High Performance MEMS Inertial Measurement Unit (HPIMU)





### Features

- Precision 6-DOF MEMS Inertial Measurement Unit
- Silicon Sensing's latest VSG3Q<sup>MAX</sup> inductive gyro and capacitive accelerometer MEMS
- Excellent Bias Instability and Random Walk Angular - 0.2°/hr, 0.02°/√hr Linear - 30µg, 0.05m/s/√hr
- Non-ITAR
- Compact and lightweight 68 x 61 x 62h (mm), 300g
- Internal power conditioning to accept 4.75V to 36V input voltage
- RS422 interfaces
- -40°C to +85°C operating temperature range
- Sealed aluminium housing
- RoHS compliant
- In-house manufacture from MEMS fabrication to IMU calibration
- Evaluation kit and integration resources available
- First class customer technical support
- Future developments and expansion capability
  - Multi sensor MEMS blending Low power 'sleep' mode Over-range output (reduced specification) Additional sensor integration - GPS/ Magnetometer/Barometer North finding mode AHRS functionality Other interface protocols and specifications Custom and host application integration

### Applications

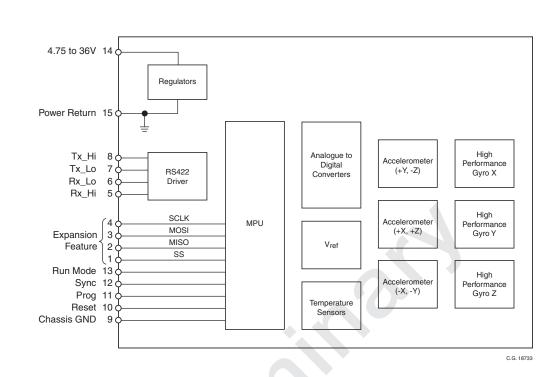
- Hydrographic surveying
- Airborne survey and mapping
- INS (Inertial Navigation Systems)
- AHRS (Attitude and Heading Reference System)
- GPS drop-out aiding
- Maritime guidance and control
- GNSS (Global Navigation Satellite System)
- Autonomous vehicle control and ROVs
- Machine control
- MEMS alternative to FOG/RLG IMUs

### **1** General Description

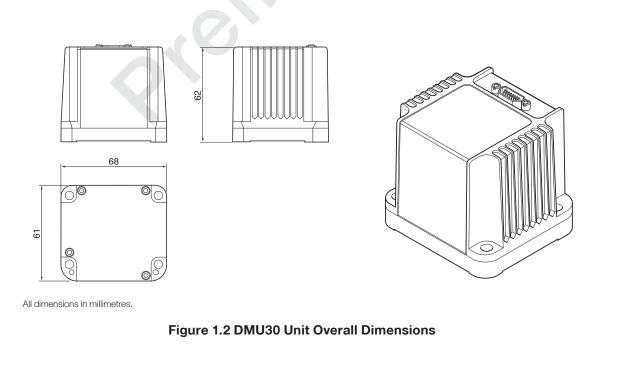
DMU30 is a full six-degree-of-freedom inertial measurement unit providing precise 3-axis outputs of angular rate and acceleration, delta angle and velocity, and temperature, at 200Hz.

DMU30 is the first of a new family of High Performance MEMS IMUs (HPIMU) incorporating precision VSG3Q<sup>MAX</sup> high-Q inductive resonating ring gyroscopes and capacitive accelerometers.

DMU30 represents a realistic, alternative to established FOG/RLG based IMUs due to its exceptional bias stability and low noise characteristics, yet it is comparatively compact, lightweight and offers low cost of ownership.


Designed specifically to meet the growing demand from high-end commercial and industrial market applications for a 'tactical' grade non-ITAR IMU, DMU30 utilises Silicon Sensing's class leading MEMS inertial sensors integrated and calibrated using an in-house state-of-the-art test facility.

HPIMU development takes advantage of Silicon Sensing's wide-ranging multi sensor technologies in a unique architecture to achieve a highly versatile IMU design. Planned capabilities include common mode error reduction, dynamic over-range output, low-power 'sleep' mode and performance enhanced sensor blending. Future developments will feature GPS, magnetic and ambient pressure sensing, north finding and AHRS functions.




High Performance MEMS Inertial Measurement Unit (HPIMU)

www.siliconsensing.com









High Performance MEMS Inertial Measurement Unit (HPIMU)

### www.siliconsensing.com

### 2 Ordering Information

| Item                   | Description                                                                                                                                                                       | Overall<br>Dimensions | Part Number   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
|                        |                                                                                                                                                                                   | mm                    |               |
| DMU30 IMU              | High Performance<br>MEMS Inertial Measurement<br>Unit.                                                                                                                            | 68 x 61 x 62H         | DMU30-01-0100 |
| DMU30 Evaluation Kit   | Customer Evaluation Kit (EVK)<br>comprising a<br>DMU30-01-0100, RS422 to USB<br>Connector, USB Driver and Data<br>Logging Software, Cables and<br>Connectors, Instruction Manual. | Not Applicable        | DMU30-01-0500 |
| DMU30 Mating Connector | Mating connector<br>plug and cable for DMU30                                                                                                                                      | Length 600mm          | DMU30-01-TBD  |



www.siliconsensing.com

### **3** Specification

| Parameter                                 | Minimum | Typical | Maximum | Notes                                                                                                             |  |  |
|-------------------------------------------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Angular (Roll, Pitch, Yaw)                |         |         |         |                                                                                                                   |  |  |
| Dynamic Range (°/s)                       | -200    | -       | +200    | Clamped at ±205°/s<br>during over-range                                                                           |  |  |
| Scale Factor Error (ppm)                  | -500    | ±100    | +500    | Factory fresh test                                                                                                |  |  |
| Scale Factor Non-Linearity<br>Error (ppm) | -500    | ±100    | +500    | Factory fresh test                                                                                                |  |  |
| Bias (°/hr)                               | -20     | ±15     | +20     | Over operating<br>temperature range<br>factory fresh test                                                         |  |  |
| Bias Instability (%h)                     | _       | < 0.2   | 0.4     | As measured using the                                                                                             |  |  |
| Random Walk ( °∕√h)                       | _       | < 0.02  | 0.04    | Allan Variance method.                                                                                            |  |  |
| Bias Repeatability (°/h)                  | -       | 20      | 100     | Bias Repeatability =<br>$\sqrt{(Bias_{warmup})^2 + (Bias_{toto})^2 + (Bias_{ageing})^2 + (Bias_{temperature})^2}$ |  |  |
| Gyro Cross Coupling (%)                   | -0.7    | ±0.35   | +0.7    | Over operating temperature range                                                                                  |  |  |
| Gyro Bandwidth (Hz)                       | 10      | 85      | 90      | -3dB point<br>User programmable                                                                                   |  |  |
| Noise (°/s rms)                           | -       | 0.15    | 0.25    | Wide band noise at<br>100Hz bandwidth                                                                             |  |  |
| VRE (°/s/g² rms)                          | -0.006  | ±0.002  | +0.006  | 10g rms stimulus<br>20Hz to 2,000Hz                                                                               |  |  |



www.siliconsensing.com

High Performance MEMS Inertial Measurement Unit (HPIMU)

### **3** Specification Continued

| Parameter                                 | Minimum | Typical | Maximum | Notes                                                                                        |  |
|-------------------------------------------|---------|---------|---------|----------------------------------------------------------------------------------------------|--|
| Linear (X, Y, Z)                          |         |         |         | -                                                                                            |  |
| Dynamic Range (g)                         | -10     | _       | +10     | Clamped at ±10.01g<br>during over-range                                                      |  |
| Scale Factor Error (ppm)                  | -500    | ±100    | +500    | -                                                                                            |  |
| Scale Factor Non-Linearity<br>Error (ppm) | -500    | ±100    | +500    | Maximum error from best straight<br>line over ±10g                                           |  |
| Bias (mg)                                 | -5.00   | ±1.50   | +5.00   | Over operating<br>temperature range                                                          |  |
| Bias Instability (mg)                     | -       | 0.03    | 0.05    | As measured using the Allan Variance method.                                                 |  |
| Random Walk (m/s/√h)                      | -       | 0.05    | 0.06    |                                                                                              |  |
| Bias Repeatability (mg)                   | -       | 3.5     | 7       | Bias Repeatability = $\sqrt{(Blas_{ageing})^2 + (Blas_{ageing})^2 + (Blas_{temperature})^2}$ |  |
| Acc Cross Coupling (%)                    | -0.70   | ±0.35   | +0.70   | Over operating<br>temperature range                                                          |  |
| Acc Bandwidth (Hz)                        | 10      | 85      | 150     | -3dB point<br>User programmable                                                              |  |
| Noise (mg rms)                            | _       | 1.00    | 2.30    | Wide band noise at<br>100Hz bandwidth                                                        |  |
| VRE (mg/g² rms)                           | -0.15   | ±0.10   | +0.15   | 3g rms stimulus<br>20Hz to 2,000Hz                                                           |  |
| Temperature Output                        |         |         |         |                                                                                              |  |
| Range (°C)                                | -45     | -       | 100     | Note that this<br>exceeds operational<br>temperature range                                   |  |
| Accuracy (°C)                             | -       | ±3      | _       | In the operational temperature range                                                         |  |



High Performance MEMS Inertial Measurement Unit (HPIMU)

### www.siliconsensing.com

### 4 Environment, Power and Physical

#### 4.1 Normal Operation

| Parameter                                   | Minimum | Typical           | Maximum | Notes                                            |  |
|---------------------------------------------|---------|-------------------|---------|--------------------------------------------------|--|
| Environment                                 |         |                   |         |                                                  |  |
| Operating Temperature<br>Range (°C)         | -40     | _                 | +85     | Full specification                               |  |
| Storage Temperature<br>Range (°C)           | -55     | _                 | +100    | _                                                |  |
| Operational Shock (g)                       | _       | _                 | 95      | 6ms, half sinewave                               |  |
| Operational Shock (g)<br>(powered survival) | _       | _                 | 1,000   | 1.0ms, half sinewave                             |  |
| Operational Random<br>Vibration (g rms)     | _       | -                 | 3.0     | 20Hz to 2KHz                                     |  |
| Non-Operational Random<br>Vibration (g rms) | -       | -                 | 10      | 20Hz to 2KHz                                     |  |
| Humidity (% rh)                             | _       | -                 | 85      | Non-condensing                                   |  |
| Immersion Depth (m)                         | _       | -                 | 1       | IMU is sealed                                    |  |
| Electrical and Interface                    |         |                   |         |                                                  |  |
| Communication Protocol<br>(standard)        | -       | RS-422            | _       | Full duplex communication                        |  |
| Data Rate (Hz)                              |         | 200 (default)     | _       | User programmable<br>* future feature            |  |
| Baud Rate (BPS)                             |         | 460,800 (default) | -       | User programmable<br>* future feature            |  |
| Startup Time (s)<br>(operational output)    | -       | < 1.0             | 1.2     | Time to operational output                       |  |
| Startup Time (s)<br>(full performance)      | -       | < 5               | 20      | Time to full performance<br>(mounting dependent) |  |
| Power (watts)                               | -       | < 3               | 4       | With 120 $\Omega$ RS422 termination resistor     |  |
| Supply Voltage (V)                          | +4.75   | +8                | +36     | Unit is calibrated at 8 volts                    |  |
| Physical                                    |         |                   |         |                                                  |  |
| Size (mm)                                   | -       | 68 x 61 x 62H     | _       | -                                                |  |
| Mass (grams)                                | _       | 300g              | _       | TBC                                              |  |

#### Notes:

DMU30 is designed for 1m immersion in water (IP67). To maintain integrity around the connector, it is essential that the mating connector is a sealed type, or a suitable sealing compound should be applied around the connectors.



Inertial Measurement Unit (HPIMU)

#### www.siliconsensing.com

### 4.2 Absolute Minimum/Maximum Ratings

|                         | Minimum      | Maximum               |
|-------------------------|--------------|-----------------------|
| Electrical:             |              |                       |
| Vdd                     | -0.3V        | +37V                  |
| ESD protection          | -            | 2kV HBM               |
| Environmental:          |              |                       |
| Shock (non-operational) | -            | 6,500g 0.1ms 1/2 sine |
| Life:                   |              |                       |
| Unpowered               | 15 years     | -                     |
| Powered                 | 12,000 hours | -                     |

#### Notes:

Improper handling, such as dropping onto hard surfaces, can generate every high shock levels in excess of 10,000g. The resultant stresses can cause permanent damage to the sensor.

Exposure to the Absolute Maximum Ratings for extended periods may affect performance and reliability.

High Performance MEMS Inertial Measurement Unit (HPIMU)



www.siliconsensing.com

### **5** Typical Performance Characteristics

This section shows the typical performance of DMU30.

#### 5.1 Performance Characteristics

This section will include comprehensive test result statistics of all main IMU performance parameters.

High Performance MEMS Inertial Measurement Unit (HPIMU)



www.siliconsensing.com

### 6 Glossary of Terms

| ADC                                                                                   | Analogue to Digital Converter                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARW                                                                                   | Angle Random Walk                                                                                                                                                                                                                                                                                                                   |
| AWG                                                                                   | American Wire Gauge                                                                                                                                                                                                                                                                                                                 |
| BPS                                                                                   | Bits Per Second (or Baud Rate)                                                                                                                                                                                                                                                                                                      |
| BW                                                                                    | Bandwidth                                                                                                                                                                                                                                                                                                                           |
| C                                                                                     | Celsius or Centigrade                                                                                                                                                                                                                                                                                                               |
| DAC                                                                                   | Digital to Analogue Converter                                                                                                                                                                                                                                                                                                       |
| DPH                                                                                   | Degrees Per Hour                                                                                                                                                                                                                                                                                                                    |
| DPS                                                                                   |                                                                                                                                                                                                                                                                                                                                     |
| DRIE                                                                                  | Degrees Per Second<br>Deep Reactive Ion Etch                                                                                                                                                                                                                                                                                        |
| EMC                                                                                   |                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       | Electro-Magnetic Compatibility                                                                                                                                                                                                                                                                                                      |
| ESD<br>F                                                                              | Electro-Static Damage                                                                                                                                                                                                                                                                                                               |
| •                                                                                     | Farads                                                                                                                                                                                                                                                                                                                              |
| h                                                                                     | Hour                                                                                                                                                                                                                                                                                                                                |
| HBM                                                                                   | Human Body Model                                                                                                                                                                                                                                                                                                                    |
| HPIMU                                                                                 | High Performance MEMS Inertial<br>Measurement Unit                                                                                                                                                                                                                                                                                  |
| Hz                                                                                    | Hertz, Cycles Per Second                                                                                                                                                                                                                                                                                                            |
| K                                                                                     | Kilo                                                                                                                                                                                                                                                                                                                                |
| MDS                                                                                   | Material Datasheet                                                                                                                                                                                                                                                                                                                  |
| MEMS                                                                                  |                                                                                                                                                                                                                                                                                                                                     |
| mV                                                                                    | Micro-Electro Mechanical Systems<br>Milli-Volts                                                                                                                                                                                                                                                                                     |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       | Not Electrically Connected                                                                                                                                                                                                                                                                                                          |
| NEC                                                                                   | Not Electrically Connected                                                                                                                                                                                                                                                                                                          |
| NL                                                                                    | Scale Factor Non-Linearity                                                                                                                                                                                                                                                                                                          |
| NL<br>OEM                                                                             | Scale Factor Non-Linearity<br>Original Equipment Manufacturer                                                                                                                                                                                                                                                                       |
| NL<br>OEM<br>OT                                                                       | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature                                                                                                                                                                                                                                                   |
| NL<br>OEM<br>OT<br>PD                                                                 | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive                                                                                                                                                                                                                                  |
| NL<br>OEM<br>OT<br>PD<br>PP                                                           | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off                                                                                                                                                                                                              |
| NL<br>OEM<br>OT<br>PD<br>PP<br>RC                                                     | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter                                                                                                                                                                             |
| NL<br>OEM<br>OT<br>PD<br>PP<br>RC<br>RT                                               | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature                                                                                                                                                         |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>s                                                | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds                                                                                                                                              |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>SF                                               | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor                                                                                                                              |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>s<br>SF<br>SMT                                   | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor<br>Surface Mount Technology                                                                                                  |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>SF<br>SMT<br>SOG                                 | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor<br>Surface Mount Technology<br>Silicon On Glass                                                                              |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>S<br>SF<br>SMT<br>SOG<br>SD                      | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor<br>Surface Mount Technology<br>Silicon On Glass<br>Secondary Drive                                                           |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>SF<br>SMT<br>SOG<br>SD<br>SP                     | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor<br>Surface Mount Technology<br>Silicon On Glass<br>Secondary Drive<br>Secondary Pick-Off                                     |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>S<br>SF<br>SMT<br>SOG<br>SD<br>SP<br>TBA         | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor<br>Surface Mount Technology<br>Silicon On Glass<br>Secondary Drive<br>Secondary Pick-Off<br>To Be Advised                    |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>SF<br>SF<br>SMT<br>SOG<br>SD<br>SP<br>TBA<br>TBC | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor<br>Surface Mount Technology<br>Silicon On Glass<br>Secondary Drive<br>Secondary Pick-Off<br>To Be Advised<br>To Be Confirmed |
| NL<br>OEM<br>PD<br>PP<br>RC<br>RT<br>S<br>SF<br>SMT<br>SOG<br>SD<br>SP<br>TBA         | Scale Factor Non-Linearity<br>Original Equipment Manufacturer<br>Over Temperature<br>Primary Drive<br>Primary Pick-Off<br>Resistor and Capacitor filter<br>Room Temperature<br>Seconds<br>Scale Factor<br>Surface Mount Technology<br>Silicon On Glass<br>Secondary Drive<br>Secondary Pick-Off<br>To Be Advised                    |

### 7 Interface

Physical and electrical inter-connect and RS422 message information

### 7.1 Electrical Interface

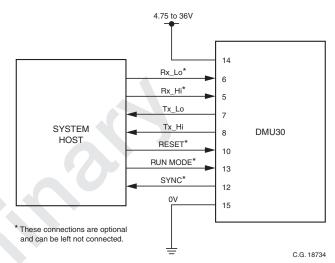
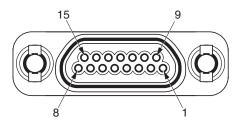




Figure 7.1 Required Connections for RS422 Communications with DMU30

### 7.2 Physical Interface



15 Way Micro-Miniature Connector Type DCCM-15S

C.G. 18735

Figure 7.2 DMU30 Socket Connector

High Performance MEMS Inertial Measurement Unit (HPIMU)

### 7.3 Connector Specification

DMU30 uses a 15 way socket connector which is the micro-miniature 'D' type range of connectors, produced by Cinch, Glenair and others.

The DMU30 plug mating connector is a 15 way plug, for example DCCM-15P (DCCM-15P6E518).

Silicon Sensing can supply a mating plug and cable to interface to DMU30 (Part Number DMU30-01-TBD).

### 7.4 Pin Information

| Pin                 | Label          | Signal                                                                                                                                                                            | In/Out |
|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1,<br>2,<br>3,<br>4 | Future         | A SPI <sup>®</sup> comm port for future<br>expansion                                                                                                                              | I/O    |
| 5                   | Rx_Hi          | The positive receive connection<br>required for the RS422<br>communication                                                                                                        | I      |
| 6                   | Rx_Lo          | The negative receive connection<br>required for the RS422<br>communication                                                                                                        | I      |
| 7                   | Tx_Lo          | The negative transmit connection<br>required for the RS422<br>communication                                                                                                       | 0      |
| 8                   | TX_Hi          | The positive transmit connection<br>required for the RS422<br>Communication                                                                                                       | 0      |
| 9                   | Chassis<br>GND | Chassis ground                                                                                                                                                                    | I      |
| 10                  | Reset          | Microprocessor reset. Pin is<br>pulled low to reset the device.<br>Suggested implementation using<br>TTL logic                                                                    | I      |
| 11                  | Factory Use    | Used by SSSL for programming<br>purposes and should not be<br>interfaced with                                                                                                     | N/A    |
| 12                  | Sync           | Output signal that can be used by<br>an external system to synchronise<br>with DMU30                                                                                              | 0      |
| 13                  | Run Mode       | Device Enable/Disable. Pin is<br>pulled high or not connected<br>to enable the device. Pin is<br>pulled low to disable the device.<br>Suggested implementation using<br>TTL logic | I      |
| 14                  | +Volts         | Input voltage to the DMU30. Can<br>be between 4.75V and 36V                                                                                                                       | I      |
| 15                  | GND            | Ground connected to the DMU30                                                                                                                                                     | I      |

#### **Table 7.1 Pin Information**



SILICON<sup>C</sup> SENSING

www.siliconsensing.com

### 7.5 Communications with DMU30

The Run Mode pin on the connector is used to control the output from the DMU30. The "Free Run" or "Enabled" mode is active when the Pin is floating (not connected), and the output will be enabled.

The DMU30 output is disabled when the "Run Mode" Pin is pulled low.

### 7.6 Operational Message Output

The Output Message is output on a RS422 Serial output at 460,800 baud using a non-return to zero protocol. Each byte contains a start bit (logic 0), 8 data bits and 2 stop bits (logic 1). Data is output in big endian format by default.

Data is output at a rate of 200 messages per second.

Each message contains 33 words (66 bytes) as described in Table 7.2. The message is transmitted if the "Run Mode" Pin is floating/HIGH.

If the "Run Mode" Pin changes to a LOW (Disable output), while the message is being transmitted, the message is completed before the output is disabled.

### 7.7 Sensor Sampling and Synchronisation

The inertial sensors within DMU30 are all sampled at 1,000Hz. The 'Sync Pulse' on the connector is set HIGH at the start of the sampling and returned to LOW when the last inertial sensor is sampled. Pulses are therefore seen on the connector at 1,000Hz.

The inertial sensor measurements are then filtered with a 2nd order low pass filter, also running at 1000Hz. The factory default setting for this filter has a corner frequency of > 85Hz.

The internal sequence for DMU30 is:

- Cycle 1: Sample Sensors, 2nd order Filter
- Cycle 2: Sample Sensors, 2nd order Filter, Calculate Sensor Compensation
- Cycle 3: Sample Sensors, 2nd order Filter, Apply Sensor Compensation
- Cycle 4: Sample Sensors, 2nd order Filter, Calculate Delta Theta and Vels
- Cycle 5: Sample Sensors, 2nd order Filter, Transmit Message

The message is transmitted after the 'Sync Pulse' associated with Cycle 5 has returned LOW. The inertial data included in the message is generated when the 'Sync Pulse' associated with Cycle 3 is HIGH. This enables the external equipment to synchronise with the time when the inertial data is valid.

High Performance MEMS Inertial Measurement Unit (HPIMU)

### SILICON<sup>CC</sup> SENSING。

www.siliconsensing.com

### 7.8 Operational Message Definitions

The data output message has the content and sequence as shown in the table below:

| Item | Word  | Data Item                     | Value / Unit                                                                  |
|------|-------|-------------------------------|-------------------------------------------------------------------------------|
| 0    | 0     | Header                        | 16 Bit, 0x55AA                                                                |
| 1    | 1     | Message Count                 | 16 Bit, 0 to 65535<br>decimal                                                 |
| 2    | 2-3   | Axis X Rate                   | 32 Bit Single Precision<br>FP, (*/s)                                          |
| 3    | 4-5   | Axis X<br>Acceleration        | 32 Bit Single Precision<br>FP, (g)                                            |
| 4    | 6-7   | Axis Y Rate                   | 32 Bit Single Precision<br>FP, (*/s)                                          |
| 5    | 8-9   | Axis Y<br>Acceleration        | 32 Bit Single Precision<br>FP, (g)                                            |
| 6    | 10-11 | Axis Z Rate                   | 32 Bit Single Precision<br>FP, (%)                                            |
| 7    | 12-13 | Axis Z<br>Acceleration        | 32 Bit Single Precision<br>FP, (g)                                            |
| 8    | 14-15 | Aux Input Voltage             | 32 Bit Single Precision<br>FP, (volts)                                        |
| 9    | 16-17 | Average IMU<br>Temperature    | 32 Bit Single Precision<br>FP, (°C)                                           |
| 10   | 18-19 | Axis X Delta<br>Theta         | 32 Bit Single Precision<br>FP, (°)                                            |
| 11   | 20-21 | Axis X Delta<br>Vel           | 32 Bit Single Precision<br>FP, (m/s)                                          |
| 12   | 22-23 | Axis Y Delta<br>Theta         | 32 Bit Single Precision<br>FP, (°)                                            |
| 13   | 24-25 | Axis Y Delta<br>Vel           | 32 Bit Single Precision<br>FP, (m/s)                                          |
| 14   | 26-27 | Axis Z Delta<br>Theta         | 32 Bit Single Precision<br>FP, (°)                                            |
| 15   | 28-29 | Aux Z Delta<br>Vel            | 32 Bit Single Precision<br>FP, (m/s)                                          |
| 16   | 30    | System Startup<br>BIT Flags   | 16 Bit decimal value                                                          |
| 17   | 31    | System Operation<br>BIT Flags | 16 Bit decimal value                                                          |
| 18   | 32    | Error Operation<br>BIT Flags  | 16 Bit decimal value                                                          |
| 19   | 33    | Checksum                      | 16 Bit 2's Complement<br>of the 16 Bit Sum of the<br>Previous 0-18 data items |

### 7.9 System BIT Flags

### 7.9.1 System Startup BIT Flags

TBA

 Table 7.2 Operational Message Data

 Output Definitions

High Performance MEMS Inertial Measurement Unit (HPIMU)



www.siliconsensing.com

### 7.9.2 System Operation BIT Flags

TBA

### **7.9.3 System Error Indication BIT Flags**

High Performance MEMS Inertial Measurement Unit (HPIMU)



www.siliconsensing.com

### 8 Design Tools and Resources Available

| Item  | Description of Resource                                                                                                                                                                                                                                        | Part Number       | Order/Download                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------|
|       | <b>DMU30 Brochure:</b> A one page sales brochure describing the key features of the DMU30 Inertial Measurement Unit.                                                                                                                                           | DMU30-00-0100-131 | Download<br>(www.siliconsensing.com)                            |
|       | <b>DMU30 Datasheet:</b> Full technical information on all DMU30 Dynamic Measurement Unit part number options. Specification and other essential information for assembling and interfacing to DMU30 Inertial Measurement Unit, and getting the most out of it. | DMU30-00-0100-132 | Download<br>(www.siliconsensing.com)                            |
|       | <b>DMU30 Evaluation Kit:</b> DMU30 delivered with an RS422 to USB interface, plug-and-play real time display and logging software and two interface cabling solutions DMU30-01-0100 unit included.                                                             | DMU30-01-0500     | Order<br>(www.siliconsensing.com)<br>(sales@siliconsensing.com) |
|       | <b>DMU30 Presentation:</b> A useful presentation describing the features, construction, principles of operation and applications for the DMU30 Inertial Measurement Unit.                                                                                      | -                 | Download<br>(www.siliconsensing.com)                            |
| OCUMA | Solid Model CAD files for DMU30 Inertial<br>Measurement Unit:<br>Available in .STP and .IGS file formats.                                                                                                                                                      | DMU30-01-0100-408 | Download<br>(www.siliconsensing.com)                            |
| Q     | <b>DMU30 Plug and Cable:</b> A mating plug and 600mm long cable.                                                                                                                                                                                               | DMU30-01-TBD      | Order<br>(www.siliconsensing.com)<br>(sales@siliconsensing.com) |
|       | <b>DMU30 Installation Drawing:</b> CAD file containing host interface geometry. Available in .STP and .IGS file formats.                                                                                                                                       | DMU30-01-0100-TBD | Download<br>(www.siliconsensing.com)                            |
| ROHS  | <b>RoHS compliance statement for DMU30 :</b> DMU30 is fully compliant with RoHS. For details of the materials used in the manufacture please refer to the MDS Report.                                                                                          | _                 | Download<br>(www.siliconsensing.com)                            |

High Performance MEMS Inertial Measurement Unit (HPIMU)



www.siliconsensing.com

### 8.1 DMU30 Evaluation Kit

The DMU30 Evaluation Kit enables the output data from the DMU30 to be viewed and logged for testing and evaluation purposes.



Figure 8.1 DMU30 Evaluation Kit

#### 8.1.1 DMU30 Evaluation Kit Contents

The DMU30 Evaluation Kit (part number DMU30-01-0500) contains the following:

DMU30 IMU (part number DMU30-01-0100).

- MEV RS485i to USB converter.
- CD containing the MEV drivers.
- USB memory stick containing the data logging software.
- Mating plug and cable.
- User manual.

#### 8.1.2 System Requirements

The DMU30 Evaluation Kit requires a PC with a USB port. The requirements for the PC are as follows:

- Microsoft<sup>®</sup> Windows<sup>®</sup> XP (SP3 or greater), Vista<sup>®</sup>, Windows 7 or Windows 8 Operating Systems. The software has not been tested on any other Operating System and therefore correct functionality cannot be guaranteed.
- Minimum of 500Mb of RAM.
- 500Mb of free hard drive space plus space for logged data (typical data rate ≈ 50kbit/s).
- High power or self-powered USB 2.0 Port.

### 9 Part Markings

DMU30 is supplied with an adhesive label attached. The label displays readable DMU30 part and part identification numbers.

The part identification number is a numeric code;

WWYYXXXX R where:

- WW = Manufacturing week number
- YY = Manufacturing year number
- XXXX = Serial number
- R = Revision

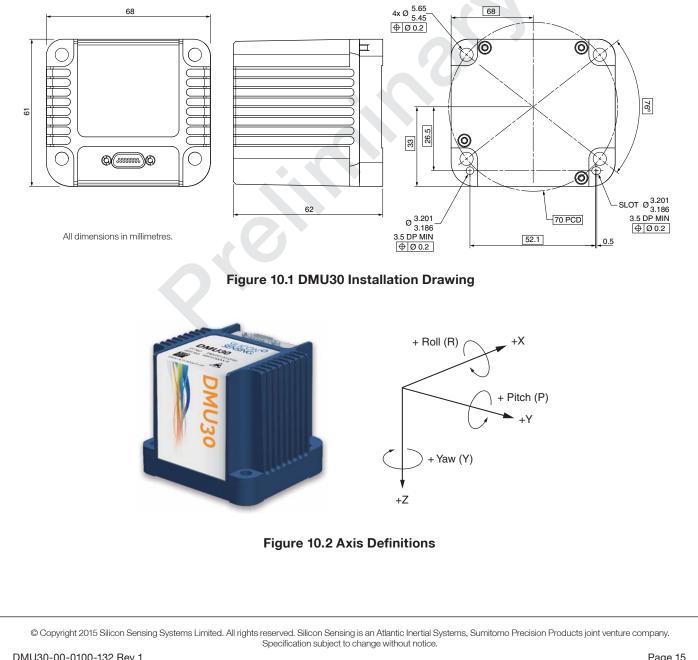
A 4x4 data matrix barcode containing the part identification number is also displayed on the label.



Figure 9.1 DMU30 Label

**High Performance MEMS** Inertial Measurement Unit (HPIMU)

# SILICON<sup>C</sup> SENSING


www.siliconsensing.com

### **10 Installation Details**

Figures 10.1 show the installation drawing for the DMU30.

The DMU30 is designed for 4 point mounting using M5.0 screws. During calibration alignment is achieved using two external reference dowel holes on the base of the DMU30. The dowel holes are designed to be used with two Ø3mm (in accordance with BS EN ISO 8734 or BS EN ISO 2338) dowel pins provided by the host.

The DMU30 mounting screw torque settings will be dependent on the host application; it will for example vary depending on the specification of the screw, the material of the host structure and whether a locking compound is used. When securing a DMU30 to the host system using steel M5.0 screws and a thread locking compound the suggested torque setting is 0.2Nm for securing to an aluminium host structure. This information is provided for guidance purposes only, the actual torque settings are the responsibility of the host system designer.



High Performance MEMS Inertial Measurement Unit (HPIMU)



www.siliconsensing.com

### 11 Packaging

Full packaging specification including package labelling (TBD).

### 12 DMU30 Construction and Theory of Operation

### 12.1 IMU Construction

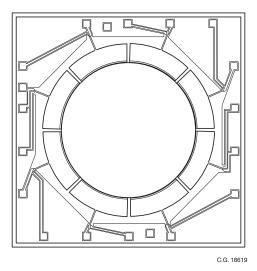
DMU30 is an aluminium alloy assembly comprising base, housing, sensor block, sensor assemblies and IMU electronics.

The base and housing are sealed using a self-forming gasket and secured by four machine screws to provide a waterproof enclosure. A micro-miniature 'D' type socket connector located on the top face of the housing provides the electrical interface to the host system. The top face of the housing displays the DMU30 part marking information.

DMU30 is aligned to the host system using two Ø3mm dowels in the host platform which locate with matching dowel holes in the bottom face of the base. The IMU is secured to the host using M5.0 machine screws.

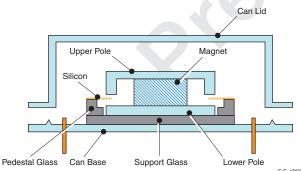
A precision machined aluminium 3-Axis Sensor Block, secured to the DMU30 Base by machine screws provides accurate alignment and support for the DMU30 MEMS inertial sensor assemblies and IMU electronics. Internally generated heat from the sensor assemblies and IMU electronics is absorbed into the sensor block and surrounding housing and conducted to the host via the base and to the ambient atmosphere via convection cooling fins in the housing.

The IMU electronics is a triple-stack PCB assembly which is affixed to the sensor block by six spacers and machine screws to provide stable and precise alignment between the sensor assemblies.


### **12.2 Sensor Construction and Theory of Operation**

#### Silicon MEMS Inductive Ring Gyroscope

The silicon MEMS ring is 6mm diameter by 100µm thick, fabricated by Silicon Sensing Systems using a DRIE (Deep Reactive Ion Etch) bulk silicon process. The ring is supported in free-space by sixteen pairs of symmetrical legs which isolate the ring from the supporting structure on the outside of the ring.


High Performance MEMS Inertial Measurement Unit (HPIMU)





#### Figure 12.1 Silicon MEMS Ring

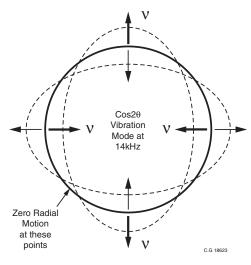
The bulk silicon etch process and unique patented ring design enable close tolerance geometrical properties for precise balance and thermal stability and, unlike other MEMS gyros, there are no small gaps to create problems of interference and stiction. These features contribute significantly to DMU30's bias and scale factor stability over temperature, and vibration immunity. Another advantage of the design is its inherent immunity to acceleration induced rate error, or 'g-sensitivity'.

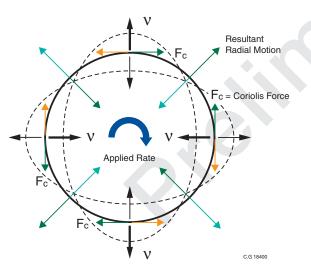


#### Figure 12.2 MEMS VSG3Q<sup>MAX</sup> Sensor

The ring is essentially divided into 8 sections with two conductive tracks in each section. These tracks enter and exit the ring on the supporting legs. The silicon ring is bonded to a glass pedestal which in turn is bonded to a glass support base. A magnet, with upper and lower poles, is used to create a strong and uniform magnetic field across the silicon ring. The complete assembly is mounted within a hermetic can. The tracks along the top of the ring form two pairs of drive tracks and two pairs of pick-off tracks. Each section has two loops to improve drive and pick-off quality.

One pair of diametrically opposed tracking sections, known as the Primary Drive PD section, is used to excite the  $\cos 2\theta$  mode of vibration on the ring. This is achieved by passing current through the tracking and, because the tracks are within a magnetic field, causes motion on the ring. Another pair of diametrically opposed tracking sections are known as the Primary Pick-off PP section are used to measure the amplitude and phase of the vibration on the ring. The Primary Pick-off sections are in the segments 90° to those of the Primary Drive sections. The drive amplitude and frequency is controlled by a precision closed loop electronic architecture with the frequency controlled by a Phase Locked Loop (PLL), operating with a Voltage Controlled Oscillator (VCO), and amplitude controlled with an Automatic Gain Control (AGC) system. The primary loop therefore establishes the vibration on the ring and the closed loop electronics is used to track frequency changes and maintain the optimal amplitude of vibration over temperature and life. The loop is designed to operate at about 14kHz.





Figure 12.3 Primary Vibration Mode

High Performance MEMS Inertial Measurement Unit (HPIMU)



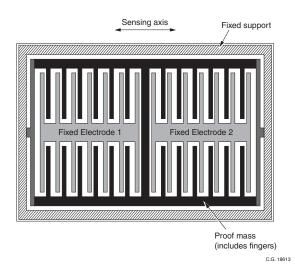
www.siliconsensing.com

Having established the  $\cos 2\theta$  mode of vibration on the ring, the ring becomes a Coriolis Vibrating Structure Gyroscope. When the gyroscope is rotated about its sense axis the Coriolis force acts tangentially on the ring, causing motions at 45° displaced from the primary mode of vibration. The amount of motion at this point is directly proportional to the rate of turn applied to the gyroscope. One pair of diametrically opposed tracking sections, known as the Secondary Pick-off SP section, is used to sense the level of this vibration. This is used in a secondary rate nulling loop to apply a signal to another pair of secondary sections, known as the Secondary Drive SD. The current applied to the Secondary Drive to null the secondary mode of vibration is a very accurate measure of the applied angular rate. All of these signals occur at the resonant frequency of the ring. The Secondary Drive signal is demodulated to baseband to give a voltage output directly proportional to the applied rate in free space.



#### Figure 12.4 Secondary Vibration Mode

The closed loop architecture of both the primary and secondary loops results in excellent bias, scale factor and non-linearity control over a wide range of operating environments and life. The dual loop design, introduced into this new Sensor Head design, coupled with improved geometric symmetry results in excellent performance over temperature and life. The discrete electronics employed in DMU30 ensures that performance is not compromised.

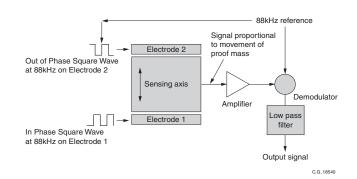

#### Silicon MEMS Capacitive Accelerometer

The accelerometer contains a seismic 'proof mass' with multiple fingers suspended via a 'spring', from a fixed supporting structure. The supporting structure is anodically bonded to the top and bottom glass substrates and thereby fixed to the sensor package base.

When the accelerometer is subjected to a linear acceleration along its sensitive axis, the proof mass tends to resist motion due to its own inertia, therefore the mass and its fingers become displaced with respect to the interdigitated fixed electrode fingers (which are also fixed to glass substrates). Air between the fingers provides a damping effect. This displacement induces a differential capacitance between the moving and fixed silicon fingers which is proportional to the applied acceleration.

Capacitor plate groups are electrically connected in pairs at the top and bottom of the proof mass. In-phase and out of phase waveforms are applied by the ASIC separately to the 'left' and 'right' finger groups. The demodulated waveforms provide a signal output proportional to linear acceleration.

Figures 12.5(a) and 12.5(b) provide schematics of the accelerometer structure and control loop respectively.




### Figure 12.5(a) Schematic of Accelerometer Structure



www.siliconsensing.com

High Performance MEMS Inertial Measurement Unit (HPIMU)



#### Figure 12.5(b) Schematic of Accelerometer Control Loop

High Performance MEMS Inertial Measurement Unit (HPIMU)

#### Notes

SILICON<sup>C</sup> SENSING

www.siliconsensing.com

Silicon Sensing Systems Limited Clittaford Road Southway Plymouth Devon PL6 6DE United Kingdom

- T: +44 (0)1752 723330
- F: +44 (0)1752 723331
- E: sales@siliconsensing.com

W: siliconsensing.com

Silicon Sensing Systems Japan Limited 1-10 Fuso-Cho Amagasaki Hyogo 6600891 Japan T: +81 (0)6 6489 5868 F: +81 (0)6 6489 5919 E: sssj@spp.co.jp W: siliconsensing.com Specification subject to change without notice. © Copyright 2015 Silicon Sensing Systems Limited All rights reserved. Printed in England 03/2015 Date 06/03/2015

DMU30-00-0100-132 Rev 1 DCR No. 710008599