m EE!H‘II’.IS

1052 Elwell Court, Palo Alto, CA 94303 Tel: 800.683.5943 www.zfmicro.com

Booting User Software from Flash

Often, HW/SW developers design solutions using a single Flash device as the source of the
BIOS, OS and/or application. This document focuses on booting Linux from a single Flash chip
on the ZFx86 Integrated Development System (IDS). Apply this theory to booting other operating
systems such as WindRiver’s VxWorks[l or other user-written special application programs.

This BIOS-independent approach utilizes ZFx86 specific features built into the latest ZFx86
Phoenix BIOS. Download the latest Phoenix BIOS from the ZF Micro Devices website:
http:/lwww.zfmicro.com

Using Option-ROMs

ZFx86’s Flash-software booting approach relies on the option-ROM scan system, a feature
found in all AT-compatible PCs. The common ISA video card BIOS is considered an
option-ROM; although, it is a special case which gets executed in the very early stage of the
BIOS Power On Self Test (POST) sequence. Other option-ROM examples are: ROM-BASIC
used on early ATs, and all firmware on PCI or ISA extension boards (for example, network
interface controllers, or SCSI controllers).

During the POST sequence, the BIOS performs a so-called ROM-scan sequence:

* The BIOS looks at the beginning of every 2kbyte block in the address region C8000h
through FOOOOh to find a “55 AA” signature.

* When it finds the “55 AA” signature, the next byte determines the option-ROM size in
512-byte increments.

» For detecting corruption, the sum of all option-ROM bytes must equal 100h. Usually
achieved by setting the last byte to: 100h minus the sum of all other option-ROM bytes.

* When the BIOS validates the option-ROM is correct, it calls the routine starting at
offset 03h.

The option-ROM routine completes various tasks; typically, it initializes the hardware to some
known state and hooks some interrupt vectors used later by other OS services or user programs.
ZFx86 uses the option-ROM code to boot Linux from Flash. We call this routine the Linux
Loader (LL).

This process works for all possible HW configurations where the option-ROM and the BIOS may
reside in the same device or in different chips on the motherboard. You must correctly set or
route the ZFx86’s Chip Select signals and the custom BIOS settings to the chip region where the
option-ROM resides, and address the option-ROM during the POST sequence.

See the ZF Micro Device’s website for compressed LinuxLoaderOptionROM.zip and
VxWorksOptionROM.zip files.

P/N 9150-0012-00 Rev B 1 © ZF Micro Devices, Inc

http://www.zfmicro.com

Booting Initalization Sequence E

Booting Initalization Sequence

The following identifies the startup sequence the loader completes:

Initialize the CPU and cache
Initialize Lambda North Brigde
Initialize the South Bridge
Program the SuperlO
Size and initialize the system memory
Copy the loader to shadow RAM
Set up the stack and interrupt vectors
Initialize the Serial Port (9600 baud, 8 bit, no parity, handshake set to none)
Perform PCI bus scan and allocate resources for the PCI devices
Set up interrupt controllers and system timer chip
Initialize system Real Time Clock
Set up Video BIOS if present (ISA bus card given priority over PCI)
Output the amount of memory detected in system and the PCI device list
Open Flash window with following parameters:
Start address in Flash = 1B0000h
System Base Address = DO000Oh
Size = 2000h
Perform Option Rom scan from DO000h to EFFFFh

Execute Option Rom image if found, otherwise bring the system to a halt.

The Linux Loader Operation

The Linux Loader (LL) copies the Linux kernel from a Flash address to a RAM address that
matches the address used when Linux starts from the Hard Disk.

Also, depending on the default compiled options, the kernel identifies whether to mount its root
file system from a RAM disk or from a hard disk partition. Initally, the Linux Loader stores the
RAM disk root file system in Flash as a compressed “initrd” image (initialize RAM-disk) and
copies it to the end of the available RAM. The initrd image begins with a 4-byte header value that
indicates how many bytes to copy from Flash-to-RAM.

Download the “Booting Linux from Flash” Application Note (P/N 9150-0017-00) for detailed
instructions on using the Linux Loader, the ZFlash Linux Loader.zip file containing a sample initrd
image and a Linux File System. See the ZF Micro Devices website:

http:/lwww.zfmicro.com.

P/N 9150-0012-00 Rev B 2

http://www.zfmicro.com

The Linux Loader Operation E

The following procedure describes the internal working of the Linux Loader. Use these same
concepts to launch other operating systems.

1. Invoke the Linux Loader using the special option-ROM scan routine, which gains control
just before normal boot process and scans the memory window mem_csO0 settings
defined in PhoenixBIOS Setup Utility > Advanced > Advanced Chipset Control >
ISA Memory Chip Select Setup menu. See Figure 1.

Lian ce

ISA Memory Chip Select Setup Item Specific Help

Mermory Window — mem_csH
L EIIEE?]
Window Base: L -

Memory Window — mem_csl

Enter the walue for the
MEMOCY Window size
Enter the most
sianificant 2 HEX
digits of this number.

indow Size: L Hh 1 See the Maché
Window Base: L &hl Document at ion.
lindow Page: [#©hl

Window data width:s [lé-bits]

Mermory Window — mem_cs2 HEEEH = window disabled
Window Size: C Bh] BEEH =
Window Base: L dhl HERH = 12K, etc.

Figure 1. ISA Memory Chip Select Setup Menu

Use the memory window settings to map a specific region from Flash memory to the
desired address below the 1Mb boundary (by default, the chip select setting maps
part of the BIOS from the end of 2Mb Flash device to address EO0QQOh).

Set the mem_cs0 to any needed value, because at the time point when those settings
are required, the BIOS is already shadowed and nolonger executing from the Flash
device.

2. As afirst step after execution, the LL relocates itself to the main working memory address
9B00:0000. Because in a later processing step, the LL redefines the mem_cs0 memory
window, and if at this point the code is still working from the Flash device (that is, mapped
to a memory window below 1Mb), the original mem_cs0 value disappears from the initial
memory window and a total system crash occurs.

The LL initializes the Serial Port to allow for diagnostic messages.
Then, the LL waits 3 seconds to allow for user input.

+ Ifthe ESC key is pressed, the loader quits, and the BIOS’ special option-ROM scan
routine regains control.

+ If the option-ROM scan routine cannot find any other valid option-ROMs in the defined
search area (defined by mem_cs0 settings), a normal disk boot occurs.

5. After the 3 seconds elapses without the ESC key pressed, the loading sequence starts.

a. The kernel saves the original mem_cs0 Flash window settings and enlarges the Flash
window to 16MB using the ZFx86’s chip select programming features. This Flash

P/N 9150-0012-00 Rev B 3

The Linux Loader Operation E

8.

9.

window is visible for all available memory addresses which are not claimed by the
memory controller (that is, addresses reserved for RAM) or PCI devices due to the fact
that the ISA bus has a lower priority than all the other chip devices (for example,
memory controller or PCI controller).

b. Therefore, at the end of the DRAM memory map, the mapped Flash content is visable
over the entire upper memory space at every 16MByte boundary.

» Forinstance, the LL repeats the entire 16MByte Flash contents in the address range
10000000h through 10FFFFFFh (also at 11000000h through 11FFFFFFh,
12000000h through 12FFFFFFh, and so on).

Note:To access the entire upper memory space, enable the A20M# line.

Before the LL copies large amounts of data from the extended memory to the lower RAM,
it must account for the processor’s protected mode operation.

a. First the LL initializes the Global Descriptor Table (GDT) so that the data segment size
increases from the normal 64KB to 4GB.

b. Then, it loads this GDT data.
c. Switchs the processor to protected mode.

d. Sets data segment DS and extra segment ES selectors with the previously defined
4GB data range GDT entries.

e. Then switchs the processor back to real mode again.

This allows you to access the entire 4GB memory space in real mode as long as the
DS and ES registers are not overwritten.

Once the LL access the full memory space, it checks for the Linux kernel’s signature at
Flash offset 202h (in our example, visible at memory address 10000202h).

+ If the signature is not found, the LL increments the search address with a 16MB value
and checks again for a signature.

+ If the kernel signature is not found after 10 checks, the LL restores the original memory
window settings, prints out the “Linux kernel setup signature not found” message and
returns.

Note:The LL searches the signature addresses at 10000202h,11000202h, 12000202h,
and so on,

The kernel header data structure contains bootstrap code, and kernel setup code. The LL
copies this code from the previous address (in our example, 10000000h) to 90000h in
low memory.

The LL reads the kernel’'s loading address from the header and then copies the kernel
itself to the correct loading address in RAM.

* In a normal sized kernel, it loads at address 10000h.

* In alarge sized kernel (made using “make bzlmage”), it loads at the high memory
address 100000h.

10. In order to load the initrd image to RAM, the LL requests the detected “top of memory”

P/N 9150-0012-00 Rev B 4

The Linux Loader Operation E

system address from the ZFx86 South Bridge. The Linux Loader requests that the initrd
image start at Flash offset 80000h.

a. Before the initrd gets copied, the LL checks for its presence by reading the initrd size
value from Flash offset 80000h (memory address 10080000h, 11080000h, and so on).

b. If the size value is 0 or OFFFFFFFFh, the LL skips copying the initrd; otherwise, it
copies the initrd image to the end of the detected RAM without the 4-byte length
header.

11. The LL writes the initrd size and start address to the kernel setup parameter block which
resides in memory location starting at 90200h. If initrd was not found, the LL zeros out
these values.

12. The LL now closes the previously created 16MB Flash window and restores the original
mem_cs0 window.

13. To boot the kernel normally, the LL updates the boot sector data area at 90000h with the
values needed to configure the kernel. For example, those values might be that there
are 4 setup sectors, that the root device is read-only, that the ram disk is 0, that the swap
size is 0, and so on, also that the system size, the video mode, and the root device name
are set, and that the stack is set up to the kernel setup code’s stack area.

* The root device name is based on the compiled-in root-device id value, where
100h=ram0, 301h=hda1, 302h=hda2, 303h=hda3, 304h=hda4, O=disabled.

 |f the root device id is set to 100h, the root device will be the one contained in
compressed form in our initrd image in Flash.

 |If root device id is set to 301h, then the loader mounts the root device from the first
hard disk partition or /dev/hda1.

14. The final action to start Linux is a Far Jump to the beginning of the kernel setup code.

The kernel boot messages begin appearing on the screen or COM-port, and the root
file system mounts from RAM-disk or the hard disk partition depending on the
compiled-in Root_Device variable.

15. The Linux login prompt displays.

P/N 9150-0012-00 Rev B 5

Linux Loader Flowchart

Linux Loader Flowchart

Figure 2 charts the Linux Loader’s logic flow.

G_inux Loader invoked by ROM—scar)

| Copies itself from Flash to 9800:0000h I

v

Initialize Serial Port, print message, and wait for 3 seconds for user input I

ESC Ye Return to ROM-scan
Pressed? routine

Timeout
Save previous mem_cs0 settings and resize window to 16MB I

over

v

Enable A20, switch to Protected Mode, set DS & ES selectors
for 4GB address range, and switch back to Real Mode

Verify kernel signature at Flash offset 202h (visable at every 16MB
boundary above physical RAM addresses or PCl memory addresses)

signature No Increment search 10 checks
found? address by 16MB passed?
Yes

'Yes
Read kernel setup code from header data structure, and copy code Print “Signature not
from previous location to low memery location 90000h found” message

) y

Read kernel loading address from header data structure, and copy the kernel I ‘ Restore original

to the correct RAM loading address (10000h normal kernel 100000 large kernel) mem_csQ value
+ /
- - Return to ROM-scan
| Read the “top of memory” system address from South Bridge registers I routine

\i
| Read the initrd size value from Flash offset 80000h .

|
Y

Yes Zero out initrd size and start
| parameters in kernel setup
parameter block

Is initrd
size 0 or
FFFFFFFFh?

| initrd size OK
Y

Save initrd size and start parameters in kernel setup parameter block I‘

v

Restore original mem_cs0, and update boot sector data area at 90000h with kernel I

configuration values, system size, video mode, root device name, and stack setup info.

y
C.inux launches. The kernel mounts the root File System from the)

Linux Boot
messages appear
on screen or at
COM port

initrd image or from hard disk, depending on Root_Device variable

Figure 2. The Linux Loader Flow Chart

P/N 9150-0012-00 Rev B

The Flash layout E

The Flash layout

The Flash layout depends on the actual system hardware set up and the amout of available
Flash memory. The following items are required:

+ System BIOS or special initialization code (ZFx86 Phoenix BIOS) which supports
option-ROMs

* The Linux Loader image converted to option-ROM format with the needed headers and
checksums included

* The Linux kernel — exactly the same file created as the end product of the kernel
compilation

» Optional initrd image (a compressed root File System image that expands as a
RAM-disk). You may omit this otional image if the root File System resides on an
alternate device (for example, IDE, Compact Flash, Disk on Chip, and so on) and mounts
from the alternate device.

For example, your design may contain a large Flash chip such as the 16MByte Intel E28F 128
StrataFlash. In this case, organize the Flash memory layout as follows:

Start offset Item

FCO0000 Phoenix BIOS 256K

FB8000 Linux Loader

080000 initrd image beginning with 4-byte header, up to address FB7FFF
000000 Linux Kernel, up to address 07FFFFh

Map the Linux Loader to D8000 using the BIOS’ internal memory chip select mapping
mechanism. The ZFx86 Phoenix BIOS allows the creation of up to four memory windows using
chip selects mem_cs0 through mem_cs3. Although, the BIOS uses the mem_csO0 to start from
Flash after reset; the BIOS is then shadowed into RAM thereby allowing us to reprogram
mem_cs0 for other memory windows. During the special option-ROM scan, the Linux Loader
maps to the correct location in RAM, locates it, and executes.

In order to map the Linux Loader to mem_csO0, select the desired place in RAM using the
Phoenix BIOS Setup Utility > Advanced > Advanced chipset Control > ISA Memory Chip Select
Setup menu and set the following values:

Window Size: 1 — sets window size to 8kb
Window Base: D8 — sets window base to D8000h
Window Page: EEOQ — sets Flash page register value to

1000000h—D8000h+FB8000h = EE0000h
Window Data Width: 16 or 8 based upon the data path width of the device used in your
design.

P/N 9150-0012-00 Rev B 7

Using the Z-tag Manager E

Using the Z-tag Manager

Figure 3 shows the Z-tag Manager Contents window.

Z-tag Contents - 18 items

Id Name Wer CRC Date Time Eody len
0z Select Serial Device o001l 10zl Z0000s02 ZO0ZE 1

01 Strataflazh Programmey 0001 CE7A 20001011 1815 2438

FE Kernel Image at 000000 0001 0000 20000724 1614 4

FE Erase Sector =1 o001l 0000 Z00007z24 1614 4

FF Kernel Image o0l oooo 20000925 1335 240818
01 3trataflaszh Programmer 0001 CE7A 20001011 1515 3435

FE Initrd Image start 0001 28949 20000724 1&6Z26 4

FE Erase Zector =1 ool oooo 20000724 1614 4

FF toytestle initrd Q001 1F2F 20000527 1031 1736134

0l Ztrataflash Programmer 0001 CE7A 20001011 1815 3435
FE Livmax Loader at FE2000 0001 0000 20001121 1252 4
FE Erase S3ector =1 ool oooo 20000724 1ald 4
FF Limuax Loader as ROM ext 0001 Q000 20001201 1654 15326
01 Strataflazh Programmer 0001 CE7A 20001011 1815 2438

FE EIOZ =start FCOOO0OO o001l EgAC Z0001121 1252 4
FE Erase Sector =1 o0l 0000 zZo0007z24 leld 4
FF Phoenix A10 BIOS Image 0001 0000 20001122 1140 E6Z1l44
05 Stop Processing ool oooo 20001121 1252 0

Figure 3. Z-tag Manager’s Contents Window Defining Data To Be Flashed

For more detailed instructions, see “Booting Linux From Flash” (P/N 9150-0017-00) document
on the ZF Micro Device website: http://lwww.zfmicro.com

1. Use the Z-tag Manager configured for Pass Through mode to load the data.
2. Connect the parallel port extension cable to your development host computer.

3. Connect the Z-tag dongle (JP2 pins 2-3 jumpered for PassThrough mode) to the
extension cable and to your target board’s Z-tag connector.

Verify that Chip Select 0 is jumpered to your selected target Flash chip.

Press the Z-tag Manager’s Write-button and reset the target board to initiate the
download and Flash burning sequence.

The Z-tag Manager operation is documented in the Z-tag Manager manual and in other
reference documents from ZFMicro Devices.

6. To monitor the download progress, connect the serial cable from the target board’s
COM1 port to your development host computer’'s COM port. Set the COM port to the
following:

* Speed 9600 baud
» 8 bit, no parity
» Handshake set to none

P/N 9150-0012-00 Rev B

http://www.zfmicro.com

Conclusion E

Conclusion

Loading and launching Linux from Flash is not a complicated task if a Linux Loader binary is
contained in an option-ROM using a compatible format. You might need several images for
different purposes, for example, for mounting root file system from RAM disk, or for mounting the
root file system from /dev/hda1.

* Use the BIOS or other system initialization code to set up the hardware properly and
detect the amount of memory installed in your system.

+ The BIOS or system initialization code then launchs the Linux Loader (or some other
operating system loader which you build using the same general principles) either during
the option-ROM scan or by a direct jump to it.

* In case of a complete Linux system, place both the kernel at offset Oh and the initrd
images at offset 80000h in the Flash.

* The initrd image must contain a 4 byte-long image-length header before the actual image
starts.

* For mounting the root file system from a hard disk, you only need the kernel in the Flash.
Compile the Linux Loader with correctly defined Root_Device id settings.

* Generally, you can modify the current Linux Loader code to match your HW design, and
the images may reside in completely different Flash offsets.

P/N 9150-0012-00 Rev B 9

Appendix A: The Linux Loader Source Code

Appendix A: The Linux Loader Source Code

; ORLL (Option-ROM Li nux Loader) v1.00
; Last nodified on 18.01.2001

. nodel tiny
. 486p

; Linux root device options:
100h=r anD, 301h=hdal, 302h=hda2, 303h=hda3, 304h=hda4, 0=di sabl ed

Root _Devi ceequ 301h

Seri al _Addrequ 03f 8h ;. 3F8h = COML, 2F8h = COw
Screen_Cut putequ 1 ;1 = Qutput nessages also to the screen
M5G MACRO t ext
nmov si,of fset text
call Qut put
ENDM
PCODE MACRO post code
nmov al , post code
out 80h, a
ENDM
ZFLVWB MACRO regi ster, val ue8
nmov al ,register
nmov dx, 218h
out dx, al
inc dx
nmov al , val ue8
out dx, al
ENDM
ZFLRB MNMACRO regi ster
nov al , register
nmov dx, 218h
out dx, al
i nc dx
in al , dx
ENDM
ZFLWDWMACRO regi ster, val ue32
nov al , register
nov dx, 218h
out dx, al
inc dx
i nc dx
nov eax, val ue32
out dx, eax
ENDM
ZFLRDWMACRO register
nov al , register
nov dx, 218h
out dx, al
i nc dx

P/N 9150-0012-00 Rev B

10

Appendix A: The Linux Loader Source Code

inc dx
in eax, dx
ENDM
. code
org 0
Start:
db 55h, Oaah ; Extension ROM signature,
db 3 ; and length in 512-byte pages
PCODE 070h
nov ax, cs
nmov ds, ax
jmp Ski p_Cdt Area

; G obal Descriptor Table

org 10h ; For proper alignnent
Gdt dd 0,0 ; 1st entry, not used
Gdt Pr ot dw Of f f f h, 0000h 7 2nd entry

db 0, 93h, 8fh, 0
CGdt Descdw $- Gdt ; QDT size
Cdt Basedd 0 ;. CGDT base address
Ski p_Gdt Ar ea:

; First we nove our code out of extension ROM space, SO we can open new

; 16Mo wi de nmenmory wi ndow for strataflash where we |ocate the kernel and

; initrd inmages. Since this overrides menory w ndow settings of our extension
; ROM we need to get out of here.

; Bootsector & linux kernel setup goes to 9000: 0000, |ength OAOOh bytes,

; linux kernel itself goes to 1000: 0000, nax |ength 08000h bytes,

; which | eaves safe location for us bel ow 1000: 0000 or above 9000: 0AQO,

; so | chose 9200: 0000. W don’t have to worry about this if we have big

; kernel which goes above 1M.

New_Segequ 9200h
nmov ax, New_Seg
nov es, ax
| ea si,Start
nov di, si
nov cx, of f set Loader_End- Start
cld
rep nmovsb
db Oeah ; Far junp to Start
dw of fset Loader_Start, New_Seg

Loader_Start:

PCODE 71h

; Initialize serial port

P/N 9150-0012-00 Rev B

Appendix A: The Linux Loader Source Code E

nmov dx, Seri al _Addr +3

nov al , 80h

out dx, al ;. Set DLAB

nov dx, Seri al _Addr

nmov ax, 12 ; 12 = 9600 bps

out dx, ax ; Baud rate divisor
nmov dx, Seri al _Addr +3

nmov al, 3 ;3 = 8N1

out dx, al ; Line node (8Nl)
nmov dx, Seri al _Addr +4

xor al , al

out dx, al ; Clear DIR & RTS
MSG T _Loader_Start ; Qutput | oader startup nessage

Here we wait 3 seconds for user input, if ESC key is pressed, |oader quits
with junmp to the original Int 19h vector

nmov ax, 40h
nov es, ax
nov ebx, es: [6¢ch]
add ebx, 55 : W wait 55 tiner ticks, ca 3 seconds
@
cnp ebx, es: [6¢ch]
il @
in al , 60h ; Check if ESC key has been pressed
cnp al,0
jz @
cnp al, 1
j ne @ ; No, go check again have 3 seconds passed yet
MG T_Cancel
;. Exit | oader
retf
@@
MSG T Start
PCODE 73h

Save current nenory w ndow settings

| ea edi, of fset MenW nl SA24

ZFLRB 5Bh ; ISA 24-bit address cal cul ation
st osb

ZFLRDW 26h ;. W ndow base

st osd

ZFLRDW 2Ah ;. W ndow si ze

st osd

ZFLRDW 2Eh ; W ndow page

st osd

Define 16M wi de nenory wi ndow for chip select 0

ZFLW\B 5Bh, 1 ; Set | SA 24-bit address cal cul ation

ZFLVDW 26h, 0 ; Set base address (actual ports 27h and 28h)
ZFLVWDW 2Ah, 1000000h- 1 ; Wndow size is 16MB (stratafl ash)

ZFLVWDW 2Eh, 0 ; Page address

P/N 9150-0012-00 Rev B

12

Appendix A: The Linux Loader Source Code

;. Enable A20 line

PCODE 74h
cli
in al , 92h
j mp$+2
j mp$+2
or al, 2 ;. Enabl e A20 bit
out 92h, al

: Initialize and | oad GOT

PCODE 75h

sub eax, eax

nov ax, cs

shl eax, 4

add eax, of fset Gdt

nmov cs: Gdt Base, eax

| gdt fword ptr cs: Gdt Desc

; Switch processor to protected node

mov eax, cr0

nmov ebx, eax

or ax, 1 : Set PE bit

nmov cr 0, eax ; Enabl e protected node
jmp $+2 : Flush instruction cache
nov ax, (Gt Prot - Gdt)

nmov ds, ax ; Define selectors for DS

; Switch processor back to real node

nov cr 0, ebx ; Clear PE bit, back to real node
jmp $+2 : Flush instruction cache

; Check for Linux kernel setup signature. If we cant find the signature in

; first try, we performa scan | oop on higher addresses just to be sure that

; the address space where we were | ooking was not clained by any ot her device
; With higher priority. This scanning technique is possible because of |SA bus
; being only 24 bits wide and its 16M address space gets repeated after every
; 16Mo bl ock through entire 4GB adress space. W start from 10000000h, thats

; above 256My, nmaxi num anpbunt of RAM that ZFx86 can be configured with.

PCODE 76h
nmov esi, 10000000h ; Start address
nmov cx, 10 ; Nunber of cycles
@@
add esi, 202h ; Start address + kernel setup signature offset
nov eax, [esi]
cnp eax, 053726448h ; Look for 'HdrS
je Si gFound
add esi, 01000000h ; Add 16Mb to the address and try again
| oop @
jmp NoSi gnat ure ; No signature found, skip the whole thing

P/N 9150-0012-00 Rev B

13

Appendix A: The Linux Loader Source Code E

; Now copy kerne

Si gFound:

sub
nov

PCODE

nov
add
add
sub
jnz

; Now copy kerne

PCODE

nov
add
nov
add
nov
sub
nov
nov
or
jnz
shl

nov
nov
add
add
sub
jnz

PCODE

setup and bootstrap code

esi, 202h
ebp, esi

77h

si, 1f 1h
ax, ax

al ,[esi]

a

ax, 9

bx, ax
esi, 1f 1h
edi , 90000h
CX, ax

eax, ds:[esi]
ds:[edi], eax
esi, 4

edi, 4
cXx, 4
@

i mge
78h
esi, ebp
esi, 211h
al, [esi]
esi, 3
edi, [esi]
esi, 214h
si, bx

ecx, 080000h
al , al

@

edi, 4
eax, [esi]
[edi], eax
esi, 4
edi, 4
ecx, 4

@

79h

EBP = kernel setup start address

Get setup sector size

Add boot strap sector

Mul tiply by 512 for size in bytes
Store value for kernel start address
Start address of the kernel setup code
Desti nation address

Kernel boot option
Kernel |oad offset in system nenory
Start address of the kernel inmage

Maxi mum kernel size to copy

Start address of kernel (10000h or 100000h)

Read top of system nenory address from south bridge
; This is specific to the ZFx86 BICS es

nov
nov
out

eax, 8000904ch

dx, Ocf 8h
dx, eax

PCl south-bridge top of system nenory register

P/N 9150-0012-00 Rev B

14

Appendix A: The Linux Loader Source Code E

nov dx, Ocf ch

in eax, dx

and al , Of Oh ; W have to clear lower 4 bits (SB speciality)
dec eax

; Check for initrd size/presence in flash rom
; and copy it to the top of system nenory

PCODE 7Ah

nmov edi , eax

nmov esi, ebp

add esi, 80000h ; Start address of the initrd inage in nenory

;W ndow

nmov ecx, [esi] ; CGet size of the initrd inage

cnp ecx, 0 ; Skipinitrd if size is zero, nmeans it’s
di sabl ed

jz Skiplnitrd

cnp ecx, -1 ; Also skip initrd if the menory is pobably

jz Skiplnitrd ; not initialized

PCODE 7Bh

add esi, 4 ; Skip first 4 bytes of image (initrd size)

neg ecx

add edi , ecx ; Calculate start address of the image in system
nenory

neg ecx

xor di, di

nmov ebx, edi ; Save start address of the inage
@@

nov eax, [esi]

nov [edi], eax

add esi, 4

add edi, 4

sub ecx, 4

jc @

jnz @
@@

nov esi, ebp

add esi, 80000h ; Start address of the initrd inage in

; menory w ndow

nov ecx, [esi] ; Get size of the initrd i mage

jmp @
Skiplnitrd:

PCODE 7Ch

sub ebx, ebx ; Set zeroes if initrd was not found in flash

sub ecx, ecx

; Wite start address and size of randisk image (initrd) to the kernel setup
; parameters bl ock

@@
PCODE 7Dh

P/N 9150-0012-00 Rev B 15

Appendix A: The Linux Loader Source Code

Z;

nmov ax, 9020h
nov ds, ax

nmov ds: [24], ebx
nov ds: [28], ecx

; Restore origina

ZFLV\B

ZFLVWDW
ZFLVWDW
ZFLVDW

5Bh, 0

; Setup paraneters

mv ax, 90
nmov ds, ax
nmov byt e
nov wor d
nov wor d
nov wor d
nov wor d
nmov wor d
nmov wor d

; Command |ine patch

nov
nov
; Root device nanme
cld
nov
nmov di , 08cclh
nov ax, ds
nov es, ax
nov ax, cs
nov ds, ax
@@
| odsb
st osb
or al , al
j ne @
nov ax, 9020h
nov ds, ax
nov

Everything is done,

PCCODE 7Eh
db Oeah
dw 0, 090

00h

ptr
ptr
ptr
ptr
ptr
ptr
ptr

2Eh, OFO0000h
2Ah, 10000h- 1
26h, OFO000h

ds:
ds:
ds:
ds:

ds

menory w ndow

[1f 1h], 4 :
[1f2h], 1 :
[1f 4h] , 8000h ;
[1f6h], 0 ;

:[1f8h],0 ;
ds:
ds:

[1f ah], Of 00h ;
[1f ch], Root _Devi ce

ds: [020h], 0a33fh
ds: [022h], 8cclh

si,of fset T_Root_ Device

; ES=9000h

. DS=CS

byte ptr ds:[16], 61h ;

now | ets junp into kernel

20h

Kernel setup segment

Start address of
Initrd i nage size

initrd i mage

Clear full 24-bit
Set page
W ndow si ze is 64k

Set base address

| SA addr essi ng

Boot sector data area

Setup sectors

Root flags (read only)
System si ze

Swap device

Ramdi sk

VGA screen node

Root file system device

Kernel setup segnent

Set | oader type and version

setup code

Far junmp into kernel setup code

P/N 9150-0012-00 Rev B

16

Appendix A: The Linux Loader Source Code

NoSi gnat ur e:

PCODE
M5G

7Fh
T_Si gNot Found

; Restore original nenory w ndow

| ea

| odsb
ZFLWB

| odsd
ZFLWDW
| odsd
ZFLWDW
| odsd
ZFLWDW
retf

; Qutput string fromCS:S

Cut put :
nov
@@
in
t est
jz
nov
inc
cnp
jne
ret
@
sub
out
I F Screen_Cut put
nov
i nt
ENDI F
jnp
MenW nl SA24db
MenW nBasedd
MenW nSi zedd
MemW nPagedd

si, of fset MemW nl SA24

5Bh, a
2Eh, eax
2Ah, eax

26h, eax

dx, Seri al _Addr +5

al , dx

al , 20h

@

al ,byte ptr cs:[si]
S

al,0

@

dx, 5
dx, al
EQ 1
ah, Oeh
10h

short Qut put

0
0
0
0

| F Root _Devi ce EQ 100h

T_Root _Devi cedb
ENDI F

"/dev/iranD ', 0

| F Root _Devi ce EQ 301h

T_Root _Devi cedb
ENDI F

"/dev/hdal ', 0

| F Root _Devi ce EQ 302h

T_Root _Devi cedb
ENDI F

"/dev/hda2 ', 0

l

’

’

Clear ful
W ndow page
W ndow si ze

W ndow base

ending with zero

| SA addressing bit

P/N 9150-0012-00 Rev B

17

Appendix A: The Linux Loader Source Code

| F Root _Devi ce EQ 303h

T Root Devicedb ’'/dev/hda3 ’,0
ENDI F

| F Root _Device EQ 304h

T_Root _Devicedb '/dev/hda4 ',0
ENDI F

| F Root _Device EQO

T Root _Devicedb 0

ENDI F
T_Loader_Startdb 13, 10, Opti on- ROM Li nux | oader 1.00, press ESC to cancel...’,0
T Start db "starting.’,13,10,10,0

T_Cancel db "cancel .’ , 13,10,0

T_Si gNot Founddb ' Li nux kernel setup signature not found.’,13,10,10,0

Loader _End:
end Start

P/N 9150-0012-00 Rev B

18

	Booting User Software from Flash
	Using Option-ROMs
	Booting Initalization Sequence
	The Linux Loader Operation
	Linux Loader Flowchart
	The Flash layout
	Using the Z-tag Manager
	Conclusion
	Appendix A: The Linux Loader Source Code

