take the Development Board in operation state, the following items and steps are necessary.

• A KNX power supply with choke.

• Optionally a KNX USB interface to commission the board via ETS.

• Optionally some sensors and actors to link their channels to the channels of the board.

• Make sure the BAOS Module is correctly connected to the Development Board.

• Connect the KNX bus (polarity is protected).

• Connect Micro-USB to a PC to power the device.

3.1.3. Commissioning With ETS
ETS (Engineering Tool Software) is a manufacturer independent configuration tool software to
configure intelligent home and building control installations with the KNX system. A short introduction
is in Appendix B, Commissioning With ETS.

For demonstration a simple project is included in KnxBAOS_Demo/KnxBAOS_Demo_ETS_Projects/
KnxBAOS_Demo.knxproj. Import the project which configures the board to simply handle its own
LEDs. Open the project, select the device KNX BAOS 82x 87x with right mouse button and
Download → Download All. Press the Learn button on the Board (red LED must light up briefly).

After the download is finished,
press the two push button S7,
S8 on the Development Board to
switch the LED0 on and off.

3.2. The Demo Application
The demo application of the Development Board is a two channel dimming actuator and sensor. The
state of the actuator channel is shown by the LED0. The buttons S7 and S8 are used as independent
output channel.

3.2.1. Data Points/Group Objects
Via KNX bus the data points (DP), also known as group objects, are accessible as follows:

Chapter 3. The Development Board

14

DP# DPT Sensor/
Actuator

Development Board

1 01 - 1 bit Sensor • Switch S8, S7 on/off. This simply switch a light on and off.

• Shutter step S8, S7 open/close. For moving a shutter just one
step.

2 03 - 4 bit Sensor • Dimming S8, S7 brighter/darker. This dims a light relatively.

• Shutter move S8, S7 up/down. For starting or stopping
movement of a shutter.

3 01 - 1 bit Actuator Switch LED0 on/off.

4 03 - 4 bit Actuator Dimming LED0 relatively (up/down).

5 05 - 8 bit Actuator Dimming LED0 absolutely.

The demo project KnxBAOS_Demo.knxproj uses only data point #1 connected to data point #3,
which simply switches the LED. The dimming feature must be activated in the parameter page in the
ETS. More information about data point types (DPT), see Section A.5, “Data Point Types”.

All these data points can be commissioned via the ETS tool. The Switches and the LEDs can be linked
there to perform the desired functions.

Note

In ETS take care of parameter settings as they enable or disable these data points. They can
also configure the functionality (i. e. data point types). Cf. data points #1 and #2.

3.2.2. Parameters
The BAOS Module has 250 parameters which can be changed by the ETS. Each parameter is one
byte (0-255) and can be read/written by the application via the BAOS Protocol.

Parameter #1 controls data point #1 and #2 functionality:

Value DP#1 Function DP#2 Function

0 not used not used

1 used as 1 bit switch sensor (S7, S8) not used

2 used as 1 bit switch sensor (S7, S8) used as 4 bit dimming sensor (S7, S8)

3 used as 1 bit shutter step sensor (S7, S8) used as 1 bit shutter move sensor (S7, S8)

Parameter #2 controls data point #3, #4 and #5 functionality:

Value DP#3 Function DP#4 Function DP#5 Function

0 not used not used. not used.

1 used as 1 bit switch actuator
(LED0)

not used. not used.

First Test

15

Value DP#3 Function DP#4 Function DP#5 Function

2 used as 1 bit switch actuator
(LED0)

used as 4 bit relatively
dimming actuator (LED0)

used as 1 byte absolutely
dimming actuator (LED0)

3.2.3. First Test
The factory default configuration can be changed via ETS. Press the button S8 shortly. The LED
should go on. Pressing S7 switches the LED off.

3.2.4. The Demo Application Framework
The demo application is included in this package as source code. To learn about it see Chapter 6, The
Application Framework.

3.3. Set The Development Board Back To Delivery State
The demo application is included in this distribution. To reset the firmware back to delivery state, do
the following:

1. Install and start Atmel Studio (see Chapter 11, Programming The Base Board).

2. Choose menu Tools → Device Programming which shows a dialog window.

3. Use the correct tool (e. g. JTAGICE3) for the Development Board: Device: ATmega128A and
Interface: JTAG. Push the button Apply to establish the connection. Verify it by pushing the button
Device signature Read. It must show a hexadecimal value.

4. Go to tab Production file. Load the ELF file which is included in this distribution:

KnxBAOS_Demo/KnxBAOS_Demo_Binary_DevBoard128/DevBoardSoftware.elf for the
Development Board.

5. Make sure Flash checkmark is set as well as Erase memory before programming .

6. Program the device by pressing the button Program.

Now the Development Board should be in delivery state. This process does not only transfer the
firmware, it also resets the FUSEs. (See data sheets for details.)

Important

Setting the Development Board back in delivery state does not reset the BAOS Module. So any
data point connections, parameter and KNX individual address remain untouched. To reset these
use the ETS tool.

3.4. Hardware
This section describes the hardware of the Development Board, its usage and how to connect the
board for usage with the KNX bus.

The Development Board contains an ATmega128A microcontroller for the user application. It is
clocked by a 3.6864 MHz crystal. The board contains 4 LEDs and 4 push buttons witch are usable by

Chapter 3. The Development Board

16

the application software. Three more LEDs and additional push buttons can be used for programming
the KNX address.

The BAOS Module (mounted on the connectors of the Development Board) contains another
microcontroller which handles the KNX communicaton.

3.4.1. Development Board (Base Board)

Figure 3.3. Development Board

The Development Board contains the following:

1. The connector to the KNX bus.

2. Learning Keys and LEDs. These keys and LEDs are not for the application. They are used to
program the KNX individual address. (e. g. 1.1.32). The Development Board can host different
BAOS Modules (0820 and 0822). Due to different power concepts individual LED/key pairs exist
for each form factor. The 0820 has optical couplers, which isolate galvanically the BAOS Module
from the Development Board. In this case the Development Board must be powered by the USB
port or by other means. In case of the 0822 the Development Board is powered by the BAOS
Module.

3. Connection to the BAOS Board: LED, Learning Key and to the KNX bus. (See Section 4.1,
“Pinning Of The BAOS Modules”)

4. Serial connection including VCC/GND for data exchange between the the BAOS Module and the
Development Board. (See Section 4.1, “Pinning Of The BAOS Modules”)

5. JTAG connector for programming and debugging the microcontroller of the Development Board.

6. ISP connector for programming the microcontroller of the Development Board. (Debugging not
possible.)

7. The microcontroller and its crystal.

Jumper Usages

17

8. One LED and two push buttons for the application software. These can be used for an own
programmed learning mode. The LED can also be driven by PWM.

9. Push buttons and LEDs for the user application.

10. Two RS232 (UART) connectors for communication with the application or the BAOS Module.
Configurable by jumpers. (See Section 3.4.2, “Jumper Usages”)

11. USB connector. Power supply for the board and UART (FTDI) connector for communication
with the application or the BAOS Module. Configurable by jumpers. (See Section 3.4.2, “Jumper
Usages”)

12. Jumpers for development and configuration:

• VCC-EXT: Enables power supply via USB port for the optical couplers of the 0820. The 0822
does not have optical couplers, so leave it open in this case.

• Tx Rx: Connector to enable listening to the serial communication between the BAOS Module
and the Development Board.

• 3,3V: Connector for 3.3 voltage power (2 pins).

• 5V: Connector for 5 voltage power (2 pins).

• GND: Connector for ground (2 pins).

• VCC-USB: Enables the power supply via the USB connector. This is necessary if the BAOS
Module 0820 is mounted.

The BAOS Module 0822 supplies power from the KNX bus to the Development Board. If the
USB connector is not in use this jumper must be closed. If the USB connector is supplying
power this jumper must be open.

It is closed by default.

13. Jumpers for serial I/O:

Connects the serial port of the BAOS Module or the UART of the local microcontroller to the USB
or RS-232 connector. In this case another device can communicate to the BAOS Module or to the
application. See Section 3.4.2, “Jumper Usages” for all possible combinations.

14. A reset button is also available which resets the local MCU of this board (not the BAOS Module).

3.4.2. Jumper Usages

Usage of BAOS Module VCC-
EXT

VCC-
USB

BAOS Module 0820 closed closed

BAOS Module 0822 open closed

Usage for serial
communication

USB
BAOS
Tx/Rx

USB
UART1
Tx/Rx

RS232-1
BAOS
Tx/Rx

RS232-1
UART1
Tx/Rx

RS232-2
BAOS
Tx/Rx

RS232-2
UART1
Tx/Rx

BAOS
Tx/Rx

BAOS - Development
Board (standard)

o/o don't
care

o/o don't
care

o/o don't
care

c/c

Chapter 3. The Development Board

18

Usage for serial
communication

USB
BAOS
Tx/Rx

USB
UART1
Tx/Rx

RS232-1
BAOS
Tx/Rx

RS232-1
UART1
Tx/Rx

RS232-2
BAOS
Tx/Rx

RS232-2
UART1
Tx/Rx

BAOS
Tx/Rx

BAOS - PC (USB) c/c o/o o/o don't
care

o/o don't
care

o/o

PC (USB) - Development
Board (UART1)

o/o c/c don't
care

o/o don't
care

o/o don't
care

BAOS - PC (RS232 #1) o/o don't
care

c/c o/o o/o don't
care

o/o

PC (RS232 #1) -
Development Board
(UART1)

don't
care

o/o o/o c/c don't
care

o/o don't
care

BAOS - PC (RS232 #2) o/o don't
care

o/o don't
care

c/c o/o o/o

PC (RS232 #2) -
Development Board
(UART1)

don't
care

o/o don't
care

o/o o/o c/c don't
care

Special example: Tracing

BAOS - Development Board
and

UART1 - PC (USB)

o/o c/c o/o o/o o/o o/o c/c

(o = open, c = closed)

3.4.3. Fuses Of The ATmega
Fuse bits are a specialty of the ATmega microcontrollers. These bits control the behavior of the MCU
and its internal resources like the oscillator or the watch dog. Lock bits can protect some sections in
the flash memory to save important sections. Care must be taken to set the these bits correctly of the
ATmega128A microcontroller. If your code fails to be executed or uploaded, check the Fuse and Lock
bits. They should be set as follows:

M103C = []
WDTON = []
OCDEN = []
JTAGEN = [X]
SPIEN = [X]
EESAVE = []
BOOTSZ = 4096W_F000
BOOTRST = []
CKOPT = []
BODLEVEL = 2V7
BODEN = [X]
SUT_CKSEL = EXTHIFXTALRES_16KCK_64MS

EXTENDED = 0xFF (valid)
HIGH = 0x99 (valid)
LOW = 0xBF (valid)

LB = NO_LOCK
BLB0 = NO_LOCK
BLB1 = NO_LOCK

BAOS Module

19

LOCKBIT = 0xFF (valid)

3.4.4. BAOS Module
A piggyback board is located on the Development Board. This is the BAOS Module which is
responsible for the whole KNX communication. The BAOS Module comes with a certified KNX stack
and can be configured with ETS. It handles the KNX communicaton and is connected via a serial
port (UART) to the Development Board. It is powered by the bus but only the 0822 supplies the
Development Board, too. The 0820 has optical couplers which galvanically isolate the Development
Board. So it must be powered by other means.

Figure 3.4. BAOS Modules (left: 0820, right: 0822)

For more information see Chapter 4, BAOS Modules.

Chapter 3. The Development Board

20

3.5. Schematics Of The Development Board

Chapter 4.

21

BAOS Modules

Figure 4.1. BAOS Modules (left: 0820, right: 0822)

The BAOS Module contains a microcontroller and a KNX transceiver to handle the KNX
communication. Its interfaces are:
• A KNX transceiver to send and receive telegrams via the KNX bus (see Appendix A, About KNX).

This is also the power source for the module.

• A serial port (UART) for communication to the device (Base Board or other hardware). This serial
port is used by an FT1.2 protocol (see Chapter 8, FT1.2 Protocol) which contains either the BAOS
Protocol or the EMI2 protocol.

The BAOS Protocol (see Chapter 9, BAOS Protocol) is mainly used for reading and writing data
point values, being notified of data point value changes, reading parameters and device parameter
settings.

The EMI2 protocol (see Chapter 10, Message Protocol EMI) is for advanced usage. It offers the
possibility to craft own KNX telegrams for different OSI1 communication layers.

• Optionally a programming (learning) mode key and LED.

1 http://en.wikipedia.org/wiki/Iso_osi

http://en.wikipedia.org/wiki/Iso_osi
http://en.wikipedia.org/wiki/Iso_osi

Chapter 4. BAOS Modules

22

Development Board

BAOS Module 820
Optical couplers

Microcontroller

Transceiver

KNX

Microcontroller

Demo/Development Board

BAOS Module 822

Microcontroller

Transceiver

Microcontroller

RxD TxD

TxDRxD

TxDRxD

Figure 4.2. Modular overview of the hardware

The main difference between the 0820 and 0822 are the optical couplers. These couplers isolate the
BAOS Module from the main device (Base Board) for electrical security reasons.

4.1. Pinning Of The BAOS Modules

Figure 4.3. Pinning of the BAOS Module 0820

Pinning Of The BAOS Modules

23

Figure 4.4. Pinning of the BAOS Module 0822

The pinning of the BAOS Modules shows the interfaces (KNX bus, UART) and the optional
programming key & LED. The programming key is optional because the learning mode (programming
mode for the individual address) can also be activated via the BAOS Protocol.

Chapter 4. BAOS Modules

24

4.2. Hardware Requirements
The BAOS Module offers two interfaces and a learning key plus LED. To use the module the following
requirements are recommended:
• Connection to the KNX bus: The BAOS Modules support a twisted pair (TP) KNX bus interface.

This interface must be connected to the bus. Its nominal voltage is 29 volts in an operating range
between 21 and 29 volts. Care must be taken about the polarity. The typical KNX plug is grey and
red.

Figure 4.5. KNX plug

• Connection to the application hardware: The UART connects the application hardware with the
BAOS Module via the ObjectServer/FT1.2. It is a serial port using 0V to 3-5 volts for the signals. The
baud rate is 19200 per default and can be changed to 115200. Data bits are 8, even parity and 1
stop bit: 8e1.

Warning

Don't connect a RS-232 serial port directly to the pins of the BAOS Module. This will certainly
damage the hardware. To connect a PC or anything else which is RS-232 compatible, a level
converter is required.

• Optional: Learning key. A button should be connected to set the BAOS Module into programming
mode for downloading an individual address. Alternatively this can be done by a BAOS Protocol
service.

• Optional: LED for the learning key. The programming mode should be indicated by a red LED.

The BAOS Module 0820 has optical couplers which galvanically isolate the application hardware
from the KNX bus. This is recommended for every device which is connected to other objects. This
application hardware must supply VCC and GND to the BAOS Module, too. It is required for the
application side of the optical couplers.

The BAOS Module 0822 supports the application hardware with VCC and GND. It will be powered
by the KNX bus. This is only recommended for devices which have no other electrical connections
(including ground).

Modular Overview Of The Firmware

25

4.3. Modular Overview Of The Firmware
The firmware has a modular design. The most important modules are shown in the following figure.

Figure 4.6. Modular overview of the firmware

The firmware contains a fully implemented, certified KNX communication stack, which conforms the
OSI model. It also manages the KNX group object table, association table and address table, so the
application does not need to care about them.

The BAOS Protocol Server handles up to 250 data points and up to 250 parameters. They can be
modified by the application and by KNX bus events. The application is automatically notified about a
change of a data point value.

The FT1.2 Frame Handler which embeds the BAOS Protocol ensures data integrity.

Warning

Do not alter or program the microcontroller of the BAOS Module. You might render your device to
be permanently unusable.

Chapter 4. BAOS Modules

26

4.4. Other BAOS Devices
Other BAOS devices with different interfaces are also available.

Figure 4.7. BAOS Device 0870

The KNX Serial Interface BAOS 0870 is much like the BAOS Module except the serial interface
does not go to another board. It is available at a D-sub connector. Using a level converter it is able to
connect to an RS-232 PC interface. The communication protocol is the same: BAOS Protocol or EMI2
protocol, each embedded into an FT1.2 frame. For a quick start, a demonstration tool is available.
More info is available at this web page2.

Figure 4.8. BAOS Device 0772

The KNX IP BAOS 0772 offers an ethernet interface 10Base-T (LAN RJ-45) for connecting a
PC or another device. It supports 1000 communication objects and thus implements the second
version of BAOS Protocol to address these many objects. Up to 10 BAOS connections can be used
simultaneously. More info is available at this web page3.

2 http://www.weinzierl.de/index.php/en/all-knx/knx-devices-en/knx-serial-baos-870-en
3 http://www.weinzierl.de/index.php/en/all-knx/knx-devices-en/knx-ip-baos-772-en

http://www.weinzierl.de/index.php/en/all-knx/knx-devices-en/knx-serial-baos-870-en
http://www.weinzierl.de/index.php/en/all-knx/knx-devices-en/knx-ip-baos-772-en
http://www.weinzierl.de/index.php/en/all-knx/knx-devices-en/knx-serial-baos-870-en
http://www.weinzierl.de/index.php/en/all-knx/knx-devices-en/knx-ip-baos-772-en

Chapter 5.

27

Generic ETS Database
A generic database for ETS is included in this package. It can be used for developing
an own application while the use of data points is not defined. The database containing
the product KNX BAOS is stored in KnxBAOS_Demo/KnxBAOS_Demo_ETS_Projects/
KNX_BAOS_82x_87x.knxprod. Use Import Products to load the database and use it in a project.
All data points can be configured individually so the developer of the application can freely use the
data points.

Per default all data points are disabled:

Figure 5.1. Generic ETS database

According to your programming enable and connect some data points. See Section A.5, “Data Point
Types” for which data point types are available. The description of the data point is just a text field
which is not downloaded into the KNX device. It stays in the ETS project just for information.

Figure 5.2. Some data points enabled

The application must know about the usage of the data points, so changing two parameters is
necessary. To access the parameters from BAOS Module use the GetParameterByte.Req command.
See KnxBAOS_Protocol_v1.pdf for more info.

Chapter 5. Generic ETS Database

28

Figure 5.3. Some parameters configured

The data points can be linked as usual in ETS. Finally make a download.

Figure 5.4. The data points linked to group addresses

The generic database has the advantage that all data points can be configured as any type. This is
the usual way while development. For the common commissioning it is most inconvenient since the
installer has to define the correct type for every data point. So it is necessary to create an individual
database after finishing the development. With an individual database all data point types can be
defined like the application expects them and only these data points can be made visible which are
really important.

29

To to this, it is necessary to register as member of the KNX group and obtain the ETS Manufacturer
Tool1 to create such a database. This database can be registered and a product is derived which can
be used by the installer.

1 http://www.knx.org/knx-tools/manufacturer-tool/description

http://www.knx.org/knx-tools/manufacturer-tool/description
http://www.knx.org/knx-tools/manufacturer-tool/description
http://www.knx.org/knx-tools/manufacturer-tool/description

30

Chapter 6.

31

The Application Framework
The anatomy of the demonstration application included in this package is a typical embedded
software. The sources contain the following topics:

1. StdDef.h defines some macros which are helpful. It's a good idea if you familiarize yourself with
the content of this file since its macros are used in nearly every source files. Some posix typedefs
are defined there, but commented out since most compilers come up with these types. If not, just
uncomment them:

typedef unsigned char bool_t; // normally not part of posix
//typedef unsigned char uint8_t;
//typedef unsigned int uint16_t;
//typedef unsigned long uint32_t;

2. Main.c is the main entry. It initializes all components, like system and application, and enters
a never ending main loop. This main loop contains all applications, each called there. Every
application call should return as soon as possible so other applications (if there are more) are not
blocked. A so called state machine for every application is a valid choice for a simple embedded
software design.

3. App.c contains the main application. It handles the logic of the actuator, key events and the data
points.

nEvent = AppKey_GetKeyEvent(keynumber);

This function returns the current key event. The key number is mapped in AppKey.h:

#define APP_KEY_COUNT 6 // Count of application keys
#define IS_KEY_PRESSED_0 GET_KEY_S5 // Port pin for channel 0
#define IS_KEY_PRESSED_1 GET_KEY_S6 // Port pin for channel 1
#define IS_KEY_PRESSED_2 GET_KEY_S7 // Port pin for channel 2
#define IS_KEY_PRESSED_3 GET_KEY_S8 // Port pin for channel 3
#define IS_KEY_PRESSED_4 GET_KEY_S9 // Port pin for channel 4
#define IS_KEY_PRESSED_5 GET_KEY_S10 // Port pin for channel 5

In this case the key S5 is mapped to key #0, S6 to key #1, and so on. The mapping can be
changed freely as long as the number of used keys.

switch(nEvent)
{
 case KEY_EV_LONG:
 /* Do something */
 break;

 case KEY_EV_SHORT:
 /* Do something */
 break;

 case KEY_EV_RELEASE:
 /* Do something */
 break;

 case KEY_EV_NONE:
 break;

Chapter 6. The Application Framework

32

}

The key events can be a long press, a short press, a release and no key pressed. The long press
event is followed by the release event after the user releases the switch. A short press is not
followed by a release. The time for a long press is defined in AppKey.h (unit milliseconds):

#define KEY_TIME_LONG 300

Every case contains one or more statements which check whether a certain data point is in
use or not. This is controlled by the parameter bytes, which must be retrieved at the start of the
application and at reset indication from the BAOS Module. The ETS sets the parameter bytes.

/// Parameter byte assignment
///
/// Parameter bytes used by this application:
///
/// PB#1: Configuration for ...
/// PB#2: Configuration for ...

enum PbUsage_tag
{
 PB_UNUSED = 0, // PB#0 is never used
 PB_FIRST = 1, // First used parameter byte
 PB_XXX1_TYPE = 1, // PB#1
 PB_XXX2_TYPE = 2, // PB#2
 PB_MAX // All remaining parameter bytes are not used
};

/// Retrieve parameters bytes we need.

void App_RetrieveParameterBytes(void)
{
 KnxBaos_GetParameterByte(PB_FIRST, PB_MAX - 1);
}

/// Handle reset indication.
///
/// BAOS has been reset (could be due to a change of the parameters via ETS).

void App_HandleResetIndication(void)
{
 App_RetrieveParameterBytes(); // Request parameter bytes
}

The BAOS Module will resond to this call using App_HandleGetParameterByteRes(). This
function stores the parameters we need:

/// Handle the GetParameterByte.Res data.
///
/// A KNX telegram can hold more than one data. This functions gets called for
/// every single data in a telegram array.
///
/// @param[in] nStartByte Start byte from telegram
/// @param[in] nByte Current nByte from telegram
/// @param[in] nIndex Current number of byte

void App_HandleGetParameterByteRes(

33

 uint8_t nStartByte, uint8_t nByte, uint8_t nIndex)
{

 switch(nStartByte + nIndex) // Parameter byte number
 {

 case 1: // Get configuration 1
 m_nConfig1 = nByte;
 break;

 case 2: // Get configuration 2
 m_nConfig2 = nByte;
 break;

 default: // Ignore all other parameter bytes
 break;
 }

}

Every data point which is connected can now be used. All others are skipped.

if((m_nConfig1 == 1) // Data point configured as switch?
 || (m_nConfig1 == 2)) // or as dimmer?
{
 /* act on data point #1 as switch */
}

if(m_nConfig1 == 2) // Data point configured as dimmer?
{
 /* act on data point #2 as relative dimmer */
}

In this case data points #1 and #2 are used as dimmer (switching and relative dimming) if
m_nConfig1 is 2. If it is 1 data point #2 is not used, but data point #1 as switch only. If the data
point is configured by ETS a KNX message will be sent:

nValue = LED_OFF;
KnxBaos_SendValue(DP_SWITCH_O, DP_CMD_SET_SEND_VAL, 1, &nValue);

Furthermore plenty callback functions are defined in App.c. For Example:

void App_HandleDatapointValueInd(
 uint8_t nStartDatapoint, uint8_t nDpId, uint8_t nDpState,
 uint8_t nDpLength, uint8_t* pData)
{
 // Implement this
}

All relevant parameters from a received KNX message are extracted and provided in this function.
Some function are already implemented.

Chapter 6. The Application Framework

34

Note

For more information about the parameters and the object server protocol, see
KnxBAOS_Protocol_v1.pdf which is also included in this distribution.

4. AppKey.c is the driver for handling the push buttons on the Development/Demo Board. It also
handles its debouncing, long/short presses and releases.

5. AppBoard.c initializes the ports of our microcontroller at the Development/Demo Board. See
AppBoard.h which port is connected to the components on the board.

6. AppDim.c handles the LED. It performs the dimming of the LED as well as the switching on and
off. AppDim.h defines the maximum value of the LED (100%) and its timing for every dimming
step (4 milliseconds delay):

#define DIM_MAX_VALUE 0xFF // Max. Brightness
#define DIM_MIN_VALUE 0x00 // Min. Brightness

#define DIM_RAMP_TIME 0x04 // Delay in ms for every dimming step

7. AppLedPwm.c is also part of the LED handling. It maintains the PWM which controls the LED.

8. KnxTm.c is the system timer and contains some convenience functions for timer usage. The
following function returns the current up time in milliseconds which. It starts counting after a reset
of the application.

uint16_t KnxTm_GetTimeMs(void); /* 0x0000 - 0xffff */

Note

If a timer reaches its upper value, it resets to 0 and counts again. So be aware you might get
negative results calculating two time stamps if an overflow occurred.

Warning

The timer does not start immediately after a reset or power up. The application initializes the
timer while booting up.

To perform a delay of 200 milliseconds, do the following:

35

while(TRUE) /* This is the main loop */
{
 static uint16_t nTimeStamp;
 static enum eState_t nState = IDLE;

 switch(nState)
 {
 case IDLE:
 nTimeStamp = KnxTm_GetTimeMs();
 nState = WAITING;
 break;

 case WAITING:

 /* Wait for the 200 ms. */
 /* i. e. Return control to the main loop. */

 if(KnxTm_GetDelayMs(nTimeStamp) >= 200)
 {
 nState = RUNNING;
 }

 break;

 case RUNNING:

 /* Time has elapsed. */
 /* Do something here and start waiting again. */

 nState = IDLE;
 break;
 }

}

The following is a busy delay. It can be done for brief periods while initialization. It is not
recommended to use this in the main loop since it consumes CPU time. Though if we have only
one application it doesn't matter.

KnxTm_SleepMs(5);

9. KnxProgMode.c handles the programming mode of the BAOS Module. It is a polling service,
which is called in certain periodes, like every second. It calls the BAOS function to get the state of
the programming mode and visualizes its state at the red LED of the Development Board.

This service is not available at the Demo Board.

10. KnxBaos.c/KnxBaosHandler.c contains the implementation of the object server protocol,
which is the core protocol of the BAOS. It mainly contains routines for sending and receiving
(KnxBaosHandler.c) telegrams.

11. KnxBuf.c handles a send and receive buffer for FT1.2.

12. KnxFt12.c handles the FT1.2 (PEI10) protocol which is used by the communication with the
BAOS Module.

13. KnxSer.c is the low level serial driver used by the communication with the BAOS Module.

Chapter 6. The Application Framework

36

14. config.h can contain some defines and macros for various purposes. Currently only debugging
configuration is implemented:

#define _DEBUG 1

Normally this line is disabled, since Atmel Studio can maintain this via its own generated
Makefile. It can be overridden here if necessary. Other defines can also be inserted here.

For a deeper exploration of the demo applications see Documents/
BAOS_DevBoardSoftware_API.chm also included in this package.

The main application (including all timer and BAOS communication routines) is frequently interrupted
by 2 interrupts: timer and communication. The communication interrupt occurs for every sent or
received character at the UART port (normally BAOS). The timer interrupts the Timer handler every
millisecond which manages a global counter and the timeouts for the FT1.2 handler.

37

Application Hardware

Main loop

Timer Interrupt
(every 1 ms)

UART0 Interrupt
(TxD sent one character

or RxD received one character)

Application

BAOS protocol client

FT1.2 handler
(KnxFt1.2.c)

Serial driver
(KnxSer.c)

UART Hardware

Timer
(KnxTm.c)

BAOS Module 822

Microcontroller

Transceiver

KNX

RxD TxD

Figure 6.1. Overview of interrupts

Chapter 6. The Application Framework

38

6.1. Creating Own Applications
In order to make your own applications for the Development/Demo Board, the file App.c is the central
place. The function App_Init() does the initialization. The function App_Main() is frequently called
by main(). Here, in the function App_Main() has to be called. It must not happen that the function
App_Main() is blocked because the interrupts would be still enabled, but the processing of received
data and the transmission of data would be stopped.

Use the function AppKey_GetKeyEvent() to query the buttons and use defines like SET_LED1 from
AppBoard.h to control the LED.

With the function KnxBaos_SendValue(uint16_t nDataPoint_Id, uint8_t
nDataPoint_Command, uint8_t nDataPoint_Length, uint8_t* pDataPoint_Value) the
data points can be accessed. The data points which were received by BAOS are handled in functions
like App_HandleXXX(). They will be called automatically after data reception and analysis.

6.2. Common Cases
The common cases are to set and get the data point values and to get parameter bytes. This can be
done by using the BAOS Protocol.

6.2.1. Set Data Point Value
To set a new value to a data point and send it to the KNX bus, do the following:

uint8_t nValue = 0;
KnxBaos_SendValue(2, DP_CMD_SET_SEND_VAL, 1, &nValue);

This sets the new value 0 to data point #2, which has one byte size (1). This value change is sent to
the KNX bus.

Sending a value of more bytes might require a conversion of endianess since network communication
is always defined in big endian whereas some microcontrollers use little endian. A 4 byte value
0x11223344 is stored in big endian like this: 0x11223344. The same value is stored in little endian like
this: 0x44332211. So we need a conversion routine for values larger than 1 byte.

// Send a 32 bit value with correct endianess:
float fValue = 1.2f;
KnxBaos_SendValue(3, DP_CMD_SET_SEND_VAL, sizeof(fValue), KnxBaos_Host2Net32(&fValue));

The routines KnxBaos_Host2Net32() and KnxBaos_Host2Net16() convert 32 bit (4 byte),
respectively 16 bit (2 byte) values to big endianess. These values can be send to the KNX network.

Received values can be converted back with KnxBaos_Net2Host16() and
KnxBaos_Net2Host32().

If the host microcontroller is operating in big endian mode a conversion will not be done by these
routines since it is not necessary.

6.2.2. Get Data Point Value
If a data point gets changed by the KNX bus the routine App_HandleDatapointValueInd() is
called:

Get Data Point Value

39

void App_HandleDatapointValueInd(
 uint8_t nStartDatapoint, uint8_t nDpId, uint8_t nDpState,
 uint8_t nDpLength, uint8_t* pData)
{

 switch(nDpId)
 {
 case DP_LED_SWITCH_I: // LED object selected

 if(*pData == LED_ON) // Switch on
 {
 AppDim_OnSwitch(TRUE);
 }
 else if(*pData == LED_OFF) // Switch off
 {
 AppDim_OnSwitch(FALSE);
 }

 break;
 }
}

If the data point ID matches (DP_LED_SWITCH_I) the new value pointed by pData is analyzed
(LED_ON or LED_OFF) and we handle accordingly: switch on or off an LED via AppDim_OnSwitch().

Note

The terms data point and data point ID mean the same. There is no difference.

If the value is more than 1 byte the endianess problem must also be handled:

void App_HandleDatapointValueInd(
 uint8_t nStartDatapoint, uint8_t nDpId, uint8_t nDpState,
 uint8_t nDpLength, uint8_t* pData)
{

 switch(nDpId)
 {
 case DP_TEMPERATURE_I: // Temperature object selected

 // Receiving a 32 bit float value
 float fValue = *(float *)KnxBaos_Net2Host32(pData);
 App_ShowTemperature(fValue);
 break;
 }
}

If we do not want to wait for a notification whether a data point has changed (indication), we can
explicitely request the current data point value, like this:

KnxBaos_GetDpValue(2, 1);

This request the current value of data point #2. The value 1 is the number of data points. In
this case we want to know only data point #2. After sending this request we will be informed by
App_HandleGetDatapointValueRes():

Chapter 6. The Application Framework

40

void App_HandleGetDatapointValueRes(
 uint8_t nStartDatapoint, uint8_t nDpId, uint8_t nDpState,
 uint8_t nDpLength, uint8_t* pData)
{

 if(*pData == LIGHT_ON)
 {
 AppLight_SwitchOn();
 }
 else
 {
 AppLight_SwitchOff();
 }

}

The parameters of this routine are the same as in App_HandleDatapointValueInd().

6.2.3. Get Parameter Byte
The ETS can set some parameters while download. These parameters can be used to configure some
values. E. g. set a time out, a lighting value, temperature threshold. These parameters are organized
byte wise. To access some bytes do the following:

KnxBaos_GetParameterByte(nStartByte, nNumberOfBytes);

This requests nNumberOfBytes starting at byte #nStartByte. There are 250
bytes available, starting at byte #1. After sending this request we will be informed by
KnxBaos_OnGetParameterByteRes():

void App_HandleGetParameterByteRes(
 uint8_t nByteNo, uint8_t nByte)
{

 if(nByteNo == MAX_TEMP_PARAMETER_INDEX)
 {
 App_SetMaxTemperature(nByte);
 }

}

This routine is called for every byte we requested. The value is delivered in nByte. nByteNo is the
current byte number of the request.

6.3. Special Cases
Some special cases are to send read and write requests directly to the KNX stack without the use of
the BAOS Protocol. Such a read or write request does not involve a data point.

6.3.1. Write Value To A Group Object
Writing a value to a data point normally causes a KNX telegram to be sent to a certain group object.
This group object delivers the value to the receiver(s). It is also possible to write to such a group object
without any data point involved. In this case we have to construct an EMI2 message (see Chapter 10,
Message Protocol EMI for more information).

Read Value From A Group Object

41

As an example if a group object 2/5/5 is configured as absolute dimming value (1 byte) to a dimmer
input, we can write a value 0-255 to change the light.

uint8_t aBuffer[] =
{
 0x0A, // Length of this array
 0x11, // EMI2 service code: L_Data.req
 0xBC, // EMI2 KNX control field
 0x13, 0x03, // EMI2 source address 1.3.3
 0x15, 0x05, // EMI2 group address 2/5/5
 0xE2, // EMI2 code + length 2 bytes (including APCI)
 0x00, // EMI2 TPCI + APCI
 0x80, // EMI2 APCI
 0x78 // EMI2 data byte (= 120)
};

KnxFt12_Write(aBuffer); // Send L_Data.req

This writes the value 120 to the group object 2/5/5.

6.3.2. Read Value From A Group Object
Reading a value from a group object is more complicated than just writing it. The BAOS stack must be
in a special mode which does not filter messages from the KNX bus. To do a read the following must
be done:
1. Switch the BAOS stack to a special mode: route all telegrams from the link layer directly to the

application.

uint8_t aBuffer[] =
{
 0x07, // Length of this array
 0xA9, // EMI2 service code: PEI_Switch.req
 0x00, // EMI2 system status
 0x18, 0x34, 0x56, 0x78, 0x9A // EMI2 switch to link layer
};

KnxFt12_Write(aBuffer); // Send PEI_Switch.req

2. Even with the re-routing of all telegrams from the link layer to the application the address table still
filters all telegrams which are not for the BAOS Module. Only telegrams configured by the ETS for
the BAOS Module pass through. To disable this the address table must be switched off by writing
a length of 0. But first save the old length value to write it back later.

uint8_t aBuffer[] =
{
 0x04, // Length of this array
 0xAC, // EMI2 service code: PC_Get_Value.req
 0x01, // EMI2 data length (1 byte)
 0x40, 0x00 // EMI2 address 4000
};

KnxFt12_Write(aBuffer); // Send PC_Get_Value.req

This requests one byte from address 0x4000 which is the current length of the address table. The
response can be handled in KnxBaos_Process(), File: KnxBaos.c:

Chapter 6. The Application Framework

42

void KnxBaos_Process(void)
{
 bool_t bAccept; // Accept the current telegram?

 // First proceed the receive job
 if(KnxFt12_Read(m_pBaosRcvBuf)) // Poll telegrams from BAOS
 {
 bAccept = FALSE; // Initialize telegram to be ignored

 [...]

 if(bAccept == TRUE) // Do we accept the telegram?
 {
 [...]
 }
 else
 {
 // Here we can handle all received telegrams in
 // m_pBaosRcvBuf[]. m_pBaosRcvBuf[0] stores the length
 // the following bytes are EMI2 telegrams.
 }

 }

 [...]
}

The buffer m_pBaosRcvBuf[] will contain this response (the length byte at index 0 is omitted):

AB 01 40 00 15 PC_GetValue.con

Address 0x4000 contains 0x15. This value must be saved for later.

3. Disable the address table by writing length = 0:

uint8_t aBuffer[] =
{
 0x05, // Length of this array
 0xA6, // EMI2 service code: PC_Set_Value.req
 0x01, // EMI2 data length
 0x40, 0x00, // EMI2 address 4000
 0x00 // EMI2 data value 0
};

KnxFt12_Write(aBuffer); // Send PC_Set_Value.req

This writes 0 to address 0x4000, which disables the address table.

4. Everything is prepared, now read the group object 2/5/5. Our own address is 1.3.3 and we
request to read one byte:

uint8_t aBuffer[] =
{
 0x09, // Length of this array
 0x11, // EMI2 service code: L_Data.req
 0xBC, // EMI2 KNX control field
 0x13, 0x03, // EMI2 source address 1.3.3
 0x15, 0x05, // EMI2 group address 2/5/5
 0xE1, // EMI2 code + length 2 bytes (including APCI)
 0x00, // EMI2 TPCI + APCI

Read Value From A Group Object

43

 0x00 // EMI2 APCI
};

KnxFt12_Write(aBuffer); // L_Data.req

Again, the responses (this time there will be two) can be handled in KnxBaos_Process(),
File: KnxBaos.c. KnxBaos_Process() will be called for every response. The buffer
m_pBaosRcvBuf[] contains these values (the length byte is omitted):

2E BC 13 03 15 05 E1 00 00 L_Data.con
29 BC 12 03 15 05 F2 00 40 30 L_Data.ind

The first response is a confirmation. I. e. a copy of our request. The second response
(GrpValResp) contains the value 0x30 from the group object 2/5/5.

Note

More information about EMI2 telegrams can be found in Chapter 10, Message Protocol
EMI and in KNX System Specifications/03_06_03 EMI_IMI available at the KNX
Specifications page1.

5. To restore the BAOS stack to normal mode (BAOS enabled), the address table must be restored
and the PEI switch set to default.

uint8_t aBuffer[] =
{
 0x05, // Length of this array
 0xA6, // EMI2 service code: PC_Set_Value.req
 0x01, // EMI2 data length
 0x40, 0x00, // EMI2 address 4000
 0x15 // EMI2 data value 0x15
};

KnxFt12_Write(aBuffer); // Send PC_Set_Value.req

The data value 0x15 is, of course, the recently saved length of the address table.

6. Finally switch off the routing from the link layer to the application (PEI switch).

uint8_t aBuffer[] =
{
 0x07, // Length of this array
 0xA9, // EMI2 service code: PEI_Switch.req
 0x00, // EMI2 system status
 0x12, 0x34, 0x56, 0x78, 0x9A // EMI2 switch back to default mode
};

KnxFt12_Write(aBuffer); // Send PEI_Switch.req

1 http://www.knx.org/knx-en/knx/technology/specifications/index.php

http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php

44

Chapter 7.

45

Connecting PC Via BAOS Interface
Developing and debugging an embedded application can be quite inconvenient and difficult. Especially
debugging and watching variables are time consuming tasks at an embedded system. To avoid this,
the application can also be developed on a PC. This PC must be connected to the BAOS Module
the way the embedded micro controller is. To do this connect the RS-232 interface of the PC to
the Development Board and set the jumpers accordingly. Setting the necessary jumpers at the
Development Board enables the direct connection of the BAOS Module to the PC. This enables the
BAOS communication directly to the PC. A demonstration client is included for this purpose in this
package. This Demo Client is located in Tool_BAOS_DemoProgram and must be installed to use it.
Just run the installer file and follow the instructions.

Connect the serial port of the Development Board to the PC and set the appropriate jumpers (See
Section 3.4.2, “Jumper Usages”).

Development Board

Microcontroller

BAOS Module

Microcontroller

Transceiver

KNX

Jumper

PC

RS-232
(level converter)

TxDRxD

Figure 7.1. PC And BAOS

To use RS-232-1 disconnect both BAOS Tx and Rx jumpers and connect them to RS-232-1 BAOS
Tx and Rx.

Start the Demo Client, normally installed in C:/Program Files (x86)/Weinzierl
Engineering GmbH/KnxBAOS DemoClient for protocol 1.x, use RS232, appropriate COM
port and 19200 baud. If it successfully Opens the port, choose a telegram and Send it. A response will
be displayed in the Telegram Tree.

Don't forget to reset the jumpers after using the Demo Client.

46

Chapter 8.

47

FT1.2 Protocol
The communication between the Base Board and the BAOS Module uses the ObjectServer or the
EMI2 protocol. This protocol is encapsulated in the FT1.2 protocol for reliability reasons. The typical
device architecture looks like this:

Host

Microcontroller

BAOS Module

Microcontroller

Transceiver

KNX

Application

FT1.2

Figure 8.1. Typical device architecture

8.1. General
The FT1.2 protocol is based on the international standard IEC 0870-5-1 and 0870-5-2. An asymmetric
transmission procedure is used. I. e. the host initiates a message transfer and the BAOS Module
sends a response. The protocol is restricted to point-to-point (no address field) communication.

8.2. Physical

8.2.1. Interface
The module and application are connected via a 3-wire connection:

• RxD: Received data

• TxD: Transmit data

• GND: 0 V Ground

Chapter 8. FT1.2 Protocol

48

• additional for 0820: VCC: Power supply

Data transmission is performed with 8 data bits, even parity and 1 stop bit. The default transmission
rate is 19200 baud. Frames have a fixed or variable length.

8.2.2. Timings
The timing of the FT 1.2 communication between the application and the BAOS Module are shown in
the next figure. The application sends an FT 1.2 frame to the BAOS Module which acknowledges it.
After a while the module sends a response frame to the application which also acknowledges it.

Figure 8.2. BAOS communication timing

8.3. FT 1.2 Frame Format
The FT 1.2 protocol ensures data integrity by using a defined header, a checksum and a stopping
character. There are two frame variants: a fixed frame for reset requests and a variable frame length
for containing data.

An FT 1.2 reset frame looks like this:

01234567
Byte 0

Start character
0x10

Byte 1
01234567

FT1.2 Frame

01234567 01234567
Byte 2 Byte 3

Checksum
0x40

Stop character
0x16

Reset
0x40

Figure 8.3. FT 1.2 reset frame

FT 1.2 Frame Format

49

To request a reset of internal counters and states, send an FT 1.2 reset
request:

10 40 40 16 RESET_REQ

Note

This is not a reboot of the BAOS Module software. It only resets the internal registers and states
of the stack.

An FT 1.2 data frame looks like this:

01234567 01234567
Byte 0 Byte 1 Byte 2 Byte 3

Start character
0x68

Byte 4

Length (bytes 4-n)
Length

(repeated)
Start character
0x68 (repeated)

01234567 01234567 01234567

FT1.2 Header Frame

Byte 5 Byte n
01234567 01234567

Information data
(0 - n bytes)

...
01234567 01234567

Byte n+1 Byte n+2

Checksum
(bytes 4-n)

Stop character
0x16

FT1.2 End FrameFT1.2 Information Frame

FT 1.2 control field

Figure 8.4. FT 1.2 data frame

The FT 1.2 control field has the following information:

• Bit #0-4: 10011

• Bit #5: Frame count bit (toggled at each new message), must be 1 after a reset.

• Bit #6: 1

• Bit #7: Direction:

1 = Host (application) to BAOS Module

0 = BAOS Module to Host (application)

50

Chapter 9.

51

BAOS Protocol

9.1. BAOS Frame
The BAOS Protocol is a protocol between the Base Board and the BAOS Module. Its format is as
follows:

01234567
Byte 0 Byte 1 Byte 2

01234567 01234567
Byte 3 Byte 4

Byte 5 Byte 6

01234567 01234567

01234567 01234567
Byte n-2 Byte n-1 Byte n

01234567 01234567 01234567

BAOS protocol

BAOS protocol

Main service
0xF0

Sub service
Start
item

Number
of items

Error code or
First item ID

First item data length First item data

...

Last item data length Last item dataLast item ID

Figure 9.1. General BAOS format

Some important services and their responses:

• GetServerItem.Req

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x01 Subservice code

+2 StartItem 1 ID of first item

+3 NumberOfItems 1 Maximal number of items to
return

GetServerItem.Res

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x81 Subservice code

+2 StartItem 1 As in request

+3 NumberOfItems 1 Number of items in this response

+4 First item ID 1 ID of first item

+5 First item data length 1 Data length of first item

+6 First item data 1 - 255 Data of first item

...

+n-2 Last item ID 1 ID of last item

+n-1 Last item data length 1 Data length of last item

+n Last item data 1 - 255 Data of last item

Example: Read the serial number

Chapter 9. BAOS Protocol

52

This reads the server item #8 (serial number). The answer from the BAOS contains the serial
number 0x112233445566.

APPLICATION: F0 01 08 01 GetServerItem.Req
BAOS: F0 81 08 01 08 06 11 22 33 44 55 66 GetServerItem.Res

• GetDatapointValue.Req

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x05 Subservice code

+2 StartDatapoint 1 ID of first data point

+3 NumberOfDatapoints 1 Maximal number of data points
to return

GetDatapointValue.Res

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x85 Subservice code

+2 StartDatapoint 1 As in request

+3 NumberOfDatapoints 1 Number of data points in this
response

+4 First DP ID 1 ID of first data point

+5 First DP state/length 1 State/length byte of first data
point

+6 First DP value 1 - 14 Value of first data point

...

+n-2 Last DP ID 1 ID of last data point

+n-1 Last DP state/length 1 State/length byte of last data
point

+n Last DP value 1 - 14 Value of last data point

Example: Read values of data point #1 and #2

Data point #1 is configured as a 1 bit value (= 0) and #2 is a 2 byte value (= 0x8899).

APPLICATION: F0 05 01 02 GetDatapointValue.Req
BAOS: F0 85 01 02 01 01 00 02 02 88 99 GetDatapointValue.Res

• DatapointValue.Ind is not a request/response service. It is an automatic notification if a data
point value changes.

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

BAOS Frame

53

Offset Field Size Value Description

+1 SubService 1 0xC1 Subservice code

+2 StartDatapoint 1 ID of first data point

+3 NumberOfDatapoints 1 Number of data points in this
indication

+4 First DP ID 1 ID of first data point

+5 First DP state/length 1 State/length byte of first data
point

+6 First DP value 1 - 14 Value of first data point

...

+n-2 Last DP ID 1 ID of last data point

+n-1 Last DP state/length 1 State/length byte of last data
point

+n Last DP value 1 - 14 Value of last data point

Example: Data point #3 has been changed by a KNX message.

It is configured as an one byte value (= 0x55).

BAOS: F0 C1 03 01 03 81 55 DatapointValue.Ind

• SetDatapointValue.Req

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x06 Subservice code

+2 StartDatapoint 1 Lowest ID of data points to set

+3 NumberOfDatapoints 1 Number of data points to set

+4 First DP ID 1 ID of first data point

+5 First DP cmd/length 1 Command/length byte of first
data point

+6 First DP value 1 - 14 Value of first data point

...

+n-2 Last DP ID 1 ID of last data point

+n-1 Last DP cmd/length 1 Command/length byte of last
data point

+n Last DP value 1 - 14 Value of last data point

SetDatapointValue.Res

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x86 Subservice code

+2 StartDatapoint 1 As in request

Chapter 9. BAOS Protocol

54

Offset Field Size Value Description

+3 NumberOfDatapoints 1 0x00

+4 ErrorCode 1 0x00

Example: Set value of data point #5

Data point #1 is configured as a 1 bit value and will be changed to 1. The new value will also be sent
to the KNX bus.

APPLICATION: F0 06 05 01 05 31 01 SetDatapointValue.Req
BAOS: F0 86 05 00 00 SetDatapointValue.Res

• GetParameterByte.Req

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x07 Subservice code

+2 StartByte 1 Index of first byte

+3 NumberOfBytes 1 Maximal number of bytes to
return

GetParameterByte.Res

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x87 Subservice code

+2 StartByte 1 As in request

+3 NumberOfBytes 1 Number of bytes in this response

+4 First byte 1 First parameter byte

...

+n Last byte 1 Last parameter byte

Example: Read parameter bytes #8 - #16

The parameter bytes have the values 0x11, 0x22, ... 0x88.

APPLICATION: F0 07 08 08 GetParameterByte.Req
BAOS: F0 87 08 08 11 22 33 44 55 66 77 88 GetParameterByte.Res

The BAOS Protocol offers more services. For complete information about these services, commands,
error codes, etc. see document KnxBAOS_Protocol_v1.pdf which is also included in this package.

9.2. BAOS Frame Embedded In An FT 1.2 Frame
The BAOS Protocol is encapsulated into the FT 1.2 frame for data integrity.

BAOS Frame Embedded In An FT 1.2 Frame

55

An FT 1.2 frame using the BAOS Protocol looks as follows:

01234567 01234567
Byte 0 Byte 1 Byte 2 Byte 3

Start character
0x68

Byte 4

Length (bytes 4-n)
Length

(repeated)
Start character
0x68 (repeated)

01234567 01234567 01234567

FT1.2 Header Frame

01234567
Byte 5 Byte 6 Byte 7

01234567 01234567
Byte 8 Byte 9

Byte 10 Byte 11

01234567 01234567

01234567 01234567
Byte n-2 Byte n-1 Byte n

01234567 01234567 01234567

BAOS protocol

BAOS protocol

Main service
0xF0

Sub service
Start
item

Number
of items

Error code or
First item ID

First item data length First item data

...

Last item data length Last item dataLast item ID

01234567 01234567
Byte n+1 Byte n+2

Checksum
(bytes 4-n)

Stop character
0x16

FT1.2 End Frame

FT 1.2 control field

Figure 9.2. BAOS frame embedded in an FT 1.2 frame

The FT 1.2 control field bits, see Section 8.3, “FT 1.2 Frame Format” [49].

56

Chapter 10.

57

Message Protocol EMI

10.1. EMI2 Protocol
The message routing is implemented in the module stack. It offers the possibility to disable the BAOS
Protocol and to send/receive telegrams directly to/from a certain layer of the communication stack. In
principal there are two reasonable short cuts:

1. Telegram access via the network layer (NL). This access leaves the group address
filtering active. All telegrams are treated in the normal way like in the BAOS Protocol access. The
services for this functionality are part of the KNX standard (EMI2 - External Message Interface
version 2).

2. Telegram access via the link layer (LL). This access also gives/takes telegrams like
the network layer access. The group address filtering is also active. So group messages which
are not intended for this device will be filtered out. To disable this filtering the length of the group
address table must be set to zero.

Broadcast messages can also be received as well as all directly addressed telegrams for this
device.

The EMI2 telegram format contains the KNX telegram as follows:

Address type:
0 = Individual Adr.
1 = Group Adr.

01234567
Service code
(not on bus)

Source adr.
Area: 0-15

Source adr.
Line: 0-15

01234567 01234567
Source address
Device: 0-255

01234567

01234567 01234567 01234567
Routing
counter

Data len.
1-15

01234567 01234567

01234567 01234567

TPCI
Sequence

0-15
APCI

extended
APCI or data

Information data
(0 - 14 bytes)

...

EMI2 protocol

EMI2 protocol

EMI2 protocol

KNX control field

Byte 0 Byte 1 Byte 2 Byte 3

Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Byte 9 Byte n

Group. adr.
Main: 0-31

Grp. adr.
Mid.: 0-7

Ind. adr.
Area: 0-15

Ind. adr.
Line: 0-15

Group address
Group: 0-255
Ind. address

Device: 0-255

Figure 10.1. EMI2 telegram format

The KNX control field bits, see Section A.2, “KNX Twisted Pair Telegrams” [71].

10.2. EMI2 Frame Embedded In An FT 1.2 Frame
The EMI2 protocol is used to generate own KNX telegrams and exchange them with the
corresponding stack layer. It is also encapsulated into the FT 1.2 frame for data integrity.

Chapter 10. Message Protocol EMI

58

An FT 1.2 frame using the EMI2 protocol looks as follows:

Address type:
0 = Individual Adr.
1 = Group Adr.

01234567 01234567
Byte 0 Byte 1 Byte 2 Byte 3

Start character
0x68

Byte 4

Length (bytes 4-n)
Length

(repeated)
Start character
0x68 (repeated)

01234567 01234567 01234567

FT1.2 Header Frame

01234567
Byte 5

Service code

Byte 6 Byte 7

Source adr.
Line: 0-15

01234567 01234567
Byte 8 Byte 9

Byte 10 Byte 11

Source address
Device: 0-255

01234567 01234567

01234567 01234567
Routing
counter

Data len.
1-15

Byte 12 Byte 13

Byte 14 Byte n

01234567 01234567

01234567 01234567

TPCI
Sequence

0-15
APCI

extended
APCI or data

Information data
(0 - 14 bytes)

...
01234567 01234567

Byte n+1 Byte n+2

Checksum
(bytes 4-n)

Stop character
0x16

FT1.2 End Frame

FT1.2 Information Frame (EMI2 protocol)

FT1.2 Information Frame (EMI2 protocol)

FT1.2 Information Frame (EMI2 protocol)

Source adr.
Area: 0-15

FT 1.2 control field

KNX control field

Ind. adr.
Area: 0-15

Ind. adr.
Line: 0-15

Group. adr.
Main: 0-31

Grp. adr.
Mid.: 0-7

Group address
Group: 0-255
Ind. address

Device: 0-255

Figure 10.2. EMI2 frame embedded in an FT 1.2 frame

The FT 1.2 control field bits, see Section 8.3, “FT 1.2 Frame Format” [49].

The KNX control field bits, see Section A.2, “KNX Twisted Pair Telegrams” [71].

For more information about the FT1.2 protocol see KnxBAOS_Protocol_v1.pdf, Appendix D which
is also included in this package.

10.3. Access To The Network Or Link Layer
To access the network or link layer a certain message must be sent to activate the access.

• Network layer:

PC: A9 00 12 84 56 78 9A PEI_SWITCH_req

• Link layer:

PC: A9 00 18 34 56 78 9A PEI_SWITCH_req

• Disable access:

Group Telegram Communication On Network Layer

59

PC: A9 00 12 34 56 78 9A PEI_SWITCH_req

Figure 10.3. Telegram access to the network or link layer

10.4. Group Telegram Communication On Network Layer
The intended usage of BAOS is an interface to KNX twisted pair on data point level. Nevertheless it is
possible to send and to receive group telegrams directly without the use of the object server.

First we have to switch on the correct internal message routing via PEI message (PC_SET_VAL_req).
Then we can send/receive some telegrams (N_GROUP_DATA_req/N_GROUP_DATA_con/
N_GROUP_DATA_ind). At last we disable the PEI routing (PC_SET_VAL_req).

To receive any group messages send the following EMI2 messages:

Disable group address filter of module

PC: A6 01 40 00 00 PC_SET_VAL_req

This means to write 0x00 at location 0x4000 which holds the address table length. This is a non
volatile value, so the data is stored also on power down.

Switch to Network Layer Group

PC: A9 00 12 84 56 78 9A PEI_SWITCH_req

With this setting the module sends all group telegrams to UART. Management telegrams will be routed
internally. Therefore the module is still programmable by ETS. This setting is lost after a power down.

Chapter 10. Message Protocol EMI

60

Receive Group Telegrams

BAOS: 3A BC 11 01 00 01 E1 00 80 N_GROUP_DATA_ind
BAOS: 3A BC 11 01 00 01 E1 00 81 N_GROUP_DATA_ind

Send Group Telegrams

PC: 22 0C 00 00 00 01 E1 00 80 N_GROUP_DATA_req
BAOS: 3E BC FF FF 00 01 E1 00 80 N_GROUP_DATA_con

PC: 22 0C 00 00 00 01 E1 00 81 N_GROUP_DATA_req
BAOS: 3E BC FF FF 00 01 E1 00 81 N_GROUP_DATA_con

After sending a N_GROUP_DATA_req the application must wait for a N_GROUP_DATA_con before it
sends the next N_GROUP_DATA_req.

PC BAOSN_GROUP_DATA_con

N_GROUP_DATA_req

Figure 10.4. EMI2 telegram flow control

The services have to be packed in FT1.2 frames. Here are some examples:

 A6 01 40 00 00 PC_SET_VAL_req

As FT1.2:

68 06 06 68 73 | A6 01 40 00 00 | 5A 16

or

68 06 06 68 53 | A6 01 40 00 00 | 3A 16

Example:

 A9 00 12 84 56 78 9A PEI_SWITCH_req

As FT1.2:

68 08 08 68 73 | A9 00 12 84 56 78 9A | 1A 16

or

Group Telegram Communication On Link Layer

61

68 08 08 68 53 | A9 00 12 84 56 78 9A | FA 16

Some more example for EMI2 uses:

Reset from Bus:

C0 FT12_RESET_IND

Send Reset to the interface:

A9 C0 12 34 56 78 9A PEI_SWITCH_REQ

Redirect NL group telegrams and user date to PEI

A9 00 12 84 56 78 8A PEI_SWITCH_REQ

Receiving of group telegrams (example)

3A BC 11 01 00 01 E1 00 81 EMI2_N_GROUP_DATA_IND

Sending of group telegrams (example)

22 0C 00 00 00 01 E1 00 81 EMI2_N_GROUP_DATA_REQ

Confirm frame

3E BC FF FF 00 01 E1 00 81 EMI2_N_GROUP_DATA_CON

10.5. Group Telegram Communication On Link Layer
It is also possible to go deeper into the communication stack and use telegrams on the Link Layer. The
same steps are necessary as for using the Network Layer.

First we have to switch on the correct internal message routing via PEI message (PC_SET_VAL_req).
Then we can send/receive some telegrams (L_DATA_req/L_DATA_con/L_DATA_ind). At last we
disable the PEI routing (PC_SET_VAL_req).

To receive any messages send the following EMI2 messages:

Disable group address filter of module

PC: A6 01 40 00 00 PC_SET_VAL_req

This means to write 0x00 at location 0x4000 which holds the address table length. This is a non
volatile value, so the data is stored also on power down.

Switch to Link Layer Group

Chapter 10. Message Protocol EMI

62

PC: A9 00 18 34 56 78 9A PEI_SWITCH_req

With this setting the module sends all telegrams to the own application. This setting is lost after a
power down.

Receive Telegrams

BAOS: 29 BC 11 01 00 01 E1 00 80 L_DATA_ind
BAOS: 29 BC 11 01 00 01 E1 00 81 L_DATA_ind

Send Telegrams

PC: 11 0C 00 00 00 01 E1 00 80 L_DATA_req
BAOS: 4E BC FF FF 00 01 E1 00 80 L_DATA_con

PC: 11 0C 00 00 00 01 E1 00 81 L_DATA_req
BAOS: 4E BC FF FF 00 01 E1 00 81 L_DATA_con

After sending a L_DATA_req the application must wait for a L_DATA_con before it sends the next
L_DATA_req. See Figure 10.4, “EMI2 telegram flow control”.

The services have to be packed in FT1.2 frames. Here is an example:

 A9 00 18 34 56 78 9A PEI_SWITCH_req

As FT1.2:

68 08 08 68 73 | A9 00 18 34 56 78 9A | 1A 16

or

68 08 08 68 53 | A9 00 18 34 56 78 9A | FA 16

Some more example for EMI2 uses:

Redirect LL group telegrams and user date to PEI

A9 00 18 34 56 78 8A PEI_SWITCH_REQ

Receiving of group telegrams (example)

29 BC 11 01 00 01 E1 00 81 EMI2_L_DATA_IND

Sending of group telegrams (example)

11 0C 00 00 00 01 E1 00 81 EMI2_L_DATA_REQ

Group Telegram Communication On Link Layer

63

Confirm frame

2E BC FF FF 00 01 E1 00 81 EMI2_L_DATA_CON

64

Chapter 11.

65

Programming The Base Board
This distribution contains an example application software which handles some push buttons and
some LEDs. Its sources are also provided which can be used as starting point for developing own
applications. Basic knowledge in programming in C language is assumed.

The source is written in C suitable for the free available WINAVR (GNU) compiler. It will support you in
creating own applications based on the ATmega microcontroller. For information about this controller,
see

Atmel 8-bit Microcontroller with 128KBytes In-System Programmable Flash ATmega128A 1

or

Atmel 8-bit Microcontroller with 4/8/16/32KBytes In-System Programmable Flash ATmega328 2.

11.1. Additional Hardware
To program the Base Board the following additional hardware, besides a KNX installation is needed:

• A JTAG interface (like AVR JTAGICE3) to program the board.

• A PC which has installed Atmel Studio 6.1 and ETS 4

11.2. Installation Of IDE And Compiler
To work with the ATmega you need an interface between PC and the Base Board. We recommend
the AVR JTAGICE3, which is available at the Atmel web site 3. Download the following free programs,
which are not included here due to license restrictions:

Atmel Studio is the IDE (integrated development environment) based on Microsoft Visual Studio. It
is available for free at the Atmel web site4. It uses the compiler set WINAVR (GNU). If you already
installed Atmel Studio or AVRStudio make sure you have at least version 6.1.7601 - Service Pack 1.

11.3. First Debugging Steps
Connect the JTAG interface to the Base Board and the hardware debugger (e. g. JTAGICE3). The
debugger is connected to the PC. Furthermore connect the BAOS Module to the KNX bus. The
Development Board needs its power at the USB interface. Connect it to any PC.

The following figure shows the hardware build-up.

1 http://www.atmel.com/Images/doc8151.pdf
2 http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-
ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet.pdf
3 http://www.atmel.com/tools/jtagice3.aspx
4 http://www.atmel.com

http://www.atmel.com/Images/doc8151.pdf
http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet.pdf
http://www.atmel.com/tools/jtagice3.aspx
http://www.atmel.com
http://www.atmel.com/Images/doc8151.pdf
http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet.pdf
http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet.pdf
http://www.atmel.com/tools/jtagice3.aspx
http://www.atmel.com

Chapter 11. Programming The Base Board

66

Figure 11.1. Hardware build-up

In this figure, the KNX bus is provided by the KNX BASIC-LINE. It consists of a power supply and a
KNX USB Interface.

Now start Atmel Studio and open the project DevBoardSoftware.atsln. Select menu Build →
Configuration Manager and check the correct project for build:

Project Configuration Platform Build

DemoBoardSoftware Debug AVR check this in case of the DemoBoard

DevBoardSoftware Debug AVR check this in case of the DevelopmentBoard

Important

Check only one Project for build.

First Debugging Steps

67

Figure 11.2. Atmel Studio configuration

Exit dialog by clicking Close and select the correct project in the Solution Explorer (located at the
right position). Select Project → Set as StartUp Project and Project → Properties. Check whether
everything is configured correctly:

Tab Parameter Development Board Demo Board

Device Device Name ATmega128A ATmega328

Tool Selected debugger/
programmer

JTAGICE3 (or similar) JTAGICE3 (or similar)

Interface JTAG debugWIRE

Programming settings Erase only program area or
Erase entire chip

Erase only program area or
Erase entire chip

Now build the demo application with menu Build → Build Solution and start it with menu Debug →
Start Debugging and Break.

Chapter 11. Programming The Base Board

68

Important

At this point it might be possible a dialog window pops up telling Failed to launch debug
session with debugWIRE. [...] Do you want to use SPI to enable the DWEN fuse? In this
case press the Yes button and follow the instructions.

A few seconds later the application starts running at the Base Board and stops at the entrance of the
main() function:

int main(void)
{ <= EXECUTION STOPS HERE
 App_Init();

 while(TRUE)
 {
 App_Main();
 }

 return 0;
}

Now we can go through the program step by step using the keys F10 and F11. To continue the
program use F5 again.

Note

If you have problems programming the device via ISP, it's likely the FUSE bits are incorrect.
Resetting them might also fail. In this case it is necessary to start a debug session with
DebugWire. Enter an AtmelStudio project and select menu Project → Properties.... There select
Tool, JTAGICE3, Interface debugWire and start debugging (F5). While running in a debug
session select menu Debug → Disable debugWire and Close. This closes the current debug
session and sets the FUSE bit for enabling the ISP interface. Now enter the Tools → Device
Programming and use ISP interface to manipulate the FUSE bits, program the device, etc.

11.4. The Application Framework
To see the anatomy of the demonstration application see Chapter 6, The Application Framework.

11.5. Creating Own Applications
To make your own application see Section 6.1, “Creating Own Applications”.

69

Appendix A. About KNX
The standardized bus system KNX plays a more and more important role in building automation. A lot
of devices use this protocol.

In general the KNX system is a bus system for building control. All connected devices are
communicating over the same bus. The information is transported via a communication stack which
conforms to the OSI model1. Every single device connected to this bus has its own microcontroller on
board. There is no central control device. The bus is structured completely decentralized.

One main advantage of this design is fault tolerance. An error within one device has no further effects
on the others. All connected participants are operating independently.

Connected to the KNX bus are sensors and actuators. The sensors are generating telegrams. The
actuators receive these messages and act accordingly. It's also possible to use a sensor which is also
an actor. So it's possible to send and receive data.

A minimum TP1 KNX installation consists of the following components:

• a KNX power supply (PS) unit containing a choking coil (Ch)

• bus devices (DVC): some sensors (at least one)

• bus devices (DVC): some actuators (at least one)

A more complex KNX installation has additionally the following components:

• Line coupler (LC) to connect more devices (DVC) to an area line.

• Backbone coupler (BC) to connect more area lines.

The KNX bus in its maximum expansion can hold many devices. The topology is basically like this:

1 http://en.wikipedia.org/wiki/Iso_osi

http://en.wikipedia.org/wiki/Iso_osi
http://en.wikipedia.org/wiki/Iso_osi

Appendix A. About KNX

70

Figure A.1. KNX basic topology

A.1. KNX Twisted Pair Bus System
The KNX twisted pair bus system (KNX TP) provides to all connected devices data and the operating
voltage over the same two-wire line. The nominal bus voltage is 29 volts. The operating range of the
bus devices are located between 21 and 29 volts.

The bus transfer rate is 9600 bit/s respective about 50 telegrams per second transfer rate.

A.2. KNX Twisted Pair Telegrams
The information exchange between KNX devices is based on telegrams. A telegram is a clear defined
sequence of bytes. It is segmented in several fields. Here is a standard connection less KNX telegram.
A standard connection less telegram is mainly used for data exchange between KNX devices (sensors
and actors). Connection oriented telegram are generally used for downloads by the ETS. Standard
telegram have a data length up to 15 bytes. For more data an extended frame is used.

KNX Twisted Pair Telegrams

71

Address type:
0 = Individual Adr.
1 = Group Adr.

Byte 0 Byte 1

Source adr.
Line: 0-15

01234567 01234567
Byte 2 Byte 3

Byte 4 Byte 5

Source address
Device: 0-255

Group. adr.
Main: 0-31

Group address
Group: 0-255

Grp. adr.
Mid.: 0-7

01234567 01234567

01234567 01234567
Routing
counter

Data len.
1-15

Byte 6 Byte 7

Byte 8 Byte n

01234567 01234567

01234567 01234567

TPCI
Sequence

0-15
APCI

extended
APCI or data

Information data
(0 - 14 bytes)

...
01234567

Byte n+1

Checksum
(bytes 0-n)

KNX Frame

KNX Frame

KNX Frame

Source adr.
Area: 0-15

KNX control field

Ind. adr.
Area: 0-15

Ind. adr.
Line: 0-15

Ind. address
Device: 0-255

Figure A.2. KNX standard connection less telegram frame

The fields of this telegram are:

The KNX control field has the following information:

• Bit #0: EMI2 network layer access:

0 = Positive confirmation

1 = Negative confirmation

• Bit #1: EMI2 link layer access:

0 = Don't care

1 = no L2 acknowledge requested

• Bit #2-3: Priority:

00 = System priority (System functions)

01 = Urgent priority (Alarm functions)

10 = Normal priority (High prioritized functions)

11 = Low priority (Low prioritized functions)

• Bit #4: unused, must be 1

• Bit #5: Repeat flag:

0 = repeated L_Data_Standard frame

1 = not repeated L_Data_Standard frame

0 = in case of an Acknowledge frame

Appendix A. About KNX

72

1 = in case of L_Poll_Data frame

• Bit #6: Poll data/data:

0 = L_Data frame

1 = L_Poll_Data frame

• Bit #7: Frame type:

1 = L_Data_Standard frame

0 = L_Data_Extended frame

The source address describes the sender address (individual address).

The group address determines which bus devices will receive the telegram. The target address is
a group address, which can address many devices at the same time. Byte #5, bit #7 determines the
address type: 1 = group address.

The individual address determines which bus devices will receive the telegram. The target
address is an individual address, which addresses exactly one device. Byte #5, bit #7 determines the
address type: 0 = individual address.

For more info about addressing, see Section A.4, “Addressing Modes”.

The routing counter determines how many hops remain. The counter is decremented every time a
frame passes a coupler. At the value 0 the frame will be removed.

The data length field describes the number of information bytes in this frame (starting at byte #7).

The transport protocol control information (TPCI) is a code from the transport layer.

The sequence number is part of the TPCI. It is used for connection oriented frames (e. g. ETS
download).

The application protocol control information (APCI) is a code from the application
layer.

The extended application protocol control information (APCI) is a code from
the the application layer. But it can also contain information data. This is the case for ValueWrite
telegrams. In this case the remaining information data bytes are not necessary and are skipped.

The information data are the telegram payload. The size of this field can range from zero to 14
bytes. In case of zero bytes the extended APCI can hold the data.

The checksum validates the frame. I is calculated by xor'ing all bytes and at last by 0xFF: chksum =
b0 xor b1 xor b3 xor ... xor bn xor 0xFF.

For more information see KNX System Specifications/03_02_02 Communication Medium
TP 1 available at the KNX Specifications page2.

A.3. Telegram Timings
When an event occurs (e. g. push-button is pressed), the bus device sends a telegram to the bus.
The transmission starts after the bus has been unoccupied for at least the time period t1. Once the

2 http://www.knx.org/knx-en/knx/technology/specifications/index.php

http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php

Addressing Modes

73

transmission is complete, the telegram must be acknowledged (ACK) after time t2. All addressed bus
devices acknowledge the receipt of the telegram simultaneously.

Telegram
(ca. 8 - 20 ms)

t1
(ca. 5 ms)

anything Ack.

t2
(ca. 1.35 ms)

Figure A.3. KNX Telegram Timing

A.4. Addressing Modes
KNX provides mainly three different addressing modes.

• An individual address must be unique within a KNX installation. A device is addressed this way
while configuring it via ETS.

Byte 0

Line: 0-15

01234567
Byte 1

Device: 0-255

01234567

Area: 0-15

Figure A.4. Individual Address Frame

• Communication between devices in an installation is carried out via group addresses.

The default in ETS4 is a 3-level (main group/middle group/subgroup) structure.

Byte 0

Main: 0-31

01234567
Byte 1

Sub: 0-255

01234567

Mid: 0-7

Figure A.5. 3-Level Group Address

• The group address 0/0/0 is reserved for broadcast messages. This message is for all available bus
devices and is used for downloading an individual address.

A.5. Data Point Types
The data point types describe the size, the value range and its representation of information data. The
most common types are:

Type ID Name Encoding (Representation) Value range Size
(bits)

boolean 1.001 DPT_Switch 0 = Off, 1 = On 0 - 1 1

1.007 DPT_Step 0 = Decrease, 1 = Increase 0 - 1 1

1.008 DPT_UpDown 0 = Up, 1 = Down 0 - 1 1

Appendix A. About KNX

74

Type ID Name Encoding (Representation) Value range Size
(bits)

uint4 3.007 DPT_Control_Dimming 0x08 - 0x0F = Increase, 0x01 -
0x07 = Decrease, 0x00 = Stop
dimming

0x00 -
0x0F

4

uint8 4.001 DPT_Char_ASCII 0 - 127 = ASCII Character 0x00 -
0x7F

8

4.002 DPT_Char_8859_1 0 - 255 = Latin 1 Character
(ISO 8859.1)

0x00 -
0xFF

8

5.001 DPT_Scaling 0 - 255 = Scaling in Percent
(128 = 50%)

0x00 -
0xFF

8

5.004 DPT_Percent_U8 0 - 255 = Scaling in Percent
(0% - 255%)

0x00 -
0xFF

8

int8 6.001 DPT_Percent_V8 -128 - 127 = Relative value in
Percent (-128% - 127%)

0x00 -
0xFF

8

6.010 DPT_Value_1_Count -128 - 127 = Counter pulse 0x00 -
0xFF

8

uint16 7.001 DPT_Value_2_Ucount 0 - 65535 = Counter value 0x0000 -
0xFFFF

16

int16 8.001 DPT_Value_2_Count -32768 - 32767 = Counter
value

0x0000 -
0xFFFF

16

8.010 DPT_Percent_V16 -32768 - 32767 = Value in
percent (-327.68% - 327.67%)

0x0000 -
0xFFFF

16

float16 9.001 DPT_Value_Temp -273 - 670760 = Temperature
value (Celsius)

-671088.64
-

670760.96

16

uint32 12.001 DPT_Value_4_Ucount 0 - 4294967295 = Counter
value

0x00000000
-

0xFFFFFFFF

32

int32 13.001 DPT_Value_4_Count -2147483648 - 2147483647 =
Counter value

0x00000000
-

0xFFFFFFFF

32

For more info see KNX System Specifications/03_07_02 Datapoint Types available at the
KNX Specifications page3.

3 http://www.knx.org/knx-en/knx/technology/specifications/index.php

http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php

75

Appendix B. Commissioning With ETS
ETS (Engineering Tool Software) is a manufacturer independent configuration tool software to design
and configure intelligent home and building control installations with the KNX system. It is also
necessary for configuring the BAOS Module. ETS runs on computers using the Microsoft Windows
operating system.

B.1. Install ETS
It can be downloaded from the KNX download page1. Version 4 suits fine for working which the BAOS
Module.

After downloading the executable file, start it (double click) and follow the install instructions.

B.2. Install ETS License
A license is also necessary to run ETS. The free demo license allows 3 devices per project. If more
are needed, we recommend to do the eCampus2 training to get a Lite license which allows up to 20
devices. The full license is available at the KNX Online Shop.

The demo license is installed automatically. If you have another license, like the Lite one, install it as
follows:

Copy the license file (.lic) to any
location on your local disk.

Start ETS.

The first screen shows
an overview with Version
Information. There is a button
named Licensing.... Push this
button and a dialog window
opens showing the installed
licenses.

1 http://www.knx.org/knx-tools/ets4/download
2 http://wbt4.knx.org

http://www.knx.org/knx-tools/ets4/download
http://wbt4.knx.org
http://www.knx.org/knx-tools/ets4/download
http://wbt4.knx.org

Appendix B. Commissioning With ETS

76

Use the Add menu to load more
licenses. A file browser will
appear. Use it to choose your
new license.

B.3. Create A Database
ETS needs a database to store all data like projects and products. So it is necessary to create a
database. This must be done only once.

Click on the button New
database at the left side to create
a new database on your local
disk.

B.4. Import A Project
To do the first steps in ETS using the Development/Demo Board connect it as described above to the
KNX bus. Don't forget to connect the PC to a KNX Interface, too. After powering up the board, start
ETS and import the test project included in this package:

Import Projects

Next (to skip the information
page).

Select the file to import:
KnxBAOS_Demo/
KnxBAOS_Demo_ETS_MT/ Test
Project KnxBAOS_082x_Demo
Product.pr5.

Next;

Next (skip conversion);

Next (import Test Project
KnxBAOS_082x_DemoProduct).

Import;

After a while Close Wizard.

Now open the new Project by
double-clicking it.

Import A Product

77

B.5. Import A Product
Importing an already prepared project usually contains some products, i. e. KNX devices.
Nevertheless it is necessary to import some more products into the catalog. If there is a product in in
the catalog missing, contact the manufacturer for the data to import into the catalog. Sometimes the
products can be downloaded from their sites.

This package also contains the product file for the 0820/0822 BAOS Modules. To import it, do the
following:

Import Products

Next (to skip the information
page).

Select the file to import:
KnxBAOS_Demo/
KnxBAOS_Demo_ETS_Projects/
KNX_BAOS_82x_87x.knxprod.

Next;

Next (skip conversion);

Next (import KNX BAOS 82x
87x).

Next (to skip the information
page).

Select the languages to import.

Next.

Import;

After a while Close Wizard.

Now open the Catalogs by
clicking it and verify if the product
has been inserted.

Appendix B. Commissioning With ETS

78

Note

A product in ETS is a certain device from a certain manufacturer. It is digitally signed, so it
cannot be manipulated. To test an own product which is not certified by the ETS and thus the
KNX organization, the following must be done. Create a product with the Manufacturing Tool
and save it in a test project. A project normally contains the complete information about a fully
commissioned building with all its KNX devices and their connections. The test project will contain
only one uncertified device which can be used for testing purposes. This device can be copied
from this test project to other projects but it cannot be installed into the product catalog.

B.6. Open A Project
To open an existing project, do the following:

Click Projects and select the
project you want to open. Click
Open to open it.

B.7. Commissioning A Project
After importing the Test Project KnxBAOS_082x_DemoProduct.pr5 and opening it (or creating
a new project) we can commission the project and configure the KNX devices.

We have an empty project
now which only contains the
KnxBAOS_082x_DemoProduct.
It is located in the tree at All
Devices. Go there, click this
device and select Parameters
in the neighboring window:

Commissioning A Project

79

Select Lighting Sensor and
change its function to Switch.
Do the same with Lighting
Actuator.

Select Group Objects. We see
two Group Objects:

1 Switch on/off
3 Switch on/off

To actually use the device we
must create a valid Topology.

Select Topology in the tree
and click right mouse
button. Choose Add: Areas
and enter a name in the dialog (e.
g. Backbone).

Choose the newly created area
with right mouse button and
Add: Lines. Enter a name (e. g.
First Line).

Drag and drop the
KnxBAOS_082x_DemoProduct
to the newly created line.

Appendix B. Commissioning With ETS

80

To configure the device select
Group Addresses in the tree
and click right mouse
button. Choose Add: Main
Groups and enter a name in the
dialog (e. g. Story 01).

Choose the newly created group
with right mouse button and
Add: Middle Groups. Enter a
name (e. g. Room 101).

Again choose the newly created
Middle Group with right mouse
button and Add: Group
Addresses. Enter a name (e. g.
Lights).

To connect the
Group Objects click
KnxBAOS_082x_DemoProduct
and drag and drop its Group
Objects into Group Address
Lights.

B.8. Download A Configuration
To finalize the configuration of some KNX devices these devices must be selected and the
configuration downloaded:

Download A Configuration

81

Select the device
KnxBAOS_082x_DemoProduct
with right mouse button
and Download → Download All.
Press the Learn button on the
Board (red LED must light up
briefly).

82

83

Appendix C. Using Net'n Node

The package includes the program Net'n Node. With this program you can communicate with the
BAOS Module without ETS. Install it and connect the PC to the KNX bus via bus interface, e. g. KNX
USB Interface 0311. (Available at Weinzierl web site1)

Net'n Node can be found in the directory NetnNode. It contains an MSI installation archive for MS
Windows. Simply double click it and follow the installation instructions.

Important

To run Net'n Node a license file is required. It can be obtained from support@weinzierl.de .

Note

Net'n Node uses a local network connection. If you get a Windows Security Warning (firewall),
click on Allow access. No data will be sent over the Internet.

Now choose your bus interface by hitting the button Add Port. A pop up menu appears with several
options. Depending on your connection to the KNX bus choose the applicable one. Commonly it is
KNX via USB.

Activate the bus interface by clicking the button ON and configure the interface by clicking the Setup
button in the tool bar. This opens a dialog window containing some parameters. Check and alter
Address Table Length. It must contain 00 hex and click Close. The Address Table acts as filter for all
telegrams. Only telegrams matching the Address Table are displayed. Setting the length to 0 disables
the filtering.
Make sure to select Link Layer to see messages in the monitor.

Now to display the telegrams in the monitor, which are sent by the BAOS Module, choose the menu
item File → New Telegram List → Standard. A new telegram window appears containing the current
telegrams which are sent via KNX bus.

If the buttons are pressed on the board, Net'n Node shows the telegrams sent by the device. At the
right hand side of the table the values can be read. The current address of our BAOS Module is shown
in the source address (Src-Addr) column of the table.

Net'n Node is also capable of creating and sending own telegrams. To send one to the device proceed
as follows. Select the menu Send KNX → KNX Interworking Datapoint Types → DPT 01 - Binary - 1

1 http://www.weinzierl.de

http://www.weinzierl.de
mailto:support@weinzierl.de
http://www.weinzierl.de

Appendix C. Using Net'n Node

84

bit. This opens a dialog window where we can select the content of our telegram. Set the address type
to Dec 3L and enter the correct Destination Group Address which is per default 0/0/1. Select True/
On in the Data area and click the button Send. The LED should light up. Simultaneously the telegrams
of the KNX bus are shown in the telegram view.

Now close the dialog and exit Net'n Node to free the resources for other tools like ETS.

Note

It is also possible to use the Busmon as Layer. In this case all telegrams on the KNX bus are
visible in the Telegram List as they are on the bus. In this mode no routing and filtering is done
since these things are done in the upper layers.

Selecting Link Layer shows all telegrams from the link layer and enables to edit and send a self
made telegram.

85

Appendix D. Individual ETS Entries
To create own individual ETS entries the following is required:

1. The KNX Manufacturer Tool (MT4)1 and a valid license.

2. The KNX Engineering Tool Software (ETS4)2 and a valid license.

3. This Weinzierl KNX BAOS Development Kit.

4. KNX BAOS client software (included in this development kit).

The MT4 is used to define and create own Object Lists, Parameters and group objects for ETS. The
result of this tool is a test project containing the product.

This test project can be used while development. After development it can be registered and a product
is derived from this project.

To achieve this the following is required:

1. KNX membership

2. ISO 9001 certification

3. Certification of the product

Facts good to know about the BAOS Module for working with MT4:

Profile Class System 7

Interface Serial asynchronous

Protocol FT 1.2 based

Address Table starting at address 0x4000

Association Table starting at address 0x4200

ComObjects Table starting at address 0x4400, 250 pre-defined

Parameters starting at address 0x4900, 250 parameters each 1 byte

GO number DPT Length

0 not available not available

1 ... 32 01, 02, ... 18 1 bit ... 14 bytes

33 ... 250 01, 02, ... 15, 17, 18 1 bit ... 4 bytes

1 http://www.knx.org/knx-tools/manufacturer-tool/description
2 http://www.knx.org/knx-tools/ets4/description

http://www.knx.org/knx-tools/manufacturer-tool/description
http://www.knx.org/knx-tools/ets4/description
http://www.knx.org/knx-tools/manufacturer-tool/description
http://www.knx.org/knx-tools/ets4/description

Appendix D. Individual ETS Entries

86

Note: Group Object vs. Communication Object

The terms Group Object and Communication Object are synonyms. Communication Object is
used in Manufacturer Tool, ETS and other tools. Group Object is the only term used in the rest
of the KNX specifications and is therefore considered as the only correct one. Both terms will
however be used here because it is here were practice and theory meet. Communication Object
will only be used when absolutely necessary, e. g. in the context of Manufacturer Tool.

D.1. Example For Creating An Individual ETS Database
To create a database, start MT4 and do the following:

D.1.1. Project
• Create a new project by selecting menu File+New → Project..., select KNX MT Project, browse for

a location to store the project, enter a name (e. g. KnxBAOS_082x_DemoProduct) and hit OK.

• In the dialog window it is recommended to select ETS 3.0f since a lot of users still use ETS3. For
manufacturer select either your own name or M-00FA KNX Association and hit OK.

D.1.2. Create New Application
• Now it is necessary to create an application. This describes the configuration of the BAOS Module.

Click the project name in the Solution Explorer (KnxBAOS_082x_DemoProduct) and use
the menu Project → Add New Item..., select Application Program, edit its name (e. g.
KnxBAOS_082x_DemoApp.mtxml) and hit Add. Enter values in the dialog window:

Application Number: 0001h
Application Version: 10h
Name: KnxBAOS_082x_DemoApp
Mask Version: [0701h] 7.1

and hit OK.

D.1.3. Create New Hardware
• The product is not only a software application. It is also a hardware which we must add, too.

Click the project name in the Solution Explorer (KnxBAOS_082x_DemoProduct) and use the menu
Project → Add New Item..., select Hardware, edit its name (e. g. KnxBAOS_082x_DemoHw.mtxml)
and hit Add. Enter values in the dialog window:

Serial Number: SN2014.01.07.001
Version Number: 0100h
Hardware Name: KnxBAOS_082x_DemoHw

and hit OK.

Binary Import

87

• Link the hardware to the application: Open the hardware by double clicking its name in the Solution
Explorer. In the newly opened tab select the hardware name (the name containing the serial
number). Use right mouse button menu Add new Hardware2Program and select the application
program [0001 10] KnxBAOS_082x_DemoApp. Choose the correct medium type (e. g. TP) and
hit OK.

D.1.4. Binary Import
• Edit the application by selecting the application tab and then its name (e. g.
KnxBAOS_082x_DemoApp). Use right mouse button menu Import binary data, browse to the s19-
File which is also provided in this package (e. g. KnxBAOS_Module_2010_09_21.s19) and open
it. Select Add ComObjects and hit OK.

This adds a code segment to the application. Check this by selecting the application window and
unfold the tree until the static entry shows its children. There is a Code Segments entry. Click it and
see the table. It contains memory regions for the following purposes (see other entries at same tree
level):

Address Table: 4000h, size 01FFh
Association Table: 4200h, size 01FFh
ComObjects: 4400h, size 0408h
 Object 0... 32: 14 bytes size
 Object 33...250: 4 bytes size
 Object 251...254: 1 bit size
ComObjectsRefs:
 Object 0... 32: 14 bytes size
 Object 33...250: 4 bytes size
 Object 251...254: 1 bit size

Load Procedures/Complete:
1. Connect

2. Unload lsm=#01h (Address Table)

3. Unload lsm=#02h (Association Table)

4. Unload lsm=#03h (Application Program)

5. Load lsm=#01h (Address Table)

6. AbsSegment lsm=#01h, type=00h, addr=4000h, ... (Address Table)

7. TaskSegment lsm=#01h, addr=4000h (Address Table)

8. LoadCompeted lsm=#01h (Address Table)

9. Load lsm=#02h (Association Table)

10. AbsSegment lsm=#02h, type=00h, addr=4200h, ... (Association Table)

11. TaskSegment lsm=#02h, addr=4200h (Association Table)

12. LoadCompeted lsm=#02h (Association Table)

13. Load lsm=#03h (Application Program)

14. AbsSegment lsm=#03h, type=00h, addr=0700h, ... (Application Program)

Appendix D. Individual ETS Entries

88

15. AbsSegment lsm=#03h, type=00h, addr=4400h, ... (Application Program)

16. AbsSegment lsm=#03h, type=00h, addr=4810h, ... (Application Program)

17. AbsSegment lsm=#03h, type=00h, addr=4900h, ... (Application Program)

18. AbsSegment lsm=#03h, type=00h, addr=4E00h, ... (Application Program)

19. TaskSegment lsm=#03h, addr=4800h (Application Program)

20. TaskCtrl1 lsm=#03h, addr=0000h, count=00h (Application Program)

21. LoadCompeted lsm=#03h (Application Program)

22. Restart

23. Disconnect

Binary Import

89

4000: Number of entries

Byte 0
01234567

Ind. adr.
Area: 0-15

Ind. adr.
Line: 0-15

Byte 1
01234567

Ind. address
Device: 0-255

Byte 0

Group. adr.
Main: 0-31

Grp. adr.
Mid.: 0-7

01234567
Byte 1

Group address
Group: 0-255

01234567

Address Table:

4001: Individual Address

4003: Group address #1

4005: Group Address #2

4007: Group address #3

4009: Group Address #4

400b: etc.

4000: 06 6 entries

Example:

4001: 13 02 Individual Address: 1.3.2

4003: 15 0d Group address #1: 2/5/13

4005: 15 0e Group Address #2: 2/5/14

4007: 15 0f Group address #3: 2/5/15

4009: 1a 01 Group Address #4: 3/2/1

400b: 1a 02 Group address #5: 3/2/2

Individual Address

Group Address

4200: Number of entries

Association Table:

4201: Index into Address Table | ComObject #

4203: Index into Address Table | ComObject #

4200: 07 7 entries

Example:

4201: 04 01 AT entry #4 | Object #1

4203: 05 02 AT entry #5 | Object #2

4205: Index into Address Table | ComObject #

4207: Index into Address Table | ComObject #

4209: Index into Address Table | ComObject #

420b: Index into Address Table | ComObject #

4205: 04 05 AT entry #4 | Object #5

4207: 05 06 AT entry #5 | Object #6

4209: 03 07 AT entry #3 | Object #7

420b: 01 05 AT entry #1 | Object #5

420d: 02 06 AT entry #2 | Object #6420d: etc.

Byte 0
01234567

Index into
Address Table

Byte 1
01234567

ComObject
number

4400: Number of ComObjects

ComObjects:

4401: Pointer to RAM flags

4403: ComObject #0 (not used)

4400: ff 255 ComObjects

Example:

4401: 0c 28 RAM flags at 0c28

4403: 07 00 03 0e unused

4407: ComObject #1 | flags | length

440b: ComObject #2 | flags | length

440f: ComObject #3 | flags | length

4407: 07 00 db 00 ptr to 0700 | UTWR lo | 1 bit

440b: 07 0e df 03 ptr to 070e | UTWRE lo | 4 bit

440f: 07 1c df 00 ptr to 071c | UTWRE lo | 1 bit

4413: etc. 4413: etc.

Flags
01234567

U

Length
01234567

Length of
ComObject

Pointer High
01234567

Pointer Low
01234567

pointer to
ComObject

Association entry

ComObject entry

T 0 W R E Prio

0700: ComObject #1 values

ComObj. values (RAM):

07xx: ComObject #2 values

07xx: ComObject #3 values

0700: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 Bit value = 0

Example:

070e: 09 00 00 00 00 00 00 00 00 00 00 00 00 00 4 Bit value = 9

071c: 01 00 00 00 00 00 00 00 00 00 00 00 00 00 1 Bit value = 1

07xx: etc.

xxxx: RAM flags

072a: etc.

0c28: 00 00 00 00 00 00 00 00 00 00 00 ... 1 Byte per ComObject

points to entry #4 (3/2/1)

points to ComObject #2

Figure D.1. System 7 Virtual Memory

Appendix D. Individual ETS Entries

90

The ComObject flags have the following information:

• Bit #0-1: Priority:

00 = System priority (System values)

01 = Urgent priority (Alarm values)

10 = Normal priority (High prioritized values)

11 = Low priority (Low prioritized values)

• Bit #2: ComObject (Data Point) enabled:

0 = disabled

1 = enabled (i.e. linked by ETS to group address)

• Bit #3: Read via bus:

0 = Value is not readable (use this as default)

1 = Value is readable from bus (use this only if you want to use GroupValueRead requests)

• Bit #4: Write via bus:

0 = Value is not writable

1 = Value is writable from bus

• Bit #5: unused, must be 0

• Bit #6: Transmit (send):

0 = Changed value will not be sent to the bus

1 = Changed value will be sent to the bus

• Bit #7: Update (from response frame, not used in current devices):

0 = Value will not be changed by a response frame from the bus (use this as default)

1 = Value will be changed by a response frame from the bus

The ComObject length has the following information:

Value Length Value Length

0 1 bit 7 1 byte

1 2 bits 8 2 bytes

2 3 bits 9 3 bytes

3 4 bits 10 4 bytes

4 5 bits 11 6 bytes

5 6 bits 12 8 bytes

6 7 bits 13 10 bytes

14 14 bytes

15 variable length

Create Visible Data Points

91

The ComObject RAM flags are for run time use. Each ComObject has one byte. This byte indicates
whether everything is OK, an error occurred, a transmission is in progress, etc.

4900: Parameter #1

Parameters:

4901: Parameter #2

4902: Parameter #3

4900: 00

Example:

4901: 00

4902: 00

4903: etc. 4903: etc.

4e00: DataPointType #0 (not used)

ComObject Data Types:

4e01: DataPointType #1

4e02: DataPointType #2

4e00: 00

Example:

4e01: 01

4e02: 03

4e03: etc. 4e03: etc.

Figure D.2. Virtual Memory: Parameters and ComObject Data Types

The Parameters are application specific. Each parameter is one byte. They can be changed via
ETS. The application can use the BAOS protocol to read the values.

In case of the BAOS Module the following parameters are used:

Address Usage

4900 Not used

4901 Switch: 0 = disabled, 1 = switch, 2 = dimmer, 3 = shutter

4902 Light: 0 = disabled, 1 = switch, 2 = dimmer

4903 - 49ff Not used

The ComObject Data Types determine the data point types as it is done by the ETS. These values
are used by the BAOS ObjectServer. For each ComObject the data point type is determined by one
byte. The values are as follows:

Value Data Type Value Data Type

0 Disabled 10 Time - 3 bytes

1 Binary - 1 bit 11 Date - 3 bytes

2 Binary controlled - 2 bits 12 Unsigned value - 4 bytes

3 Dim up/down - 4 bits 13 Signed value - 4 bytes

4 Character - 1 byte 14 Float value - 4 bytes

5 Scaling - 1 byte 15 Access data - 4 bytes

6 Signed value - 1 byte 16 Character string - 14 bytes

7 Unsigned value - 2 bytes 17 Scene - 1 byte

8 Signed value - 2 bytes 18 Scene controlled - 1 byte

9 Float value - 2 bytes 255 Unknown

D.1.5. Create Visible Data Points
The BAOS Module has 255 ComObjects. Due to the available memory, the first 33 Objects can use up
to 14 bytes each. The next 218 can use up to 4 bytes and the remaining 5 Objects only 1 bit.

To create a light switch which can handle one LED (switching it on/off and dimming it), we declare the
following ComObjects:

Object #1 is switch output, connected to Object #3 which is LED switching input.

Object #2 is dimming output, connected to Object #4 which is LED dimming input.

Appendix D. Individual ETS Entries

92

So Object #1 and #3 are 1 bit (DPT 1.001) and Object #2 and #4 are 4 bit (DPT 3.007).

• Define wanted data points.

Select the following ComObjects in ComObjectRefs table and edit them (The flags can only be
edited in the ComObjects table):

ComObject Text Function
Text

Object Size Data Point Type Flags

[0001h] Obj1- Switch on/off 1 Bit [1.1] DPT_Switch --CT--

[0002h] Obj2- Dim up/down 4 Bit [3.7] DPT_Control_Dimming --CT--

[0003h] Obj3- Switch on/off 1 Bit [1.1] DPT_Switch RWC---

[0004h] Obj4- Dim up/down 4 Bit [3.7] DPT_Control_Dimming RWC---

[0005h] Obj5- Dim value 1 Byte [5.10] DPT_Value_1_Ucount RWC---

The meaning of the Flags are described in Section D.1.4, “Binary Import” [90].

D.1.5.1. Button For Switching And Dimming
• Add parameter types for button.

To add parameter types for our wanted data points, select Static in the left tree and choose right
mouse button menu Add new → ParameterTypeRestriction. Enter these values in the dialog
window:

Internal Name: ButtonFunction_t

and hit OK. A variable names "ButtonFunction_t" of enum type exists now in Parameter Types. We
must add now the possible values for this type. Select ButtonFunction_t in the tree and choose
right mouse button menu Add new Enumeration Value. Enter these values in the dialog window

Text: Disabled
Value: 0000h

and hit OK. Add two more values

Text: Switch
Value: 0001h

hit OK and add the last value

Text: Dimmer
Value: 0002h

and hit OK.

Create Visible Data Points

93

• Add memory parameters.

If the left tree shows an entry Parameters or ParameterRefs, select Parameters and delete all
entries in the table. Do the same with ParameterRefs.

To add a memory parameter (i. e. parameter byte), select Static in the left tree and choose right
mouse button menu Add new → Memory Parameter. Enter these values in the dialog window:

Access: ReadWrite
Bit Offset: 00h
Code Segment: [4900]
Internal Name: Button
Offset: 0000h
Parameter Type: ButtonFunction_t
Text: Function
Create ParameterRef: True

and hit OK.

• Add two more memory parameters for each button.

To add a memory parameter, select Static in the left tree and choose right mouse button menu Add
new → Memory Parameter. Enter these values in the dialog window:

Access: None
Bit Offset: 00h
Code Segment: [4E00h]
Internal Name: DPT-Value_GO1
Offset: 0001h
Parameter Type: ButtonFunction_t
Text: DPT-Value_GO1
Create ParameterRef: True

and hit OK. Create the second parameter with theses values

Access: None
Bit Offset: 00h
Code Segment: [4E00h]
Internal Name: DPT-Value_GO2
Offset: 0002h
Parameter Type: ButtonFunction_t
Text: DPT-Value_GO2
Create ParameterRef: True

and hit OK.

• Unfold the dynamic part. Channel 1 should already be existing. If not create the channel by
selecting Dynamic and choose right mouse button menu Add new Channel. Enter Channel 1
and number 1.

If Channel 1 already contains a ParameterBlock, delete it. Select Channel 1 and choose right
mouse button menu Add new → ParameterBlock. Enter these values in the dialog window

Name: PageButton
Text: Lighting Sensor

Appendix D. Individual ETS Entries

94

and hit OK.

• Add a parameter to the ParameterBlock. Select PageButton and choose right mouse button menu
Add new → ParameterRefRef. Select Button in the dialog window and hit OK.

• Add a choice to the ParameterBlock. Select PageButton and choose right mouse button menu Add
new → Choose. Enter these values in the dialog window

Parameter: [0002h] DPT-Value_GO1
Create Default when: False

and hit OK.

Select the newly created DPT-Value_GO1 choice and choose right mouse button menu Add new
When. Enter these values in the dialog window

Default: False
Test: [0000h] Disabled

and hit OK. Add two more tests [0001h] Switch and [0002h] Dimmer.

• Add some parameters and ComObjects to the tests. The test (Disabled) does not contain anything,
so we skip to the next. Select (Switch) and choose right mouse button menu

Menu Item to select

Add new → ComObjectRefRef [0001h 0002h] Switch

Add new → ParameterRefRef [0003h] DPT-Value_GO1

Go to Static/ComObjectRefs and locate Obj1 (Switch, on/off) there. Select it and choose right
mouse button menu Copy. Choose right mouse button menu Paste. This creates a copy of Obj1. It
is located at the end of the list.

Go to Static/ParameterRefs and copy/paste DPT-Value_GO1 in the same way.

Select (Dimmer) and choose right mouse button menu

Menu Item to select

Add new → ComObjectRefRef [0001h 0100h] Switch-on/off

Add new → ParameterRefRef [0004h] DPT-Value_GO1

Add new → ComObjectRefRef [0002h 0003h] Dim-up/down

Add new → ParameterRefRef [0003h] DPT-Value_GO2

D.1.5.2. Light For Switching And Dimming
• Add parameter types for light.

To add parameter types for our wanted data points, select Static in the left tree and choose right
mouse button menu Add new → ParameterTypeRestriction. Enter these values in the dialog
window:

Create Visible Data Points

95

Internal Name: LightFunction_t

and hit OK. A variable names "LightFunction_t" of enum type exists now in Parameter Types. We
must add now the possible values for this type. Select LightFunction_t in the tree and choose right
mouse button menu Add new Enumeration Value. Enter these values in the dialog window

Text: Disabled
Value: 0000h

and hit OK. Add two more values

Text: Switch
Value: 0001h

hit OK and add the last value

Text: Dimmer
Value: 0002h

and hit OK.

• Add memory parameters.

To add a memory parameter, select Static in the left tree and choose right mouse button menu Add
new → Memory Parameter. Enter these values in the dialog window:

Access: ReadWrite
Bit Offset: 00h
Code Segment: [4900]
Internal Name: Light
Offset: 0001h
Parameter Type: LightFunction_t
Text: Function
Create ParameterRef: True

and hit OK.

• Add two memory parameters for each Light.

To add a memory parameter, select Static in the left tree and choose right mouse button menu Add
new → MemoryParameter. Enter these values in the dialog window:

Access: None
Bit Offset: 00h
Code Segment: [4E00h]
Internal Name: DPT-Value_GO3
Offset: 0003h
Parameter Type: LightFunction_t
Text: DPT-Value_GO3
Create ParameterRef: True

and hit OK. Create the second parameter with theses values

Appendix D. Individual ETS Entries

96

Access: None
Bit Offset: 00h
Code Segment: [4E00h]
Internal Name: DPT-Value_GO4
Offset: 0004h
Parameter Type: LightFunction_t
Text: DPT-Value_GO4
Create ParameterRef: True

and hit OK. Create the third parameter with theses values

Access: None
Bit Offset: 00h
Code Segment: [4E00h]
Internal Name: DPT-Value_GO5
Offset: 0005h
Parameter Type: LightFunction_t
Text: DPT-Value_GO5
Create ParameterRef: True

and hit OK.

• Create channel 2 by selecting Dynamic and choose right mouse button menu Add new Channel.
Enter Channel 2 and number 2.

Select Channel 2 and choose right mouse button menu Add new → ParameterBlock. Enter these
values in the dialog window

Name: PageLight
Text: Lighting Actuator

and hit OK.

• Add a parameter to the ParameterBlock. Select PageLight and choose right mouse button menu
Add new → ParameterRefRef. Select Light in the dialog window and hit OK.

• Add a choice to the ParameterBlock. Select PageLight and choose right mouse button menu Add
new → Choose. Enter these values in the dialog window

Parameter: [0007h] Light
Create Default when: False

and hit OK.

Select the newly created Light choice and choose right mouse button menu Add new When. Enter
these values in the dialog window

Default: False
Test: [0000h] Disabled

and hit OK. Add two more tests [0001h] Switch and [0002h] Dimmer.

Hide Unwanted Data Points

97

• Add some parameters and ComObjects to the tests. The test (Disabled) does not contain anything,
so we skip to the next. Select (Switch) and choose right mouse button menu

Menu Item to select

Add new → ComObjectRefRef [0003h 0004h] Switch-on/off

Add new → ParameterRefRef [0008h] DPT-Value_GO3

Go to Static/ComObjectRefs and locate Obj3 (Switch, on/off) there. Select it and choose right
mouse button menu Copy. Choose right mouse button menu Paste. This creates a copy of Obj3. It
is located at the end of the list.

Go to Static/ParameterRefs and copy/paste DPT-Value_GO3 in the same way.

Select (Dimmer) and choose right mouse button menu

Menu Item to select

Add new → ComObjectRefRef [0003h 0101h] Switch-on/off

Add new → ParameterRefRef [000Ah] DPT-Value_GO3

Add new → ComObjectRefRef [0004h 0005h] Dim-up/down

Add new → ParameterRefRef [0009h] DPT-Value_GO4

Add new → ComObjectRefRef [0005h 0006h] Dim-value

Add new → ParameterRefRef [000Dh] DPT-Value_GO5

D.1.6. Hide Unwanted Data Points
• To hide all unwanted data points select Dynamic and choose right mouse button menu Add new

Channel. Enter Channel 0 and number 0.

Select Channel 0 and choose right mouse button menu Add new → ParameterBlock. Enter these
values in the dialog window

Name: HiddenPage
Text: Hidden Page

and hit OK.

Create a flag for hiding the data points: create an enum type by selecting Static and choose right
mouse button menu Add new → ParameterTypeRestriction. Enter these values in the dialog
window

Base: Value
Internal Name: HideFlag_t
Size in bit: 0001h

and hit OK. Enter values for enum type by selecting its name and choose right mouse button menu
Add new Enumeration Value. Enter these values in the dialog window

Appendix D. Individual ETS Entries

98

Text: Shown
Value: 0000h

and hit OK. Add one more value

Text: Hidden
Value: 0001h

and hit OK. Create the parameter by selecting Parameters and choose right mode button menu
Add new → VirtualParameter. Enter these values in the dialog window

Access: None
Internal Name: HideFlag
Parameter Type: HideFlag_t
Text: HideFlag
Create ParameterRef: True

and hit OK.

Add this parameter to the page HiddenPage by selecting the page name and choose right mouse
button menu Add new → ParameterRefRef. Enter the parameter [000Ch] HideFlag and hit OK.

Add a choice to the HiddenPage. Choose right mouse button menu Add new → Choose. Enter
these values in the dialog window

Parameter: [000Ch] HideFlag
Create Default when: False

and hit OK.

Select the newly created HideFlag choice and choose right mouse button menu Add new When.
Enter these values in the dialog window

Default: False
Test: [0000h] Shown

and hit OK. Add one more test [0001h] Hidden.

Select ComObjectRefs, go to the list and select all items which should be invisible (item #0, #6 to
#254). Copy (right mouse button at first (empty) column) and paste them to (Hidden).

Preview The Work So Far

99

D.1.7. Preview The Work So Far
• To check the work so far, select the name of the application and choose menu View → ETS4

Preview.

Select ObjectList and change some parameters (e. g. Lighting Actuator/Function). See if the
ObjectList changes. Some entries should appear, some vanish according to our configuration in
MT4.

Figure D.3. ETS Preview

Close the preview window and continue.

This example project is also included in this package at KnxBAOS_Demo/KnxBAOS_Demo_ETS_MT.

D.1.8. Create New Product
• Create a product name by selecting the hardware name again (the line containing the serial

number). Use right mouse button menu Add new Product and enter an order number, the product's
text and hit OK.

Appendix D. Individual ETS Entries

100

• Create a catalog by selecting the project name in the Solution Explorer
(KnxBAOS_082x_DemoProduct) and use the menu Project → Add New Item..., select Catalog,
edit its name and hit Add.

Select Catalog in the newly opened tab and use right mouse button menu Add New
CatalogSection. Enter values in the dialog window and hit OK. Now the line Delete me after
creating... can be deleted.

Select the newly created entry and use right mouse button menu Add New CatalogItem. Select
your values (since we have only one hardware/program/product we cannot change anything) in the
dialog window and hit OK.

D.1.9. Export The Project
• Export project for testing

Select name of the application (e. g. KnxBaos_82x_Product) and choose menu View → ETS4
Preview and check this preview.

Build all choosing menu Build → Build Solution and create a test project using menu Edit → Create
test project. Select your catalog item and hit OK. Save the pr5-file. This is the test project which
can be imported in ETS.

• Clean up

Delete Readme.txt.

Note

A test project is needed to import the unregistered product database entry in ETS4.

D.2. Test The Individual ETS Database in ETS
To test the database, start ETS4 and do the following:

• Import the test project created by MT4 into ETS4. Select the Projects tab and Import... from the
tool bar. Follow the dialog window and load the project file.

• Open the imported project and create a topology in the Devices view: Select the new created
device and set the individual address in the Properties panel (e. g. 1.1.32). This automatically
creates the topology 2 New area and 1.1 Man line containing the device at 1.1.32.

• Create two Group Addresses in the Group Addresses view: New main group/New middle group/
On-Off and New main group/New middle group/Dimming.

• Go back to the device, view and enable all data points in the Parameters tab:

Enable both Lighting Sensor and Lighting Actuator as Dimmer.

• Drag the data points 1: Switch and 3: Switch to the group address On-Off.

Drag the data points 2: Dim and 4: Dim to the group address Dimming.

Test The Individual ETS Database in ETS

101

• Finally press the learning key on the Base Board and select Download → Download All.

Switching and dimming of the LED is possible now.

102

103

Appendix E. KNX Certification
In order to ensure compliance with the KNX system requirements, any KNX device, which:
• Has a KNX logo

• Is managed by ETS

must undergo a certification process. In this KNX certification process, the device is tested according
to the requirements of the KNX standard.

Following requirements have to be fulfilled for a KNX certification of a product:
• The manufacturer has to be a member (Shareholder or licensee) of the KNX Association. The

sign up process is managed by the KNX Association. For more information see knx.org1 -> KNX
members -> Joining / Fees

• The manufacturer must have a quality management system according to the ISO 900x with
certificate issued. For more information see KNX Specification Vol. 5 available at the KNX
Specifications page2.

• The manufacturer has to provide a CE declaration for his product to ensure hardware requirements
according to applicable standards. A KNX device has to comply with the following hardware
requirements:
• Environmental conditions

• Electrical safety

• Functional safety

• Electromagnetic compatibility (EMC)

All hardware requirements are listed in the KNX Specification, Vol. 4 available at the KNX
Specifications page3.

• After product development, the manufacturer has to register the product which shall be certified. The
whole registration process is managed by the KNX Association.

• The required tests for system conformity are explained in the KNX Specification Vol. 8. They
can be done after a completed registration of the product.

If a device is based on KNX BAOS 0820/0822, the device inherits the certified status of it. Therefore
only the application specific tests (interworking/functionality) are required.

For further details please contact info@weinzierl.de .

1 http://www.knx.org
2 http://www.knx.org/knx-en/knx/technology/specifications/index.php
3 http://www.knx.org/knx-en/knx/technology/specifications/index.php

http://www.knx.org
http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php
mailto:info@weinzierl.de
http://www.knx.org
http://www.knx.org/knx-en/knx/technology/specifications/index.php
http://www.knx.org/knx-en/knx/technology/specifications/index.php

104

105

Appendix F. Revision History
Revision 1.4 2013-12-03 Johannes Geiss

Document written.

106

107

Index
A
Addressing Modes

KNX, 73
API, 36
Application

Manufacturer Tool, 86
ATmega128A, 11

Documentation, 65
Microcontroller, 15

ATmega328, 3
Documentation, 65
Microcontroller, 6

Atmel Studio
Integrated development environment, 65

B
BAOS 0772, 26
BAOS 0820, 21
BAOS 0822, 21
BAOS 0870, 26
BAOS Module, 21

Overview, 1
BAOS Protocol, 51
Binary Import

Manufacturer Tool, 87
Build application, 67
Busmon

Net'n Node, 84

C
C

Programming language, 65
Callback function, 33
Certification, 103
Commissioning, 75

Demo Board, 4
Development Board, 13
ETS, 78

ComObject Data Types, 91
ComObject flags, 90
ComObject legth, 90
ComObjects RAM flags, 91
Config file, 36
Connect

Demo Board, 3
Development Board, 12

Control field
FT1.2, 49
KNX, 71

Create New Project
Manufacturer Tool, 86

Crystal
Demo Board, 6
Development Board, 15

D
Data Point Types, 73
Data points

Demo Board, 4
Development Board, 13
Manufacturer Tool, 91

Database
ETS, 76

DebugWire
Contents of the boards

Demo Board, 7
Demo Board, 3

debugWire and ISP, 68
Delivery state

Demo Board, 6
Development Board, 15

Demo application
Demo Board, 4
Development Board, 13

Demo Board, 3, 3
Development Board, 11, 11
Device programming

Demo Board, 6
Development Board, 15

Dimming
Data points

Demo Board, 5, 14
Software, 34

Document Conventions, vii
Download

ETS, 80

E
ELF file format

Demo Board, 6
Development Board, 15

EMI2, 57
Endianess, 38
Equipment Of The Board

Demo Board, 6
Development Board, 15

ETS, 75
Export

Manufacturer Tool, 100

F
Feedback, x
Firewall problem

Net'n Node, 83

Index

108

Firmware
License Agreement, viii

FT1.2
Handler, 35
Protocol, 47

Fuse bits
Demo Board, 7
Development Board, 18

G
Generic ETS Database, 27
Get data point value, 38
Get parameter byte, 40
Group objects

Demo Board, 4, 13
Group Telegram Communication

Link Layer, 61
Network Layer, 59

H
Hardware

Demo Board, 6
Development Board, 15
Manufacturer Tool, 86

I
IDE Integrated development environment

Installation, 65
Individual ETS Entries, 85
Install

ETS, 75
Installation

Net'n Node, 83
ISP

Contents of the boards
Demo Board, 7
Development Board, 16

Demo Board, 3
Development Board, 12

J
JTAG

Contents of the boards
Development Board, 16

Development Board, 12
JTAGICE3

Hardware debugger, 65

K
Key event, 31
KNX, 69
KNX Bus, 69
KNX-BASIC-LINE, 66

L
Learning Key

Contents of the board
Demo Board, 7
Development Board, 16

LED
Contents of the boards

Demo Board, 7
Development Board, 17

Data points
Demo Board, 5, 14

License
ETS, 75
Net'n Node, 83

License Agreement, viii
Link Layer

Net'n Node, 83
Lock bits

Demo Board, 7
Development Board, 18

M
Main loop, 31
Manufacturer Tool

KNX, 85
Message Protocol EMI, 57
Modular Overview Of The Firmware, 25

N
Net'n Node, 83

O
Object Server Protocol

Documentation, 34
Source, 35

Overview
Interrupts, 36
License Agreement, ix

P
Parameters, 91

Demo Board, 5
Development Board, 14

PC And BAOS, 45
Permitted Uses

License Agreement, viii
Posix

file types, 31
Preview

Manufacturer Tool, 99
Product

ETS, 77
Manufacturer Tool, 99

109

Programming The Base Board, 65
Project

ETS, 76, 78
Push button

Contents of the boards
Demo Board, 7
Development Board, 17

Data points
Demo Board, 5, 14

PWM, 34

R
Read from group object, 41
Restrictions

License Agreement, ix
RS-232

Contents of the boards
Development Board, 17

S
Schematics

Demo Board, 9
Development Board, 20

SDK
License Agreement, viii

Serial driver, 35
Set data point value, 38
Shutter

Data points
Demo Board, 5, 14

State machine, 31
Support, x

T
Telegram Timings

KNX, 72
Test

Manufacturer Tool, 100
The Application Framework, 31
Timer, 34
Twisted Pair

Demo Board, 3
Development Board, 12
KNX, 70

U
UART

Contents of the boards
Development Board, 17

USB
Contents of the boards

Development Board, 17

W
Weinzierl Engineering GmbH, ix
WINAVR (GNU)

Compiler, 65
Write to group object, 40

110

	Users Guide
	Table of Contents
	Preface
	1. Document Conventions
	2. License Agreement
	2.1. Definitions
	2.2. Permitted Uses
	2.3. Restrictions
	2.4. Overview of Restrictions/Permissions

	3. About Us
	3.1. The Company
	3.2. Our Services And Products
	3.3. Our focus: KNX

	4. Feedback

	Chapter 1. Overview
	Chapter 2. The Demonstration Board
	2.1. Introduction
	2.1.1. The Demo Board
	2.1.2. How To Connect The Device
	2.1.3. Commissioning with ETS

	2.2. The Demo Application
	2.2.1. Data Points/Group Objects
	2.2.2. Parameters
	2.2.3. First Test
	2.2.4. The Demo Application Framework

	2.3. Set The Demo Board Back To Delivery State
	2.4. Hardware
	2.4.1. Demo Board (Base Board)
	2.4.2. Fuses Of The ATmega
	2.4.3. BAOS Module

	2.5. Schematics Of The Demo Board

	Chapter 3. The Development Board
	3.1. Introduction
	3.1.1. The Development Board
	3.1.2. How To Connect The Device
	3.1.3. Commissioning With ETS

	3.2. The Demo Application
	3.2.1. Data Points/Group Objects
	3.2.2. Parameters
	3.2.3. First Test
	3.2.4. The Demo Application Framework

	3.3. Set The Development Board Back To Delivery State
	3.4. Hardware
	3.4.1. Development Board (Base Board)
	3.4.2. Jumper Usages
	3.4.3. Fuses Of The ATmega
	3.4.4. BAOS Module

	3.5. Schematics Of The Development Board

	Chapter 4. BAOS Modules
	4.1. Pinning Of The BAOS Modules
	4.2. Hardware Requirements
	4.3. Modular Overview Of The Firmware
	4.4. Other BAOS Devices

	Chapter 5. Generic ETS Database
	Chapter 6. The Application Framework
	6.1. Creating Own Applications
	6.2. Common Cases
	6.2.1. Set Data Point Value
	6.2.2. Get Data Point Value
	6.2.3. Get Parameter Byte

	6.3. Special Cases
	6.3.1. Write Value To A Group Object
	6.3.2. Read Value From A Group Object

	Chapter 7. Connecting PC Via BAOS Interface
	Chapter 8. FT1.2 Protocol
	8.1. General
	8.2. Physical
	8.2.1. Interface
	8.2.2. Timings

	8.3. FT 1.2 Frame Format

	Chapter 9. BAOS Protocol
	9.1. BAOS Frame
	9.2. BAOS Frame Embedded In An FT 1.2 Frame

	Chapter 10. Message Protocol EMI
	10.1. EMI2 Protocol
	10.2. EMI2 Frame Embedded In An FT 1.2 Frame
	10.3. Access To The Network Or Link Layer
	10.4. Group Telegram Communication On Network Layer
	10.5. Group Telegram Communication On Link Layer

	Chapter 11. Programming The Base Board
	11.1. Additional Hardware
	11.2. Installation Of IDE And Compiler
	11.3. First Debugging Steps
	11.4. The Application Framework
	11.5. Creating Own Applications

	Appendix A. About KNX
	A.1. KNX Twisted Pair Bus System
	A.2. KNX Twisted Pair Telegrams
	A.3. Telegram Timings
	A.4. Addressing Modes
	A.5. Data Point Types

	Appendix B. Commissioning With ETS
	B.1. Install ETS
	B.2. Install ETS License
	B.3. Create A Database
	B.4. Import A Project
	B.5. Import A Product
	B.6. Open A Project
	B.7. Commissioning A Project
	B.8. Download A Configuration

	Appendix C. Using Net'n Node
	Appendix D. Individual ETS Entries
	D.1. Example For Creating An Individual ETS Database
	D.1.1. Project
	D.1.2. Create New Application
	D.1.3. Create New Hardware
	D.1.4. Binary Import
	D.1.5. Create Visible Data Points
	D.1.5.1. Button For Switching And Dimming
	D.1.5.2. Light For Switching And Dimming

	D.1.6. Hide Unwanted Data Points
	D.1.7. Preview The Work So Far
	D.1.8. Create New Product
	D.1.9. Export The Project

	D.2. Test The Individual ETS Database in ETS

	Appendix E. KNX Certification
	Appendix F. Revision History
	Index

