

AN018

Interfacing with an Accelerometer via Bluetooth

Introduction

This application note provides an example interface for a Kionix accelerometer with an
example Bluetooth DIP Module. First, this application note talks about the hardware and
software interface that is made between a C8051 microcontroller and the Kionix KXPB5
accelerometer. Next, the hardware and software interface between the Bluetooth DIP Module
and the microcontroller are discussed. Finally, there is also an attachment of all the AT
Commands for the end user to be able to update the code in order to execute numerous
functions of the Bluetooth DIP Module. Hardware connections, schematics, timing diagrams
and example code are provided in this application note as well. The applications of this
interface include serial streaming of acceleration data to a PC for data logging.

Feature Description

Communication to the accelerometer sensor is established via SPI communication interface,
and the accelerometer always operates as a slave device. SPI is a 4-wire synchronous serial
interface that uses two control and two data lines. With respect to the Master (C8051), the
Serial Clock output (SCLK), the Data Output (MOSI) and the Data Input (MISO) are shared
among the Slave devices. The Master (C8051) generates an independent Chip Select (nCS)
for each Slave device that goes low at the start of transmission and goes back high at the
end. The Slave Data Output (SDO) line, remains in a high-impedance (hi-z) state when the
device is not selected (nCS = high), so it does not interfere with any active devices. This
allows multiple Slave devices to share a master SPI port. Please refer to Figure 1 for the
schematic.

Figure 1. KXPB5 communication with a microcontroller

36 Thornwood Dr. – Ithaca, NY 14850 © 2007 Kionix, Inc.
tel: 607-257-1080 – fax: 607-257-1146 22 March 2007
www.kionix.com - info@kionix.com Page 1 of 17

AN 018

Enabling The Accelerometer Sensor

The control register embedded in the accelerometer sensor has an 8-bit address. Upon
power up, the Master must write to the accelerometer’s control register to set its operational
mode. On the falling edge of nCS, a 2-byte command is written to the control register. The
first byte, 0x04, initiates the write to the appropriate register, and is followed by the user-
defined, operational-mode byte, 0x04, which enables the accelerometer sensor. All
commands are sent MSB (most significant bit) first, and the host must return nCS high for at
least 200nS before the next data request.

Fig. 2) Timing Diagram for 8-bit Control Register Write Operation

In order to read the 8-bit control register, an 8-bit read command, 0x03, must be written to
the accelerometer to initiate the read. Upon receiving the command, the accelerometer
returns the 8-bit operational-mode data stored in the control register. This operation also
occurs over 16 clock cycles. All returned data is sent MSB first, and the host must return nCS
high for at least 200 nS before the next data request. Figure 3 show the timing diagram for
an 8-bit control register read operation.

 Fig. 3) Timing Diagram for 8-bit Control Register Read Operation

Reading Acceleration Data

© Kionix 2008
14 March 2008
Page 2 of 17

In order to read the 3-axis (X, Y, and Z) acceleration data, transmission of an 8-bit axis
conversion command (see Table 1) must be issued on the falling edge of nCS. After the eight
clock cycles used to send the command, the host must wait for at least 40us in order to clock
in the acceleration data. Note that all returned data is sent MSB first. Once the data is

AN 018

received, nCS must be returned high for 200ns before the next data request. Figure 3 shows
the timing for the accelerometer read operation. Please also note that the acceleration data
has 12-bit resolution (12-bits long).

The Read Back Operation is a 3-byte SPI command. The first byte contains the command to
convert one of the axes. The second and third bytes contain the 12 bits of acceleration data
plus four least significant bits of padding to make a total of 16 bits.

 Fig. 4) Timing diagram for 16-bit data read operation

Once the 16-bits of data have been clocked in, they are shifted left four times, since the least
four significant bits are garbage.

Description
1st byte

 (Command)
Convert X axis 0x00
Convert Z axis 0x01
Convert Y axis 0x02

Read Control Register 0x03
Write Control Register 0x04

Convert Aux In 0x07

Table 1 Command Register Bit Utilization

Connections

There are three pieces of hardware and two pieces of software you need in order to develop
this wireless module. The three pieces of hardware you need are the Kionix KXPB5, the
SiLabs C8051F312, a Mitsumi Bluetooth Dip Module, and the Bluetooth USB Module. The two
pieces of software that are needed are the BlueSoleil (provided with the USB Module) and the
software/firmware that is provided at the end of this app note. Instructions on installing the
Bluetooth USB Module are described in the following link:
http://www.sparkfun.com/commerce/present.php?p=Software.
Figure 5 shows the block diagram of the hardware connections between the microcontroller
and the Bluetooth DIP Module.

© Kionix 2008
14 March 2008
Page 3 of 17

http://www.sparkfun.com/commerce/present.php?p=Software

AN 018

RX

TX

P0.0

TX

RX

PIO4

C8051F312
Bluetooth

DIP Module

RX

TX

P0.0

TX

RX

PIO4

C8051F312
Bluetooth

DIP Module

Fig. 5) Block Diagram

Fig. 6) Bluetooth Dip Schematic

© Kionix 2008
14 March 2008
Page 4 of 17

In order to establish communication between the KXPB5 and C8051F312 and the Bluetooth
Dip Module, the following hardware connections should be made as shown in Figure 7. Power
and logic signals used for powering and communication between the KXPB5, the C8051F312
and the Bluetooth Dip Module are 3.3V. The AT commands necessary to put the Bluetooth
DIP Module into data mode are handled inside the firmware. Communication between the
Bluetooth DIP Module and the Bluetooth USB Module is done via the discovery and connection
procedure outlined in the link given previously for installing the Bluetooth USB Module. Once
the connection has been established, a user may open the HyperTerminal and configure it to
the appropriate COM port at 9600/8/none/1 to view the accelerometer X, Y and Z outputs
being sent by the Bluetooth DIP Module.

AN 018

Fig. 7) Bluetooth Wireless Module Schematic

© Kionix 2008
14 March 2008
Page 5 of 17

AN 018

Software Operation

The four software routines used to access the Bluetooth DIP Module are ‘Init_Device’,
‘Enable_accelerometer’, ‘Bluetooth_connected’ and ‘Read_axis_data’. The ‘Init_Device’
routine initializes the C8051 device interface logic and port configurations. This routine is
only called in the initialization sequence (power up) of the device. The
‘Enable_accelerometer’ routine sets the enable bit in the control register of the accelerometer
sensor to place the sensor in operational/running mode.

CS = 0; //Select the slave device(accelerometer)
SPI_Transfer(0x04); //command to write to KXPB5 control register
SPI_Transfer(0x04); //enable
CS = 1; //communication complete

The ‘Bluetooth_connected’ routine waits for the user to discover and connect to the Bluetooth
DIP Module using the BlueSoleil software. Once the device DIP Module has been discovered
and connected to, the PI04 pin on the DIP Module will be pulled high and will notify the
firmware to place it into data mode. For example:

while(!PO4); //wait for the connection to be established with
 //the Bluetooth DIP Module. Otherwise do nothing.

 for(a=0; a<8333; a++){ //wait one second before putting the
 wait(200); //Bluetooth DIP Module into data mode
 }

printf("ATMD\r\n"); //put radio into data mode

The ‘Read_axis_data’ routine communicates to the accelerometer sensor via SPI obtaining
the 12 bits of X, Y, and Z acceleration data. This data is then communicated to the Bluetooth
DIP Module via UART, which is then sent to the PC.

© Kionix 2008
14 March 2008
Page 6 of 17

AN 018

//---
// Bluetooth.c
//---
//
// http://www.kionix.com
//
// Program Description:
//
// Example software to demonstrate the interface between a KXPB5 and C8051F312
// and an example Bluetooth DIP Module.
// - Interrupt-driven SPI implementation
// - Only master states defined
// - Timer2 used as data conversion clock source
// - Timer1 used by UART data rate transfer
//
// - Pinout:
// P1.6 -> SCLK (SPI)
// P1.7 -> SDO (SPI)
// P2.0 -> SDI (SPI)
// P2.1 -> nCS (SPI)
//
// P0.0 -> PO4 (Bluetooth connection status)
// P0.4 -> TX (UART)
// P0.5 -> RX (UART)
//
// all other port pins unused
//
// How To Test:
//
// 1) Download code to a KXPB5 and C8051F312 device that is connected to a
// Bluetooth Dip Module.
// 2) Run the code:
// a) Establish communication between the Bluetooth USB Module
// and the Bluetooth DIP Module.
// b) Open the HyperTerminal and configure it
// to the proper COM port at 9600/8/None/1/None to view the
// X, Y, and Z acceleration output in counts (12 bit resolution)
// Therefore for a +/-2g part g = ((output in counts - 2048)/819)
//
//
// Target: C8051F31x
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Command Line: None

© Kionix 2008
14 March 2008
Page 7 of 17

//

AN 018

// Release 1.0
// -Initial Revision (Rev 0.0)
// -10 MAY 2007
//

//---
// Includes
//---
#include "C8051F310.h"
#include <stdio.h>
#include <math.h>
//---
// Global VARIABLES
//---
sbit CS = P2^1;
sbit PO4 = P0^0;
sbit RTS = P1^0;
sbit CTS = P0^7;

unsigned int output;
unsigned int Xout, Yout, Zout;
long a, b;
//---
// Function PROTOTYPES
//---

unsigned int SPI_Transfer(int txbyte);
void wait(int counts);
unsigned int Xaxis();
unsigned int Yaxis();
unsigned int Zaxis();

//---
// 16-bit SFR Definitions for 'F31x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0CP3 = 0xed; // PCA0 Module 3 Capture/Compare

© Kionix 2008
14 March 2008
Page 8 of 17

sfr16 PCA0CP4 = 0xfd; // PCA0 Module 4 Capture/Compare

AN 018

sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 ADC0 = 0xbd; // ADC Data Word Register
sfr16 ADC0GT = 0xc3; // ADC0 Greater-Than
sfr16 ADC0LT = 0xc5; // ADC0 Less-Than

//---
// Peripheral specific initialization functions,
// Called from the Init_Device() function
//---

void Timer_Init()
{
 //Congifure the UART for 9600 baud data rate transfer
 TMOD = 0x20; //configure timer1 as an 8-bit counter/timer
 //with auto-reload
 TH1 = 0x96; //Load the high byte of timer1 with 96
}

void UART_Init()
{
 SCON0 = 0x10; //Enable UART reception
}

void SPI_Init()
{
 SPI0CFG = 0x40; //configure SPI as a master
 SPI0CN = 0x01; //enable SPI
 SPI0CKR = 0x02; //configure SPI clock to 4 MHz
}

void Port_IO_Init()
{
 // P0.0 - Skipped, Open-Drain, Digital
 // P0.1 - Skipped, Open-Drain, Digital
 // P0.2 - Skipped, Open-Drain, Digital
 // P0.3 - Skipped, Open-Drain, Digital
 // P0.4 - TX0 (UART0), Push-Pull, Digital
 // P0.5 - RX0 (UART0), Open-Drain, Digital
 // P0.6 - Skipped, Open-Drain, Digital
 // P0.7 - Skipped, Open-Drain, Digital

 // P1.0 - Skipped, Open-Drain, Digital
 // P1.1 - Skipped, Open-Drain, Digital
 // P1.2 - Skipped, Open-Drain, Digital
 // P1.3 - Skipped, Open-Drain, Digital
 // P1.4 - Skipped, Open-Drain, Digital

© Kionix 2008
14 March 2008
Page 9 of 17

 // P1.5 - Skipped, Open-Drain, Digital

AN 018

 // P1.6 - SCK (SPI0), Push-Pull, Digital
 // P1.7 - MISO (SPI0), Open-Drain, Digital
 // P2.0 - MOSI (SPI0), Push-Pull, Digital
 // P2.1 - Unassigned, Push-Pull, Digital
 // P2.2 - Unassigned, Open-Drain, Digital
 // P2.3 - Unassigned, Open-Drain, Digital

 P0MDOUT = 0x10;
 P1MDOUT = 0x40;
 P2MDOUT = 0x03;
 P0SKIP = 0xCF;
 P1SKIP = 0x3F;
 XBR0 = 0x03;
 XBR1 = 0x40;
}

void Oscillator_Init()
{
 OSCICN = 0x83; //configure the internal clock for 24.5 MHz
}

void Interrupts_Init()
{
 IE = 0xD0; //enable UART and SPI interrupt
}

// Initialization function for device,
// Call Init_Device() from your main program
void Init_Device(void)
{
 Timer_Init();
 UART_Init();
 SPI_Init();
 Port_IO_Init();
 Oscillator_Init();
 Interrupts_Init();
}

//---
// MAIN Routine
//---
//
// Main routine performs all configuration tasks, then loops forever receiving
// acceleration data and forwarding it to the Bluetooth DIP Module.
//

© Kionix 2008
14 March 2008
Page 10 of 17

AN 018

void main (void)
{
PCA0MD &= ~0x40; // WDTE = 0 (dissable watchdog timer)
Init_Device (); // Initialize the peripherals
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready

CS = 0;
SPI_Transfer(0x04); //command to write to KXPB5 control register
SPI_Transfer(0x04); //enable
CS = 1;

for(a=0; a<8333; a++){ //wait one second for the pins to stabilize
wait(200);
}

while(!PO4); //wait for the connection to be established with
 //the Bluetooth DIP Module. Otherwise do
nothing.

for(a=0; a<8333; a++){ //wait one second before putting the
wait(200); //Bluetooth DIP Module into data mode
}

printf("ATMD\r\n"); //put radio into data mode

while (1){

Xout = Xaxis(); //read x axis
Yout = Yaxis(); //read y axis
Zout = Zaxis(); //read z axis

// send x, y, and z axis data to the bluetooth dip module
// all of the AT commands and data that are sent to the
// Bluetooth DIP Module need a carriage return '\r' and
// a new line feed '\n'.
printf("X = %d, Y = %d, Z = %d\r\n", Xout, Yout, Zout);

 }
}

unsigned int SPI_Transfer(int txbyte)
{
SPIF = 0; // clear flag

© Kionix 2008
14 March 2008
Page 11 of 17

SPI0DAT = txbyte; // transmit a byte

AN 018

while (!SPIF); // wait until end of transmission
return SPI0DAT; // retrieve data from the slave
}

void wait(int counts)
{
TF2H = 0;
TMR2CN = 0x00;
TMR2 = -counts; // timer will overflow in counts timer clock cycles
(SYSCLK/12)
TR2 = 1; // turn on timer
while(!TF2H); // wait until timer interrupts
TR2 = 0; // turn timer off
}

unsigned int Xaxis()
{
CS = 0;
SPI_Transfer(0x00); //command to convert X-Axis
// wait some cycles
wait(200);
output = SPI_Transfer(0x00); // read first 8 bits
output = 0x100*output + SPI_Transfer(0x00); // read next 8 bits
output >>= 4; // shift the output from 16 to 12 bits (4 orders lower)
CS = 1;
return output;
}

unsigned int Yaxis()
{
CS = 0;
SPI_Transfer(0x02); //command to convert X-Axis
// wait some cycles
wait(200);
output = SPI_Transfer(0x00); // read first 8 bits
output = 0x100*output + SPI_Transfer(0x00); // read next 8 bits
output >>= 4; // shift the output from 16 to 12 bits (4 orders lower)
CS = 1;
return output;
}

unsigned int Zaxis()
{
CS = 0;
SPI_Transfer(0x01); //command to convert X-Axis
// wait some cycles

© Kionix 2008
14 March 2008
Page 12 of 17

wait(200);

AN 018

output = SPI_Transfer(0x00); // read first 8 bits
output = 0x100*output + SPI_Transfer(0x00); // read next 8 bits
output >>= 4; // shift the output from 16 to 12 bits (4 orders lower)
CS = 1;
return output;
}

//---
// END OF FILE
//---

© Kionix 2008
14 March 2008
Page 13 of 17

AN 018

AT COMMAND SUMMARY TABLE

© Kionix 2008
14 March 2008
Page 14 of 17

AN 018

© Kionix 2008
14 March 2008
Page 15 of 17

AN 018

© Kionix 2008
14 March 2008
Page 16 of 17

AN 018

© Kionix 2008
14 March 2008
Page 17 of 17

Conclusions

The measurements obtained in this study verified two linear accelerometers can be used to
determine angular rotation rates. This method works best when the rotational motions are
quick with large angular accelerations. In this case, there is no chance of dividing by zero.
Integration only takes place for short time, so drift is not a problem. Angular accelerations
need to be lower than the accelerometer sensing range.

The Kionix Advantage

Kionix technology provides for X, Y, and Z-axis sensing on a single, silicon chip. One
accelerometer can be used to enable a variety of simultaneous features including, but not
limited to:

Hard Disk Drive protection
Vibration analysis
Tilt screen navigation
Sports modeling
Theft, man-down, accident alarm
Image stability, screen orientation & scrolling
Computer pointer
Navigation, mapping
Game playing
Automatic sleep mode

Theory of Operation

Kionix MEMS linear tri-axis accelerometers function on the principle of differential
capacitance. Acceleration causes displacement of a silicon structure resulting in a change in
capacitance. A signal-conditioning CMOS technology ASIC detects and transforms changes in
capacitance into an analog output voltage, which is proportional to acceleration. These
outputs can then be sent to a micro-controller for integration into various applications. For
product summaries, specifications, and schematics, please refer to the Kionix MEMS
accelerometer product sheets at http://www.kionix.com/sensors/accelerometer-
products.html.

http://www.kionix.com/sensors/accelerometer-products.html
http://www.kionix.com/sensors/accelerometer-products.html

	Description
	1st byte
	(Command)

