

Your premier source for application specific and specialty ceramic capacitors

Contents

A/E è		ntro	Products by Market		Page 1	
			The Company		Page 2	
			Technical Summary		Page 3	
			Dielectric Characteristics		Page 4 - 7	
N. C.			Capacitor Manufacturing Process		Page 8	
			MIL PRF-123 Periodic Testing		Page 9	
		hnical	Board Design Considerations		Page 10	
X	Dat	a	FlexiCap™ Polymer Termination		Page 11	
			Chip Dimensions		Page 12	
			Capacitor Marking System		Page 13	
			Chip Taping Details	Page 14		
			Chip Ordering Information	Pa	Page 15	
			Commercial Chip - C0G 16Vdc to 10kVd	dc Pa	ige 16 - 17	
VIZ			Commercial Chip - R3L 16Vdc to 5kVdc	Pag	ge 18 - 19	
			Commercial Chip - X7R 16Vdc to 10kVdc	Pag	e 20 - 21	
			Commercial Chip - BX	Page	22	
	Comme	ercial	Commercial Chip - Z5U & Y5V	Page	22	
	Product	S	Commercial Chip - BX & X7R RF series	Page	23	
O N			Commercial Radial Lead - 50V to 5kV	Page 2	24	
			Commercial Radial Lead - 500V to 10kV	Page 2	5	
			Commercial Axial Lead - 50Vdc to 2kVdc	Page 26	5	
	V		Leaded Products Ordering Information	Page 26		
High High		H	ligh Reliability Testing	Page 27		
		Н	igh Reliability Chip - COG 16Vdc to 10kVdc	Page 28 -	29	
		Hi	gh Reliability Chip - X7R 16Vdc to 10kVdc	Page 30 - 1	31	
		Hig	h Reliability Radial Lead - 500Vdc to 10kVdc	Page 32		
		CC Approved - Radial Lead	Page 33			
	Products	DSC	C Approved - Capacitor Assemblies	Page 34	200	
		Produ	uct Reliability Groups	Page 35		
		Lot Te	sting	Page 36	1	
1 thing		Lot Tes	t Details	Page 37		
The manner of	Liab	High Te	emperature Applications Introduction	Page 38		
The state of the s	High	High Tei	mperature Chip - 150°C, 160°C & 200°C	Page 39	100	
	Temperature	High Ten	nperature Radial Lead - Epoxy Coated	Page 40	-	
	roducts	High Tem	perature Radial Lead - Encapsulated	Page 41		
		Certified 9	Safety Chip - X ² , Y ³ & X ¹ , Y ²	Page 42 - 43		
A	pplication	High Capa	citance Chip - X7R & X5R	Page 44 - 45		
Specific		Non Magnetic Chip - C0G & X7R		Page 46		
		nin Profile	Chip	Page 47	1	
	Ca	pacitor As	semblies - ST & SM	Page 48 - 49		
Cap	oacitor Cap	pacitor Ass	semblies - COG Commercial & High Reliability	Page 50 - 51		
Asse	emblies Cap	Capacitor Assemblies - X7R Commercial & High Reliability		Page 52 - 53		
	Сара	acitor Asse	mblies - 'Cap-Rack' Arrays	Page 54		
	Speci	alty Capac	itors - Application Specific	Page 55 - 57		
Speci	alty Specia	alty Capaci	tors - Pulsed Power	Page 58 - 59		
Produ		lty Capacit	ors - Detonation & Pulse Energy Capacitors	Page 60 - 61		

Products by Market

Aerospace & Avionics Automotive	Medical Military & Defense	Oil Exploration Power Conversion	Tele/Datacom	

Page 62 - 63

Specialty Capacitors - Custom Designs

Movacap manufactures surface mount and leaded Multilayer
Ceramic Capacitors (MLC) as well as specialty assemblies for your circuit applications. We are part of Ceramic and Microwave Products (CMP) an operating company of Dover Corporation. We operate from two modern manufacturing facilities in Valencia, California and Guaymas, Mexico.

Our standard sizes range from 0402 to 7565, and we provide voltage ratings from 4V to 10kV.

We are flexible, quick, reliable and innovative!
Call us with your particular requirements.

The Company

Some of our offerings include:

- Full range of surface mount chip capacitors
- High Reliability capacitors for use in Medical Implantable Devices and Life Support Systems
- High Temperature capacitors for harsh environments such as Oil Exploration, Automotive and Avionics Engine Compartment circuitry
- Custom Capacitor Modules for ratings up to 20kV
- Capacitor Arrays for highly efficient use of board space
- Certified Safety (Y², Y³) and Ring Detect Capacitors for Telecommunications
- High Voltage capacitors, with ratings up to 10kV, designed for Commercial and Military use in Power Supply and Voltage Multiplier circuits
- Surge Protection and Arc Prevention capacitors
- Radial & Axial Leaded Capacitors
- Thin Profile capacitors for RFID and smart cards.
- Pulsed Power capacitors for Detonation, Oil Exploration, Photo Flash, Laser, Power Interruption, and Power Storage applications
- Stacked Capacitor Assemblies for input and output filters in Switch Mode Power Supplies, High Capacitance Discharge Circuitry and High Temperature Filtering and Decoupling

Technical Summary

Technical Information

Novacap provides application notes throughout this catalog as a guide to chip selection and attachment methods. Refer to the Novacap Technical Brochure found at www.novacap.com for more details. This technical information includes the nature of capacitance, dielectric properties, electrical properties, classes of dielectrics, ferroelectric behavior, test standards, and high reliability test plans. Please do not hesitate to contact the sales office for any product or technical assistance.

Capacitor Size

Size availability is based primarily on capacitance values and voltage rating. Smaller units are generally less expensive. Because mass affects the thermal shock susceptibility of chip capacitors, size selection should consider the soldering method used to attach the chip to the board. Sizes 1812 and smaller can be wave, vapor phase, or reflow soldered. Larger units require reflow soldering.

Chip Selection

Multilayer capacitors (MLC) are categorized by dielectric performance with temperature. The Temperature Coefficient of Capacitance describes the variance of capacitance value with temperature. The choice of components is therefore largely determined by the temperature stability required of the device and the size necessary for the desired capacitance value and voltage rating.

Packaging

Units are available reeled, in waffle pack, or bulk packaged. Bar coded labels are standard for reeled and bulk packaging.

R •

Primary Dielectric Types

COG/NPO:

Ultra stable Class I dielectric, with negligible dependence of capacitance on temperature, voltage, frequency, and time. Used in circuitry requiring very stable performance.

X7R:

Stable Class II dielectric, with predictable change in properties across a temperature range of -55°C to +125°C. Used as blocking, decoupling, bypassing, and frequency discriminating elements. This dielectric is ferroelectric and provides higher capacitance than Class I materials.

BX:

The military specification for ceramic chip capacitors (MIL-PRF-55681) defines a mid-K stable dielectric designated as BX. The BX specification has voltage temperature limits in addition to temperature limits of capacitance. The BX dielectric is limited to ±15% maximum change in capacitance between 25°C and -55°C or +125°C and also has a voltage restriction of +15% / -25% maximum change in capacitance between 25°C and -55°C or +125°C at rated voltage.

Z5U/Y5V:

General purpose Class III dielectrics with higher dielectric constant and greater variation of properties over temperature and voltage. Very high capacitance per volume is attainable for general purpose applications where stability over a wide temperature range is not critical.

Dielectric Termination **Combinations** Dielectric COG/NP0 R3L X7R • X5R BX Y5V Z5U COG/NPO (Mag free) М X7R (Mag free) • • C0G/NP0 (160°C) COG/NPO (200°C) D Class II (160°C) G | • | • | • Class II (200°C) Pulse Power

Termination Material

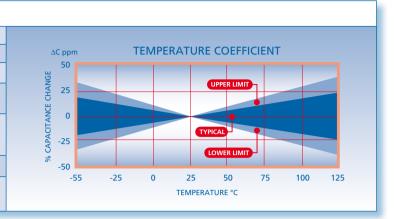
We recommend the following termination types:

Solder Attachment:

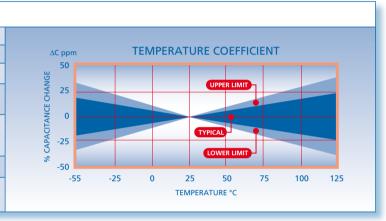
- N Nickel Barrier, 100% matte tin plated RoHS
- C FlexiCap™ with Nickel Barrier,
 100% tin plated RoHS
- Y Nickel Barrier, tin-lead plated
- **D** FlexiCap[™] Nickel Barrier, tin-lead plated
- **B** Copper Barrier 100% matte tin plated RoHS
- **E** Copper Barrier, tin-lead plated
- **K** Solderable Palladium Silver RoHS
- **S** Solderable Silver RoHS

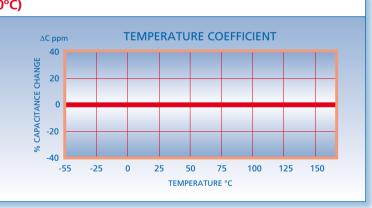
Conductive Epoxy attachment:

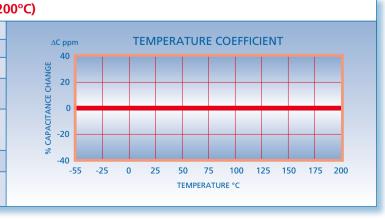
- P Palladium Silver
- **PR** Palladium Silver RoHS
- **NG** Nickel Barrier Gold Flash, also suitable for soldering attachment - RoHS

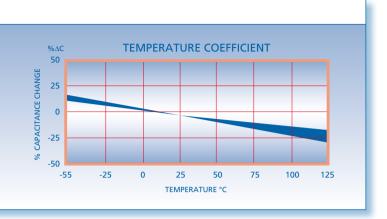

Dielectric Characteristics

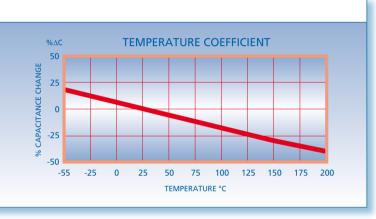
Dielectric Characteristics

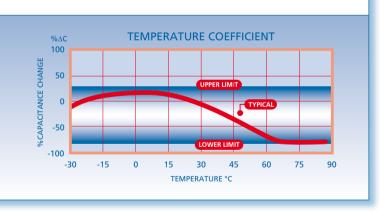


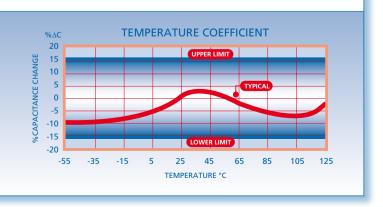

COG/NPO (N) Ultra Stable Operating temperature range: -55°C to 125°C Temperature coefficient: 0 ±30 ppm/°C Dissipation factor: 0.1% max @ 25°C Insulation resistance @25°C: >100G Ω or >1000 Ω F whichever is less @125°C: $>10G\Omega$ or $>100\Omega$ F whichever is less ≤200V: 201-500V: Dielectric 150% or 500V whichever is greater withstanding voltage >500V: 120% or 750V whichever is greater Ageing rate: 0% per decade 1KHz, 1.0 ±0.2 VRMS, 25°C Test parameters: 1MHz for Capacitance ≤100pF


COG/NPO (M) Ultra Stable Non Magnetic			
Operating temperature range:	-55°C to 125°C		
Temperature coefficient:	0 ±30 ppm/°C		
Dissipation factor:	0.1% max @ 25°C		
Insulation resistance @25°C: @125°C:	>1000 Ω F or >10000 Ω F whichever is less >100 Ω F or >1000 Ω F whichever is less		
Dielectric≤200V:withstanding201-500V:voltage>500V:	250% 150% or 500V whichever is greater 120% or 750V whichever is greater		
Ageing rate:	0% per decade		
Test parameters:	1KHz, 1.0 ±0.2 VRMS, 25°C 1MHz for Capacitance ≤100pF		


COG/NPO (F) Ultra Stable High Temperature (up to 160°C) -55°C to 160°C Operating temperature range: Temperature coefficient: 0 ±30 ppm/°C 0.1% max @ 25°C Dissipation factor: Insulation resistance @25°C: $>100G\Omega$ or $>1000\Omega$ F whichever is less @160°C: $>1G\Omega$ or $>10\Omega$ F whichever is less Dielectric <200V: 201-500V: 150% or 500V whichever is greater withstanding 120% or 750V whichever is greater voltage >500V: 0% per decade Ageing rate: 1KHz, 1.0 ±0.2 VRMS, 25°C Test parameters: 1MHz for Capacitance ≤100pF


COG/NPO (D) Ultra Stab	le High Temperature (up to 20
Operating temperature range:	-55°C to 200°C
Temp. coefficient ≤200°C:	0 ±30 ppm/°C
Dissipation factor @ 25°C:	0.1% Max.
Insulation resistance @25°C: @200°C:	>100G Ω or >1000 Ω F whichever is less >1G Ω or >10 Ω F whichever is less
Dielectric ≤200V: withstanding 201-500V: voltage >500V:	250% 150% or 500V whichever is greater 120% or 750V whichever is greater
Ageing rate:	0% per decade
Test parameters:	1KHz, 1.0 ±0.2 VRMS, 25°C 1MHz for capacitance ≤100pF

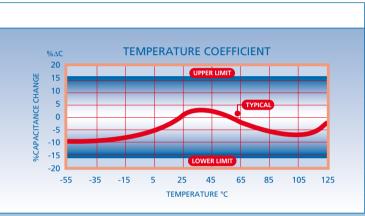

	R3L (K) Ultra Stable		
	Operating temperature range:	-55°C to 125°C	
	Temperature coefficient:	-2200 ±500 ppm/°C	
	Dissipation factor:	0.1% max @ 25°C	
	Insulation resistance @25°C: @125°C:	>1000 Ω F or >10000 Ω F whichever is less >100 Ω F or >1000 Ω F whichever is less	
	Dielectric ≤200V: withstanding 201-500V: voltage >500V:	250% 150% or 500V whichever is greater 120% or 750V whichever is greater	
Ageing rate:		0% per decade	
	Test parameters:	1KHz, 1.0 ±0.2 VRMS, 25°C 1MHz for Capacitance ≤100pF	

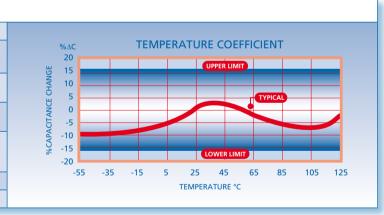

R2D (R) Pulse Energy		
Operating temperature range:	-55°C to 200°C	
Temperature coefficient:	-2200 ±500 ppm/°C	
Dissipation factor:	0.1% max @ 25°C	
Insulation resistance @25°C: @200°C:	>100G Ω or >1000 Ω F whichever is less >1G Ω or >10 Ω F whichever is less	
Dielectric withstanding voltage:	120%	
Ageing rate:	0% per decade	
Test parameters:	1KHz, 1.0 ±0.2 VRMS, 25°C	

Y5V (Y) Gene	ral Purpos	e
Operating temperature range:		-30°C to 85°C
Temperature coefficient:		+22% -82% ΔC Max.
Dissipation factor >25V rating: ≤25V rating:		5.0% max 7.0% max
Insulation resistance @25%:		>10G Ω or >100 Ω F whichever is less
Dielectric withstanding voltage	≤200V: 250V:	250% 150%
Ageing rate:		4.0% per decade
Test parameters:		1KHz, 1.0 ±0.2 VRMS, 25°C

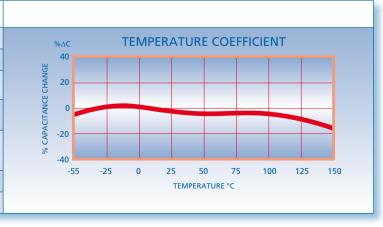
Z5U (Z) General Purpos	e
Operating temperature range:	+10°C to 85°C
Temperature coefficient:	+22% -56% ΔC Max.
Dissipation factor:	4.0% max @ 25°C
Insulation resistance @25%	$> 10G\Omega$ or $> 100\Omega$ F whichever is less
Dielectric ≤200V: withstanding voltage ≤50V:	250% 150%
Ageing rate:	4.0% per decade
Test parameters:	1KHz, 0.5 ±0.2 VRMS, 25°C

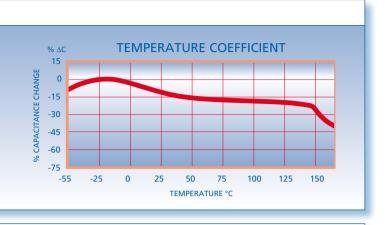
Dielectric Characteristics

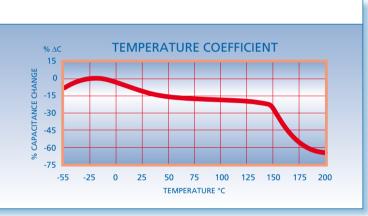

Dielectric Characteristics

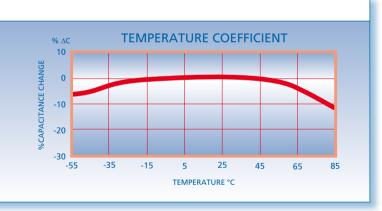


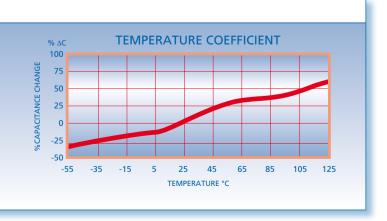
X7R (B) Stable -55°C to 125°C Operating temperature range: TEMPERATURE COEFFICIENT ±15% ΔC Max. Temperature coefficient : Dissipation factor >25V rating: 2.5% max ≤25V rating: 3.5% max Insulation resistance: @25°C: $>100G\Omega$ or $>1000\Omega$ F whichever is less @125°C: $>10G\Omega$ or $>100\Omega$ F whichever is less Dielectric 201-500V: 150% or 500V whichever is greater withstanding voltage >500V: 120% or 750V whichever is greater -35 -15 5 25 45 Ageing rate: <2.0% per decade TEMPERATURE °C 1KHz, 1.0 ±0.2 VRMS, 25°C Test parameters:

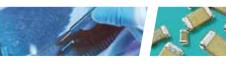

X7R (C) Stable Non Magnetic				
Operating temperatu	re range:	-55°C to 125°C		
Temperature coefficie	ent:	±15% ΔC Max.		
Dissipation factor	>25V rating: <25V rating:	2.5% max 3.5% max		
Insulation resistance:	@25°C: @125°C:	>100G Ω or >1000 Ω F whichever is less >10G Ω or >100 Ω F whichever is less		
Dielectric withstanding voltage	≤200V: 201-500V: >500V:	250% 150% or 500V whichever is greater 120% or 750V whichever is greater		
Ageing rate:		<2.0% per decade		
Test parameters:		1KHz, 1.0 ±0.2 VRMS, 25°C		


BX (X) Stable Operating temperature range: -55°C to 125°C Temperature coefficient: ±15% ΔC Max. Temp-voltage coefficient: +15% -25% ΔC Max. >25V rating: 2.5% max Dissipation factor ≤25V rating: | 3.5% max Insulation resistance: @25°C: $>100G\Omega$ or $>1000\Omega$ F whichever is less @125°C: $>10G\Omega$ or $>100\Omega$ F whichever is less ≤200V: 250% Dielectric 201-500V: 150% or 500V whichever is greater withstanding 120% or 750V whichever is greater voltage >500V: <2.0% per decade Ageing rate: 1KHz, 1.0 ±0.2 VRMS, 25°C Test parameters:


X8R (S) Stable				
Operating temperature range:	-55°C to 150°C			
Temp. coefficient ≤150°C:	±15% ΔC Max.			
Dissipation factor >25V rating: <25V rating:	2.5% max 3.5% max			
Insulation @25°C: resistance @150°C:	>100G Ω or >1000 Ω F whichever is less >10G Ω or >100 Ω F whichever is less			
Dielectric ≤200V: withstanding 201-500V: voltage >500V:	250% 150% or 500V whichever is greater 120% or 750V whichever is greater			
Ageing rate:	<2.0% per decade			
Test parameters:	1KHz, 1.0 ±0.2 VRMS, 25°C			


Class II (G) Stable High Temperature (up to 160°C)				
Operating temperature range:	-55°C to 160°C			
Temperature coefficient up to 160°C:	+15 -40% ΔC Max.			
Dissipation factor @ 25°C:	2.5% Max.			
Insulation resistance @25°C: @160°C:	>100G Ω or >1000 Ω F whichever is less >1G Ω or >10 Ω F whichever is less			
Dielectric ≤200V: withstanding 201-500V: voltage >500V:	1 7			
Ageing rate:	< 2.0% per decade			
Test parameters:	1KHz, 1.0 ±0.2 VRMS, 25°C			


Class II (E) Stable High Temperature (up to 200°C)			
Operating temperature ran	ige:	-55°C to 200°C	
Temperature coefficient up to 200°C:		+15 -65% ΔC Max.	
Dissipation factor @ 25°C:		2.5% Max.	
Insulation resistance	@25°C: @200°C:	>100G Ω or >1000 Ω F whichever is less >1G Ω or >10 Ω F whichever is less	
Dielectric withstanding voltage	≤200V: 201-500V: >500V:	250% 150% or 500V whichever is greater 120% or 750V whichever is greater	
Ageing rate:		< 2.0% per decade	
Test parameters:		1KHz, 1.0 ±0.2 VRMS, 25°C	



Operating temperature range:	-55°C to 85°C
Temperature coefficient up to 200°C:	±15% ΔC Max.
Dissipation factor @ 25°C:	See page 44
Insulation resistance @25%:	>10G Ω or >500 Ω F whichever is less
Dielectric withstanding voltage:	250%
Ageing rate:	< 5.0% per decade
Test parameters: Except: 22µF, 47µF & 100µF	1KHz, 1.0 ±0.2 VRMS, 25°C 120KHz, 0.5 ±0.1 VRMS, 25°C

ver						
-55°C to 85°C (derate at 125°C)						
3000 ±1000 ppm/°C 7000 ±1000 ppm/°C						
1.0% Max.						
>10G Ω or >100 Ω F whichever is less >1G Ω or >10 Ω F whichever is less						
Rated voltage +100V						
<2% per decade						
1KHz, 1.0 ±0.2 VRMS, 25°C						

Capacitor Manufacturing Process

MIL-PRF-123 Periodic Lot Testing

RoHS compliance

Novacap routinely monitors world wide material restrictions (e.g. EU / China and Korea RoHS mandates) and is actively involved in monitoring future legislation.

All standard Novacap MLCC products are available compliant with the EU RoHS directive 2002/95/EC (see below for special exceptions) and those with plated terminations are suitable for soldering using common Pb free solder alloys (refer to 'Soldering Information' for more details on soldering limitations). Compliance with EU 2002/95/EC automatically signifies compliance with some other legislation (e.g. Korea RoHS). Please refer to Novacap for details of compliance with other materials legislation.

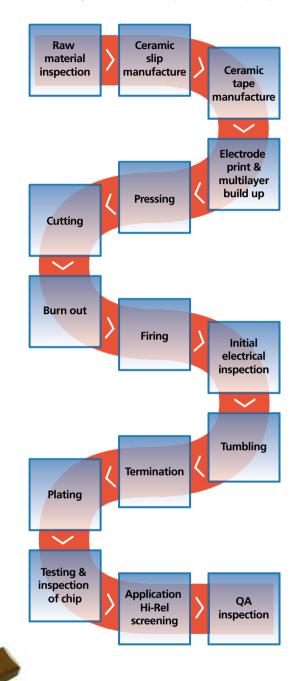
Breakdown of material content, SGS analysis reports and tin whisker test results are available on request.

Most Novacap MLCC components are available with non RoHS compliant tin lead (SnPb) solderable termination finish by special request for exempt applications and where pure tin is not acceptable. Other tin free termination finishes may also be available – please refer to Novacap for further details.

Radial components have tin (Sn) plated leads as standard, but Sn/Pb leads are available as a special option. Please refer to the radial section of the catalog for further details.

REACH (Registration, Evaluation, Authorization and restriction of Chemicals) statement

The main purpose of REACH is to improve the protection of human health and the environment from the risks arising from the use of chemicals.


Novacap maintains both ISO14001, Environmental Management System and OHSAS 18001 Health and Safety Management System approvals that require and ensure compliance with corresponding legislation such as REACH.

For further information, please contact the sales office.

Novacap's "Green" Policy

It is Novacap policy to comply with the global environmental directives pertaining to the use of hazardous materials in manufacturing and to that end can supply products meeting RoHS standards – details can be found throughout this catalog.

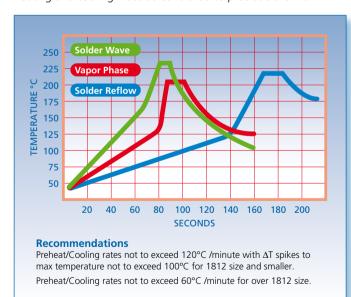
Process flow diagram for Novacap ceramic chip capacitors

Test Name Test Method Details Sample Size Rejects Allowed Electrical Characteristics Capacitance/Dissipation Factor MIL-STD-202 M305 1Vrms, 1kHz 325 0 Rated Voltage **Insulation Resistance** MIL-STD-202 M302 325 0 1000 M Ω - μ F min Dielectric Withstanding Voltage MIL-STD-202 M301 2.5x Rated Vdc min 325 0 **Group A - Subgroup 1** MIL-PRF-123 4.6.6.1 20 cycles -55°C to +125°C Thermal Shock MIL-STD-202 M107 5% PDA (16 pcs) and 325 < 0.2% (0 pcs) 2x Rated Vdc, 125°C, in last 48 hrs **Voltage Conditioning** MII-PRF-123 4.6.6.2 168-264 Hours **Group A - Subgroup 2** "Visual and mechanical inspection; material, physical dimensions, MIL-PRF-123 4.6.3 Parts must pass criteria 20 0 design, construction, marking and workmanship". **Group A - Subgroup 3** Destructive Physical Analysis MIL-PRF-123 4.6.11 10 0 Parts must pass criteria **Group B - Subgroup 1** MIL-PRF-123 4.6.6.1 Thermal Shock 100 cycles -55°C to +125°C MIL-STD-202 M107 200 Report MIL-PRF-123 4.6.19 Life Test 2xVdc, 125°C, 1000 Hours MIL-STD-202 M108 **Group B - Subgroup 2** MIL-PRF-123 4.6.16.1 Humidity, Steady State Low Voltage 85% RH, 85°C, 240 Hrs, 1.3V 0 MIL-STD-202 M103 **Group B - Subgroup 3** -55°C -25°C -125°C **Voltage - Temperature Limits** MIL-PRF-123 4.6.15 1Vrms ±15%(X7R), ±30ppm (C0G) 12 MIL-PRF-123 4.6.16.2 **Moisture Resistance** 20 cycles 25V 1st 10 cycles MIL-STD-202 M106 **Group C - Subgroup 2 Chip Devices** MIL-PRF-123 4.6.12.2 **Terminal Strength** Pull test, nail leads, x-x kg MIL-STD-202 M211 MIL-PRF-123 4.6.13.2 8 Hr Steam Age, MIL-STD-202 M208 SAC305 at 255°C, 5 seconds, Solderability J-STD 002C 95% coverage MIL-PRF-123 4.6.14.2 60/40 Tin/Lead at 230°C, Resistance To Soldering Heat MIL-STD-202 M210 2 five second dips

COG and X7R test packages available on request.

Board Design Considerations

FlexiCap™ Polymer Termination


Bonding of capacitors to substrates can be categorized into two methods, those involving solder, which are prevalent, and those using other materials, such as epoxies and thermo-compression or ultrasonic bonding with wire.

The amount of solder applied to the chip capacitor will influence the reliability of the device. Excessive solder can create thermal and tensile stresses on the component which could lead to fracturing of the chip or the solder joint itself. Insufficient or uneven solder application can result in weak bonds; rotation of the device off line or lifting of one terminal off the pad (tombstoning).

There are practical limitations on capacitor sizes that prohibit reliable direct mounting of chip capacitors larger than 2225 to a substrate. Without mechanical restriction, thermally induced stresses are released once the capacitor attains a steady state condition, at any given temperature. Capacitors bonded to substrates, however, will retain some stress, due primarily to the mismatch of expansion of the component to the substrate; the residual stress on the chip is also influenced by the ductility and hence the ability of the bonding medium to relieve the stress. Unfortunately, the thermal expansions of chip capacitors differ significantly from those of substrate materials. At 25°C to 300°C, capacitors typically range in expansion coefficient from 8.3 x 10-6 to 12.2 x 10-6 in/in/°C, while 99% Alumina is approximately 6.0 x 10-6 in/in/°C and P.C. board is typically 16.0 x 10-6 in/in/°C.

Soldering

The volume of solder is process and board pad size dependent. Soldering methods commonly used in the industry, and recommended, are Reflow Soldering, Wave Soldering, and to a lesser extent, Vapor Phase Soldering. All these methods involve thermal cycling of the components and therefore the rate of heating and cooling must be controlled to preclude thermal

shocking of the devices. In general, rates which do not exceed 120°C per minute and a T spike of 100°C maximum for any soldering process on sizes 1812 and smaller is advisable. Other precautions include post soldering handling, primarily avoidance of rapid cooling with contact with heat sinks, such as conveyors or cleaning solutions.

Wave Soldering exposes the devices to a large solder volume; hence the pad size area must be restricted to accept an amount of solder which is not detrimental to the chip size utilized. Typically the pad width is 66% of the component width, and the length

is .030" (.760 mm) longer than the termination band on the chip. For example, an 0805 chip which is .050" wide and has a .020" termination band therefore requires a pad .033" wide by .050" in length. Opposing pads should be identical in size to preclude uneven solder fillets and mismatched surface tension forces which can misalign the device. It is preferred that the pad layout results in alignment of the long axis of the chips at right angles to the solder wave, to promote even wetting of all terminals.

Novacap publishes a technical brochure which provides detailed information on the properties of ceramic chip capacitors, dielectric behavior, product classifications, test and quality standards, and other information relevant to their use.

The Novacap technical brochure is available upon request. For quick reference see the brochure on the Novacap website at WWW.NOVaCap.COM

Orientation of components in line with the board travel direction may require dual waves with solder turbulence to preclude cold solder joints on the trailing terminals of the devices, as these are blocked from full exposure to the solder by the body of the capacitor.

Restrictions in chip alignment do not apply to Solder Reflow or Vapor Phase processes, where the solder volume is controlled by the solder paste deposition on the circuit pads. Novacap has adopted the IPC-SM-782 methodology for solder reflow land patterns. The Novacap recommended solder pads brochure is available for reference on our website. Large chips are more prone to thermal shock as their greater bulk will result in sharper thermal gradients within the device during thermal cycling. Units larger than 1812 experience excessive stress if processed through the fast cycles typical of solder wave or vapor phase operations. Solder reflow is most applicable to the larger chips as the rates of heating and cooling can be slowed within safe limits. In general, rates that do not exceed 60°C per minute and a T spike of 50°C maximum for any soldering process on sizes larger than 1812 is advisable.

Attachment using a soldering iron requires extra care, particularly with large components, as thermal gradients are not easily controlled and may cause cracking of the chip. Precautions include preheating of the assembly to within 100°C of the solder flow temperature; the use of a fine tip iron which does not exceed 30 watts and limitation of contact of the iron to the circuit pad areas only.

Bonding

Hybrid assembly using conductive epoxy or wire bonding requires the use of silver palladium or gold terminations. Nickel barrier termination is not practical in these applications, as intermetallics will form between the dissimilar metals. The ESR will increase over time and may eventually break contact when exposed to temperature cycling.

Cleaning

Chip capacitors can withstand common agents such as water, alcohol and degreaser solvents used for cleaning boards. Ascertain that no flux residues are left on the chip surfaces as these diminish electrical performance.

FlexiCap™ termination

MLCCs are widely used in electronic circuit design for a multitude of applications. Their small package size, technical performance and suitability for automated assembly makes them the component of choice.

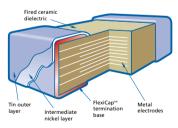
FlexiCap[™]

However, despite the technical benefits, ceramic components are brittle and need careful handling on the production floor. In

some circumstances they may be prone to mechanical stress damage if not used in an appropriate manner. Board flexing, depanelization, mounting through hole components, poor storage and automatic circuit testing may all result in cracking.

Careful process control is important at all stages of circuit board assembly and transportation - from component placement to test and packaging. Any significant board flexing may result in stress fractures in ceramic devices that may not always be evident during the board assembly process. Sometimes it may be the end customer who finds out - when equipment fails!

The solution - FlexiCap™


FlexiCap[™] was developed as a result of listening to customers' experiences of stress damage to MLCCs from many manufacturers, often caused by variations in production processes.

Our answer is a proprietary flexible epoxy polymer termination material, that is applied to the device under the usual nickel barrier finish. FlexiCapTM will accommodate a greater degree of board bending than conventional capacitors.

FlexiCap™ termination

All capacitance ranges are available with FlexiCap™ termination material offering increased reliability and superior mechanical performance (board flex and temperature cycling) when compared with standard termination materials. FlexiCap™ capacitors enable the board to be bent almost twice as much before mechanical cracking occurs.

FlexiCap[™] is also suitable for Space applications having passed thermal vacuum outgassing tests.

FlexiCap™ MLCC cross section

FlexiCap™ benefits

With traditional termination materials and assembly, the chain of materials from bare PCB to soldered termination, provides no flexibility. In circumstances where excessive stress is applied - the weakest link fails. This means the ceramic itself may fail.

The benefit to the user is to facilitate a wider process window - giving a greater safety margin and substantially reducing the typical root causes of mechanical stress cracking.

FlexiCap™ may be soldered using your traditional wave or

reflow solder techniques and needs no adjustment to equipment or current processes.

Novacap has delivered millions of FlexiCap™ components and during that time has collected substantial test and reliability data, working in partnership with customers world wide, to eliminate mechanical cracking.

An additional benefit of FlexiCap™ is that MLCCs can withstand temperature cycling -55°C to 125°C in excess of 1,000 times without cracking.

FlexiCap™ termination has no adverse effect on any electrical parameters, nor affects the operation of the MLCC in any way.

 Picture taken at 1,000x magnification using a SEM to demonstrate the fibrous nature of the FlexiCap™ termination that absorbs increased levels of mechanical stress

Available on the following ranges:

All High Reliability ranges

Standard and High Voltage chips

X8R High Temperature capacitors

Summary of PCB bend test results

The bend tests conducted on X7R have proven that the FlexiCap™ termination withstands a greater level of mechanical stress before mechanical cracking occurs.

The AEC-Q200 test for X7R requires a bend level of 2mm minimum and a cap change of less than 10%.

Product X7R	Typical bend performance under AEC-Q200 test conditions
Standard termination	2mm to 3mm
FlexiCap™ termination	Typically 8mm to 10mm

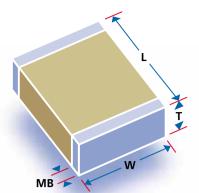
Application notes

FlexiCapTM may be handled, stored and transported in the same manner as standard terminated capacitors. The requirements for mounting and soldering FlexiCapTM are the same as for standard SMD capacitors.

For customers currently using standard terminated capacitors there should be no requirement to change the assembly process when converting to $FlexiCap^{TM}$.

Based upon board bend tests in accordance with IEC 60384-1 the amount of board bending required to mechanically crack a FlexiCap™ terminated capacitor is significantly increased compared with standard terminated capacitors.

It must be stressed however, that capacitor users must not assume that the use of FlexiCap™ terminated capacitors will totally eliminate mechanical cracking. Good process controls are still required for this objective to be achieved.


Product not available for 200°C applications.

Chip Dimensions

Chip Marking System

If required, we can mark capacitors with the EIA 198 two digit code
to show the capacitance value of the part. On chips larger than
3333, or for leaded encapsulated devices, ink marking is available.
However, for chip sizes 0805 through to 3333 identification
marking is accomplished by using either laser or ink jet printer.
This system does not degrade the ceramic surface, or induce
microcracks in the part.

Marking for other sizes may be available upon special request to determine if applicable; please contact the sales office.

Marking is an option, and needs to be specified when ordering by using the letter M in the part number code, see page 15 for details.

Two position alpha numeric marking is available on chip sizes 0805 through 3333. The marking denotes retma value and significant figures of capacitance (see table) eg: A5 = 100,000pF.

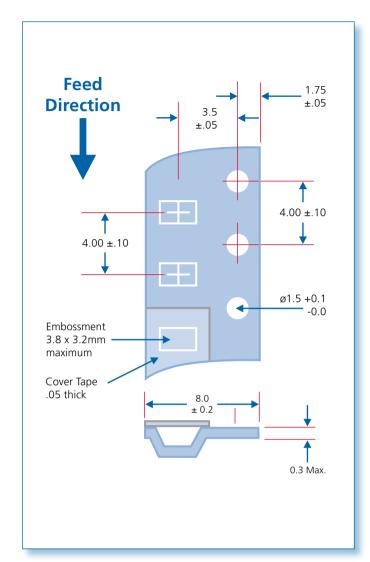
Three position alpha numeric marking is available on chip sizes 1206 and larger, denoting Novacap as vendor (N), followed by the standard two digit alpha numeric identification.

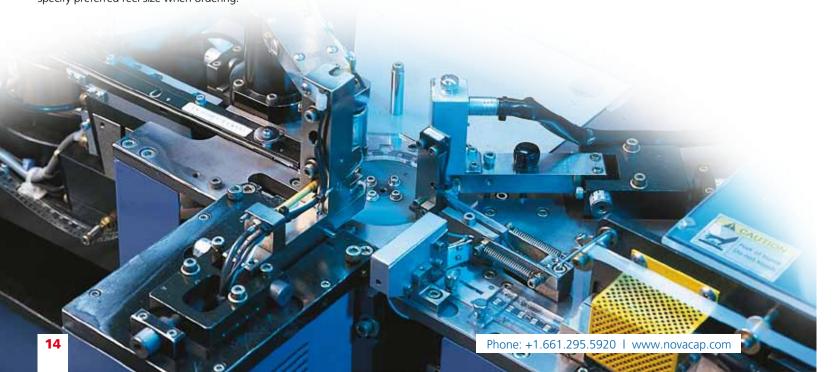
		•				
Dimensio	ons - inches (mm)					
Size	Length (L)	Width (W)	Max. Thickness (T)*	Termination Band (MB)		
0402	0.040 ± 0.004 (1.02 ± 0.102)	0.020 ± 0.004 (0.508 ± 0.102)	0.024 (0.610)	0.010 ± 0.006 (0.254 ± 0.152)		
0504	0.050 ± 0.006 (1.27 ± 0.152)	0.040 ± 0.006 (1.02 ± 0.152)	0.044 (1.12)	0.014 ± 0.006 (0.356 ± 0.152)		
RF0505	0.055 +0.015 -0.010 (1.4 +0.38 -0.25)	0.055 ± 0.015 (1.40 ± 0.381)	0.057 (1.45)	0.014 ± 0.006 (0.356 ± 0.152)		
0603	0.060 ± 0.006 (1.52 ± 0.152)	0.030 ± 0.006 (0.762 ± 0.152)	0.035 (0.889)	0.014 ± 0.006 (0.356 ± 0.152)		
0805	0.080 ± 0.008 (2.03 ± 0.203)	0.050 ± 0.008 (1.27 ± 0.203)	0.054 (1.37)	0.020 ± 0.010 (0.508 ± 0.254)		
0907	0.090 ± 0.008 (2.29 ± 0.203)	0.070 ± 0.008 (1.78 ± 0.203)	0.060 (1.52)	0.020 ± 0.010 (0.508 ± 0.254)		
1005	0.100 ± 0.008 (2.54 ± 0.203)	0.050 ± 0.008 (1.27 ± 0.203)	0.054 (1.37)	0.020 ± 0.010 (0.508 ± 0.254)		
RF1111	0.110+0.025 -0.010 (2.79 +0.64 -0.25)	0.110 ± 0.015 (2.79 ± 0.381)	0.102 (2.59)	0.020 ± 0.010 (0.508 ± 0.254)		
1206	0.125 ± 0.008 (3.18 ± 0.203)	0.060 ± 0.008 (1.52 ± 0.203)	0.064 (1.63)	0.020 ± 0.010 (0.508 ± 0.254)		
1210	0.125 ± 0.008 (3.18 ± 0.203)	0.100 ± 0.008 (2.54 ± 0.203)	0.065 (1.65)	0.020 ± 0.010 (0.508 ± 0.254)		
1515	0.150 ± 0.015 (3.81 ± 0.381)	0.150 ± 0.015 (3.81 ± 0.381)	0.130 (3.30)	0.030 ± 0.015 (0.762 ± 0.381)		
1808	0.180 ± 0.012 (4.57 ± 0.305)	0.080 ± 0.008 (2.03 ± 0.203)	0.065 (1.65)	0.024 ± 0.014 (0.610 ± 0.356)		
1812	0.180 ± 0.012 (4.57 ± 0.305)	0.125 ± 0.008 (3.18 ± 0.203)	0.065 (1.65)	0.024 ± 0.014 (0.610 ± 0.356)		
1825	0.180 ± 0.012 (4.57 ± 0.305)	0.250 ± 0.015 (6.35 ± 0.381)	0.080 (2.03)	0.024 ± 0.014 (0.610 ± 0.356)		
2020	0.200 ± 0.015 (5.08 ± 0.381)	0.200 ± 0.015 (5.08 ± 0.381)	0.180 (4.57)	0.024 ± 0.014 (0.610 ± 0.356)		
2221	0.220 ± 0.015 (5.59 ± 0.381)	0.210 ± 0.015 (5.33 ± 0.381)	0.080 (2.03)	0.030 ± 0.015 (0.762 ± 0.381)		
2225	0.220 ± 0.015 (5.59 ± 0.381)	0.250 ± 0.015 (6.35 ± 0.381)	0.080 (2.03)	0.030 ± 0.015 (0.762 ± 0.381)		
2520	0.250 ± 0.015 (6.35 ± 0.381)	0.200 ± 0.015 (5.08 ± 0.381)	0.180 (4.57)	0.030 ± 0.015 (0.762 ± 0.381)		
RF2525	0.230 +0.020 -0.012 (5.84 +0.51 -0.30)	0.250 ± 0.015 (6.35 ± 0.381)	0.165 (4.19)	0.030 ± 0.015 (0.762 ± 0.381)		
3333	0.330 ± 0.017 (8.38 ± 0.432)	0.330 ± 0.017 (8.38 ± 0.432)	0.250 (6.35)	0.030 ± 0.015 (0.762 ± 0.381)		
3530	0.350 ± 0.018 (8.89 ± 0.457)	0.300 ± 0.015 (7.62 ± 0.381)	0.250 (6.35)	0.030 ± 0.015 (0.762 ± 0.381)		
4040	0.400 ± 0.020 (10.2 ± 0.508)	0.400 ± 0.020 (10.2 ± 0.508)	0.300 (7.62)	0.040 ± 0.020 (1.02 ± 0.508)		
4540	0.450 ± 0.023 (11.4 ± 0.584)	0.400 ± 0.020 (10.2 ± 0.508)	0.300 (7.62)	0.040 ± 0.020 (1.02 ± 0.508)		
5440	0.540 ± 0.027 (13.7 ± 0.686)	0.400 ± 0.020 (10.2 ± 0.508)	0.300 (7.62)	0.040 ± 0.020 (1.02 ± 0.508)		
5550	0.550 ± 0.028 (14.0 ± 0.711)	0.500 ± 0.025 (12.7 ± 0.635)	0.300 (7.62)	0.040 ± 0.020 (1.02 ± 0.508)		
6560	0.650 ± 0.033 (16.5 ± 0.838)	0.600 ± 0.030 (15.2 ± 0.762)	0.300 (7.62)	0.040 ± 0.020 (1.02 ± 0.508)		
7565	0.750 ± 0.038 (19.1 ± 0.965)	0.650 ± 0.033 (16.5 ± 0.838)	0.300 (7.62)	0.040 ± 0.020 (1.02 ± 0.508)		

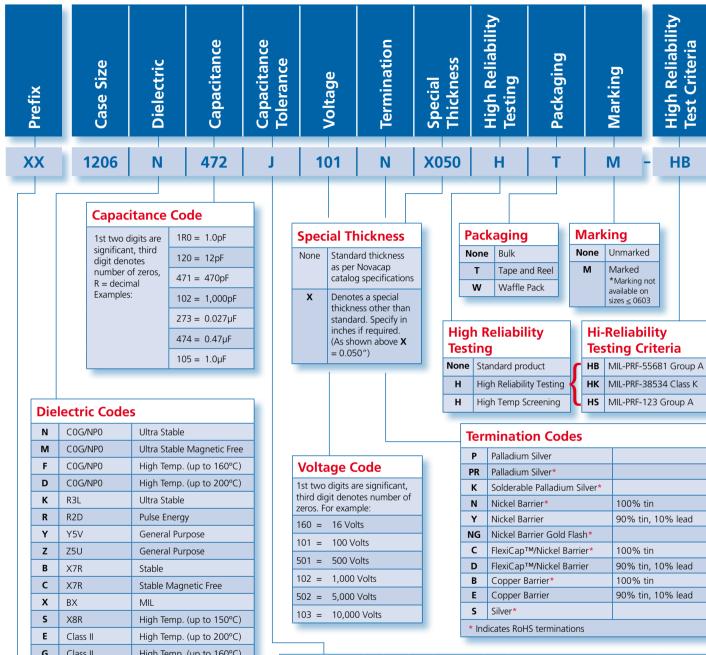
)8)	Contraction of the last of the
)8)	
)8)	
(8)	

*	Non	standard	thicknesses	are	available -	consult	the s	sales	office	for	details
---	-----	----------	-------------	-----	-------------	---------	-------	-------	--------	-----	---------

Ma	rking	Code - value	in picofarads fo	or alpha-numer	ric code				
Nu	mber	0	1	2	3	4	5	6	7
	Α	1.0	10	100	1,000	10,000	100,000	1,000,000	10,000,000
	В	1.1	11	110	1,100	11,000	110,000	1,100,000	11,000,000
	С	1.2	12	120	1,200	12,000	120,000	1,200,000	12,000,000
	D	1.3	13	130	1,300	13,000	130,000	1,300,000	13,000,000
	Е	1.5	15	150	1,500	15,000	150,000	1,500,000	15,000,000
	F	1.6	16	160	1,600	16,000	160,000	1,600,000	16,000,000
	G	1.8	18	180	1,800	18,000	180,000	1,800,000	18,000,000
	Н	2.0	20	200	2,000	20,000	200,000	2,000,000	20,000,000
	J	2.2	22	220	2,200	22,000	220,000	2,200,000	22,000,000
	K	2.4	24	240	2,400	24,000	240,000	2,400,000	24,000,000
	L	2.7	27	270	2,700	27,000	270,000	2,700,000	27,000,000
	М	3.0	30	300	3,000	30,000	300,000	3,000,000	30,000,000
	N	3.3	33	330	3,300	33,000	330,000	3,000,000	33,000,000
	Р	3.6	36	360	3,600	36,000	360,000	3,600,000	36,000,000
	Q	3.9	39	390	3,900	39,000	390,000	3,900,000	39,000,000
_	R	4.3	43	430	4,300 43,000 43		430,000	4,300,000	43,000,000
Letter	S	4.7	47	470	4,700	47,000	470,000	4,700,000	47,000,000
ت	Т	5.1	51	510	5,100	51,000	510,000	5,100,000	51,000,000
	U	5.6	56	560	5,600	56,000	560,000	5,600,000	56,000,000
	V	6.2	62	620	6,200	62,000	620,000	6,200,000	62,000,000
	W	6.8	68	680	6,800	68,000	680,000	6,800,000	68,000,000
	X	7.5	75	750	7,500	75,000	750,000	7,500,000	75,000,000
	Υ	8.2	82	820	8,200	82,000	820,000	8,200,000	82,000,000
	Z	9.1	91	910	9,100	91,000	920,000	9,200,000	92,000,000
	a	2.5	25	250	2,500	25,000	250,000	2,500,000	25,000,000
	b	3.5	35	350	3,500	35,000	350,000	3,500,000	35,000,000
	d	4.0	40	400	4,000	40,000	400,000	4,000,000	40,000,000
	е	4.5	45	450	4,500	45,000	450,000	4,500,000	45,000,000
	f	5.0	50	500	5,000	50,000	500,000	5,000,000	50,000,000
	m	6.0	60	600	6,000	60,000	600,000	6,000,000	60,000,000
	n	7.0	70	700	7,000	70,000	700,000	7,000,000	70,000,000
	t	8.0	80	800	8,000	80,000	800,000	8,000,000	80,000,000
	v	9.0	90	900	9,000	90.000	900,000	9.000.000	90,000,000


Chip Ordering Information


Novacap chip capacitors are available packaged in 8mm to 24mm embossed carrier, per EIA 481. Specify the reeled option (T) in the Novacap part number code. Chips are also supplied in bulk or waffle pack.


Units	Units per reel (typical)												
Chip	Таре	Таре	Units p	er reel*									
size	width	pocket pitch	13"(330mm) dia.										
0402	8 mm	2 mm	10,000	•									
0504	8 mm	4 mm	3,000-4,000	15,000									
0603	8 mm	4 mm	3,000-4,000	15,000									
0805	8 mm	4 mm	3,000-4,000	15,000									
1005	8 mm	4 mm	2,000-4,000	15,000									
1206	8 mm	4 mm	2,000-4,000	15,000									
1210	8 mm	4 mm	2,000-3,000	10,000									
1505	12 mm	4 mm	2,000-3,000	10,000									
1808	12 mm	4 mm	2,000-3,000	10,000									
1812	12 mm	8 mm	1,000	10,000									
1825	12 mm	8 mm	1,000	5,000									
2221	12 mm	8 mm	1,000	5,000									
2225	12 mm	8 mm	1,000	5,000									
2628	16 mm	12 mm	•	1,000									
3333	16 mm	12 mm	•	1,000									
3530	16 mm	12 mm	•	1,000									
4040	16 mm	12 mm	•	1,000									

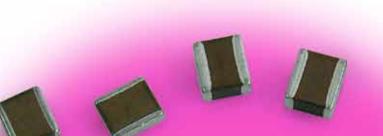
^{*} Quantity per reel varies with chip thickness. Thicker chips (typically higher capacitance values) will result in lesser quantities. Please specify preferred reel size when ordering.

Dimensions for 8mm tape with 4mm pitch.

			J - 1	(-1																
	G	Class II	High Temp.	(up to 160°C)	_															
	W	X5R	Stable		Cap	oacitance [*]	Tol	eran	ce C	Code	S									
	P	Positive VTC	Pulse Power		Code	Tolerance	250		X5R	Positiv										
						* Not RF series		N	М	F/D	K	R	Y/Z	В	С	Х	S	E/G	W	P
					В	±0.10pF	e	•	•											
Pre	fix	Definitions			С	±0.25pF	ap. Value < 10pF	•	•		•									
lone	Sta	andard chip			D	±0.50pF	ů ,	•	•		•									
RF	lm	proved ESR Capacito	r	p. 23	F	±1%		•	•	•										
LS	Y ³	Certified Safety Capa	acitor	p. 42 - 43	G	±2%		•	•	•	•									
ES	Y ²	Certified Safety Capa	acitor	p. 42 - 43	J	±5%		•	•	•	•	•		•*	•	•*	•	•		
ST	Sta	acked Capacitor Asse	embly	p. 48 - 53	K	±10%		•	•	•	•	•		•	•	•	•	•	•	•
SM	Sta	acked Hi-Rel Capacit	or Assembly	p. 48 - 53	М	±20%		•		•	•	•	•	•	•	•	•	•	•	•
CR	Ca	ap-Rack Capacitor Ar	ray	p. 54	Z	+80% -20%		•				•	•	•*						•
RC	Ble	eed Resistor		p. 58 - 61	Р	+100% -0%		•				•	•	•*						•

Commercial Chip - COG 16Vdc to 10kVdc

Commercial Chip - COG 16Vdc to 10kVdc



A range of commercial MLC chip capacitors in Ultra stable EIA Class I COG, or NPO, dielectric. COG chips are used in precision circuitry requiring Class I stability and exhibit linear temperature coefficient, low loss and stable electrical properties with time, voltage and frequency.

Designed for surface mount application with nickel barrier terminations making them suitable for solder wave and reflow solder board attachment as well as vapor phase attachment for part sizes 2225 or smaller. Silver-palladium terminations are also available for hybrid use with conductive epoxy.

Standard EIA case sizes and available C/V values are listed below - special sizes, thicknesses and other voltage ratings are available; please contact the sales office for information.

Phone: +1.661.295.5920 | www.novacap.com

- For dielectric characteristics see page 4.
- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For capacitance tolerances available see page 15.
- For ordering information see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

Capacitance and voltage selection for popular chip sizes

Capacitar	ice and	voitage	e selecti	ion for	populai	chip si	zes								
Size	0402	0504	0603	0805	1005	1206	1210	1515	18	808	18	12	18	25	
Min cap.	OR3	OR5	OR3	OR5	OR5	3R0	5R0	3R0	5RO	5R0	100	100	150	150	
Tmax inches:	0.024 0.61	0.044 1.12	0.035 0.89	0.054 1.37	0.054 1.37	0.064 1.63	0.065 1.63	0.130 3.02	0.065 1.63	0.080* 2.03	0.065 1.63	0.100* 2.54	0.080 2.03	0.140* 3.56	
16V	271	222	152	562	822	153	273	473	393	393	563	563	104	104	
25V	221	182	122	472	682	123	273	393	333	333	563	563	104	104	
50V	181	152	102	392	562	123	223	333	223	273	393	393	104	104	
100V	181	152	102	392	562	103	183	333	153	223	273	393	683	823	
200V	101	821	561	182	272	562	103	223	103	153	183	273	473	683	
250V	560	561	331	152	222	392	822	223	682	103	153	223	393	563	
300V	•	•	•	821	122	272	472	153	472	562	103	153	223	473	
400V	•	•	•	821	122	182	472	103	472	472	103	123	223	333	
500V	•	•	•	821	122	182	472	822	472	472	103	123	223	273	
600V	•	•	•	681	102	152	392	682	392	472	822	103	183	183	
800V [†]	•	•	•	681	102	152	392	682	392	472	822	103	183	183	
1kV†	•	•	•	471	391	102	222	562	222	332	472	822	103	153	
1.5kV [†]	•	•	•	•	•	561	122	392	122	182	272	472	562	103	
2kV⁺	•	•	•	•	•	391	821	272	821	122	182	272	272	562	
3kV†	•	•	•	•	•	•	•	122	391	471	821	122	122	222	
4kV⁺	•	•	•	•	•	•	•	681	221	271	471	821	681	122	
5kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	391	821	
6kV⁺	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	
7kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
8kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
9kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
10kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Capacitance and voltage selection for popular chip sizes

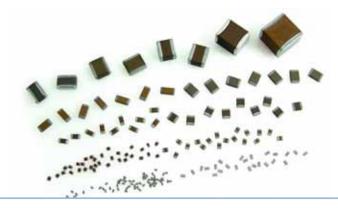
2020	2221	22	25	2520	3333	3530	3530 4040		4540 5440		5550 6560		Size
270	270	270	270	390	390	390	390	390	390	390	560	101	Min cap.
0.180 4.57	0.080 2.03	0.080 2.03	0.150* 3.81	0.180 4.57	0.250 6.35	0.250 6.35	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	:inches Tmax :mm
683	104	124	124	104	184	184	334	334	394	394	684	824	16V
683	104	124	124	104	184	184	334	334	394	394	684	824	25V
683	104	124	124	104	154	184	274	334	394	394	684	824	50V
563	683	823	104	823	124	154	224	274	274	274	474	564	100V
563	473	563	823	683	104	124	184	224	274	274	474	564	200V
473	393	473	683	563	104	124	184	204	224	224	394	474	250V
393	223	273	563	473	823	104	154	184	224	224	394	474	300V
333	223	273	393	393	563	823	124	154	184	184	334	394	400V
273	223	273	333	393	473	683	104	124	154	184	274	334	500V
153	183	273	273	223	393	393	823	823	104	154	224	274	600V
153	183	273	273	183	333	333	563	683	823	124	184	224	800V [†]
103	103	153	223	123	273	273	563	563	683	104	154	184	1kV⁺
822	562	822	153	103	183	223	393	393	393	563	823	124	1.5kV [†]
472	272	392	822	562	153	153	273	333	333	473	683	104	2kV†
222	122	182	332	272	822	103	183	223	223	333	473	683	3kV [†]
122	681	102	182	152	332	562	123	123	123	183	273	393	4kV [†]
821	391	561	122	102	222	332	682	822	822	123	183	223	5kV [†]
•	•	•	•	•	182	182	392	392	472	562	103	123	6kV⁺
•	•	•	•	•	•	122	272	272	332	472	682	822	7kV [†]
•	•	•	•	•	•	102	222	222	272	332	562	682	8kV [†]
•	•	•	•	•	•	821	152	182	182	272	392	472	9kV†
•	•	•	•	•	•	681	122	152	152	222	332	392	10kV [†]
* Denote	s non stan	dard chip t	hickness.										

Order code needs to have an 'X' inserted together with the dimension in inches e.g. X080 where dimension is 0.080"

[†] Units rated above 800V may require conformal coating to preclude arcing over chip surface

Commercial Chip - R3L 16Vdc to 5kVdc

Commercial Chip - R3L 16Vdc to 5kVdc



A range of commercial MLC chip capacitors in R3L dielectric. This is a Class I temperature compensating N2200 dielectric with an energy density that exceeds conventional Class I materials. R3L has a predictable negative temperature coefficient, low loss, stable electrical properties with time, voltage, and frequency.

The components are non-piezoelectric and are well suited for repetitive high current and pulse type applications.

With exceptionally low ESR, ESL, and low signal distortion applications include power supply filtering, energy storage, coupling/decoupling and snubber.

- For dielectric characteristics see page 5.
- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For capacitance tolerances available see page 15.
- For ordering information see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

Capacitance	and voltage	e selection	for popula	ar chip sizes

Capacitan	ce and v	oltage sel	ection fo	r popular	chip sizes	5						
Size	0402	0504	0603	0805	1206	1210	1515	1808	1812	1825	2020	
Min cap.	1R5	2R2	2R2	2R2	8R2	220	220	220	390	680	101	
Tmax inches:	0.024 0.61	0.044 1.12	0.035 0.89	0.054 1.37	0.064 1.63	0.065 1.63	0.130 3.02	0.065 1.63	0.065 1.63	0.080 2.03	0.180 4.57	
16V	391	472	222	103	223	473	823	473	104	184	154	
25V	391	472	222	103	223	473	823	473	104	184	154	
50V	391	472	222	103	223	393	683	333	683	184	154	
100V	391	472	222	103	223	393	683	333	683	154	124	
200V	221	272	122	472	123	223	473	223	393	104	104	
250V	121	152	821	332	103	183	473	183	333	823	823	
300V	•	•	•	222	562	123	333	103	223	563	683	
400V	•	•	•	182	392	103	223	103	223	563	683	
500V	•	•	•	182	392	822	223	822	183	473	563	
600V	•	•	•	152	272	682	123	682	153	333	393	
800V [†]	•	•	•	821	152	392	103	392	103	153	223	
1kV [†]	•	•	•	471	102	222	822	222	562	123	153	
1.5kV [†]	•	•	•	•	471	122	392	122	272	682	103	
2kV [†]	•	•	•	•	271	561	182	561	122	332	562	
3kV [†]	•	•	•	•	•	•	102	271	681	152	272	
4kV [†]	•	•	•	•	•	•	471	151	331	821	152	
ELA/t										EG1	102	

Capacitance and voltage selection for popular chip sizes

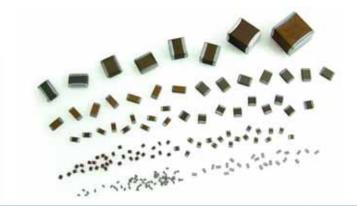
Сараста	arree arra	voltage 5	ciccuoii i	or popule	cmp 312						
2221	2225	2520	3333	3530	4040	4540	5440	5550	6560	7565	Size
101	101	101	151	151	151	151	151	151	221	391	Min cap.
0.080 2.03	0.080 2.03	0.180 4.57	0.250 6.35	0.250 6.35	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	:inches Tmax :mm
184	224	224	334	334	564	564	684	824	125	185	16V
184	224	184	334	334	564	564	684	824	125	185	25V
184	224	184	334	334	564	564	684	824	125	185	50V
154	184	184	334	334	474	564	684	824	125	155	100V
104	124	154	224	224	394	394	474	684	105	125	200V
823	104	124	184	184	334	334	394	564	824	105	250V
563	683	104	184	184	274	274	334	474	684	824	300V
473	563	823	154	154	224	224	274	394	564	684	400V
393	473	683	124	124	224	224	274	334	474	564	500V
333	393	563	104	104	184	184	224	274	394	474	600V
223	273	393	563	563	104	124	124	184	274	334	800V [†]
123	153	223	473	473	823	104	104	154	224	274	1kV [†]
562	822	123	333	333	563	563	563	104	154	184	1.5kV [†]
332	392	682	223	223	393	473	473	683	104	124	2kV [†]
152	182	332	103	103	223	273	273	393	563	683	3kV†
821	102	182	682	682	123	153	153	223	273	393	4kV†
561	821	122	392	392	822	103	103	123	183	223	5kV†

[†] Units rated above 800V may require conformal coating to preclude arcing over chip surface

[†] Units rated above 800V may require conformal coating to preclude arcing over chip surface

Commercial Chip - X7R 16Vdc to 10kVdc

Commercial Chip - X7R 16Vdc to 10kVdc



A range of commercial MLC chip capacitors in Stable EIA Class II dielectric. Class II X7R chips are used as decoupling, by-pass, filtering and transient voltage suppression elements and exhibit +/-15% temperature coefficient and predictable variation of electrical properties with time, temperature and voltage.

Designed for surface mount application with nickel barrier terminations making them suitable for solder wave and reflow solder board attachment as well as vapor phase attachment for part sizes 2225 or smaller. Silver-palladium terminations are also available for hybrid use with conductive epoxy.

Standard EIA case sizes and available C/V values are listed below - special sizes, thicknesses and other voltage ratings are available; please contact the sales office for information.

- For dielectric characteristics see page 6.
- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For capacitance tolerances available see page 15.
- For ordering information see page 15.

5440

102

825

684

184

822

4540

102

275

684

184

682

4040

102

625

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18.000pF.

6560

222

825

823

7565

222

875

Size

Min cap. nches Tmax

> 16V 25V 50V

100V 200V

250V 300V

400V 500V

600V 800V[†]

1kV[†] 1.5kV[†]

2kV[†] 3kV[†]

4kV[†] 5kV[†] 6kV[†] 7kV[†]

8kV[†] 9kV[†]

10kV[†]

5550

102

375

274

682

Capacitance and voltage selection for popular chip sizes

Capacitar	nce and	voltag	e select	ion for	populai	chip si	zes									Capaci	tance ar	nd volta	ige sele	ction for	popula	r chip siz	zes
Size	0402	0504	0603	0805	1005	1206	1210	1515	18	808	18	312	18	325		2020	2221	22	225	2520	3333	3530	404
Min cap.	121	121	121	121	121	121	121	151	151	151	151	151	471	471		471	471	471	471	102	102	102	102
Tmax inches:	0. 024 0.61	0.044 1.12	0.035 0.89	0.054 1.37	0.054 1.37	0.064 1.63	0.065 1.63	0.130 3.02	0.065 1.63	0.080* 2.03	0.065 1.63	0.100* 2.54	0.080 2.03	0.140* 3.56		0.180 4.57	0.080 2.03	0.080 2.03	0.150* 3.81	0.180 4.57	0.250 6.35	0.250 6.35	0.30 7.62
16V	562	393	273	124	154	334	474	125	684	824	125	155	185	225		185	155	225	275	355	525	525	825
25V	472	333	223	104	124	274	474	105	564	564	105	125	155	225		155	125	185	225	325	505	505	755
50V	472	333	223	104	124	274	474	824	394	564	824	125	155	225		155	125	185	225	325	425	425	705
100V	472	333	223	683	823	184	334	684	274	394	564	824	125	185		155	125	155	225	275	405	405	625
200V	222	153	103	333	473	104	184	564	184	224	334	564	824	155		125	684	105	185	225	355	355	565
250V	152	103	682	273	393	683	124	394	124	154	224	394	684	125		105	564	824	155	185	325	325	505
300V		•	•	153	183	473	823	274	823	104	154	224	474	824		824	394	474	105	125	225	225	475
400V	•	•	•	123	123	273	563	224	563	823	104	184	334	564		564	274	394	684	824	125	125	255
500V		•	•	123	822	223	563	154	563	683	104	154	334	474		474	274	334	564	684	105	105	185
600V	•	•	•	822	822	183	393	124	393	563	683	124	224	394		274	224	274	474	394	684	684	155
800V [†]		•	•	472	472	103	273	823	273	333	473	683	124	274		224	124	154	334	274	474	394	684
1kV†	•	•	•	272	272	682	153	563	153	223	273	473	823	154		154	823	104	224	184	334	334	564
1.5kV [†]		•	•	•		222	472	183	472	682	822	153	273	563		393	273	333	683	563	124	124	274
2kV†	•	•	•	•	•	102	222	822	272	332	472	682	123	273		273	123	153	333	273	823	683	154
3kV [†]	·	•	•	•	•	•	•	152	561	821	122	122	472	103		103	472	562	123	822	333	273	683
4kV [†]	•	•	•	•	•	•	•	122	331	391	681	122	152	272		272	152	152	332	472	183	153	223
5kV [†]	•	•	•	•	•	•	•	•	•	•	•	•	821	182		152	821	102	222	272	123	103	123
6kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	682	562	822
7kV⁺		•	•	•	٠	٠	٠	•	•	•	•	•	•	•		٠	•	٠		•	•	472	562
8kV [†]			•	•	٠	٠	٠	٠	٠		•	•	•	•			•	٠			•	332	472
9kV†	•	•	•	•	•	•	٠	•	•	•	•	•	•			•	•	•	•	•	•	272	332
10kV⁺	•		•	•	•	•	•	•	•			•	•	•		•	•	•	•		•	182	272

[†] Units rated above 800V may require conformal coating to preclude arcing over chip surface

^{*} Denotes non standard chip thickness. Order code needs to have an 'X' inserted together with the dimension in inches e.g. X080 where dimension is 0.080"

Commercial Chip - BX

Commercial Chip - RF Series BX & X7R

Manufactured with layer thickness, and minimal voltage coefficient, to meet BX requirements. BX characteristics are identical to X7R dielectric with the added restriction that the Temperature-Voltage Coefficient (TVC) does not exceed -25% DC at rated voltage, over -55°C to 125°C operating temperature. High Reliability Testing available: HB = MIL-PRF-55681 Group A. HK = MIL-PRF-38534 Class K. HS = MIL-PRF-123 Group A

• For dielectric characteristics see page 6.

- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For capacitance tolerances available see page 15.
- For ordering information see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18.000pF.

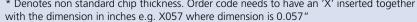
A range of commercial MLC chip capacitors v	vitn improved
ESR performance. This series has been design	ned for rugged
environments in high power broadband coup	oling and switching
power supplies. The Class II ceramic dielectric	(BX or X7R
dependant on chip size) affords high volumet	tric efficiency with
negligible piezoelectric effects.	

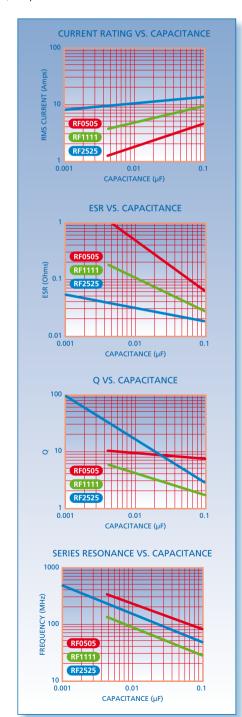
Please consult the Sales Office if your specific requirement exceeds our catalog maximums (size, capacitance value, and voltage).

- For dielectric characteristics see page 6.
- For dimensions see page 12.
- Termination options: P = Palladium/Silver N = Nickel barrier 100% Tin (RoHS)
 - Y = Nickel barrier 90% Tin/10% Lead
 - B = Copper barrier 100% Tin (RoHS)
 - E = Copper barrier 90% Tin/10% Lead
- Capacitance tolerances available ± 10%, ± 20%
- For ordering information see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.

BX - Capa	BX - Capacitance and Voltage Selection													
Size	0402	0504	0603	0805	1005	1206	1210	1808	1812	1825	2221	2225		
Min cap.	121	121	121	121	121	121	121	151	151	471	471	471		
16V	562	393	273	104	124	274	474	564	105	185	155	225		
25V	472	333	223	104	124	274	474	564	105	155	125	185		
50V	182	183	123	473	683	124	274	274	564	125	125	155		
100V	681	682	472	183	183	473	104	104	184	394	334	474		
200V	221	182	122	562	822	153	273	333	563	104	823	124		
250V	•	681	391	182	272	472	103	103	223	563	473	683		
300V	•	•	•	122	122	332	562	682	123	393	333	473		
400V	•	•	•	681	681	182	332	392	562	183	183	223		
500V	•	•	•	391	471	102	222	222	392	123	103	153		


Commercial Chip - Z5U & Y5V


General purpose Class III dielectrics, very stable with time, exhibiting +22% to -56% (Z5U) and +22% -82% (Y5V) temperature coefficients with very high capacitance density typically aging less than 4% per decade.

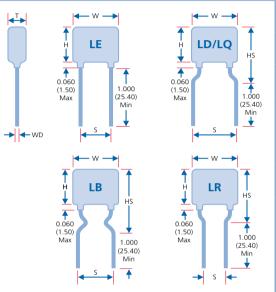
They find application in by-pass and decoupling functions along with other applications where capacitance change over the operating temperature range is not critical. FlexiCap™ is the preferred termination to reduce the chance of mechanical cracking due to board flexure.

Z5U/Y5V ·	Z5U/Y5V - Capacitance and Voltage Selection													
Size	0402	0504	0603	0805	1005	1206	1210	1808	1812	1825	2221	2225		
Min cap.	121	121	121	471	681	681	681	222	332	103	103	103		
16V	563	474	334	125	185	225	475	565	106	226	186	226		
25V	473	394	224	105	155	225	395	395	685	186	156	226		
50V	333	224	154	684	105	185	335	335	565	156	126	186		
100V	103	823	563	224	334	474	105	105	185	395	395	475		
200V	682	223	153	563	823	154	334	334	564	155	155	185		
250V	222	183	123	473	683	104	224	224	394	105	105	125		

Size	0505	1111			2525		
max inches - mm:	0.057 - 1.45*	0.102 - 2.59*		C	0.165 - 4.19)*	
Dielectric	BX	BX			X7R		
Rated Voltage	50	50	100	150	200	250	300
471	•	30	100	130	200	230	500
561	•						
681	•						
821	•						
102	•						
122	•						
152	•						
182	•						
222	•						
272	•						
332	•						
392	•						
472	•	•					
502	•	•					
562	•	•					
682	•	•					
822	•	•					
103	•	•					•
123		•					•
153		•					•
183		•					•
223		•					•
273		•				•	
333 393		•				•	
473						•	
403		•					
563		•					
683		•					
823		•			•		
104		•			•		
124					•		
154					•		
224					•		
334				•			
474				•			
564				•			
684				•			
824			•				
105			•				


23

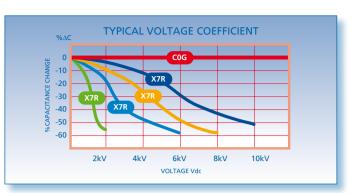
22 Phone: +1.661.295.5920 | www.novacap.com Phone: +1.661.295.5920 | www.novacap.com



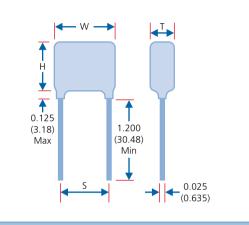
RoHS compliant, small case size, Radial Leaded Capacitors available in COG, X7R and X8R dielectrics. The conformal coating and lead mounting style provide a rugged configuration for optimum performance. Units exhibit high capacitance efficiency per KV rating and find application in commercial/industrial use up to 5kV, such as power supplies and voltage multiplier circuits. They are offered in bulk pack or taped form, Ref EIA-RS468, making them suitable for automatic insertion.

For dielectric characteristics see pages 4 & 6. For capacitance tolerances available see page 26. For ordering information see page 26.

Dimensions - inches/mm													
Lead Style	LE	LD	LR	LD	LQ	LD	LE	LB					
Size	0805	0805	1206	1206	1206	1210	1812	2225					
Wmax inches:	0.150	0.150	0.200	0.200	0.200	0.200	0.300	0.350					
	3.81	3.81	5.08	5.08	5.08	5.08	7.62	8.89					
Hmax inches:	0.150	0.150	0.150	0.150	0.150	0.200	0.250	0.350					
	3.81	3.81	3.81	3.81	3.81	5.08	6.35	8.89					
Tmax inches:	0.100	0.100	0.125	0.125	0.125	0.175	0.200	0.200					
	2.54	2.54	3.18	3.18	3.18	4.45	5.08	5.08					
HSmax inches:	0.200	0.250	0.250	0.250	0.250	0.300	0.350	0.500					
	5.08	6.35	6.35	6.35	6.35	7.62	8.89	12.70					
S inches ±0.02:	0.100	0.200	0.100	0.200	0.250	0.200	0.200	0.200					
mm ±0.51:	2.54	5.08	2.54	5.08	6.35	5.08	5.08	5.08					
WD inches ±0.02: mm ±0.51:	0.020	0.020	0.020	0.020	0.020	0.020	0.025	0.025					
	0.51	0.51	0.51	0.51	0.51	0.51	0.64	0.64					



Capacitano	e and \	/oltage	Select	ion											
Size		0805			1206			1210			1812			2225	
Min cap.	100	121	121	100	121	221	100	121	331	101	151	221	101	471	102
	C0G	X7R	X8R	C0G	X7R	X8R	C0G	X7R	X8R	C0G	X7R	X8R	C0G	X7R	X8R
50V	392	104	473	123	274	154	223	474	274	393	125	564	124	185	125
100V	392	683	333	103	184	104	183	334	184	273	824	394	823	155	105
250V	152	273	183	392	683	333	822	124	823	223	394	154	473	824	564
500V	821	123	562	182	223	153	472	563	393	123	154	563	273	334	154
1kV	471	272	•	102	682		222	153	•	822	473	•	153	104	•
2kV	•	•	•	391	102	•	821	222	•	272	682	•	392	153	•
3kV		•	•	•	•	•	•	•	•	122	272	•	182	562	•
4kV	•	•	•	•	•	•	•	•	•	821	122	•	102	152	•
5kV		•	•	•		•	•	•	•	•	•	•	561	102	•


Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

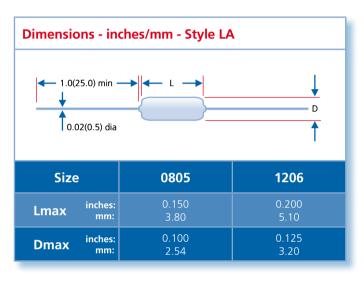
RoHS compliant Radial Leaded Capacitors available in COG and X7R dielectrics with high voltage ratings from 500V. The conformal coating and lead mounting style provide a rugged configuration for optimum performance. Units exhibit high capacitance efficiency per KV rating and find application in commercial/industrial use up to 10kV, such as power supplies and voltage multiplier circuits. They are also offered without the conformal coating for less harsh environmental applications.

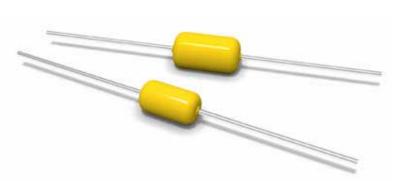
- For dielectric characteristics see pages 4 & 6.
- For capacitance tolerances available see page 26.
- For ordering information see page 26.

Dimension	s - inche	es/mm					
Lead Style		LE with	conforn	nal coati	ng - LO	without	
Size	1515	2520	3530	4540	5550	6560	7565
Wmax inches:	0.250	0.400	0.500	0.600	0.700	0.800	0.900
	6.35	10.20	12.70	15.20	17.80	20.30	22.80
Hmax inches:	0.250	0.350	0.450	0.550	0.650	0.750	0.850
	6.35	8.89	11.40	14.00	16.50	19.00	21.60
Tmax inches:	0.200	0.250	0.350	0.400	0.400	0.400	0.400
	5.08	6.35	8.89	10.20	10.20	10.20	10.20
S inches ±0.02:	0.170	0.280	0.380	0.480	0.580	0.680	0.780
mm ±0.51:	4.32	7.10	9.65	12.20	14.70	17.30	19.80

Capacitanc	e and V	oltage	Selectio	on										
Size	15	15	25	20	35	30	45	40	55	50	65	60	75	65
Min cap.	100	151	390	102	390	102	390	102	390	102	560	222	101	222
	COG	X7R	C0G	X7R	C0G	X7R	C0G	X7R	C0G	X7R	C0G	X7R	C0G	X7R
500V	822	154	393	684	683	105	124	185	184	225	274	335	334	475
600V	682	124	223	394	393	684	823	155	154	225	224	275	274	395
800V	682	823	183	274	333	394	683	824	124	155	184	225	224	275
1kV	562	563	123	184	273	334	563	684	104	105	154	155	184	225
2kV	272	822	562	273	153	683	333	184	473	274	683	394	104	474
3kV	122	332	272	123	103	273	223	683	333	124	473	184	563	224
4kV	681	122	152	472	562	153	123	333	183	473	273	823	393	104
5kV	•	•	102	272	332	103	822	183	123	333	183	473	223	563
6kV		•	•	•	182	562	392	123	562	223	103	333	123	393
7kV	•	•	•	•	122	472	272	822	472	153	682	223	822	273
8kV					102	332	222	682	332	123	562	153	682	223
9kV	•	•	•	•	•	272	182	472	272	103	392	123	472	183
10kV	•	•	•	•	•	182	152	392	222	682	332	103	392	123

Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros: e.g. 183 = 18,000pF.


High Reliability Testing



RoHS compliant Axial Leaded Capacitors available in COG, X7R and X8R dielectrics. Conformal coating and lead mounting provide a rugged configuration for optimum performance. with high capacitance efficiency per KV rating. Units exhibit high capacitance efficiency per KV rating and find application in commercial/industrial use up to 2kV, such as power supplies and voltage multiplier circuits. They are offered in bulk pack or taped form, Ref EIA-RS468, making them suitable for automatic insertion.

• For dielectric characteristics see pages 4 & 6.

Size		0805		1206				
Dielectric	COG/NP0	X7R	X8R	C0G/NP0	X7R	X8R		
50V	392	104	473	123	274	154		
100V	392	683	333	103	184	104		
250V	152	273	183	392	683	333		
500V	821	123	562	182	223	153		
1kV	471	272	•	102	682	•		
2kV	•			391	102			

Axial & Radial Ordering Information

the no. of zeros e.g. 183 = 18,000 pF

How to Order - Axial & Radial Lead											
0805	В	123	K	501	LA	Н	Α	R			
See 1 charts E	DIELECTRIC N = COG B = X7R S = X8R D = 200°C COG E = 200°C Class II	CAPACITANCE Value in Picofarads. Two significant figures, followed by number of zeros: 123 = 12,000pF	TOLERANCE $F = \pm 1\%$ * $G = \pm 2\%$ * $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	VOLTAGE- VDCW Two significant figures, followed by number of zeros: 501 = 500V	LEAD STYLES Axial LA = Yellow Conformal Coated Radial Commercial & High Rel LE, LB, LD, LR, LQ* = Yellow Conformal Coated Radial High Temp LC = Encapsulated LP = Parylene Coated LG = Black Epoxy Coated LO = Radial without any coating * Product & Case size dependant	HIGH RELIABILITY Specify testing - see page 27 OR HIGH TEMP SCREENING Novacap High Temperature screening procedure	PACKING No suffix = Bulk A = Ammo pack Axial 5K/pack Radial 2K/pack T = Tape & Reel Axial 7.5K/Reel Radial 4K/Reel	RoHS R = RoHS Compliant			

Our High Rel products are designed for optimum reliability and are burned in at elevated voltage and temperature levels. They are 100% electrically inspected to ascertain conformance to a strict performance criteria.

Applications for High Reliability products include medical implanted devices, aerospace, airborne, various military applications, and consumer uses requiring safety margins not attainable with conventional product.

We have the ability to test surface mount and leaded capacitors to High Reliability standards as detailed below, or to customer SCD.

Military performance specifications are designed and written for the voltage/capacitance ratings of the individual product slash numbers associated with the specification.

Some of the requirements of the military document may not apply to the NOVACAP High Reliability product. The following details the intent of the individual military specifications available for test and the deviations that may apply.

Product voltage ratings outside of the intended military specification will follow the NOVACAP voltage test potential outlined.

Contact the sales office with any requirements or deviations that are not covered here.

Environmental Testing

We also have the capability to perform all the Environmental Group B, Group C, and Qualification testing to the referenced military specifications.

Testing abilities include the following:

- Nondestructive internal examination
- Destructive physical analysis
- Radiographic inspection
- Terminal strength
- Resistance to soldering heat
- Voltage-temperature limits
- Temperature coefficient
- Moisture resistance
- Humidity, steady state, low voltage
- Vibration
- Resistance to solvents
- Life
- Thermal shock and immersion
- Low temperature storage
- Barometric pressure
- Shock, specified pulse
- Mechanical shock
- Constant acceleration
- Wire bond evaluation
- Partial discharge (corona)
- 200°C Voltage Conditioning

Military Performance Specifications

MIL-PRF-55681 (GROUP A)

General purpose military high reliability specification for surface mount sizes 0805 through 2225 in 50V and 100V.

- VOLTAGE CONDITIONING
- 100 HRS, 2X VDCW, 125°C
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH INSPECTION (AOL SAMPLE PLAN)
- SOLDERABILITY, SAMPLE 13(0)
- 8% PDA MAXIMUM

MIL-PRF-123 (GROUP A)

The specification affords an increased reliability level over MIL-PRF-55681 for space, missile and other high reliability applications such as medical implantable or life support equipment. The specification covers surface mount sizes 0805 through 2225 in 50V rating and various radial / axial leaded products in 50V, 100V, and 200V ratings

- THERMAL SHOCK, 20 CYCLES
- VOLTAGE CONDITIONING 168/264 HRS, 2X VDCW. 125°C
- DWV. IR. 125°C IR. CAP. DF TEST
- VISUAL & MECH. INSPECTION SAMPLE 20(0)
- PDA, 3% (0.1%), 5% (0.2%) MAX⁽²⁾

MIL-PRF-39014 (GROUP A)

The specification covers general military purpose radial / axial leaded and encapsulated product in 50V, 100V, and 200V ratings.

- THERMAL SHOCK, 5 CYCLES
- VOLTAGE CONDITIONING 96 HRS, 2X VDCW, 125°C
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH. INSPECTION (AQL SAMPLE PLAN)
- SOLDERABILITY, SAMPLE 13(0)
- 8% PDA MAXIMUM

MIL-PRF-49467 (GROUP A)

General purpose military high reliability specification for radial leaded epoxy coated. The specification covers sizes 1515 through 13060 with 600V, 1000V, 2000V, 3000V, 4000V, and 5000V ratings

- THERMAL SHOCK, 5 CYCLES
- VOLTAGE CONDITIONING 96 HRS. RATED VDCW, 125°C
- PARTIAL DISCHARGE (OPTION) (3)
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH. INSPECTION SAMPLE 13(0)
- SOLDERABILITY, SAMPLE 5(0)
- 10% PDA MAXIMUM

MIL-PRF-49470 (DSCC 87106) (GROUP A)

General purpose military high reliability specification for stacked and leaded capacitors for switch mode power supplies. The specification covers sizes 2225 through 120200 in 50V, 100V, 200V and 500V ratings.

- THERMAL SHOCK, 5 CYCLES
- 2X VDCW(4), 125°C
- DWV, IR, 125°C IR, CAP, DF TEST
- SOLDERABILITY, SAMPLE 5(0)

*V/C Is Voltage Conditioning.

- VOLTAGE CONDITIONING 96 HRS,
- VISUAL & MECH. INSPECTION SAMPLE 13(0)
- 10% PDA MAXIMUM

MIL-PRF-38534

Specification for Hybrid Microcircuits with a section for Element Evaluation on passive components

There are two classification levels of reliability. Class H is for a standard military quality level. Class K is for the highest reliability level intended for space application

Novacap will perform a 100-hour burn-in on all Class K products. Novacap assumes Class K Subgroup 3 samples will be unmounted and Subgroup 4 (wirebond) shall not apply unless otherwise stated

V/C*

27

NOVACAP TEST VOLTAGE (VDC)

This test potential shall be used on all High Reliability Testing unless otherwise specified.

<200	2.5X Rated	2.0X Rated
250	500V	400V
300	500V	400V
400	600V	500V
500	750V	600V
600	750V	600V
>700	1.2X Rated	1.0X Rated

DWV

(1) MIL-PRF-123 DPA shall be per TABLE XIV AQL requirements unless otherwise specified.

(2) MIL-PRF-123 allowable PDA shall be 3% overall and 0.1% in the last 48 hours for capacitance/ voltage values listed in MIL-PRF-123, and be 5% overall and 0.2% in the last 48 hours for capacitance/voltage values beyond MIL-PRF-123.

WVDC

(3) MIL-PRF-49467 standard Group A is without Partial Discharge. Partial Discharge test is optional and must be specified.

(4) MIL-PRF-49470 (DSCC 87106) 500V rated product has Voltage Conditioning at 1.2X VDCW.

26 Phone: +1.661.295.5920 | www.novacap.com Phone: +1.661.295.5920 | www.novacap.com

High Reliability Chip - COG 16Vdc to 10kVdc

High Reliability Chip - COG 16Vdc to 10kVdc

A range of MLC chip capacitors in Ultra stable EIA Class I COG, or NPO, dielectric with special testing for long term reliability. They are designed for optimum reliability; burned in at elevated voltage and temperature, and 100% physically and electrically inspected to ascertain conformance to strict performance criteria. Units may be tested in accordance with MIL-PRF-55681, MIL-PRF-123, MIL-PRF-49467, or customer SCD.

Designed for surface mount application with nickel barrier terminations making them suitable for solder wave and reflow solder board attachment as well as vapor phase attachment for part sizes 2225 or smaller. Silver-palladium terminations are also available for hybrid use with conductive epoxy.

COG chips are used in precision circuitry requiring Class I stability and exhibit linear temperature coefficient, low loss and stable electrical properties with time, voltage & frequency.

They find application for High Reliability use such as medical implanted devices, aerospace, airborne and military use as well as consumer uses requiring safety margins not attainable with commercial products.

Standard EIA case sizes and available C/V values are listed below - special sizes, thicknesses and other voltage ratings are available; please contact the sales office for information.

Phone: +1.661.295.5920 | www.novacap.com

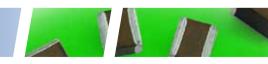
- For dielectric characteristics see page 4.
- For dimensions see page 12.
- For termination options see pages 3 & 15
- For capacitance tolerances available see page 15.
- For ordering information see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18.000pF.

Capacitance and voltage selection for popular chip sizes Capacitance and voltage selection for popular chip sizes 2221 0402 0603 0805 1206 1206 1210 1515 1808 1812 1825 2020 2225 2520 3333 3530 4540 5440 5550 6560 7565 Size Size 0R3 OR5 OR5 3R0 5R0 3R0 5R0 5R0 100 150 270 270 270 390 390 390 390 390 390 390 560 Min cap OR5 0R3 100 270 101 nches Tmax **16V** 16V 684 **25V** 25V 50V 50V 100V 100V 821 823 200V 200V 250V 682 473 250V 300V 300V 400V 400V 500V 500V 683 823 600V 600V 800V[†] 800V¹ 681 822 1kV[†] 1kV[†] 1.5kV¹ 1.5kV¹ 391 683 2kV[†] 2kV[†] 823 3kV[†] 3kV[†] 4kV[†] 4kV¹ 471 682 5kV[†] 471 5kV[†] 6kV[†] 6kV[†] 7kV¹ 7kV[†] 8kV^t 8kV[†] 9kV[†] 9kV[†] 821 10kV[†]

681

10kV[†]

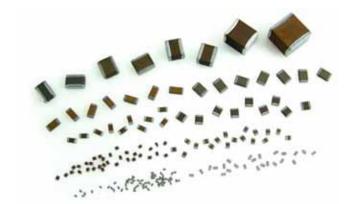


[†] Units rated above 800V may require conformal coating to preclude arcing over chip surface Maximum voltage for MIL-PRF-123 tested parts is 1kV

^{*} Denotes non standard chip thickness. Order code needs to have an 'X' inserted together with the dimension in inches e.g. X080 where dimension is 0.080"

High Reliability Chip - X7R 16Vdc to 10kVdc

High Reliability Chip - X7R 16Vdc to 10kVdc


A range of MLC chip capacitors in Stable EIA Class II dielectric with special testing for long term reliability. They are designed for optimum reliability; burned in at elevated voltage and temperature, and 100% physically and electrically inspected to ascertain conformance to strict performance criteria. Units may be tested in accordance with MIL-PRF-55681, MIL-PRF-123, MIL-PRF-49467, or customer SCD.

Designed for surface mount application with nickel barrier terminations making them suitable for solder wave and reflow solder board attachment as well as vapor phase attachment for part sizes 2225 or smaller. Silver-palladium terminations are also available for hybrid use with conductive epoxy.

Class II X7R chips are used as decoupling, by-pass, filtering and transient voltage suppression elements and exhibit +/-15% temperature coefficient and predictable variation of electrical properties with time, temperature and voltage.

They find application for High Reliability use such as medical implanted devices, aerospace, airborne and military use as well as consumer uses requiring safety margins not attainable with commercial products.

Standard EIA case sizes and available C/V values are listed below - special sizes, thicknesses and other voltage ratings are available; please contact the sales office for information.

- For dielectric characteristics see page 6.
- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For capacitance tolerances available see page 15.
- For ordering information see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.

Capacitance and voltage colection for popular chip cites

Capacitar	ice and	voltage	e select	ion for	populai	r chip si	zes								
Size	0402	0504	0603	0805	1005	1206	1210	1515	18	808	18	12	18	25	
Min cap.	121	121	121	121	121	121	121	151	151	151	151	151	471	471	
max inches:	0.024 0.61	0.044 1.12	0.035 0.89	0.054 1.37	0.054 1.37	0.064 1.63	0.065 1.63	0.130 3.02	0.065 1.63	0.080* 2.03	0.065 1.63	0.100* 2.54	0.080 2.03	0.140* 3.56	
16V	472	333	223	104	124	274	474	105	394	684	824	824	155	225	
25V	472	333	223	104	124	274	474	824	394	564	824	824	155	225	
50V	472	333	223	823	104	224	394	824	334	474	684	684	125	185	
100V	392	273	183	563	683	154	274	684	224	334	474	474	105	185	
200V	182	123	822	223	333	823	124	394	124	154	224	394	564	105	
250V	102	822	562	183	273	393	823	224	683	104	124	124	394	684	
300V			•	103	123	273	563	184	563	683	104	154	274	474	
400V	•	•	•	682	682	183	333	104	333	393	563	124	184	334	
500V		•	•	472	472	123	273	823	273	333	473	683	124	274	
600V	•	•	•	332	272	682	153	563	183	223	273	473	823	184	
800V [†]				222	182	472	103	333	103	123	183	273	563	104	
1kV†	•	•	•	122	821	222	562	183	562	822	103	183	333	563	
1.5kV [†]						102	222	822	272	332	392	822	123	273	
2kV [†]	•	•	•	•	•	471	102	392	122	152	182	332	682	123	
3kV [†]	•	•	•	•	•	•	•	152	391	471	821	152	222	392	
4kV [†]	•	•	•	•	•	•	•	•	181	271	391	681	821	182	
5kV†													561	102	
6kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
7kV⁺	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
8kV [†]	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
9kV⁺				•											
10kV⁺	•	•	•	•		•	•	•	•	•	•	•	•	•	

Capacitance and voltage selection for popular chip sizes

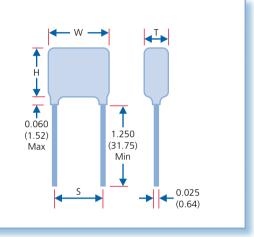
2020	2221	22	25	2520	3333	3530	4040	4540	5440	5550	6560	7565	Size
102	471	471	471	102	102	102	102	102	102	102	222	222	Min cap.
0.180 4.57	0.080 2.03	0.080 2.03	0.150* 3.81	0.180 4.57	0.250 6.35	0.250 6.35	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	0.300 7.62	:inches Tmax :mm
185	125	185	275	225	475	475	825	825	106	126	186	226	16V
155	125	185	225	225	475	475	685	825	106	126	186	206	25V
155	125	155	225	155	395	395	685	685	825	106	156	186	50V
125	824	125	185	125	335	335	565	685	685	825	106	156	100V
105	474	564	125	125	275	275	475	475	565	685	825	106	200V
684	394	394	684	804	225	225	475	475	565	685	825	106	250V
564	224	334	684	684	185	185	335	335	395	475	685	825	300V
334	154	184	394	394	105	105	185	225	225	275	335	565	400V
224	154	154	334	274	684	684	125	155	155	185	275	395	500V
154	823	104	224	184	474	474	824	824	105	155	225	275	600V
104	563	683	124	124	334	334	564	684	824	125	185	225	800V [†]
563	273	393	823	683	184	184	394	474	474	684	105	125	1kV†
123	123	153	333	333	823	823	184	184	224	274	474	564	1.5kV⁺
123	562	822	153	153	473	473	104	104	124	184	224	334	2kV†
472	182	222	562	562	223	223	393	473	473	683	104	154	3kV [†]
182	821	102	222	272	123	123	183	223	273	393	563	823	4kV⁺
102	561	561	122	182	682	822	103	153	183	273	393	473	5kV†
•	•	•	•	•	472	562	682	103	123	183	273	333	6kV⁺
•	•	•	•	•	•	392	472	682	822	123	183	273	7kV⁺
•	•	•	٠	•	•	272	392	562	682	103	153	183	8kV⁺
•	•	•	•	•	•	222	272	392	472	682	123	153	9kV⁺
•	•	•	•	•	•	152	222	332	392	562	822	123	10kV⁺
* Denote	s non stan	dard chip t	hickness.		201 - 11	I		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P		2011		

Order code needs to have an 'X' inserted together with the dimension in inches e.g. X080 where dimension is 0.080"

[†] Units rated above 800V may require conformal coating to preclude arcing over chip surface. Maximum voltage for MIL-PRF-123 tested parts is 1kV.

High Reliability Radial Lead 500V to 10kV

DSCC Approved Radial Lead

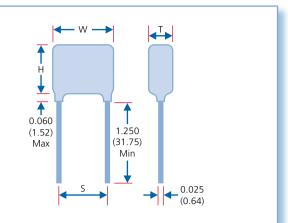


Radial Leaded Capacitors available in COG and X7R characteristics with special testing for long term reliability. The conformal coating and lead mounting style provide a rugged configuration for optimum performance. Units may be tested to MIL-PRF-49467 and/or MIL-PRF-39014 and find application for High Reliability use such as power supplies, voltage multiplier circuits, aerospace, airborne and military use for radar. They are also offered without the conformal coating for less harsh environmental applications, and as RoHS compliant parts upon request.

- For dielectric characteristics see pages 4 & 6.
- For capacitance tolerances available see page 15.
- For ordering information see page 26.

%ΔC س 0			COG			
%CAPACITANCE CHANGE . 07 20 . 08 20 . 09 20	1	X7	R			1
-30 -40	X7R X	X7R 7R				1
∯ -50 % -60						1
	2kV	4kV	6kV	8kV	10kV	_

Dimensions - inches/mm												
Lead Style	LE with conformal coating - LO without coating											
Size	1515	2520	3530	4540	5550	6560	7565					
Wmax inches:	0.250	0.400	0.500	0.600	0.700	0.800	0.900					
	6.35	10.20	12.70	15.20	17.80	20.30	22.80					
Hmax inches:	0.250	0.350	0.450	0.550	0.650	0.750	0.850					
	6.35	8.89	11.40	14.0	16.50	19.0	21.60					
Tmax inches:	0.200	0.250	0.350	0.400	0.400	0.400	0.400					
	5.08	6.35	8.89	10.20	10.20	10.20	10.20					
S inches ±0.02:	0.170	0.280	0.380	0.480	0.580	0.680	0.780					
mm ±0.51:	4.32	7.10	9.65	12.20	14.70	17.30	19.80					


Capacitance and Voltage Selection														
Size	15	15	25	20	35	30	45	40	55	50	65	60	75	65
Min cap.	3R0	151	390	102	390	102	390	102	390	102	560	222	101	222
Dielectric	C0G	X7R												
500V	682	823	183	274	473	684	823	155	124	185	224	275	274	395
600V	682	563	183	184	393	474	823	824	124	155	184	225	274	275
800V	472	333	123	124	333	334	683	684	104	125	154	185	184	225
1kV	392	183	123	683	273	184	563	474	823	684	124	105	184	125
2kV	122	392	472	153	153	473	273	104	473	184	683	224	823	334
3kV	561	152	222	562	682	223	183	472	273	683	393	104	473	154
4kV	•		102	272	272	123	682	223	103	393	153	563	223	823
5kV	•	•	561	182	182	822	472	153	682	273	103	393	123	473
6kV					152	562	332	103	472	183	822	273	822	333
7kV	•	•	•	•	821	392	182	682	272	123	392	183	472	273
8kV	•		•			272	122	562	182	103	272	153	392	183
9kV	•	•	•	•	•	•	821	392	122	682	222	123	272	153
10kV	•	•	•	•	•	•	681	332	122	562	182	822	222	123

Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

A range of High Voltage leaded capacitors available in ten DSCC approved specifications.

The below referenced DSCC (Defense Supply Center Columbus) drawing numbers cover the NPO and X7R dielectrics with a voltage rating from 1kV to 10kVDC.

Novacap Vendor CAGE code is 65238.

33

Dimensions - inches/mm

Lead Style	LE with conformal coating											
Size	1515	2020	2520	3015	3530	4020	4540	5550	6560	9040	11050	13060
Wmax inches:	0.250	0.320	0.370	0.450	0.470	0.550	0.570	0.670	0.770	1.050	1.250	1.450
	6.35	8.13	9.40	11.43	11.94	13.97	14.48	17.02	19.56	26.67	31.75	36.83
Hmax inches:	0.220	0.280	0.300	0.220	0.400	0.280	0.500	0.600	0.720	0.500	0.600	0.720
	5.59	7.11	7.62	5.59	10.16	7.11	12.70	15.24	18.29	12.7	15.24	18.29
Tmax inches:	0.200	0.250	0.250	0.270*	0.270	0.250	0.270	0.270	0.270	0.270	0.270	0.270
	5.08	6.35	6.35	6.86	6.86	6.35	6.86	6.86	6.86	6.86	6.86	6.86
S ±0.03 inches: ±0.76 mm:	0.170	0.220	0.275	0.300	0.375	0.400	0.475	0.575	0.675	0.900	1.100	1.300
	4.32	5.59	6.98	7.62	9.53	10.16	12.07	14.61	17.15	22.86	27.94	33.02

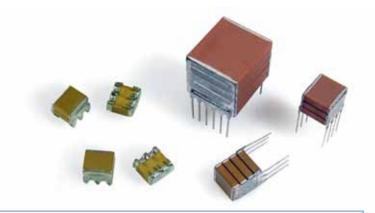
*Maximum thickness for 87076 is 0.200/5.08

Dash Num	Dash Numbers												
DSCC#	Rated Voltage	1515	2020	2520	3015	3530	4020	4540	5550	6560	9040	11050	13060
87043	1kV	01-50	51-58	59-60		61-70		71-78	79-84	85-90	•		•
87046	1kV	01-50	51-56	57-58	•	59-66	•	67-74	75-80	81-84	•	•	•
87040	2kV	04-40	41-46	47-50		51-60		61-66	67-70	71-74		75-78	79-82
87047	3kV	•	01-38	39-42	•	43-54	•	55-62	63-64	65-68	•	69-70	71-75
87114	3kV		01-44	45-46		47-54		55-64	65-68	69-72			
87076	4kV	•	•	•	01-24	25-50	•	51-58	59-62	63-64	•	•	65-70
89044	4kV				01-24	25-46		47-50	51-54	55-60		61-62	63-68
87070	5kV	•	•	•	•	•	01-24	25-46	47-50	51-54	55-58	59-60	61-62
87077	5kV		•				01-40		41-58	59-60	•		61-68
87081	10kV	•	•	•	•	•	•	•	•	•	01-22	23-26	27-34

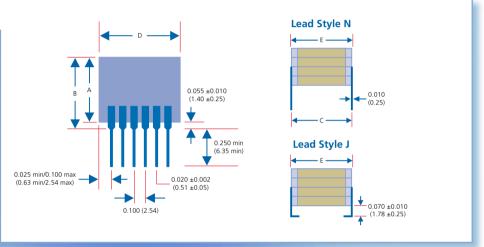
How to Order - The purchase order or contract must specify the following:									
1	2	3							
The Complete DSCC part number - Drawing Number <i>and</i> Dash Number Example: 87043-47	Whether you want Novacap to perform the Group B Test, or provide a certification of compliance for Group B requirement.	Specify requirements for packaging.							

32 Phone: +1.661.295.5920 | www.novacap.com Phone: +1.661.295.5920 | www.novacap.com

Product Reliability Groups



A range of switch mode leaded capacitor assemblies in three approved DSCC 87106 case codes sizes.


The below referenced DSCC (Defense Supply Center Columbus) dash numbers show our approved range.

Novacap Vendor CAGE code is 65238.

Dimensions - inches/mm Case code 0.400 10.16 11.43 0.275 0.425 eads per side

For dimensions A and B please refer to DSCC 87106

Lead style N - DSCC 87106 Dash Numbers

Voltage	Case code	5	4	3
	Dash#	001-020	021-028	029-040
50V	Cap value	105-565	825-156	186-476
30 V	Dash#	•	222-223	•
	Cap value	•	685	•
	Dash#	055-072	073-082	083-092
100V	Cap value	684-335	395-825	126-276
100 V	Dash#	•	•	229-230
	Cap value	•	•	106
200V	Dash#	113-126	127-136	137-148
200 V	Cap value	474-155	185-395	475-126
	Dash#	173-190	191-198	199-208
500V	Cap value	154-684	105-185	275-565
500 V	Dash#	•	231-232	233-234
	Cap value	•	824	225

1					
	Voltage	Case code	5	4	3
	50V	Dash#	241-260	261-270	271-282
	50V	Cap value	105-565	685-156	186-476
	100V	Dash#	301-318	319-328	329-340
	1000	Cap value	684-335	395-825	106-276
	200V	Dash#	361-374	375-384	385-396
	200 V	Cap value	474-155	185-395	475-126
	FOOV	Dash#	421-438	439-448	449-460
٦	300 V	Cap value	154-684	824-185	225-565
	500V	Dash#	421-438	439-448	449-460

Lead style J - DSCC 87106 Dash Numbers

How to Order - The purchase order or contract must specify the following:

The Complete DSCC part number -Drawing Number and Dash Number Example: 87106-222

Whether you want Novacap to perform the Group B Test, or provide a certification of compliance for Group B requirement.

3 Specify requirements for packaging. Novacap's management has defined and documented our Quality Policy.

Quality at Novacap is the enhancement of customer satisfaction by meeting our customer requirements in all our dealings with

Our Customers Our Vendors The Environment

Our system for quality is to attain effective, continuous, measurable improvement through systematic prevention of defects and errors in all activities.

Quality and customer satisfaction are the responsibility of every Novacap employee.

Certifications and Approvals

Novacap is certified to ISO 9001:2008, Certificate #FM75371.

10 DSCC approvals for radial leaded high voltage capacitors rated 1KV through 10KV. (87043, 87046, 87040, 87047, 87114, 87076, 89044, 87070, 87077, and 87081)

DSCC approval for 87106 stacked leaded switch mode power supply capacitors.

UL, TÜV and CSA approvals for Isolation Surge Protection Capacitors, Class Y² and Y³ in both COG and X7R dielectrics.

ISO 9001:2008

GEPRÜFT **APPROVED**

	Standard Commercial Capacitors	HH MIL-PRF-38534 Class H	HB MIL-PRF-55681	HK MIL-PRF-38534 Class K	HS MIL-PRF-123
Standard	•	•			
High Reliability			•	•	•
Typical Termination Options					
P: Silver Palladium	•	•	•	•	•
N: Silver base with Nickel Barrier (100% Matte Tin Plating)	•	•	0	0	
Y: Silver base with Nickel Barrier (Tin/Lead Plating with min 10% Lead)	•	•	•	•	•
C: FlexiCap™ with Nickel Barrier (100% Matte Tin Plating)	•	•	0	0	•
D: FlexiCap™ with Nickel Barrier (Tin/Lead Plating with min 10% Lead)	•	•	•	•	•
■ Termination available. □ Termination	available but generally	not requested for Milit	ary/Space Grade compo	onents. Please discuss v	vith Novacap Sales.
Documentation					
Certificate of Conformance	S	S	S	S	S
Electrical Test Report (10 piece read and record report)	0	S	0	S	0
Full Data Package	0	0	S	S	S
S = Test conducted as standard. O = C	ptional test. Please dis	cuss with Novacap Sale			

37

	Standard Commercial Capacitors	HH MIL-PRF-38534 Class H	HB MIL-PRF-55681	HK MIL-PRF-38534 Class K	HS MIL-PRF-123
Destructive Physical Analysis (DPA)	S	S	S	S	S
CSAM (C-Mode Scanning Acoustic Microscopy)	0	O	O	O	0
Plating Thickness Verification	S	S	S	S	S
Solderability*	S	S	S	S	S
Electrical Characteristics (DWV, IR, Cap, DF)	S	S	S	S	S
Sample Visual Inspection	S	S	S	S	S
100% Visual Inspection	0	O	0	S	S
Thermal Shock -55°C to +125°C	0	O	0	0	S
100% Burn-In**	0	0	S	S	S
100% Hot IR	0	0	0	0	S
Hot IR sample test (at rated voltage)	0	0	S	S	S
10 Piece Sample Temp Cycling, Constant Acceleration, Burn-In	0	O	0	S	0
Life Sample Test	0	0	0	0	0
Humidity Sample Test	0	0	0	0	0
Resistance to Soldering Heat Sample Test	0	0	0	0	0
Terminal Strength Sample Test	0	O	O	O	0
Group B Testing	N/A	N/A	N/A	N/A	0
Group C Testing	N/A	N/A	0	0	0

S = Test conducted as standard.

DPA	Destructive Physical Analysis, Device is mounted in an epoxy plug and cross sectioned, with a fine grit sand paper while examining the internal construction of the device per relevant sections of EIA 469 and NOVACAP's internal design criteria.
CSAM	C-Mode Scanning Acoustic Microscopy; A method of non-destructive analysis is of the internal construction of a device per MIL-PRF-123. The optional test is to assure the highest quality of internal microstructure.
Plating Thickness Verification	X-Ray fluorescent [XRF) equipment/instrument is utilized to verily the plating thickness of a device according to NOVACAP's criteria.
Solderability	Determines the ability for solder to wet/adhere to the termination by dipping the component into molten solder according to MIL-STD-202 Method 208.
Electrical Characteristics (DWV, IR, Cap, DF)	DWV: Dielectric Withstanding Voltage, Determines the ability of the dielectric to withstand accelerated voltage without breaking down. IR: Insulation Resistance; The insulation resistance is a measure of the capability of a material To withstand leakage of current under a VDC potential gradient.
Sample Visual Inspection	Is an AQL level inspection, which is based on lot size and consists of a bulk scan under microscope between 7-10X magnification.
100% Visual Inspection	Each side of every part in a lot is subjected to inspection under microscope between 7-10X magnification in accordance with MIL-PRF-123 Appendix B.
Thermal Shock -55°C to +125°C	Devices are subjected to sudden temperature extremes (hot and cold) to determine the physical integrity of the components. All parts receive 20 cycles in accordance with MIL-PRF-123.
100% Burn-In	A method of screening infantile failures by testing at accelerated conditions. Product groups HB and HK follow the guidelines of MIL-PRF-55681. The parts receive a 100% Burn-in at 125°C and a voltage specified in page 27 for 100 hours. Product group HS follows the guidelines of MIL-PRF-123. The parts receive a 100% Burn-in at 125°C and a voltage specified in page 27 for a minimum of 168 and a maximum of 264 hours. The Burn-In may be terminated at any time between the hours of 168 and 264 when failures are less than 0.1% or 1 pieces during the last 48 hours of the test.
100% Hot IR	Tested for IR at rated voltage and elevated temperatures.
Hot IR sample test	A sample that is tested for IR at rated voltage and elevated temperatures.
10 Piece Sample Temp Cycling, Constant Acceleration, Burn-In	The 10 piece sample is tested in accordance with MIL-PRF-38534 TABLE C-III Subgroup 3. The tests include Temperature Cycling per MIL-STD-883 Method 1010 Condition C, Constant Acceleration per MIL-STD-883 Method 2001 with 3,000g's in Y1 direction, Burnin according to MIL-PRF-55681, and Visual inspection.
Life Sample Test	A test that determines the long-term reliability of a device that is performed at accelerated electrical and environ mental conditions. Life test for product groups HH,HB, and HK shall be in accordance with MIL PRF-55681. Life test for product group HS shall be in accordance with MIL-PRF-123.
Humidity Sample Test	Humidity, steady state, low voltage test in accordance with MIL-PRF-202 method 103 condition A with the capacitor requirements of MIL-PRF-55681/MIL-PRF-123. A twelve piece sample is tested with accept on zero failures.
Resistance to Soldering Heat Sample Test	The ability of a device to withstand soldering temperatures. Capacitors shall be tested in accordance with MIL-STD-202 Method 210 with applicable detail of MIL-PRF-55681/MIL-PRF-123.
Terminal Strength Sample Test	It is the strength of the adhesion of the termination to the ceramic body. Capacitors shall be tested in accordance with MIL-STD-202 Method 211 Test Condition A with applicable details of MIL-PRF-123. A six piece sample is tested with accept on zero failures.
Group B Testing	Group B environmental testing for product group HS shall consist of the tests specified in table XII of MIL-PRF-123 and shall be performed on sample units from lots that have been subjected to and have passed group A inspection. Copies of Group B data shall be forwarded to purchaser with parts. Parts may not be shipped until the conclusion of life test.
Group C Testing	Group C environmental testing shall consist of the tests specified in table XI of MIL-PRF-55681 for product groups HB and HK. Testing shall consist of the tests specified in table XIII of MIL-PRF-123 for product group HS. Tests shall be performed on sample units from lots that have been subjected to and have passed group A inspection. Copies of Group C data shall be forwarded to purchaser with parts. Parts may not be shipped until the conclusion of life test.

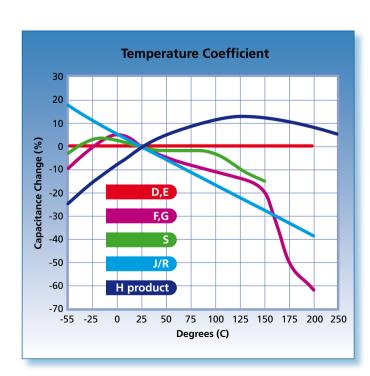
[•] Optional test. Please discuss with Novacap Sales.

^{*} Solderability and plating thickness verification does not apply to palladium/silver terminations.

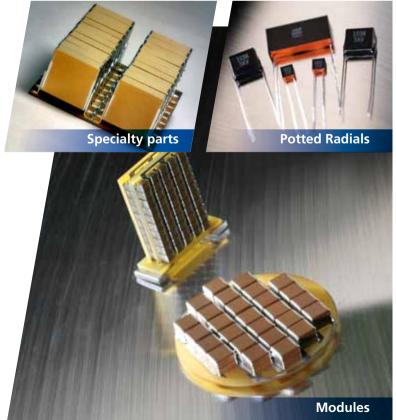
^{**} Burn-In for MIL-PRF-55681 and MIL-PRF-38534 Class K is 100 hours. Burn-In for MIL-PRF-123 is 168 to 264 hours.

High Temperature Chip

Harsh Environments

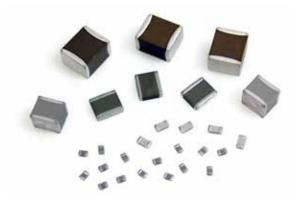

- Gas and oil well logging
- Geothermal
- Military/Aerospace

Novacap offers a range of high temperature, high reliability, and stable capacitors designed and tested to operate from -55°C to 150°C, 160°C, 200°C and 230°C in both Class I and Class II dielectric product families. Our proprietary dielectric formulations, voltage derating, special design criteria and testing regimen insure stable capacitance at temperature, voltage and frequency. Novacap High Temperature capacitors are available in both SMT and Leaded formats. When even MIL-spec capacitors don't stand up, our products are ideally suited for critical circuitry in extreme conditions.


A novel dielectric, designated H, with maximum +5% capacitance change over the temperature range of 25°C to 230°C offers design advantages where capacitance change over temperature cannot be tolerated.

In many applications such as avionics where temperature variations occur very quickly as altitude is achieved temperature stability becomes critical.

Other applications such as battle field electric power, inverters, DC/DC converters and spacecraft require the temperature/ capacitance stability and performance characteristics of this novel dielectric composition. Currently many of these applications use conventional ferroelectric material systems such as X7R, X8R and BX materials. Enhanced electrical performance characteristic of H product will improve performance and may offer the opportunity to down size capacitor requirements.



A range of chip capacitors, available in sizes 0805 to 7565, designed to operate from -55°C to 150°C, (Class 2 dielectric) and from -55°C to 200°C (C0G & Class II dielectrics). Voltage ratings of 25V to 4kV.

- For dielectric characteristics see pages 4 & 7.
- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For ordering information, inc. tolerances available, see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.

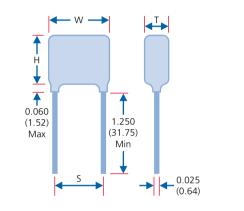
Maximum cap	Maximum capacitance values - 150°C X8R (S) dielectric											
Size	0805	1206	1210	1812	1825	2225	4540	7565				
Min cap.	121	221	221	221	102	102	102	222				
25V	563	184	334	684	125	155	565	156				
50V	473	154	274	564	105	125	475	126				
100V	333	104	184	394	824	105	395	106				
250V	183	333	823	154	474	564	275	695				
500V	562	153	393	563	124	154	125	325				

Maximu	laximum capacitance values - 160°C COG (F)/Class II (G) and 200°C COG (D)/Class II (E) dielectrics																							
Size		05		206		10		15		808		12		25		25		30		40		60	75	65
Min cap.	05R	121	1R0	121	5R0	121	5R0	151	120	151	220	151	330	471	470	471	221	102	390	102	560	222	101	222
Tmax inches: mm:)54 37		064 63)65 65		130 30		065 65)65 65	0.0 2.)80 03)80 03		250 35		300 62		300 62		300 62
Dielectric	C0G	Class II	C0G	Class II	COG	Class II	C0G	Class II	C0G	Class II	COG	Class II	C0G	Class II	COG	Class II	C0G	Class II	C0G	Class II	C0G	Class II	COG	Class
25V	272	823	562	224	123	394	223	824	123	334	223	684	563	155	563	185	104	395	184	565	334	156	394	186
50V	182	473	392	124	822	224	183	684	822	274	153	474	393	105	473	125	823	275	154	475	274	126	334	156
100V	681	183	182	473	332	104	103	274	332	823	822	154	153	474	183	474	563	225	104	335	224	825	274	126
250V	471	472	102	103	222	273	392	822	222	223	562	473	123	124	183	154	333	564	563	125	124	275	154	395
500V	181	102	391	222	821	562	272	183	102	562	222	103	392	273	562	333	123	124	273	334	563	684	683	824
1kV	470	181	101	391	221	821	821	272	221	821	561	152	821	472	102	562	562	273	153	683	333	154	393	224
2kV	٠	•	270	•	560	151	181	561	560	•	121	221	181	561	271	681	152	682	332	183	822	393	103	473
3kV	٠	•	•	•	٠	•	820	•	220	•	560	•	820	•	101	•	561	272	152	682	332	153	392	183
4kV	٠	•	•	•	٠	•	470	•	120	•	270	•	330	•	470	•	331	122	821	272	182	562	222	822

38 Phone: +1.661.295.5920 | www.novacap.com Phone: +1.661.295.5920 | www.novacap.com **38**

High Temperature Radial Lead Epoxy Coated

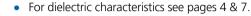
A range of Radial Leaded Capacitors available in sizes 1515 to 7565 designed to operate from -55°C to 200°C in COG (NPO) & Class II dielectrics with voltage ratings of 25V to 4kV. These capacitors find typical application in harsh environments such as Oil Exploration and Automotive/Avionics engine compartment circuitry. The epoxy coating ensures environmental protection and a rugged configuration for optimum performance. They are also offered without the conformal coating for less harsh environmental applications.


- For dielectric characteristics see pages 4 & 7.
- Capacitance tolerances ±1%*, ±2%*, ±5%, ±10%, ±20% (*C0G only)

4.32

• For ordering information see page 26. **Dimensions - inches/mm** LG with black epoxy coating - LO without Lead Style LP with Parylene coating Size 1515 | 1812 | 2520 | 3530 | 4540 6560 7565 0.300 0.370 0.470 0.570 0.770 0.870 14.50 19.60 6.35 7.62 9.40 11.90 22.10 0.300 0.400 0.500 0.770 Hmax inches: 0.250 0.200 7.62 10.20 18.30 0.240 0.310 0.360 0.360 0.360 9.14 9.14 9.14 6.10

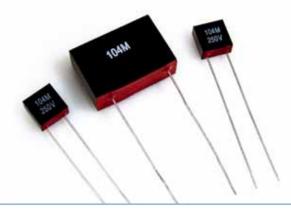
0.200 0.280 0.380


Maximum	Maximum capacitance values - 200°C COG (D)/Class II (E) dielectrics													
Size	Size 1515		2520		3530		4540		5550		6560		7565	
Min cap.	5R0	151	220	151	390	102	390	102	390	102	560	222	101	222
Dielectric	C0G	Class II	COG	Class II	COG	Class II	COG	Class II	C0G	Class II	C0G	Class II	C0G	Class II
25V	223	824	273	105	563	225	104	395	184	565	334	156	394	186
50V	183	684	223	654	563	185	823	275	154	475	274	126	334	156
100V	103	274	103	274	333	125	563	225	104	335	224	825	274	126
250V	392	823	682	104	153	274	333	564	563	125	124	275	154	395
500V	272	183	332	223	562	563	123	124	273	334	563	684	683	824
1kV	821	272	102	332	182	123	562	273	153	683	333	154	393	224
2kV	181	561	221	681	391	222	152	682	332	183	822	393	103	473
3kV	820	221	101	221	181	821	561	272	152	682	332	153	392	183
4kV	470	•	•	•	101	221	331	122	821	272	182	562	222	822

0.780

Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000 pF. R denotes decimal e.g. 2R7 = 2.7 pF.

High Temperature Radial Lead Encapsulated


A range of Radial Leaded Capacitors available in sizes 1515 to 7565 designed to operate from -55°C to 200°C in COG (NP0) & Class II dielectrics. Voltage ratings of 25V to 500V. These capacitors find typical application in very harsh environments where isolation and protection of the device is required for optimum reliability. They are also offered without the molded case for less harsh environmental applications. Consult the Sales Office if your specific requirements exceed our catalog maximums (size, cap. value and voltage).

- Capacitance tolerances ±1%*, ±2%*, ±5%, ±10%, ±20% (*C0G only)
- For ordering information see page 26.

Dimensions - inches/mm

Lead Style		LC w		psulatior Parylene	ı - LO wit coating	hout	
Size	1515	2520	3530	4540	5550	6560	7565
W inches ±0.015:	0.300	0.400	0.500	0.725	0.795	0.925	1.125
mm ±0.381:	7.62	10.20	12.70	18.40	20.20	23.50	28.60
H inches ±0.015:	0.300	0.400	0.500	0.500	0.745	0.750	0.750
mm ±0.381:	7.62	10.20	12.70	12.70	18.90	19.00	19.00
T inches ±0.015:	0.150	0.200	0.265	0.325	0.370	0.350	0.375
mm ±0.381:	3.81	5.08	6.73	8.26	9.40	8.89	9.52
S inches ±0.02:	0.170	0.280	0.380	0.480	0.580	0.680	0.780
mm ±0.508:	4.32	7.10	9.65	12.20	14.70	17.30	19.80

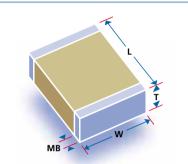
→ w →	▲ T
H →	
· ·	1.250 (3.48) Min
S	→ 0.025 (0.64)

Size	15	15	18	312	25	20	35	30	45	40	65	60	75	65
Min cap.	3R0	221	390	102	390	102	390	102	390	102	560	222	101	222
Dielectric	C0G	Class II												
25V	183	564	563	225	104	395	184	565	224	106	334	156	394	186
50V	153	394	563	155	823	275	154	475	184	685	274	126	334	156
100V	562	124	273	824	563	185	104	335	154	565	224	825	274	106
250V	392	393	123	184	273	564	563	125	823	225	124	275	154	395
500V	152	822	562	393	123	823	273	224	393	334	563	474	823	684

Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

40

Certified Safety Capacitors X², Y³ & X¹, Y²

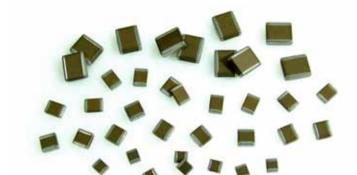


X², Y³ (LS style) and X¹, Y² (ES style) Class Compliant* chip capacitors specifically designed for use in modem, facsimile, telephone and other electronic equipment where lightning or overvoltage surges can occur. Both styles are rated at 250 Vac safety approved with COG (NPO) and X7R dielectrics available (dependant on style).

X², Y³ (LS style) is certified to EN 60950 and compliant to Standards EN 132400: 1994/A2: 1998/IEC60384-14, Second Edition: 1993/A1:1995.

X¹, Y² (ES style) is certified to IEC60384-14, Second Edition: 1993/ A1:1995 and compliant to Standards EN 132400: 1994/A2:1998. Both styles meet the requirements of EN61000-4-5, IEC1000-4-5 and IEC801-4-5.

Certification numbers												
Safety Classification	X ² ,Y ³		X ¹ , Y ²									
TUV LS 1808N - R9972698.01,02,03 LS 1812N - R9972698.05 - R2272835.01,.02 R9972698.05 R60012089 ES 2225 - R2072738.02												
Standards	EN 132400, EN 60950, IEC 60384 Class X ² Y ³ .	-14 2nd Edition,	EN 132400, IEC 60384-14 2nd Edition, Class X ¹ Y ²									
UL NWGQ2.E208336 and NWGQ8.E208336												
*LS style is compliant with Robustness of Termination (cl 4.3) test according to IEC 60384-1 amendment 3 cl 4.34 and 4.35 Resistance to Soldering Heat (cl 4.4) tested according to IEC 60384-1 amendment 3 cl. 4.14.2, Impulse Test made with 2.5 KV or 5.0KV as required according to 6.4.2.1 in EN 60950. The creepage distance between live parts of different polarity meets the requirements of IEC 60950.												



Dimensions - inches/mm

Safety Classification	X ² ,	, Y ³		X ¹ ,	Y ²	
Size	LS 1808	LS 1812	ES 1808	ES 2211	ES 2215	ES 2225
L inches ±0.015/0.38: mm ±0.015/0.38:	0.180	0.180	0.180*	0.220	0.220	0.220
	4.57	4.57	4.57	5.58	5.58	5.58
W inches ±0.02: mm ±0.508:	0.080	0.125	0.080**	0.110	0.150	0.250
	2.03	3.18	2.03	2.79	3.81	6.35
MB inches: typical mm:	0.024	0.024	0.020	0.300	0.300	0.300
	0.609	0.609	5.08	0.762	0.762	0.762
Creepage inches:	0.102	0.102	0.100	0.157	0.157	0.157
	2.60	2.60	2.50	3.99	3.99	3.99

^{*}Tolerance is ±0.014/0.35 **Tolerance is ±0.012/0.30

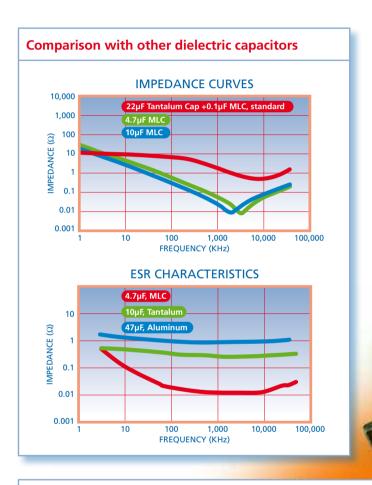
How to Order - Certified Safety Capacitors LS 122 X080 1808 302 М SIZE DIELECTRIC CAPACITANCE TOLERANCE VOLTAGE-TERMINATION THICKNESS PACKING MARKING STYLE LS = See N = COGValue in $J = \pm 5\%$ **SURGE** N = Nickel**OPTION** No suffix Parts X^{2}, Y^{3} Chart B = X7RPicofarads. $K = \pm 10\%$ Two Blank = = Bulk marked: Two significant $M = \pm 20\%$ significant Standard ES = T = TapeNLS thickness figures, figures, X1, Y2 & Reel (X^2, Y^3) followed by followed by X = specialNY2 number of thickness, number of (X^1, Y^2) specified in zeros: zeros: 302 = 3000Vinches: 121 = 120pF (X^2, Y^3) X080 = 0.08" 502 = 5000VX100 = 0.10"X010 = 0.11" (X^1, Y^2) X150 = 0.15"

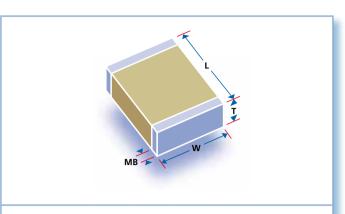
- For dielectric characteristics see page 4 & 7.
- Nickel Barrier terminations.
- Capacitance tolerances available ±5%, ±10%, ±20%

Note: Capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000 pF.

Canad	itance v	values									
		values					i				
Sat Classif	ety ication			X^2,Y^3					X ¹ , Y ²		
Si	ze		LS 1808		LS 1	812	ES 1	1808	ES 2211	ES 2215	ES 2225
Tmax	inches: mm:	0.065 1.65	0.080* 2.03	0.065 1.65	0.065 1.65	0.100* 2.54		80* 03	0.157* 4.00	0.157* 4.00	0.157* 4.00
Dielo	ectric	COC	5/NP0	X7R	COG	/NP0	C0G/NP0	X7R	COG/NP0	C0G/NP0	C0G/NP0
	R7						•				
	RO	•					•				
	R8	•					•		•		
	R2	•					•		•		
	00	•					•		•		
	20	•					•		•		
	50	•					•		•		
	80	•					•		•		
	20	•					•		•		
	70	•					•		•		
	30	•					•		•		
	90	•					•		•		
	70	•					•		•		
	60	•					•		•		
	80	•					•		•		
	20	•					•		•		
	01	•					•		•		
	21 51	•		•			•	•	•		
	81	•		·			•	•	·		
	21	•		•			•	•			
	71	•		•				•	•		
	31	•		•					•		
	91	•		•				•	•		
	71	•		•				•	•		
	61	•		•				•	•		
6	81	•		•				•	•		
	21		•	•				•			
	02		•	•	•			•		•	•
	22			•	•						
	52			•	•						
	82					•					
2:	22					•					

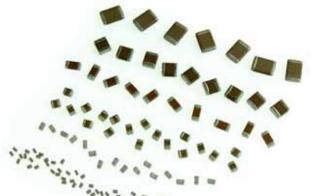
^{*} Denotes non standard chip thickness.


Order code needs to have an'X' inserted together with the dimension in inches -e.g. X080 where dimension is 0.080"


High Capacitance Chip X7R & X5R

High Capacitance Chip X7R & X5R

A range of High Capacitance value BME MLC chip capacitors, in stable Class II dielectrics X7R & X5R, with a spread of capacitance values offered up to $100\mu F$. Comparable circuit designs can be achieved at typically a third to a fifth of the capacitance values because of the low ESR characteristics these parts exhibit. As a consequence they are also ideal to replace Tantalum and Low ESR Electrolytic Capacitors without polarity concerns. They find application as power supply bypass capacitors, smoothing capacitors, input/output filters in DC-DC Converters and in digital circuits and LCD modules. Parts are RoHS Compliant and suitable for reflow soldering process.


Dimensions - inches/mm

Size	0402	0603	0805	1206	1210	1812
L inches ±0.004: mm ±0.10:	0.040 1.02	0.063 1.60	0.080 2.03	0.126 3.20	0.126 3.20	0.180 4.57
W inches ±0.004: mm ±0.10:	0.020 0.51	0.032 0.81	0.050 1.27	0.063 1.62	0.100 2.54	0.125 3.18
MB inches ±0.004: mm ±0.10:	0.010 0.25	0.014 0.36	0.020 0.51	0.020 0.51	0.024 0.61	0.035 0.89

Dielectric Characteristics	X7R (B) Stable	X5R (W) Stable
Operating temperature range:	-55°C to 125°C	-55°C to 85°C
Temperature coefficient:	±15% ∆C Max.	±15% ∆C Max.
Dissipation factor:	3.5% max except: $0402 \ge 0.1 \mu F = 5\%$, $0603 \ge 0.22 \mu F = 10\%$, $0805 \ge 1.0 \mu F = 5\%$, $0805 \ge 2.2 \mu F = 10\%$, $1206 \ge 2.2 \mu F = 10\%$, $1210 \ge 4.7 \mu F = 5\%$, $1210 \ge 4.7 \mu F = 5\%$, $1210 \ge 4.7 \mu F = 10\%$	5% max except: $0402 \ge 1.0 \mu F = 10\%, \\ 0603 \ge 1.0 \mu F = 10\%, \\ 0805 \ge 4.7 \mu F = 10\%, \\ 1206 \ge 4.7 \mu F = 10\%, \\ 1210 \ge 10 \mu F = 10\%$
Insulation resistance @25°C:	$>10G\Omega$ or $>500\Omega$ F whichever is less	>10G Ω or >500 Ω F whichever is less
Dielectric withstanding voltage:	250%	250%
		1KHz, 1.0 ±0.2 vrms
Test parameters @ 25°C:	1KHz, 1.0 ±0.2 VRMS	120KHz, 0.5 ±0.1 vrмs for 22μF, 47μF & 100μF

How to Order - High Capacitance Chip Capacitors

1206	W	476	K	6R3	N	X080	Т
SIZE See Chart	DIELECTRIC B = X7R W = X5R	CAPACITANCE Value in Picofarads. Two significant figures, followed by number of zeros: 476 = 47μF (47,000,000pF)	TOLERANCE K = ± 10% M = ± 20%	VOLTAGE- VDCW Two significant figures, followed by number of zeros. R denotes decimal point: 6R3 = 6.3V 501 = 500V	TERMINATION N = Nickel Barrier (100%tin) Y = Nickel Barrier (90%tin 10% lead) NG = Nickel Barrier Gold Flash	THICKNESS OPTION Blank = Standard thickness X = special thickness, specified in inches: X085 = 0.085"	PACKING No suffix = Bulk T = Tape & Reel

- For dielectric characteristics see page 44.
- Nickel Barrier terminations with tin, tin/lead or gold flash
- Capacitance tolerances available: ±10%, ±20%
- Available with high reliability screening. Contact sales office for details

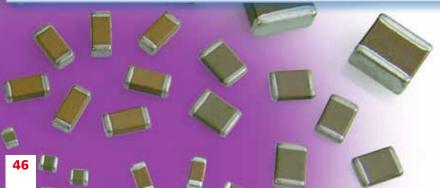
Note: Capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.

Capacitance values 0402 0603 0805 1206 1210 Size 1812 0.035 0.054 0.072* 0.085* 1.83 2.16 2.79 Dielectric X7R X5R **4V** 107† 6.3V 476† 475t 10V 226† 476† 16V 224 474 105 105 225 475 474 475 475† 682 475 106 25V 475 475† 225† 475† 35V 474 224 474 224 475† 474 474 50V 475 475† 474 475 105 225 100V

^{*} Denotes non standard chip thickness. Order code needs to have an 'X' inserted together with the dimension in inches -e.g. X072 where dimension is 0.072".

[†] Denotes only available in ±20% capacitance tolerance

Non Magnetic Chip COG & X7R

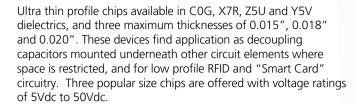

This range of MLC chip capacitors that are completely non magnetic. They are designed to operate in non magnetic environments such as Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) systems. Copper barrier terminations are available for soldering applications and palladium silver terminations for conductive epoxy.

Consult the Sales Office if your specific requirements exceed our catalog maximums (size, cap. value, and voltage).

Capacitance and Voltage Selection 1206 1210 1812 1825 2221 2225 Size OR3 121 OR5 121 OR3 121 OR5 121 2R0 121 5R0 121 5R0 151 100 151 150 471 270 471 270 471 470 | 562 | 561 | 393 | 271 | 273 | 122 | 124 | 272 | 334 | 562 | 474 | 562 | 684 | 103 | 125 | 223 | 185 | 183 | 155 | 223 | 225 330 | 472 | 391 | 333 | 181 | 223 | 821 | 104 | 222 | 274 | 472 | 474 | 472 | 394 | 682 | 824 | 223 | 155 | 183 | 125 | 223 | 185 100V 180 | 222 | 221 | 153 | 101 | 103 | 391 | 333 | 102 | 104 | 222 | 184 | 182 | 184 | 392 | 334 | 103 | 824 | 822 | 684 | 123 | 105 120 152 121 103 680 682 271 273 821 683 152 124 152 124 272 224 822 684 682 564 822 824 250V 181 | 153 | 471 | 473 | 102 | 823 | 102 | 823 | 222 | 154 | 472 | 474 | 472 | 394 | 682 | 474 300V • | • | • | • | • | • | 181 | 123 | 391 | 273 | 821 | 563 | 102 | 563 | 222 | 104 | 472 | 334 | 472 | 274 | 682 | 394 400V 181 103 391 223 821 563 102 563 222 104 472 334 472 274 682 334 600V | 151 | 472 | 331 | 103 | 681 | 273 | 821 | 273 | 182 | 473 | 392 | 124 | 392 | 124 | 562 | 154 800V[†] 820 272 181 682 471 153 471 153 102 273 222 823 222 823 332 104 1kV 101 222 271 472 271 472 561 822 122 273 102 273 152 333 1.5kV 2kV 3kV 820 | 561 | 181 | 122 | 271 | 472 | 221 | 472 | 331 | 562 4kV • 820 821 820 821 121 102 5kV

Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

- For characteristics of dielectrics M (COG) and C (X7R) see pages 4 & 6.
- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For capacitance tolerances available see page 15.
- For ordering information see page 15.


Thin Profile Chip

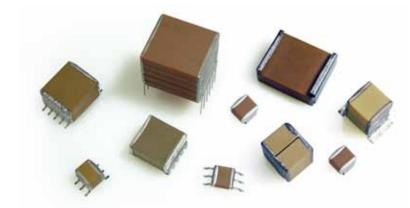
• For dielectric characteristics see pages 4,5 & 6.

Phone: +1.661.295.5920 | www.novacap.com


• For dimensions see page 12.

Сар	acitance valu	es								
	Size	08	05		1206		1210			
	Tmax inches:	0.015 0.38	0.018 0.46	0.015 0.38	0.018 0.46	0.020 0.51	0.015 0.38	0.018 0.46	0.020 0.51	
	5V	102	152	222	332	392	392	682	682	
DOO	10V	102	152	222	332	392	392	682	682	
Ü	25V	821	122	182	272	272	332	472	562	
	50V	561	821	122	182	222	272	392	472	
	5V	223	333	473	683	823	823	124	154	
2	10V	223	333	473	683	683	683	104	124	
X	25V	153	223	333	563	683	683	104	124	
	50V	153	223	333	563	683	683	104	124	
⊃	5V	184	274	274	474	564	564	824	105	
, Z	10V	184	274	274	474	564	564	824	105	
Y5V-Z5U	25V	124	224	224	394	394	474	684	824	
>	50V	823	124	184	274	334	394	564	684	

How to Orde	r - Thin Profile	Capacitors					
0805	Υ	103	M	250	N	X015	Т
SIZE See Chart	DIELECTRIC N = C0G B = X7R Y = Y5V Z = Z5U	Value in Picofarads. Two significant figures, followed by number of zeros: 103 = 10,000pF	TOLERANCE J = ± 5%* K = ± 10%* M = ± 20% Z = +80% -20% P = +100% -0% *COG & X7R only	VOLTAGE- VDCW Two significant figures, followed by number of zeros: 250 = 25V	TERMINATION N = Nickel Barrier (100% tin) Y = Nickel Barrier (90%tin - 10% lead) P = Palladium Silver	THICKNESS OPTION X = Non standard thickness. Specify in inches: X015 = 0.015" X018 = 0.018" X020 = 0.020"	PACKING No suffix = Bulk T = Tape & Reel* *Please consult the sales office


Low ESR and Low ESL are inherent in the design giving the assemblies a high capability up to 1MHz and offer far superior performance than either Aluminum or Tantalum electrolytic capacitors.

They are designed for use in high power or high frequency applications such as switched mode power supplies, DC-DC converters, high capacitance discharge circuits, high temperature filtering/decoupling.

They can be made with up to five same size chips with various lead configurations to safeguard against thermal and mechanical stresses

The commercial 'ST' series provide the highest capacitance available and are 100% tested for Dielectric Withstanding Voltage, Insulation Resistance, Capacitance, and Dissipation Factor.

In contrast, the High Reliability 'SM' series is designed and tested for military and industrial applications and tested as per of MIL-PRF-49470 (DSCC 87106), Group A.

Our complete testing facility is available for any additional military testing requirements.

Options available include thru-hole and surface mount lead styles, to make them suitable for mounting on ceramic substrates or epoxy PCBs.

Consult the Sales Office if your specific requirements exceed our catalog maximums (size, cap. value, and voltage).

Dimensions - inches/mm NN or NP (no leads) TJ & TL (tab leads) 0.070 ±0.010 (1.78 ±0.25) 0.050 min LN (straight wire leads) LJ & LL (bent wire leads) 0.055 ±0.010 0.070 ±0.010 (1.78 ±0.25) LN (1.40 ±0.25) 10.250 min 0.010 0.050 min (1.27 min) (6.35 min) (0.25) 0.020 ±0.002 (0.51 ±0.05) 0.020 ±0.002 (0.51 ±0.05) **4** 0.100 (2.54) **4** 0.100 (2.54)

Size	1812	1825	2225	3640	4540	5550	7565
C inches ±0.025/mm ±0.64:	0.210/5.33	0.210/5.33	0.250/6.35	0.400/10.20	0.480/12.20	0.580/14.70	0.780/19.80
D inches ±0.025:/mm ±0.64:	0.125/3.18	0.250/6.35	0.250/6.35	0.400/10.20	0.400/10.20	0.500/12.70	0.650*/16.50
E max inches:/mm:	0.260/6.60	0.260/6.60	0.300/7.62	0.430/10.90	0.530/13.50	0.630/16.00	0.830/21.10
L nom inches:/mm:	0.180/4.57	0.180/4.57	0.220/5.59	0.360/9.14	0.450/11.40	0.550/14.00	0.750/19.10
Leads per side	N/A	3	3	4	4	5	6

←0.025 min / 0.100 max

*±0.035/1.89

←0.025 min / 0.100 max

(0.63 min / 2.54 max)

Maximum stack height, X dimension - inches/mm

No. of chips	Chip size	Style NN, NP	Style TJ & TL	Style LN, LJ & LL
1	1812	0.100/2.54	0.180/4.57	N/A
	1825	0.100/2.54	0.180/4.57	0.180/4.57
	2225	0.120/3.05	0.200/5.08	0.200/5.08
	>2225	N/A	0.200/5.08	0.200/5.08
2	1812	0.200/5.08	0.280/7.11	N/A
	1825	0.200/5.08	0.280/7.11	0.280/7.11
	2225	0.240/6.10	0.320/8.13	0.320/8.13
	>2225	N/A	0.320/8.13	0.320/8.13
3	812	0.300/7.62	0.380/9.65	N/A
	1825	0.300/7.62	0.380/9.65	0.380/9.65
	2225	0.360/9.14	0.440/11.2	0.440/11.20
	>2225	N/A	0.440/11.2	0.440/11.20
4	1812	0.400/10.20	0.480/12.2	N/A
	1825	0.400/10.20	0.480/12.2	0.480/12.20
	2225	0.480/12.20	0.560/14.2	0.560/14.20
	>2225	N/A	0.560/14.2	0.560/14.20
5	1812	0.520/13.20	0.600/15.2	N/A
	1825	0.520/13.20	0.600/15.2	0.600/15.2
	2225	0.635/16.10	0.715/18.2	0.715/18.2
	>2225	N/A	0.715/18.2	0.715/18.2

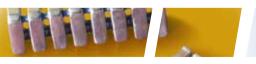
How to Order - ST & SM Capacitor Assemblies

ST	3640	В	474	M	101	LJ	Х	W	5
STYLE ST = Commercial SM = High Reliability	SIZE See Chart	DIELECTRIC $N = COG$ $B = X7R$	CAPACITANCE Value in Picofarads. Two significant figures, followed by number of zeros: 825 = 8,200,000pF (8.2µF)	TOLERANCE F = ±1%* G = ±2%* H = ±3%* J = ±5% K = ±10% M = ±20% Z = +80 -20% P = +100 -0%	VOLTAGE- VDCW Two significant figures, followed by number of zeros: 101 = 100V	LEAD STYLE LN = Straight* LL = L Lead* LJ = J Lead* TL = L Tab TJ = J tab NN = Nickel* NP = Pd/Ag	THICKNESS OPTION Specify standoff dimension if less than max.	PACKING W = Waffle T = Tape & Reel*	No. Chips 1 to 5
				*COG only		*Not 1812		*Consult the sales office	

Capacitor Assemblies - ST & SM - C0G

Capacitor Assemblies - ST & SM - C0G

COG	Capacitance & Voltage Se	election				COG Capa	citance & Voltage Sel	ection	Note: Cap 2 significant figures follower	acitance values are shown as 3 digit code: d by the no. of zeros e.g. 183 = 18,000pF.
Size	1812	1825	2225	3640	Size	Size	4540	5550	6560	7565 Size
Rated Voltage	50V 100V 200V 500V	50V 100V 200V 500V	50V 100V 200V 500V	50V 100V 200V 500V	Rated Voltage	Rated Voltage 50V	100V 200V 500V	50V 100V 200V 500V	50V 100V 200V 500V 50	0V 100V 200V 500V Rated Voltage
Туре	ST SM ST SM ST SM ST SM	ST SM ST SM ST SM ST SM	ST SM ST SM ST SM ST SM	ST SM ST SM ST SM ST S	И Туре	Type ST S	M ST SM ST SM ST SM	ST SM ST SM ST SM ST SM	ST SM ST SM ST SM ST SM ST	SM ST SM ST SM ST SM Type
100 120 150	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ips required to	Capa	Capa	Number of chi			100 120 150
180	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	acrileve the ca	pacitance value	acitan alues	acitan	achieve the ca	dacitance value		180
270 330	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6	6				220 270 330
390 470	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	390 470 560	390 1 470 1 560 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	390 470 560
560 680 820	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	680 820	680 1 820 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	680
101 121	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101 121	101 1 121 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 101
151 181	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	151	151 1 181 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 151 1 1 1 1 1 1 1 1 181
221 271 331	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				221 271 331	221 1 271 1 331 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
391 471	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	391 471	391 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 391 1 1 1 1 1 1 1 1 471
561 681	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	561 681	471 1 561 1 681 1 821 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 561 1 1 1 1 1 1 1 681
821 102 122	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	821 102 122	821 1 102 1 122 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 821 1 1 1 1 1 1 1 1 102
152 182	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	152 182	152 1 152 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 152 1 1 1 1 1 1 1 1 182
222 272	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	222 272	222 1 272 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 222 1 1 1 1 1 1 1 272
332 392	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	332 392	332 1 392 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 332
472 562 682	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		472 562 682	472 1 562 1 682 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 4/2 1 1 1 1 1 1 1 1 562 1 1 1 1 1 1 1 1 682
822 103	1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	822 103	682 1 822 1 103 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 822 1 1 1 1 1 1 1 1 1 103
123 153	1 1 1 1 1 1 3 1 1 1 1 1 1 3	1 1 1 1 1 1 2 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	123 153	123 1 153 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 1 123 1 1 1 1 1 1 1 1 153
183 223 273	1 1 1 1 1 1 1 4 1 1 1 1 1 1 3 5 1 1 1 1 2 2 4	1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 3 1 1 1 1 1 1 2 3	1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 3		183 223 273	183 1 223 1 273 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 223
333 393	1 1 2 1 2 2 4 2 1 2 1 2 2 5	1 1 1 1 1 1 2 4 1 1 1 1 1 1 3 5	1 1 1 1 1 1 2 3 1 1 1 1 1 1 2 4	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2	333 393	333 1 393 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 333 1 1 1 1 1 1 1 1 393
473 563	2 2 2 2 2 3 2 2 2 3 2 2 2 3 3 3 3 3 3 3	1 1 1 1 1 1 3 1 1 1 1 2 2 4	1 1 1 1 1 1 3 4 1 1 1 1 1 1 3 5	1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2	473 563	473 1 563 1	1 1 1 1 1 1 2 1 1 1 1 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	1 1	1 1 1 1 1 1 1 1 473 1 1 1 1 1 1 1 563
683 823 104	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 2 2 2 2 4 2 2 2 2 2 2 5 2 2 2 2 2 3	1 1 1 1 2 2 4 1 1 2 2 2 2 5 2 2 2 2 2 2	1 1 1 1 1 1 2 3 1 1 1 1 1 1 2 3 1 1 1 1 1 1 3 4	683 823 104	683 1 823 1 104 1	1 1 1 1 1 2 2 1 1 1 1 1 2 3 1 1 1 1 1 2 3	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 683 1 1 1 1 1 1 1 1 823
124	4 4 5 5	2 2 2 2 3 3 3 3 3 3 3 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 3 4 1 1 1 1 1 2 2 4 5	124 154	124 1	1 1 1 1 1 3 4 1 1 1 2 2 3 5	1 1 1 1 1 1 2 3 1 1 1 1 1 1 2 3 4	1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 3 1	1 1 1 1 1 1 2 124 1 1 1 1 1 1 1 2 154
184 224		3 3 3 4 4 4 4 4 4 5 5 5 	2 2 3 3 3 4	1 1 1 2 2 2 4 2 2 2 2 2 3 5	184 224	184 1 224 1	1 1 1 2 2 4 5 1 2 2 2 2 5	1 1 1 1 2 2 3 4 1 1 1 2 2 2 3 5	1 1 1 1 1 1 2 3 1 1 1 1 1 1 2 2 4 1	1 1 1 1 1 2 2 184 1 1 1 1 1 2 3 224
274 334		4 4 5 5 5 5	4 4 4 5 5	2 2 2 2 3 3 2 2 2 3 4	274 334	334 2	2 2 2 2 3 2 2 2 3 2 2 2 2 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 2 3 3 3 2	1 1 2 2 2 2 4 2 2 2 2 3 3 5	1 1 1 1 2 2 3 4 1 1 1 2 2 2 2 2 3 5 1	1 1 1 1 2 3 4 334
394 474 564			5 5	2 3 3 3 4 4 3 3 3 3 4 5 3 3 4 4 5	394 474 564	474 2	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 3 3 3 4 2 2 2 3 3 4 4 4 2 2 2 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4 4	1 1 2 2 2 2 1 2 2 2 2 3 3 1 2 2 2 2 3 3 1	1 1 1 2 2 3 4 394 1 2 2 2 2 4 5 474 1 2 1 2 1 4 564
684 824				4 4 4 4	824 824	684 3 4 824 4	4 4 5 4 5 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6	3 3 4 4 5 3 3 4 4 5	2 2 3 3 3 4 2 2 2 3 3 4 4 2	2 2 2 2 3 5 684 2 2 2 3 3 3 824
105 125				5 5	105 125	105 4 125 5	5 5	4 4 5 5	3 3 4 4 4 5 2 3 3 4 4 5 2	2 3 3 3 4 105 2 3 3 4 4 125
155 185 225					155 185 225	155 185 225		5	4 4 5 5 3 3 5 5 5 6 8 8 8 8 4	3 4 4 5 5 155 3 4 4 1 185 4 5 5 225
275					275	225			5	5 275



Capacitor Assemblies - ST & SM - X7R

Capacitor Assemblies - ST & SM - X7R

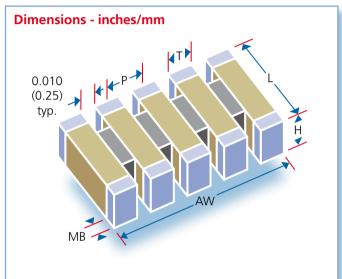
Capacitance 8	Voltage Selection				X7R Capacitance 8	& Voltage Selection		No 2 significant figures	lote: Capacitance values are shown as 3 digits of sollowed by the no. of zeros e.g. 183 = 18,0
1812	1825	2225	3640	Size	Size 454	40	5550	6560	7565
50V 100V	200V 500V 50V 100V 200V 50	00V 50V 100V 200V 500V	50V 100V 200V 500V	Vdc	Vdc 50V 100V	200V 500V 50V 100V	/ 200V 500V	50V 100V 200V 500	OV 50V 100V 200V 500V
ST SM ST SM S	T SM ST SM ST SM ST SM ST SM ST	SM ST SM ST SM ST SM ST SM	I ST SM ST SM ST SM ST SM			ST SM ST SM ST SM ST S	M ST SM ST SM	ST SM ST SM ST SM ST !	SM ST SM ST SM ST SM ST SM
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		102 122	102 1 1 1 1 122 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1
1 1 1 1 1 1 1 1	1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	152 182	152 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	222 272	222 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	332 392	222 1 1 1 1 1 1 2 272 1 1 1 1 1 1 332 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	472	472 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	562 682 822	562 1 1 1 1 682 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1	1	1 1	1 1	103	682 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
1 1 1 1	1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	123 153	123 1 1 1 1 153 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	183 223	183 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
1 1 1 1		1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	273	223 1 1 1 1 1 1 2 273 1 1 1 1 1 1 333 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	333 393	393 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		473 563	563 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1	1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	683 823	683 1 1 1 1 823 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1	1 1 1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	104 124	104 1 1 1 1 124 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
1 1 1 1	1 1 2 3 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	154 184	154 1 1 1 1 184 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1	1	2 1 1 1 1 1 1 1 2	1 1 1 1 1 1 1	224	224 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1	1	3 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 2		274 334	334 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1	1	4 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	394 474	224 1 1 1 1 1 1 2 1 2 2 4 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
1 1 1 1 1 1	2 2 1 1 1 1 1 1 3 2 4	5 1 1 1 1 1 1 2 4	1 1 1 1 1 1 2 2	564 684	564 1 1 1 1	1 1 1 2 1 1 1	1 1 1 1 1 1 1 1 2	1 1 1 1 1 1 1	
2 2 2 2 2	2 3 1 1 1 1 1 2 4	1 1 1 1 1 3 5	1 1 1 1 1 1 2 3	824 105	684 1 1 1 824 1 1 1 105 1 1 1	1 1 2 2 1 1 1	1 1 1 2 2	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
2 2 2 2 3	1 1 1 2 2 3	1 1 1 1 2 2 4	1 1 1 1 1 3 3	125	125 1 1 1 1	1 1 2 3 1 1 1	1 1 1 2 2	1 1 1 1 1 2	2 1 1 1 1 1 1 2
3 3 3 3	4 2 2 2 2 3 4	1 2 2 2 2 3	1 1 1 1 1 1 3 4	155 185	155 1 1 1 1 185 1 1 1 1	1 1 3 4 1 1 1	1 1 1 2 3 1 1 1 3 3	1 1 1 1 1 2	3 1 1 1 1 1 1 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 4 4 1 4 4 4 5	2 2 2 3 3 4 5 2 3 3 4 5 	2 2 2 2 3 4	1 1 1 1 2 2 5 1 1 1 2 2 2	225 275	225 1 1 1 1 1 2 275 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 4 5 1 1 1 2 2 5 1 1 1	1 1 1 3 4 1 1 2 4 5	1 1 1 1 1 2 1 1 1 1 1 3	3 1 1 1 1 1 2 3 4 1 1 1 1 1 1 3 3
5 5 5 5	3 3 3 4 4 5	2 2 3 3 3 4 S S S S S S S S S S S S S S S S	1 1 2 2 3 3 1 1 1 2 2 3 3 3 1 1 1 1 1 2 1 3 3 3 1 1 1 1	335 395	335 1 1 1 2 395 1 1 2 2	2 2 2 3 1 1 1 1 1 1	1 2 2 5 2 2 2	1 1 1 1 1 3 1 1 1 1 1 4	4 1 1 1 1 1 3 4 5 1 1 1 1 1 3 4
	4 4 4 5	3 3 4 4 5	2 2 2 2 3 3	475 565	475 1 1 2 2 565 2 2 2 2	3 3 1 1 2	2 2 2	1 1 1 1 2 2 5	1 1 1 1 1 2 4 5
	5	4 4 5 5	2 2 3 3 4 5	685 825	685 2 2 2 3	4 4 1 1 2	2 3 3	1 1 2 2 2 2	1 1 1 2 2 2
			3 3 4 4	106	685 2 2 2 3 825 2 2 3 3 106 2 3 3 4 126 3 3 4 5	5 2 2 3	3 4 4	1 1 2 2 3 3	1 1 2 2 2 3
			3 3 4 5 4 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	126 156	156 3 4 5	2 2 3 2 3 2 3 4	4 4 5 3 4 5 4 5 4 5 5 6 6 6 6	1 2 2 3 3 2 2 3 3 4 4	1 1 2 2 3 3 3 2 2 2 3 3 4
			5	186 226	186 4 4 5 226 4 5	3 3 5	5	2 2 3 4 4 5 2 2 4 4 5	2 2 3 3 4 4 2 2 2 3 4 5 2 2 3 3 4 5 9 9
				276	226 4 5 276 5 5 C C C C C C C C C C C C C C C C C	4 5		3 3 5 5 3 3 3 5 5 5 6 6 6 6 6 6 6 6 6 6	2 3 4 4 5
				90.	e e e e e e e e e e e e e e e e e e e	5		4 4	3 3 5
		Number of c	hips required to	acitanc	acitar	Number of chips required to		5	4 4 4
		achieve the c	apacitance value	Capaci	Vapa	achieve the capacitance valu	е		5

Capacitor Assemblies - 'Cap-Rack' Arrays

The Cap-Rack (US Patent 6,058,004) is an assembly of individual chip capacitors, bonded with high temperature epoxy. A Cap-Rack can be made up of a pair, to as many as eight same size chips - 0603, 0805, 1005, 1206, 1210, 1808, 1812, 1825, 2221 and 2225 - into one single component providing extended freedom for PCB space utilization. Footprint dimensions can also vary to further optimize board space usage. The patented design allows the chips to behave as individual components, not as a single large ceramic mass, and therefore reduces harmful thermal stress during assembly. Typical applications are in Multiline designs, Mobile phones, Automotive, Computers, Network Devices and Medical products.

Electrical advantages include reduction in "cross talk", to insignificant levels, by elimination of capacitance coupling between adjacent capacitors; the ability to combine resistors and inductors within the Cap-Rack, as well as mixing and matching capacitance values and dielectrics.

Mechanical advantages include reduced board area; easier to handle; reduced placement cost; reduces component stress and decreased cycle time. Cap-Rack can also be used with traditional pick and place equipment.


Consult the sales office for High Reliability versions and custom designs, particularly for high voltage applications.

• For dielectric characteristics see page 15.

How to Order - 'Cap-Rack' Arrays

- For dimensions of individual chips see page 12.
- P & AW dimensions are dependant on the chips utilized in the array.
- Cap Arrays require drawings to specify length and width of array and chip size used. Please contact the sales office.

Size	0603	0805	1005	1206	1210	1808	1812	1825	2221	2225
Max number of Caps	6	6	6	6	6	6	8	8	8	8

For capacitance values and voltage offerings for the case sizes shown above please refer to the appropriate dielectric (COG, X7R, Y5V), High Voltage or High Reliability catalog pages.

CR	1206	N	562	K	101	N	Н	Т	- 4
STYLE	SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	VOLTAGE VDCW	TERMINATION	HI-REL OPTION	PACKING	No. of
Cap- Rack	Size of individual chips that make up the array	N = C0G B = X7R Y = Y5V	Value in Picofarads. Two significant figures, followed by number of zeros: 562 = 5600pF	B = 0.10pF* C = 0.25pF* D = 0.50pF* F = ± 1.0%* G = ± 2.0%* H = ± 3.0%* J = ± 5% K = ± 10% M = ± 20% Z = +80% -20%	Two significant figures, followed by number of zeros: 101 = 100V	N = Nickel Barrier (100% tin) P = Palladium Silver Y = Nickel Barrier (90% tin/ 10% lead)	Ref: MIL- PRF-55681 & MIL-PRF-123	T = Tape & Reel W = Waffle Pack	chips
				P = +100% -0%					

*COG only

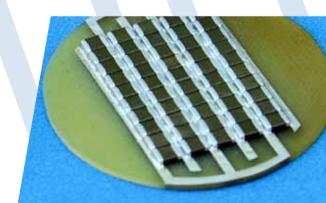
Your Premier Source for Specialty Products

Novacap is recognized as a leading supplier of specialty multilayer ceramic capacitors, differentiated by offering a wide range of high-voltage, high-reliability, high-temperature and high-energy components for specialized applications. Application specific custom chips and modules are available, operating from 1.5V to >20KV and sized from 0201 to >7560 throughout

a range of material options. Modular units in series/ parallel arrangements are offered.

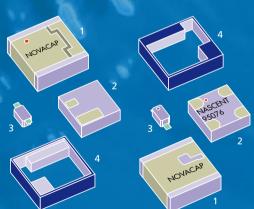
Novacap Specialty
Components takes it one step further. Our catalog is only the starting point.
Our unique dielectric systems coupled with a "Can Do" attitude and a multi-disciplined engineering staff can create and manufacture capacitors and modules impossible to find off the shelf.
Have an unusual package size? We can

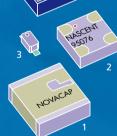
do that. Have a non-standard capacitance/voltage requirement? We can do that. Need to take to the extremes of temperature and shock/vibration? We can do that too!


Novacap excels at application specific ceramic capacitor solutions for unique applications. We possess a full machine shop that affords the customer quick development times and lower NRE charges. We have extensive tooling and screens for a wide variety of sizes other than EIA and what is listed in this catalog. Novacap's R&D and Engineering Departments have extensive industry experience to provide a solution for your application. Please consult the factory with your specific requirements.

Capacitive Discharge Unit (CDU)

- Military/Aerospace
- Detonation for bombs, ordnance, rockets, weapons
- Down hole oil wells
- Perforation
- Exploration


The integration of a high energy discharge capacitor, a multilayer ferrite transformer and a diode make up the CDU for Pulsed Power and Pulsed energy applications.


In fire sets, the high energy discharge capacitor is charged by a transformer. The most efficient transformer in terms of charging, small size and the ability to withstand hard target/deep penetration shock is the multilayer ferrite. By combining these components with a charge diode, making a monolithic block, integrating a printed on bleed resistor and cabling for circuit connection, a compact hard target/deep penetration module is produced.

Application for military and commercial applications exist for this technology replacing individual components which take up space and may not be the ideal choice for the application.

Bottom view

Your Premier Source for Specialty Products

Specialty Products

Fused Energy Modules

- Military/Aerospace
- Oil well logging (acoustic, magnetic resonance, neutron)
- DC to AC inverters
- Rocket motors
- Lasers
- High energy delivery modules

Reliability means never fail. The problems associated with the "short" failure mode of multilayer construction ceramic capacitors and their use in parallel arrangements has been overcome with unique novel fusing to render the operation "fail open" and not "fail short" as has been the nature of

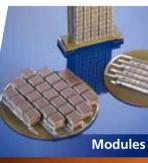
High energy modules require high values of capacitance in the multiple microfarad range. Since most of these applications require high voltage to achieve the energy levels necessary for application, many capacitors are required to be arranged in a parallel network. If during application one of these capacitors should fail, the mode of failure has been short and the unit fails to continue operation.

With unique individual capacitor fusing designed to withstand the normal discharge current of operation but to open in the case of a capacitor failure, the capacitor module continues to function. By designing in sufficient capacitance determined by the MTBF, the module has excess capacitance that allows for the failure rate and operation continues for the life of the application.

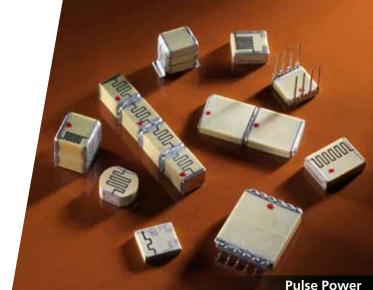
Delivered Energy

(Pulsed Power/Pulsed Energy)

- Military/Aerospace
- Detonation for bombs, ord-nance, rockets, weapons
- Down-hole oil wells
- Perforation
- Exploration


Designed with proprietary dielectric compositions this series of capacitors serve the military and commercial markets by delivering energy to exploding foil initiators, bridge wire, and other electronic detonators for weaponry and missile ignition. Operating over the temperature range of -55 to +200°C these products support military applications and oil field down-hole applications where the fast release of high energy levels are necessary for detonation or ignition.

Typical voltage ranges are from 900 VDC to 1800 VDC with some applications approaching 10,000 VDC. Most EFI and LEEFI load resistances are from .025 ohms to .250 ohms with occasional values down to .005 ohms

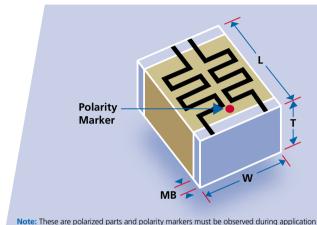

Designed for hard target and deep penetration, the monolithic construction and subsequent assembly that may be required makes this product ideal for weaponry, missiles and the vibration associated with oil field application.

57

Phone: +1.661.295.5920 | www.novacap.com Phone: +1.661.295.5920 | www.novacap.com

Fire set

Pulsed Power Capacitors


- In sizes 3530, 3640, 5440, 7565
- Exceptional discharge energy at elevated voltages

These devices are manufactured using a unique dielectric formulation which has a positive voltage coefficient and a high dielectric constant. These properties can provide over 7 joules/cc of discharge energy depending on part size, capacitance value and voltage applied, far surpassing conventional X7R or Temperature Compensating Dielectrics, permitting discharge solutions in greatly reduced component footprint and volume.

These devices require a high electric field for maximum energy storage and pulse delivery. Voltage ratings for these components are thus between 500Vdc and 2800Vdc typically, depending on application. Individual chip capacitors can also be assembled into parallel, series or series parallel arrangements for higher voltage and energy requirements. Multiple units can be used in series, parallel or series-parallel arrangements for increased delivered energy. 500 Megohm and 1 Gigohm safety bleed resistors are standard, but other values are available.

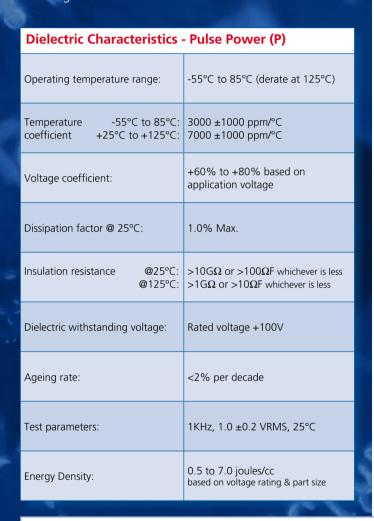
Additional case sizes, custom designed sizes, and assemblies are also available. Please consult the sales office to best determine part size needed to meet your requirements.

Dimensions - inches/mm

Size	3530	3640	5440	7565
Length L	0.350/8.89	0.360/9.14	0.540/13.70	0.750/19.10
	±0.018/0.46	±0.018/0.46	±0.025/0.64	±0.038/0.97
Width W	0.300/7.62	0.400/10.20	0.400/10.20	0.650/16.50
	±0.015/0.381	±0.020/0.51	±0.025/0.64	±0.033/0.84
Tmax inches - mm:	Tmax inches - mm: 0.250/6.35		0.250/6.35	0.300/7.62

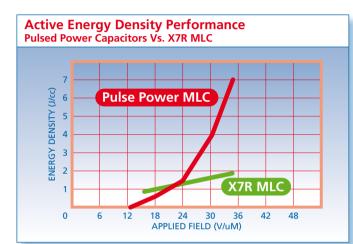
Pulsed Power - Capacitance and Voltage Selection

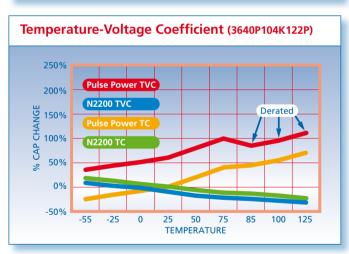
Size	3530	3640	5440	7565
800V	114	154	194	584
1kV	104	144	184	544
1.2kV	953	134	174	514
1.4kV	903	124	154	484
1.6kV	553	703	903	294
2kV	473	553	703	234
2.5kV	403	453	603	184
3kV	203	253	333	114


Note: 1) Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 473 = 47,000pF

2) Capacitance values at 25°C, 1vrms & 1kHz. Additional case sizes & voltages available. Listed capacitance values and performance characteristics are for reference only.

Specialty Products

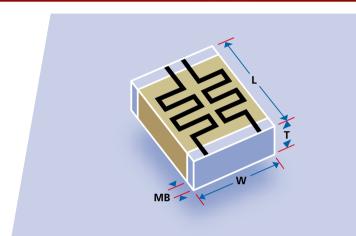

Pulsed Power Applications


- Detonation circuitry
- Oil field exploration circuitry Photo flash
- Laser
- Power interruption
- Ignition circuits
- Power storage modules
- HID Ignition

59

How to	How to Order - Pulsed Power Capacitors										
RC	3606	Р	803	K	122	Р	Х	Т			
STYLE	SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	VOLTAGE VDCW	TERMINATION	THICKNESS OPTION	PACKING			
RC = Bleed Resistor (optional)	See chart	P = Pulsed Power	Value in Picofarads. Two significant figures, followed by number of zeros: 803 = 80,000pF	K = ± 10% M = ± 20% P = +100% -0%	Two significant figures, followed by number of zeros: 122 = 1200V	K = Palladium Silver for Lead Free Solder P = Palladium Silver	X = Non-standard thickness. Specify in Mils. if non- standard is required. Standard items are any thickness to maximum shown in charts.	T = Reeled			

Detonator & Pulse Energy


- In sizes 1825, 2225, 3040, 3640, 6560
- Designed for oil field exploration and perforation

These high temperature, high energy, capacitors are manufactured with a dielectric formulation designed for reliable operation under single or multiple pulse firing applications. Energy density exceeds that of conventional Class 1 materials and offers excellent short duration pulse delivery at temperatures to 200°C. Discharge pulse width which is typically less than 100 nanoseconds will vary with load conditions which are influenced by inductive and resistive load components.

All parts are 100% tested to Novacap High Reliability Pulse Screening tests and are evaluated at temperature extremes up to 200°C consistent with munitions and oil field exploration/seismic detonation conditions.

As an added safety feature, these pulse discharge capacitors can be supplied with integral bleed resistors at various resistance values. With exceptionally low ESR and low signal distortion, additional applications at high temperature include power supply filtering, energy storage and coupling/decoupling. When operated at temperatures less than 200°C, higher capacitance values are available.

Dimensions - inches/mm

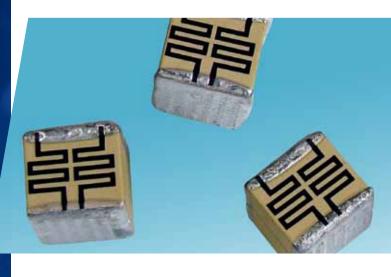
Size	1825	2225	3040	3640	6560
Length L	0.180/4.57 ±0.012/0.31	0.220/5.59 ±0.015/0.38	0.300/7.62 ±0.015/0.38	0.360/9.14 ±0.018/0.46	0.750/19.10 ±0.038/0.97
Width W	0.250/6.35 ±0.015/0.38	0.250/6.35 ±0.015/0.38	0.400/10.20 ±0.015/0.38	0.400/10.20 ±0.020/0.51	0.650/16.50 ±0.033/0.84
Tmax inches - mm:	0.150/3.81	0.150/3.81	0.250/6.35	0.200/5.08	0.300/7.62

Pulsed Power - Capacitance and Voltage Selection

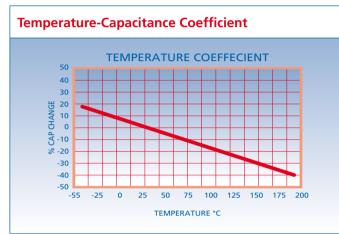
Size	1825	2225	3040	3640	6560
1kV	473	683	174	204	594
1.5kV	223	393	124	144	404

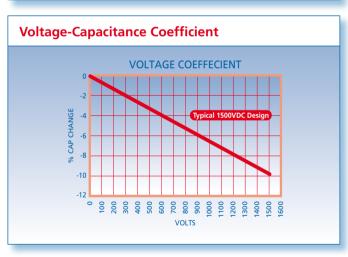
Note: 1) Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 473 = 47,000pF

2) Capacitance values at 25°C, 1vrms & 1kHz. Additional case sizes & voltages available. Listed capacitance values and performance characteristics are for reference only.


Specialty Products

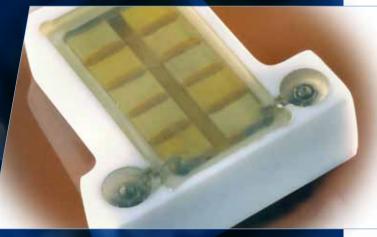
Detonator & Pulse Energy


Other sizes, voltages and capacitance ratings are available in single, series and series/parallel arrangement for custom applications.


500 Megohm safety bleed resistor are standard but other values are available.

Please consult the sales office to best determine part size needed to meet your application requirements.

Dielectric Characteristics - Pulse Energy (R) Operating temperature range: -55°C to 200°C Temperature coefficient: -2200 ±500 ppm/°C Dissipation factor @ 25°C: 0.1% Max. Insulation resistance @25°C: @200°C: >100GΩ or >1000ΩF whichever is less >1GΩ or >10ΩF whichever is less Dielectric withstanding voltage: 120% Ageing rate: 0% per decade Test parameters: 1KHz, 1.0 ±0.2 VRMS, 25°C



61

How to C	How to Order - Detonator & Pulse Energy											
RC	3640	R	124	K	102	P	Х	T				
STYLE RC = Bleed Resistor (optional)	SIZE See chart	DIELECTRIC R = R2D	CAPACITANCE Value in Picofarads. Two significant figures, followed by number of zeros: 124 = 120,000pF	TOLERANCE $J = \pm 5.0\%$ $K = \pm 10\%$ $M = \pm 20\%$ Z = +80-20% P = +100-0%	VOLTAGE VDCW Two significant figures, followed by number of zeros: 102 = 1000V	TERMINATION K = Palladium Silver for Lead Free Solder P = Palladium Silver	THICKNESS Size 1825 & 2225 require an X in the part number.	PACKING T = Reeled				

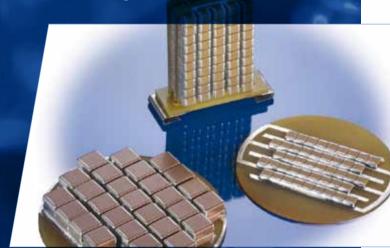
Custom Designs

High Voltage Encapsulated Assemblies

Series-parallel assemblies encapsulated for harsh environments.

Specialty Feed Thru Capacitors

Feed Thru/High Current units for pacemaker/defibrillator applications. These units provide signal conduits through openings while suppressing EMI and RFI interference. Manufactured to customer SCD. (Patent numbers 5,825,608 & 6,058,004)

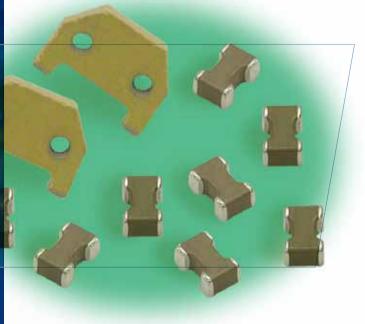


Vertical Mount Capacitor

A vertical surface mount of a single large capacitor using specially designed and developed leads to allow for board space savings.

Specialty Products

Custom Designs



High Energy Modules

Specifically designed to offer high capacitance value in modular form for single component installation.

The Free Form capacitor allows any size geometry and shape for utilization in custom fit applications.

Vertical Capacitor Assemblies

Novacap is capable of stacking capacitors on the side for applications of limited height.

Multilayer Ceramics for aerospace, automotive, medical, detonation, military, power conversion, tele/Datacom, oil/gas/geothermal exploration and harvesting

BSC Filters Limited

Dover House, 10-11 Sterling Park, Amy Johnson Way, Clifton Moor, York, YO30 4WU UK

> Phone: +44 1904 438438 Fax: +44 1904 438123 Email: sales@bscfilters.com

Dielectric Laboratories, Inc

2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 Email: sales@dilabs.com

Dow-Key Microwave

4822 McGrath Street, Ventura, CA 93003 USA

Phone: +1 805 650 0260 Fax: +1 805 650 1734 Email: askdk@dowkey.com

K&L Microwave

2250 Northwood Drive, Salisbury, MD 21801 USA

Phone: +1 410 749 2424 Fax: +1 443 260 2268 Email: sales@klmicrowave.com

Novacap

25111 Anza Drive, Valencia, CA 91355 USA

Phone: +1 661 295 5920 Fax: +1 661 295 5928 Email: info@novacap.com

Pole/Zero Corporation

5558 Union Centre Drive, West Chester, OH 45069 USA

Phone: +1 513 870 9060 Fax: +1 513 870 9064 Email: support@polezero.com

Syfer Technology Limited

Old Stoke Road, Arminghall, Norwich, NR14 8SQ UK

Phone: +44 1603 723300 Fax: +44 1603 723301 Email: sales@syfer.co.uk

Voltronics Corporation

2250 Northwood Drive, Salisbury, MD 21801 USA

Phone: +1 410 749 2424 Fax: +1 443 260 2263 Email: info@voltronicscorp.com

CERAMIC & MICROWAVE PRODUCTS

Electronic Components & Microwave Solutions

www.dovercmp.com

Ceramic & Microwave Products (CMP) designs, manufactures and sells special electronic components and systems, including high-performance filters, switches, capacitors and EMI and cosite signal interference solutions. Our products are used in military, space, telecom infrastructure, medical and industrial applications where function and reliability are crucial.