
Manual Revision 1.4 IDS Quick Start Guide Page 1

ZFx86™

System-on-a-Chip

Integrated Development System

Quick Start Guide

November 27, 2001

Manual Revision 1.4 IDS Quick Start Guide Page 2

Legal Notice

THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN IS PROVIDED “AS-IS”
AND WITHOUT A WARRANTY OF ANY KIND. YOU, THE USER, ACCEPT FULL
RESPONSIBILITY FOR PROPER USE OF THE MATERIAL. ZF LINUX DEVICES, INC. MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THIS USER’S MANUAL OR THE
INFORMATION CONTAINED THERE-IN IS ERROR FREE OR THAT THE USE THEREOF
WILL NOT INFRINGE ANY PATENTS, COPYRIGHT OR TRADEMARKS OF THIRD PARTIES.
ZF MICRO DEVICES, INC. EXPLICITLY ASSUMES NO LIABILITY FOR ANY DAMAGES
WHATSOEVER RELATING TO ITS USE.

LIFE SUPPORT POLICY:

ZF MICRO DEVICES' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS
WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZF MICRO
DEVICES, INC.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical
implant into the body, or (b) support or sustain life, and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to
perform can be reasonably expected to cause the failure of the life support device or system, or
to affect its safety or effectiveness.

(c)2001 ZF Micro Devices, Inc. All rights reserved.

ZFx86, FailSafe FailSafe Boot ROM, Z-tag ZF-Logic, InternetSafe, OEMmodule SCC, ZF
SystemCard, ZF FlashDisk-SC, netDisplay, ZF 104Card, ZF SlotCard, and ZF Micro Devices
logo are trademarks of ZF Micro Devices, Inc. Other brands and product names are trademarks
of their respective owners.

Manual Revision 1.4 IDS Quick Start Guide Page 3

Table of Contents

1. Overview... 7

1.1. Rear Panel Connections.. 8
1.2. Supplied Peripheral Cards... 8
1.3. Documents... 8

1.3.1. The ZFx86 Training Book ... 8
1.3.2. Annotated Eval I Schematic.. 9
1.3.3. Annotated Eval I Silk Screen .. 9
1.3.4. Design Orcad and Pads Files ... 9

2. Hardware Setup.. 11

2.1. Power and Cabling .. 11
2.2. Default Jumper Settings .. 11

2.2.1. Clocking .. 11
2.2.2. Clock Source for PCI Bus ... 12
2.2.3. Watchdog Timer Oscillator Source ... 13
2.2.4. JTAG Chain .. 13
2.2.5. CMOS Battery... 13
2.2.6. PCI Request/Grant #3 .. 14
2.2.7. JP6 - DMA or PCI Req/Grant.. 14
2.2.8. External Boot .. 14
2.2.9. USB Test Mode - disabled.. 14
2.2.10. Flash Chip Selection .. 14
2.2.11. System Clocking Tables ... 15

2.3. Jumper Settings Details ... 16
2.3.1. JP3 SYSCLK Source Jumper ... 16
2.3.2. S1Clock Multiplier DIP Switches... 16
2.3.3. CPU Speed... 17
2.3.4. PCI Clocking ... 17
2.3.5. JP1: 8254 PIT Clock (14MHz) .. 17
2.3.6. JP9 - Real Time Clock (32KHz).. 17
2.3.7. PCI Request/Grant Bootstrap 9 .. 18

3. Software, Documentation and Design Aids .. 21

3.1. Powering Up .. 21
3.2. System BIOS ... 21
3.3. Software on the Hard Drive ... 21
3.4. Software on the ZF CD .. 22

3.4.1. Z-Tag Manager Win 95/98.. 22
3.4.2. Acrobat Readers Win/Linux .. 22

3.5. Documentation on the ZF CD .. 22
3.6. Usage Tips... 23

3.6.1. Shutting Down Linux... 23
3.6.2. Using CD ROM Drive from DOS... 23

Table of Contents

Manual Revision 1.4 IDS Quick Start Guide Page 4

Table of Contents

3.6.3. Set the Boot Default to DOS... 23
3.6.4. VxWorks Setup ... 23
3.6.5. Using the Flash... 24

4. Demonstration Program.. 25

4.1. Dongle Flash Programmer... 25
4.1.1. Analysis: ZFx86 Power On ... 25
4.1.2. Dongle Types.. 26
4.1.3. Demo of the Flash Programmer ... 26
4.1.4. Build Command Set In the Z-tag Manager ... 27
4.1.5. Using the Command Sequence.. 31
4.1.6. Analysis: Source Code ... 34
4.1.7. Program Preparation Steps .. 34

4.2. VxWorks Shell Demo... 35
4.2.1. Running the Shell Demo... 46
4.2.2. Rebuilding the Shell Demo ... 47

4.3. VxWorks Menued Demo.. 47
4.3.1. Running the Menued Demo.. 48
4.3.2. Building Menued Demo Software ... 49
4.3.3. IDS Menu Demo Main Source File IDS Demo.C .. 53

Index... 63

Manual Revision 1.4 IDS Quick Start Guide Page 5

List of Figures

1. Overview .. 7
Figure 1-1 ZFx86 Integrated Development System ... 7
Figure 1-2 Rear Panel Connections .. 8
Figure 1-3 Video and Network Cards .. 8
Figure 1-4 Part of Annotated Schematic .. 9

2. Hardware Setup ... 11
Figure 2-5 JP3 SYSCLK Source .. 11
Figure 2-6 BootStrap Bits 16-17 .. 11
Figure 2-7 BootStrap Bits 18-20 .. 11
Figure 2-8 JP1 CLK14M Source .. 12
Figure 2-9 JP9 RTC 32KHz INPUT ... 12
Figure 2-10 JP4 PCICLK Source ... 12
Figure 2-11 BootStrap Bit 20 ... 12
Figure 2-12 JP2 Watchdog OSC ... 13
Figure 2-13 JP8 JTAG Chain ... 13
Figure 2-14 JP5 CMOS Battery ... 13
Figure 2-15 Bootstrap Bit 9 .. 14
Figure 2-16 JP6 - DMA or PCI Req/Grant ... 14
Figure 2-17 Bootstrap Bits 12, 23 .. 14
Figure 2-18 Bootstrap Bit 21 .. 14
Figure 2-19 JP3 SYSCLK Source Detail ... 16
Figure 2-20 S1 Clock Multiplier Select ... 16
Figure 2-21 BS9 PCI Request/Grant ... 18
Figure 2-22 JP6 DMA/PCI ... 18
Figure 2-23 Analysis of JP6 DMA/PCI ... 19

3. Software, Documentation and Design Aids ... 21
Figure 3-1 The Dongle ... 21

4. Demonstration Program ... 25
Figure 4-2 Z-tag Manager .. 27
Figure 4-3 Serial Device .. 28
Figure 4-4 Edit 01 Upload/Execute Command .. 28
Figure 4-5 Command 02 - Upload and Execute .. 29
Figure 4-6 The Parameter Definition Command .. 30
Figure 4-7 Editing the F0 Command .. 31
Figure 4-8 Writing to the Dongle .. 31
Figure 4-9 Monitoring COM1 ... 32
Figure 4-9 Saving Your Work .. 33
Figure 4-10 Enable PassThrough Mode .. 35
Figure 4-11 Refresh Bodies ... 35
Figure 4-12 VxWorks Shell Demo ... 46
Figure 4-13 source file charlie.c ... 46

Manual Revision 1.4 IDS Quick Start Guide Page 6

List of Figures

Figure 4-14 VxWorks Shell Demo ... 48
Figure 4-15 IDStest: Files .. 50
Figure 4-16 File Context Menu .. 51
Figure 4-17 Tornado - Build - Rebuild All .. 51
Figure 4-18 IDStest: VxWorks ... 52

Index .. 63

Manual Revision 1.4 Quick Start Guide Page 7

Overview - 1
1. Overview

The ZFx86 Integrated Development System is
intended to provide a complete development
environment that can be used to demonstrate
how a target system based on the ZFx86 chip
will perform. It is extremely flexible. The stan-
dard PC type interfaces are built into the chip
(serial and parallel ports, etc.). Outboard
features (video, networking, etc.) can be
implemented by installing ISA or PCI interface
cards. We supply a PCI Video Adapter, and a

PCI Network Adapter, as part of the system. If
peripheral adapters are selected that use the
same "chips" that the intended product will
eventually use, much of the final product’s
behavior can be characterized before you
manufacture the PCB.

The ZFx86 Development System is essentially
a standard personal computer, that uses the
ZFx86 chip as its "chipset". It has a standard
"ATX" form factor motherboard, so adding
peripheral cards is an easy matter.

Figure 1-1 ZFx86 Integrated Development System

Manual Revision 1.4 IDS Quick Start Guide Page 8

Overview - Rear Panel Connections 1
1.1. Rear Panel Connections

1.2. Supplied Peripheral Cards
The Integrated Development System comes
with a Video Card, and a Network Card
installed.

The Video Card is installed in PCI Slot # 1,
and the Network Card is in PCI Slot #2. There
is a jumper associated with full operation of
PCI Slot #3 -- see 2.2.7. "JP6 - DMA or PCI
Req/Grant" on page 14.

1.3. Documents
You may view this document with the Acrobat
4.0 Reader under 32 Bit windows. That reader
may be installed from the accompanying CD.
If you also put the ZFx86 Data Book and the
ZFx86 Training Book PDF files in the same
directory, you may use the Acrobat 4 viewer to
link to them.

When viewing the set of documents you may
find it convenient to open them all at once
(select all the PDF files and hit Enter).

1.3.1. The ZFx86 Training Book
The ZFx86 Training Book is a set of foils
designed for a stand-up presentation on
selected chapters of the Data Book. In some
cases, the drawings are more elaborate than
those in the Data Book, or there is a longer
sequence of examples than might be practical
to place in the data book.

COM1

Parallel Port

COM2

USBs

Keyboard

Mouse

Figure 1-2 Rear Panel Connections

Figure 1-3 Video and Network Cards

Manual Revision 1.4 IDS Quick Start Guide Page 9

Overview - Documents 1
1.3.2. Annotated Eval I Schematic
The ZFx86 Integrated Development System
contains an Evaluation 1 Board. An annotated
schematic of the Evaluation 1 Board is
provided as a PDF file. There are pop-up
notes on the schematic which open when you
double-click on the yellow text icons.

The schematic of the Evaluation 1 Board is
provided as a design guide. The first page is
an overview of the following pages. For
example, the Power, Reset circuits are on P10
(page 10) of the schematic, and a top level
Power and Reset block appears on P1. The
blocks on P1 are also hypertext links to the
correct page of the schematic.

You may do text searches for pins (by their
Orcad names) on this PDF, in that it is
machine generated out of the design program.
For the Orcad pin names, see the Pinout
Summary in the ZFx86 Data Book.

1.3.3. Annotated Eval I Silk Screen
There is also a PDF file which is a top view
silk-screen of the Evaluation Board. That file
has annotations which will help you to locate
and understand the jumper settings. See
‘Jumper Settings Details’ on page 16.

1.3.4. Design Orcad and Pads Files
To facilitate your design, we have provided the
design files the for Evaluation 1 Board. ZFx86
and IDS Support

Call ZF Micro Devices at 800-683-5943 toll
free, or 650-940-4793. You may also send
inquiries to info@zfmicro.com. Check our
website for support, at www.zfmicro.com. The
e-mail address for support is
support@zfmicro.com.

You may check for the latest version of the
data book at:
www.zfmicro.com/download.html.

If the version there is later than the copy you
have, you may download a new copy (skip-
ping the registration) by going to
www.zfmicro.com/databook.zip.Figure 1-4 Part of Annotated Schematic

http://www.zfmicro.com
http://www.zflinux.com/download.html
http://www.zflinux.com/download.html
http://www.zfmicro.com/databook.zip

Manual Revision 1.4 IDS Quick Start Guide Page 10

Overview - Documents 1

Manual Revision 1.4 IDS Quick Start Guide Page 11

Hardware Setup - Power and Cabling 1
2. Hardware Setup

2.1. Power and Cabling
The ZFx86 Development System comes with
all internal cables. The power supply will
handle 220V at 50Hz, or 117 VAC at 60Hz.
The system ships set for 117 VAC and ships
with a standard USA cable.

2.2. Default Jumper Settings
Several switches and jumpers allow configura-
tion of many of the features the ZFx86 chip
provides. We have pre-configured the system
to enable as many features as possible, and to
configure them in the typical manner.

2.2.1. Clocking
Many different clocking schemes are achiev-
able. We have shipped the system with the
settings optimized for general purpose
computing. The ZFx86 Development System
is pre-configured with the following settings:

2.2.1.1. System Clock - 64MHz
This is configured by JP3 and S1. For details,
see ‘JP3 SYSCLK Source Jumper’ on page
16. and ‘S1Clock Multiplier DIP Switches’ on
page 16.

2.2.1.2. CPU Speed - 128 MHz
This is configured by S3-switches 2 & 3 (boot-
strap bits 16 & 17). See ‘CPU Speed’ on page
17.

2.2.1.3. PCI Clocking
We set the Front Side PCI BUS (on-board
IDE) and USB to 32 MHz. We set the Back
Side PCI BUS (peripheral slots) to 32 MHz,
and the Back Side PCI Clock Source to
Internal.

These are configured by S3-switches 4, 5,
and 6 (bootstrap bits 18, 19, and 20).

Figure 2-5 JP3 SYSCLK Source

Figure 2-6 BootStrap Bits 16-17

Figure 2-7 BootStrap Bits 18-20

Manual Revision 1.4 IDS Quick Start Guide Page 12

Hardware Setup - Default Jumper Settings 2
2.2.1.4. 8254 PIT Clock (14MHz)
This is derived from separate oscillator. It is
enabled using JP1. See ‘JP1: 8254 PIT Clock
(14MHz)’ on page 17. You can see JP1 as the
left-most jumper in the diagram below. The
jumper is labeled CLK14M, which is logical
signal mhz14_c and ORCAD signal
CLK14MHz [AF16].

2.2.1.5. Real Time Clock (32KHz)
This is derived from separate oscillator and
configured with JP9

2.2.2. Clock Source for PCI Bus
JP4 and S3-switch 6 (bootstrap bit 20) allow
selecting the Clock Source for the PCI BUS.
The system is shipped with this set to “Out”.
This has the ZFx86 providing the clock to the
PCI slots.

Figure 2-8 JP1 CLK14M Source

Figure 2-9 JP9 RTC 32KHz INPUT

Figure 2-10 JP4 PCICLK Source

Figure 2-11 BootStrap Bit 20

Manual Revision 1.4 IDS Quick Start Guide Page 13

Hardware Setup - Default Jumper Settings 2
2.2.3. Watchdog Timer Oscillator

Source
This is set to Internal using JP2.

2.2.4. JTAG Chain
Only the Xilinx chip is connected to the JTAG
chain by default. This is configured with JP8

2.2.5. CMOS Battery
CMOS Battery - Normal. (moving JP5 allows
clearing the CMOS contents)

Figure 2-12 JP2 Watchdog OSC

Figure 2-13 JP8 JTAG Chain

Figure 2-14 JP5 CMOS Battery

Manual Revision 1.4 IDS Quick Start Guide Page 14

Hardware Setup - Default Jumper Settings 2
2.2.6. PCI Request/Grant #3
Enabled. This is configured with S2-switch 8
(bootstrap bit 9). If you elect to change the
setting on this switch, please read 2.3.7. "PCI
Request/Grant Bootstrap 9" on page 18

2.2.7. JP6 - DMA or PCI Req/Grant
JP6 allows choosing between activating DMA
Req/Ack #1, or PCI Req/Gnt #2. The system is
shipped with PCI Req/Gnt #2 enabled. This
jumper works in conjunction with PCI
Request/Grant #3. If you elect to change the
setting on these jumpers, please read 2.3.7.
"PCI Request/Grant Bootstrap 9" on page 18

2.2.8. External Boot
The External Boot is set to use a 16-bit wide
device. The BUR is disabled (so the system
boots from the BIOS in FLASH). These are
configured with S3-switches 1 and 8 (boot-
strap bits 12 and 23).

2.2.9. USB Test Mode - disabled
This is configured with S3-switch 7 (bootstrap
bit 21)

2.2.10. Flash Chip Selection

Figure 2-15 Bootstrap Bit 9

Figure 2-16 JP6 - DMA or PCI Req/Grant

Table 2.1: Flash Chip Selection

Socket JP7 S3

Bytewide
socket U5 and
U6

JP7 00 - 02
(Pins 1-3)

S3 #12 Off

ATMEL flash JP7 02 - 04
(Pins 3-5)

S3 #12 On

AMD flash JP7 03 - 05
(Pins 4-6)

S3 #12 Off

Figure 2-17 Bootstrap Bits 12, 23

Figure 2-18 Bootstrap Bit 21

Manual Revision 1.4 IDS Quick Start Guide Page 15

Hardware Setup - Default Jumper Settings 2
2.2.11. System Clocking Tables

Table 2.5: Clock Multiplier Switch S1

1 2 3 4 MHz

1 1 1 1

0 1 1 1

1 0 1 1 4 MHz

0 0 1 1 12 MHz

1 1 0 1 16 MHz

0 1 0 1 20 MHz

1 0 0 1 24 MHz

0 0 0 1 32 MHz

1 1 1 0

0 1 1 0

1 0 1 0 8 MHz

0 0 1 0

1 1 0 0 32 MHz

0 1 0 0 40 MHz

1 0 0 0 48 MHz

0 0 0 0 64 MHz

Table 2.2: SYS and PCI Clock Speed

SYS and PCI Clock Speed

1 - 3 & 2 - 4 33 MHz

3 - 5 & 4 - 6 66 MHz

1 - 3 only 80 MHz

2 - 4 only 66 MHz

Table 2.4: Clock Mode Bootstrap
Registers 16-17

16 17 Multiplier

0 0 x1

0 1 x2

1 1 x3

1 0 x4

Example for 100 MHz:
Set JP3 to 1-2 (see Table 2.3)
Set SYSCLK speed jumper to 1-3 and 2-4
Set S3 registers 16 and 17 to ON

Table 2.3: SYSCLK Source JP3

JP3 Source

1 - 2 CLK2SYS Table 2.2

3 - 4 CLK = 48 MHz

5 - 6 Selectable Table 3

Manual Revision 1.4 IDS Quick Start Guide Page 16

Hardware Setup - Jumper Settings Details 2
2.3. Jumper Settings Details
2.3.1. JP3 SYSCLK Source Jumper
Jumper JP3 selects the system clock source.
Since the system clock can be any frequency
in the range of 4 MHz to 66 MHz, we can
select the fixed 33 MHz clock, the fixed 48
MHz clock, or we can use the generated
frequencies in the range of 4 to 66 MHz.

In the default condition, in the IDS, we set JP3
to 5-6 selectable and then use the CLK Multi-
plier DIP Switch S1 to select 64 MHz.

2.3.2. S1Clock Multiplier DIP Switches
If you select 5-6 on JP3, then the clock comes
from the S1 selection. In the IDS Board, we
use 0000 which gives us a 64 MHz SYSCLK.

Figure 2-19 JP3 SYSCLK Source Detail

Table 2.6: Multiplier Select Table

S0 S1 S2 S3 MHz
1 0 1 1 4M
0 0 1 1 12M
1 1 0 1 16M
0 1 0 1 20M
1 0 0 1 24M
0 0 0 1 32M
1 0 1 0 8M
0 0 1 0 N/A
1 1 0 0 32M
0 1 0 0 40M
1 0 0 0 48M
0 0 0 0 64M

Figure 2-20 S1 Clock Multiplier Select

Manual Revision 1.4 IDS Quick Start Guide Page 17

Hardware Setup - Jumper Settings Details 2
2.3.3. CPU Speed
SYSCLK, normally 64 MHz, is routed into the
CPU where it is multiplied by 1, 2, 3 or 4 by a
Delay Locked Loop. The multiplier, normally 2,
comes from bootstrap bits 16 and 17.

2.3.4. PCI Clocking
There is a FrontSide PCI Bus associated with
the North Bridge, and a BackSide PCI bus
associated with the SouthBridge. In general,
you will run them both at 33 MHz. If SYSCLK
is 64 MHz, then bootstrap bits 17 and 18
should be set to 1, which specifies SYSCLK/2
for both the Frontside and BackSide PCI Bus.

2.3.5. JP1: 8254 PIT Clock (14MHz)
Generally you would like to drive the 8254 PIT
using the proper 14 MHz crystal frequency. .
JP1 allows you to route the crystal to the input
pin, or ground the input pin. This is described
in the Annotated Evaluation 1 Board Sche-
matic.PDF. The annotated schematic is
ORCAD generated, and you may search for
JP1 using a text search. The annotation (on
the top of page 2) says:

“Using JP1 you can select the source of the
14 MHz PIT (8254) clock. This can be gener-
ated internally or input into the check. Connect
1-2 to select the generated clock (14 MHz) and
2-3 grounds the clock input to the ZFx86.
Do not leave the clock input floating”.

Note that if you do not route the crystal to the
input pin, you can provide a substitute 14 MHz
clock by dividing the SYSCLK by 1484 (inter-
nally).

2.3.6. JP9 - Real Time Clock (32KHz)
The RTC has two input pins to connect the
crystal to it.

These pins contain a amplifier. In case the
frequency is provided from external source the
input to amplifier must be used It can be seen
from page two of the Annotated Evaluation 1
Board Schematic.PDF.

AE01 is the output of amplifier; AF01 is input.
If you use the crystal it is connected with caps
and some external resistors between these
two pins.

In case we use the divided clock it is routed to
the input AF01 with jumper JP9 in position 2-3.
The GPIO will be set to output the 32 KHz
divided down from 48 MHZ. It goes through
the amplifier and into the RTC. As the crystal
is disconnected from feedback loop it only
adds a small load to the output what does not
interfere with operation.

If the crystal is connected to feedback loop of
amplifier (JP9 to 1-2) it starts to oscillate.
These oscillations are amplified and then used
by RTC.

The backup battery provides the voltage to
this amplifier to keep the generator running
when main supply is disconnected.

The annotated schematic describes JP9: posi-
tion

• 1-2 activates the 32-khz crystal generator.

• 2-3 Selects the internally divided GPIO0
output to feed the RTC.

This connection is only necessary to provide
the timer in a mode where 32 Khz crystal is
not used. Power management, Watchdog and
SDRAM refresh run off the divided clock.

Manual Revision 1.4 IDS Quick Start Guide Page 18

Hardware Setup - Jumper Settings Details 2
2.3.7. PCI Request/Grant Bootstrap 9

JP6 allows choosing between activating DMA
Req/Ack #1, or PCI Req/Gnt #2. The system is
shipped with PCI Req/Gnt #2 enabled.

This jumper works in conjunction with PCI
Request/Grant #3.

These two options must ALWAYS be used in
conjunction with each other.

i) The DIP Switch (S2-8, Bootstrap Bit #9) tells
the ZFx86 Chip which type of signals are to be
associated with the shared I/O pins on the
ZFx86 Chip itself. Like all of the Bootstrap
Register Bits, the state of this DIP Switch is
read only during Hardware Reset. Once read,
changing its state will have no effect until the
system is reset.

ii) The two jumpers at JP6 route the signals to
the appropriate places on the rest of the
board. These must be set to use the same
type of signals as previously defined by the
DIP Switch.

The nomenclature is inconsistent (thus
confusing) when looking at these two controls.
The DIP Switch refers to PCI Request/Grant
#3, while the JP6 Jumpers refer to the same
signals as PCI Request/Grant #2. These do in
fact REALLY control the same signals on the
board. If the numbers are ignored, and the
choice is made simply between DMA or PCI
signals, this will be easier to understand.

A few more details on this:

a) While designing the ZFx86 “System on a
Chip”, every attempt was made to include all
of the standard features and services used by
current PCs, plus as many extras as we could
squeeze in. In order to accomplish this, a few
trade-offs had to be made. The number of
available I/O pins on the ZFx86 do not allow
all functions to operate simultaneously. We
assumed that designers would tend to user
either PCI or ISA devices, but not a large
number of both types on the same board. The
decision was made to share one set of I/O
pins between the following functions:

i) DMA Request/Acknowledge #1

• These signals are used (primarily) by ISA
cards.

• Specifically, ISA Sound Boards tend to
use these as one of the default DMA chan-
nels.

• It is often possible to select a different
DMA channel, and avoid using these
signals.

ii) PCI Request/Grant on Slot #3

(1) These signals are needed for any card
installed into the third PCI slot.

Figure 2-21 BS9 PCI Request/Grant

Figure 2-22 JP6 DMA/PCI

Manual Revision 1.4 IDS Quick Start Guide Page 19

Hardware Setup - Jumper Settings Details 2
How this relates to the Development System

The ZFx86 Development System, and any
other design built around the ZFx86 Chip, can
use either of these sets of signals, but only
ONE of the two functions can be used on a
given board.

• The selection of which set of signals the
shared pins will actually provide, is made
during the Hardware Reset pulse. The
ONLY way to select the other set of
signals, is to perform a Hardware Reset.

• The Development System is intended to
demonstrate as many features as
possible. It has both PCI and ISA slots.
Since it has both types of slots, and needs
to provide as many features as possible,
we need a means to select the desired

functionality. The Development System
uses one DIP Switch, and two jumpers to
select which set of functions will be used.
These controls are described further in the
next section of this manual.

• In most designs, one of these two func-
tions will be hardwired, and no selection
mechanism would be required.

An ISA Sound Card

If you install an ISA Sound Board, you may
need to change the settings for these controls.
In most cases, the default configuration (all
three PCI slots active) will give you more flexi-
bility.

Notes from the Schematic

The Annotated IDS Schematic illustrates JP6
as shown in Figure 2-23. The pop-up note
says:

“The 3rd request-grant pair is shared with DMA
request/grant on the ISA bus. The lines must go
to the single selected location. Depending on

the Bootstrap setting, the jumpers must be in
either ISA DMA or PCI GRANT/REQ position.”

The appropriate bootstrap bit is bit 9, which
controls the functions of ZFx86 pins A14 and
pin B14. When bootstrap 9 is set high (the
default) then the signals take their ISA func-
tion. The signals then need to be routed to the
ISA slots using JP6.

9 63H 1 3rd PCI Request Third PCI Request/Grant
1 = drq1 = req2_n and
dack1_n = gnt2_n

B14 DRQ1 ISA DMA (Optional PCI Master req2_n)

A14 DACK1_N ISA DMA (optional PCI Master gnt2_n)

Figure 2-23 Analysis of JP6 DMA/PCI

Manual Revision 1.4 IDS Quick Start Guide Page 20

Hardware Setup - Jumper Settings Details 2

Manual Revision 1.4 IDS Quick Start Guide Page 21

Software, Documentation and Design Aids - Powering Up 3
3. Software, Documentation and Design Aids

3.1. Powering Up
The following text describes the necessary
items for powering up your IDS system.

Initial Screen - DOS or Linux

When you first power up the system, you will
be prompted to type "Dos" or "Linux" to boot
into either environment. To run the VxWorks
or Windows CE demos, boot to DOS.

Using DOS

There is a limited function Caldera DR-DOS
partition. One limitation is that there is no
support for the CD-ROM drive. To fix this, see
‘Using CD ROM Drive from DOS’ on page 23).

Using Linux

If you select Linux, you will eventually get to
the log in screen. You have two choices:

Once you are in Linux, you may exit by typing
lowercase "halt" or by hitting CTRL-ALT-DEL.
For more information on Linux shutdown, see
‘Shutting Down Linux’ on page 23.

3.2. System BIOS
The BIOS loaded on this integrated develop-
ment system is a ZF Micro Devices customiza-
tion based on Phoenix BIOS 4.0 Revision 6.

You may update the BIOS using the Dongle
(shown in Figure 3-1).

Insert the dongle so that the LEDs are facing
the back of the system.

3.3. Software on the Hard Drive
There are three partitions on the provided
Hard Disk:

• 1 GB Caldera DR-DOS Partition

• 128 MB Linux Swap Partition

• 4 GB Linux Partition

See “Usage Tips” on page 23.

Table 3-4: Login to Linux

Prompt Root (superuser) User

ZFx86 login: root user

Password: machzroot machz

Figure 3-1 The Dongle

Manual Revision 1.4 IDS Quick Start Guide Page 22

Software, Documentation and Design Aids - Software on the ZF 3
3.4. Software on the ZF CD
3.4.1. Z-Tag Manager Win 95/98
The primary use of the Z-Tag Manager is to
program the dongle. A good example appears
in ‘Demonstration Program’ on page 25.

3.4.2. Acrobat Readers Win/Linux
You may download the latest Acrobat Reader
for Linux or WIN 95/98/NT/2000 from the
Adobe web site http://www.adobe.com/prod-
ucts/acrobat/readstep.html. A set of recent
readers appears on the ZF CD enclosed with
the Development System. Linux comes with
the Acrobat 4 Reader as well, so this may be

pre-installed on the Integrated Development
System hard disk.

3.5. Documentation on the ZF CD
Various .pdf documents appear on the ZF
Development System CD under the \docu-
ments directory. In order for the hypertext links
between documents and the Acrobat index to
work, all .pdf documents must be in the same
directory. So either access them directly from
the CD, or place the Document directory and
its content in a single directory in your host
system. Some pdf files are listed in Table 3-5.

Table 3-5: Documentation on the ZF CD

Filename Description

ZFx86 Data Book.pdf Complete Data Book.

ZFx86 Training Book.pdf Contains many details of the unique features of the ZFx86
device, including the Dongle (shown in Figure 3-1).

ZFx86 Integrated Develop-
ment System Quick Start
Guide.pdf

This manual.

Annotated Evaluation 1
Board Schematic.pdf

Development System board schematic with comments to
clarify different aspects of the board.

Ztag Manager Manual.pdf Z-tag Manager Manual

ZFx86_Eval_1_pcb.zip PADS PCB Design file for the Development System Boarda

ZFx86_Eval_1.DSN Orcad Design file for Development System boarda

a. PADs files use a *.pcb extension. Orcad files use a *.dsn extension. Orcad is the schematic
capture tool. The board layout tool uses the PADs files. The process runs Orcad --> PADs --> Gerber
file --> fabricated board.

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

Manual Revision 1.4 IDS Quick Start Guide Page 23

Software, Documentation and Design Aids - Usage Tips 3
3.6. Usage Tips
This section includes hints and notes which
may provide helpful to you as you use the
system.

3.6.1. Shutting Down Linux
You should never turn the power off to a sys-
tem running Linux without first performing the
proper “Shutdown Procedure”. Linux, like
many other Operating Systems, runs with sev-
eral files left “Open” to speed up the response
time during normal operation. These files and
services must be shut down before the power
is removed to prevent corruption of the Hard
Disk. The “Shutdown Procedure” can usually
only be performed by the System Administra-
tor (root).

If you are logged in as a normal User, enter
the “su” (Switch User) command, and the
“root” password to temporarily gain “root” privi-
leges. Once you have “root” privileges, issue
the following command to shut down the sys-
tem:

Shutdown –h now

This will start the “Shutdown Procedure”.

Many messages will be displayed on the
screen as the various programs and services
are shut down. Wait until you see a line that
reads “power down”. It is now safe to turn the
power off.

The Shutdown command allows you to sched-
ule a shutdown at a later time. You may also
shutdown using the Halt command, or by
doing CTRL+ALT+DEL. These latter methods
are not as graceful, but they work.

3.6.2. Using CD ROM Drive from DOS
The Caldera DR-DOS does not ship with
MSCDEX.EXE, so the CD will not work. The
DOS driver for the CD is provided on a floppy
shipped with the Integrated Development
System.

You have two methods to "fix" this problem if
you wish to use the CD under DOS:

(1) if you have licensed Caldera DR-DOS, add
the MSCDEX file and change autoexec.bat
and config.sys as follows:

autoexec.bat:

mscdex.exe /d:cd001 /m:10

config.sys:

device=himem.sys
DEVICE=cddrv.sys /D:CD001
dos=high,umb

(2) If you have licensed another version of
DOS, say MS-DOS or PC-DOS: boot the hard
disk into DOS, power down and boot your own
DOS version. Use SYS to transfer the System
to Drive C. Reboot into DOS and replace the
rest of the DOS files.

3.6.3. Set the Boot Default to DOS
Your IDS will boot to Linux by default, unless
you type DOS soon after bootup. To change
this default, if you are going to use DOS for a
while, log into linux as root/machzroot.

Edit file /etc/lilo.conf (with your favorite Linux
text editor). Change "default=linux" to
"default=dos".

You may also change the on-screen prompt
by editing file /boot/message. You may
change the line "Linux will start" to "DOS will
start",.

Once you are out of the editor, type "lilo" and
press enter. That will recreate the lilo configu-
ration files. (Lilo stands for Linux Loader). You
may then type "reboot" in Linux.

3.6.4. VxWorks Setup
See the VxWorks Demo Programs in Chapter
4 following.

Manual Revision 1.4 IDS Quick Start Guide Page 24

Software, Documentation and Design Aids - Usage Tips 3
3.6.5. Using the Flash
GPIO0 can be connected to 2 flash sockets:

FLASH_1 and FLASH_2 using jumpers at
FLASH 0-4 CS CONF header.

Manual Revision 1.4 IDS Quick Start Guide Page 25

Demonstration Program - Dongle Flash Programmer 4
4. Demonstration Program

Thedemonstration programs demonstrate
software or software techniques using the
ZFx86 integrated development system. The
development system provides a general-pur-
pose platform for developing with the ZFx86.
The IDS’s PCI in ISA slots are available to test
peripherals, and because the development
system arrives up and running (out of the box)
with software installed on hard disk.

Wherever possible, these demonstration pro-
grams are already installed on the hard disk.
In addition, the source and binary files appear
on the accompanying CD. In the same man-
ner that we annotated the IDS board sche-
matic, we provide some annotation and notes
on the software source code, and we provide
instructions on how to build the software.

There are many different ways to build and
test software. Some software is built using a
command line interface and some using a
batch or makefile. Other software is built using
some sort of IDE (integrated development
environment). Testing may be done on the tar-
get system or perhaps with some type of cable
using a debugger on the host.

In the case of VxWorks, many developers do
virtually everything on the host using
Tornado 2. The Tornado 2 environment allows
individual modules to be rebuilt and down-
loaded to the target while the target remains
running.

4.1. Dongle Flash Programmer
The BUR accepts a sequence of records via
the Z-tag port (not the COM1 port). These
record sequences form a command structure.
The following text discusses the event
sequence when you power up the ZFx86 chip:

4.1.1. Analysis: ZFx86 Power On
When you power on or reset the ZFx86 chip,
while the address bus is tri-state, the chip
samples the 24 bits on the ISA address bus.
The hardware designer may use DIP switches
or jumpers to override the 24 default settings
on these bits. These 24 bits are read into an
internal 24-bit register called the boot parame-
ters register. One of the bits (or dip switches)
tells the ZFx86 whether to boot from the exter-
nal flash or from the internal BUR.

In normal operation the ZFx86 boots from
external flash (that is, whatever is selected by
the memcs_0 pin). If bootstrap bit 23 is
asserted, then the ZFx86 boots from the inter-
nal Boot Up ROM (BUR). When the BUR
comes up its first operation is to read from the
Z-tag port. The Z-tag port is essentially a two
wire port designed to read from a dongle. If no
dongle is found on the Z-tag port, then BUR
issues a command prompt to the serial port.
Thus, on a power-on-reset (or reset) the
ZFx86 boots either from the external flash or
from the BUR. If it boots from the BUR, you
may provide a series of commands through
the Z-tag port. These commands are actually
data structures which may contain download-
able code and data. The BUR itself contains:

• Basic chip initialization code (a kind of
mini-POST)

• A simple console driven debugger

• Code to process Z-tag command and data
structures

• Ymodem transfer and download function

• A set of callable subroutines (sort of a
mini-BIOS)

• Download and execute test program capa-
bility (BUR executables)

You use the Z-tag port to download small test
programs into the ZFx86 internal static RAM.
These programs assist with the bring up of a
newly designed ZFx86 prototype, or they may
be associated with a FailSafe recovery of sys-
tem code.

Manual Revision 1.4 IDS Quick Start Guide Page 26

Demonstration Program - Dongle Flash Programmer 4
To flash a new BIOS, use the Z-tag port to
download a flash programmer followed by a
data packet containing a BIOS image. The
flash programmer uses the callable BUR sub-
routines to read data packets from the Z-tag
port and copy those packets into the flash.

Place the command and data structures into
the IDS using a Windows-based program
called the Z-tag manager. This program for-
mats the command and data structures and
then writes them out to the printer port.

ZF provides a device called a “Dongle” to facil-
itate this download. Connect one end the Don-
gle to the printer port cable, and on the other
end to a 14 pin connector designed to mate to
a similar connector on a target board.

4.1.2. Dongle Types
ZF offers two dongle types:

• Memory Dongle containing 1 or 2
SEEPROMs for upto 256K program
storage

• Fast-PassThrough Dongle

4.1.2.1. Using the Memory Dongle
Connect the Memory Dongle to the printer port
of a host system running the Z-tag manager,
and use the host system to load commands
and data into the Dongle’s serial EEPROMs.
Then disconnect the Dongle from the host and
connect the Dongle to the 14 pin connector on
the target board. Thus you carry the code to
the target. Once you plug the dongle into the
target board and reset the board, the BUR
reads and executes the commands it down-
loads from the Memory Dongle. Typically, you
place small test programs or an image of a
BIOS to be flashed into the Dongle.

4.1.2.2. Using the Fast-PassThrough
Dongle

Connect the Fast Pass-through Dongle using
a cable from the host system’s printer port to
the Dongle, then plug the Dongle into the tar-
get board. The Z-tag manager provides the
data structures directly to the BUR. Thus
pass-through mode may be used to transfer
large data blocks very quickly into your target
system.

In either case, when you plug the Dongle into
the target board, there's an electrical connec-
tion in the 14 pin connector which automati-
cally asserts bootstrap bit 23 and therefore
causes a BUR boot on reset.

4.1.2.3. Using An On-Board Dongle
It is also possible to place a SEEPROM on the
target board and manually assert boot
strap 23 (via a dip switch or jumper). This
effectively gives you an onboard Dongle. With
appropriate switching your target board may
support both an onboard and off board Don-
gle. An onboard Dongle may be used for fail-
safe recovery of a target system.

4.1.3. Demo of the Flash Programmer
We need to make a data structure in the Don-
gle as shown in the Z-tag Manager User’s
Guide The data structure shown in the manual
is:

<02 “Select Serial Device” on page 27.>
<01 “Upload and Execute Command (Basket

Contains Our Program)” on page 28.>
<FE optional - “Starting Address Parameter

(Basket Contains A Parameter for Our
Program)” on page 30.>

<F0 “RLE Compressed Basket (the ROM
Image)” on page 31.>

<05 “Stop Processing” on page 31.>

The select serial device allows the flash pro-
grammer (the BUR Extension program which
runs in the ZFx86 on Chip SRAM) to write
notes to you, the user, on the ZFx86 serial
port.

This text section demonstrates the Flash Pro-
grammer and the “write” fuctionality. The flash
programmer reads the BIOS Image from the
“FF” data basket, a block at a time, and pro-
grams it into the FLASH.

When the Flash Programmer is done, we use
“05” Stop Processing to finish the job.

Manual Revision 1.4 IDS Quick Start Guide Page 27

Demonstration Program - Dongle Flash Programmer 4
Install the Z-Tag Manager Software

There is a video presentation in the root of the
IDS CD -- which shows you how to install and
use the Z-tag manager. You may run this in a
windows environment (use the Autorun or
click on file Zfdefsys.hlp).

Install the Z-tag manager by unzipping the
package (found on your CD under \Z-tag Man-
ager). Unzip into a temporary directory as you
do not need the files once the installation is
done. When you finish copying the files, run
SETUP.EXE from the temporary directory.

4.1.4. Build Command Set In the Z-tag
Manager

Select Serial Device

First enable the serial port. This instructs the
flash programmer to write any comments to
the serial port during the flashing operation.
Double-click on the Select Serial Device
command, and select the “Serial Port” button
as the device.

If you select the "Z-tag" as the serial device, it
implies that you want to output to the LEDs on
the Dongle.

This command enables data output to the
serial port. The console setting remains
selected until the next execution of this com-
mand, so only execute this command when
changing/disabling the output device.

A data structure is (of course) created by this
command. The structure is exactly like that of
basket's, only the command ID is different.
There is a 1-byte body file which contains 0, 1
or 2 depending on your radio button selection.

When the flash programmer runs, it sets a
variable in source file BURAPI.ASM. This vari-
able is actually an alias to a BUR internal data
structure.

SerialMode db 0; 0=none 1=Serial 2=ZTAG_LEDS

Figure 4-2 Z-tag Manager

Manual Revision 1.4 IDS Quick Start Guide Page 28

Demonstration Program - Dongle Flash Programmer 4
.

Upload and Execute Command (Basket Contains Our Program)

To this point command(s) in the dongle, which
may be viewed as a set of data structures,
have been interpreted solely by the BUR
(there is no other code to interpret them). The
upload and execute command contains a
“data basket” which is our flash programmer
code: the code which reads the ROM image
from the Dongle and Writes the ROM Image
into flash.

Figure 4-3 Serial Device

At this point we are editing an 01 Upload and
Execute command which, when executed,
causes the BUR to transfer our program into
the ZFx86 on-chip SRAM.

Type the name of the .COM or .ROM file for
your flash programmer, or use the “Browse”
button to navigate to the program.

There is an important reason for this browse
step: if you use the Browse button to locate the
file, then a subsequent “refresh bodies” com-
mand automatically identifies the original file
location and updates the body (payload) if you
update your flash programmer.

Figure 4-4 Edit 01 Upload/Execute Command

Manual Revision 1.4 IDS Quick Start Guide Page 29

Demonstration Program - Dongle Flash Programmer 4
Preparing the Payload for the Upload and Execute Command (Our Program)

You must load a file that executes a code
image at memory space “0”. In general,
a .COM file image starts executing at 0x100
by default. To solve this problem, we put an
ORG 0 into the source file. (See the text
below.) The .COM file thus generated by the
assembler and linker is “different”, so consider
renaming it using a .ROM or a .BUR file exten-
sion. The extension used is irrelevant to the
Z-tag manager.

Use the resulting .COM file as a payload for
the BUR “upload and execute” function,
renaming it using a .BUR extension. Compile
using MASM 6.11 with following command
line:

ml /nologo /Fl /Zm /Fm AM29Fxxx.ASM

The ORG 0 is placed into the code to ensure
that we get the desired output file:

1 assume cs:code; es:code; ds:nothing ; see page 37
2 code segment USE16 public
3 org 0
4
5 START:
6 push cs
7 pop es
8 call PRINT_AREGS ; demonstration uses debugsub.asm
9 jmp start1
10
11 include debugsub.asm ; not needed

Editing Our Program Name into the Command’s Payload

Note that the 01 Upload & Execute command name has been edited (in the Description field) to
"UE AMD FLASH PROGRAM" which means upload and execute the AMD Flash Programmer.

In this example we set
up our own personal
version code, and
changed the description
field associated with this
01 command instance,
and browsed to access
the .COM file we want to
upload and execute.
The browse operation
filled in the full path-
name.

Eventually our program
loads and starts execut-
ing. The program then
looks for a parameter
and then for the ROM
image data in the dongle
data structure.

Figure 4-5 Command 02 - Upload and Execute

Manual Revision 1.4 IDS Quick Start Guide Page 30

Demonstration Program - Dongle Flash Programmer 4
Starting Address Parameter (Basket Contains A Parameter for Our Program)

The FE Parameter Definition command provides a 32-bit number to the Flash Programmer. You
can see the execution of this section of code in Figure 4-9 Monitoring COM1.

114 start1:
115 LEA DI, message1 ; ’ZFx86 IDS AMD Demo BUR Flash Programmer’
116 call print
117 LEA DI, message2 ; --------------------------------------
’,CR,LF,0
118 call print
119
120 call ZTPrepareRead ; BUR function use before ZTRead
121
122 call ParmRecord2EAX ; fetch parameter record to EAX
123 jnc ParmOK ; procedure in flashpgm.asm

If the particular flash
programmer code you
use takes a parameter,
an FE Parameter Defini-
tion Command would
appear next. In the body
file put the starting
address (or whatever is
required by the specific
flash programmer). Here
we have picked up the
FE command and
named it the "Starting
Address"

Figure 4-6 The Parameter Definition Command

Manual Revision 1.4 IDS Quick Start Guide Page 31

Demonstration Program - Dongle Flash Programmer 4
RLE Compressed Basket (the ROM Image)

The FO – RLE Compressed "Basket" command is a structure that contains data that we call the
the payload. Use the FO Compressed Basket command to capture the Phoenix BIOS image.

Stop Processing

The Stop command lights the GREEN LED on
Z-tag dongle and freezes the BUR. Use this
command last to notify the operator that the
program is complete. It prevents an infinite
execution of data fetch/exec procedures.

4.1.5. Using the Command Sequence

Transfer Image to Dongle

Set the radio button to Destination →Z-tag
Dongle and push the Write Push button. Once
this is done, place the Dongle on the IDS
socket and press the reset button. When the
red LED stays on continuously, the flashing is
complete.

Monitoring the Flash Programmer

The ZFx86 outputs a prompt on the ZFix Con-
sole when you apply power and bootstrap
BS23 is in the on positon and there is no Don-
gle plugged into the board.

1. Set up HyperTerminal to 9600-N-1 and no
handshake.

2. Type "help" to see the available command
list.

3. Once you know that you have the serial port
working, plug the Memory Dongle in and
press the Reset button.

You see the output messages from the BUR
and the Flash Programmer as they are written
to the serial port. The “01 Executing Com-
mand" comes from the BUR, but it uses the
title we changed to “UE AMD FLASH PRO-
GRAMMER”.

The register display comes from a call

Note that in this picture
we selected the F0 com-
mand into the list, and
then edited it to put the
210605 byte file
BIOS.ROM in the com-
mand payload. Now we
could edit it again to
change the description
field. We could update
the date/time to "Now".

If you put the file name in
using the Browse button,
then "Commands →
refresh bodies" will
update the command
payload if it finds a
newer file in the same
directory path.

Figure 4-7 Editing the F0 Command

Figure 4-8 Writing to the Dongle

Manual Revision 1.4 IDS Quick Start Guide Page 32

Demonstration Program - Dongle Flash Programmer 4
PRINT_AREGS on line 72 (see the listing fol-
lowing on page 36).

The print to the serial port (also shown using a
Hyper Terminal monitor set to 9600-8-N-1) of

the message “ZFx86 Integrated...” comes from
the code in line 115-116 (below and on page
38.).

Saving Your Work

Save your work as a binary image or a com-
mand set. Once you have made up a com-
mand list, save it as a binary image file (using
File →Save Device Image As). When you
execute this save and later restore the Z-tag
contents, the panel loads from the previously
saved file. You can later recover the binary
image using File →Open Device Image.

Alternatively, you can save the command list.

To do this, use the Saved Z-tag Command
Definitions window (right center) which is a
window into the highlighted Folder (lower
right). Anything you drop into the saved com-

115 LEA DI, message1 ; ’ZFx86 Integrated Development System AMD Demo BUR
116 call print
117 LEA DI, message2 ; --

’,CR,LF,0
118 call print

Figure 4-9 Monitoring COM1

Manual Revision 1.4 IDS Quick Start Guide Page 33

Demonstration Program - Dongle Flash Programmer 4
mand list remains there for your future use.

The Command →Refresh Bodies only
updates those selected bodies in the main
(upper left) window. For example, if you
change the flash program’s object file, select
that line and use the refresh bodies command
to update the program image which is inside of
the command list.

To save and retrieve your work as a Dongle
Binary Image file, use File →Save Device
Image and File →Open Device Image. You see
the dialog on the right.

File →Save Device Image As

You can save a binary Image to
any folder in your system, not just
those under Z-tag Manager
Saved.

Figure 4-9 Saving Your Work

Manual Revision 1.4 IDS Quick Start Guide Page 34

Demonstration Program - Dongle Flash Programmer 4
4.1.6. Analysis: Source Code
The source code is made up of five files:

The BUR is in ROM code on the ZFx86 chip. It
is operational when you boot from BUR. It is
not operational when you boot from an exter-
nal ROM. To access the procedures in the
BUR, see the BUR API documentation in the
ZFx86 Data Book. You will need to include file
BURTAPI.ASM as we do in the example fol-
lowing (see line 442).

The source files for this program are on the
ZFx86 Integrated Development System CD in
directory \BUR Programs\AMD Flash Demon-
stration Program. The listing of AMD-
FLASH.ASM following is fully commented and
has some additional footnotes for clarity.

The flash programmer accepts a parameter
which specifies where to put the basket data in
the Flash Chip. In the case of the Phoenix
BIOS and a 256K Dongle, we need to com-
press the BIOS into an RLE basket. However,
other things can be put into the flash as well
with the Dongle: thus the parameter can be
useful. To illustrate this, the demonstration
program picks up the parameter in line 123 fol-
lowing (see page 38).

4.1.7. Program Preparation Steps
The program was prepared using Microsoft
MASM 6.11d. The “d” update is a good thing
to get. Editing is done in a DOS window, and
to make sure the environment is set up cor-
rectly you may run:

path %path%;c:\masm611\bin;c:\masm611\binr;

Then to build the .COM file use:

ml /Fl /Zm /Fm /AT AMDFLASH.ASM > errors
more errors

This allows you to bring up the errors file in
your text editor.

4.1.7.1. Using the "Fast Dongle" in
PassThrough Mode

Speed up the download process by using the
"Fast Dongle1" in PassThrough mode. Run
the cable from the printer port of the host sys-
tem to the dongle. Leave the dongle plugged
into the target ZFx86 IDS.

Remember to select the “PassThrough” button
on the Z-tag Manager Console.

The RESET push button on the front of the
IDS causes the write process to commence.
That is, the bar graph on “Writing passthrough
data” will not start to move until you push the
reset button. The program actually runs as it is
downloading. The BUR reads the Select Serial
Device and the Upload and Execute Com-
mand, and then the program itself reads the
Start Address Parameter Block and the RLE
Compressed Image.

4.1.7.2. Using the "Memory Dongle" in
PassThrough Mode

Speed up the download process by using the
"Memory Dongle"2 in PassThrough mode.

1. Set the jumpers as marked on the Memory
Dongle.

2. Connect the printer cable from the printer
port of the host to the dongle. Leave the

Table 4-6: BUR Flash Demo File Set

File Function

AMDFLASH.ASM Main Line Program

DEBUGSUB.ASM Demo to Dump Registers

RLE_MEMW.ASM Interface to Dongle
Structures and Utilities for
Memory Window Creation

BURAPI.ASM Interface to BUR

FLASHPGM.ASM Procedures

1. The Fast Dongle contains no on-board SEEPROM chips.
2. The Memory Dongle contains one or two SEEPROM chips, and two jumpers that require

configuring. See the Z-tag Manager User’s Guide for more information.

Manual Revision 1.4 IDS Quick Start Guide Page 35

Demonstration Program - VxWorks Shell Demo 4
dongle plugged into the target ZFx86 Inte-
grated Development System. Remember to
enable the “PassThrough” button on the
Z-tag Manager Console.

Figure 4-10 Enable PassThrough Mode

3. Push the RESET button on the front of the
IDS. This causes the Write to begin.

The bar graph on “Writing passthrough data”
moves after you push the reset button. The
program actually runs as it is downloading.
The BUR reads the Select Serial Device and
the Upload and Execute Command, and then
the program itself reads the Start Address
Parameter Block and the RLE Compressed
Image.

The passthrough mode is slower in that the
Z-tag interfaced is paced by the ACK signal in
passthrough mode – allowing the ZFx86 to
wait for data from the printer port.

4.1.7.3. Placing the BIOS or Image in
the Memory Dongle

You may program the BIOS (or other flash
item) into the Memory Dongle with the Z-Tag
Manager. Use the “refresh bodies” command
to simplify editing process of the BIOS file.
See Figure 4-11.

Figure 4-11 Refresh Bodies

Select (highlight) those items which have bas-
kets which you wish to refresh. The baskets
should have been originally identified using
the Browse button. See Figure 4-5, or
Figure 4-7. To select more than one item, hold
down the CTRL key. Then select “Refresh
Bodies”. The file references (.COM file for the
program, or the .ROM file for the ROM image)
updates. Note that the file names do not
require these specific extensions. When the
refresh occurs, the time/date stamp then
agrees with the time/date stamp on the .COM
or .ROM file.

Once you write the image to the Dongle using
the Write button, put the dongle into the ZFx86
Integrated Development System with the
LEDs facing the back. The Dongle is properly
seated when both LEDs are lit. Reset the com-
puter and set up a HyperTerminal Monitor for
the COM1 port, and your flash operation will
complete in a matter of seconds. See
Figure 4-9.

Note: When programming the dongle, use a
printer port extension cable so that you need
not to to the back of the host system.

4.2. VxWorks Shell Demo
The shell demo is the simplest possible demo
we have for VxWorks. Refer to page 36
through page 45. It is generated from one
directory, and it brings up a VxWorks shell to
which you can add your own C program as a
task. A trivial “hello world” program is in there
as a starting point.

Manual Revision 1.4 IDS Quick Start Guide Page 36

Demonstration Program - 4
1 Source Listing - AMDFLASH.ASM
2 comment *
3
4 This program is a ZFx86 BUR Extension which will execute out of the ZFx86
5 on-chip SRAM under control of the BUR. The program is a flash programmer
6 for AMD 8-bit chips This programmer reads a variable-length payload from
7 the Z-tag input port and writes the data into the flash device. The
8 programmer requires one parameter record which is the start address within
9 the flash. This programmer will write the payload to flash chip, starting
10 from the address defined in the parameter.
11
12 There is no checking for overruns. If the chip is smaller than needed,
13 wrap-around will occur.
14
15 (c)2000 ZF Micro Devices, Inc.
16
17
18 revision history
19 ----------------
20 CRC 12-26-00 changed structure, removed macros, added comments
21
22
23 Target Chip: AMD AM29F0xx in ZFx86 Integrated Development System
24 Size: 2 Megabyte
25 Chipselect: ms_cs0
26 Mode: 8-bit
27 Chip Address: defined by Parameter record (use 0x000C0000)
28 Window size: 10000H (64K)
29
30 This code executes as BUR "Load and execute" function. It will fetch
31 parameter record and payload code following to the executable code in
32 dongle. Compile using MASM 6.11 with following command line:
33
34 ml /Fl /Zm /Fm AMDFLASH.ASM
35
36 The resulting .COM file can be directly used as payload for BUR "Upload and
37 Execute" function
38
39 endcomment *
40
41 .486p
42
43
44 ZFINDEX EQU 218H ; ZF-logic Index
45 ZFRW8 EQU 219H
46 ZFRW1632 EQU 21AH

Notes: line 2 uses a * to start a comment, and thus all test is a comment until the end of line 39. You could
also say comment x x where then x becomes the comment delimiter. This illustrates how the "comment"
directive in ML 6.11 allows multi-line comments. In this example, the term endcomment is not necessary --
just the word comment and a start and stop delimiter.

On line 41 we identify the source code as 486 level, so that 486 instructions may be used. The p says pro-
tected mode, so we could use those instructions too (at leasst, ML the assembler would allow it).

Manual Revision 1.4 IDS Quick Start Guide Page 37

Demonstration Program - 4
47
48
49 MEMCS EQU 0 ; use chip select 0
50 PRGBASE EQU 0E0000h ; where to create memory window
51 CS_PAGE EQU ((26h+(MEMCS*12))+8) ; ZF Logic Page Register for MEMCS
52 CS_BASE EQU (26h+(MEMCS*12)) ; base register for specified
chipselect
53 CS_SIZE EQU ((26h+(MEMCS*12))+4) ; ZF Logic Size Register for MEMCS
54 MEMCONTROLL EQU 5AH ; ZF Logic Memory Control Low
55 ZT_WRITE EQU 5EH ; ZF Logic ZT Data Write Register
56
57
58 _16BIT_RW EQU 00000000b
59 _8BIT_RW EQU 00000001b
60 WINDOWMODE EQU _8BIT_RW ; "global" parameter
61
62 CR EQU 0DH
63 LF EQU 0AH
64 TRUE EQU 1
65 FALSE EQU 0
66
67 assume cs:code; es:code; ds:nothing
68 code segment USE16 public
69 org 0
70
71 START:
72 push cs
73 pop es
74 call PRINT_AREGS ; demonstration uses debugsub.asm
75 jmp start1
76
77 include debugsub.asm ; not needed
78
79
80 message1 db CR,LF, ’ZFx86 Integrated Development System AMD Demo BUR
Flash Programmer’,CR,LF,0
81 message2 db ’---
----------------’,CR,LF,0
82 message3 db ’0x’,0
83 message4 db ’: Erasing .. ’,0
84 message5 db ’Flash programming start address missing!’,CR,LF,0
85 message6 db ’Programming starts from 0x’,0
86 message7 db ’Device: Mfg=’,0
87 message8 db ’ DevID=’,0
88 message9 db ’Detected Flash Device: ’,0
89 message10 db ’Programming .. ’,0
90 message11 db ’RLE basket checksum error ’,0

Notes: We need to send up a memory window (sort of a portal) to provide access the the flash chip. It
works sort of like the LIM logic of the past: the flash chip may be quite large and cannot live in the memory
space -- the one on the IDS is 2 MB. Also, we want to access the chip with 0 glue logic (no extra compo-
nents). The ZFx86 built-in memory windows solve both problems. But that means that in order to access
the chip, we need to create a window. We are running in BUR so we own the machine -- so we have
decided to create the window from E0000 to F0000. Line 50 sets the PRGBASE, and the size is hardwired
into other procedures as 64K. That means we will program the chip 64K at a time, and then move the target
portion of the window using the ZFx86 PAGE register.

Manual Revision 1.4 IDS Quick Start Guide Page 38

Demonstration Program - 4
91 message12 db ’Data CRC failure: ’,0
92 message13 db ’Chip Not Supported’,CR,LF,0
93 message14 db ’FAILED!’,CR,LF,0
94 message15 db ’OK!’,CR,LF,0
95 message16 db ’Data CRC was OK!’,CR,LF,0
96 message17 db ’Programming Failure ...’,CR,LF,0
97
98 fIDError db FALSE
99 FlashBase dd ? ; variable to store starting address in chip
100
101 ; --
102 ; subroutine print - print ASCIIZ string. ES:DI -> string on entry
103 ; --
104
105 print proc
106 pusha
107 xor cx, cx
108 call SerSend
109 popa
110 ret
111 print endp
112
113
114
115 start1:
116 LEA DI, message1 ; ’ZFx86 Integrated Development System AMD Demo
BUR Flash Programmer’
117 call print
118 LEA DI, message2 ; --
--------------------------’,CR,LF,0
119 call print
120
121 call ZTPrepareRead ; BUR function use before ZTRead
122
123 call ParmRecord2EAX ; fetch parameter record to EAX
124 jnc ParmOK ; procedure in flashpgm.asm
125
126 comment * in this generalized program, you can specify the target address
127 within the flash chip. If you are "burning" in the Phoenix BIOS in the
128 IDS, using the 2 MB IDS AMD Flash Chip, you use starting address 0x1C0000.
129 We could hard code this into the program, but leave it here as an
130 instructional example. *
131

Notes: The best way to understand the AMD Flash Chip is to read the document on their web site -- AMD
data sheet for the Am29F016D, publication 21444 Rev E. The source code of program AMDFLASH.EXE (a
DOS program used to flash the ZFx86 Integrated Development System BIOS via a Floppy or HDU) also
contains some good C examples on how to deal with the AMD Flash Chip. In line 98 we create a boolean
(flag ID Error) which we will set TRUE if either the manufacturer ID or chip ID is not what we are looking for.

Back on line 72 we set ES to point to CS so that all of our messages would be ES relative. That’s because
the SerSend procedure in the BUR (see Appendix B of the ZFx86 Data Book) requires ES:DI to point to the
ASCIIZ string to print to the serial port COM1. The print procedure uses SerSend on line 108. Line 443 has
the include for BURAPI.ASM which is the interface layer to the BUR, and which defines SerSend.

Line 121, 123: Procedures ZTPrepareRead is documented in Appendix B of the ZFx86 Data Book. The
program now wants to read the parameter (starting target address in the flash) from the Z-tag Parameter
block. It calls a procedure (grep the 4 ASM source files) which does this.

Manual Revision 1.4 IDS Quick Start Guide Page 39

Demonstration Program - 4
132
133 LEA DI, message5 ; ’Flash programming start address missing!’
134 call print
135 jmp ExitPgmrFail
136 ParmOK:
137 and eax, 0FFFFF000h ; ZF Logic BASE reg: rightmost = 0
138 mov FlashBase, eax
139 push eax ; save for a moment
140
141 LEA DI, message6 ; ’Programming starts from 0x’
142 call print
143
144 pop eax ; restore eax
145 call SerOut32 ; BUR API proc writes EAX to Serial
146 call CRLF ; BUR API proc writes CRLF to Serial
147
148 ; Get the Basket Command
149
150 MOV BX, OFFSET ExitPgmrFail ; pass in fail address
151 Call process_basket_header ; our procedure in flashsub.asm
152
153 ; Create Memory window for accessing the flash device
154
155 Call Create_Memory_Window
156
157 ; Time to program some flash.
158
159 comment * Check, whenever or not we have supported part on-board. A good
160 reference here is the AMD data sheet for the Am29F016D, the publication
161 21444 Rev E on the AMD web site. The chip used on the ZFx86 Integrated
162 Development system has a Manufacturer ID of 01 and a device ID of 0xAD. *
163
164
165 mov al, 90h ; send out the 1-2-3rd bus
166 call JEDEC_Cmd_8 ; cycles as per data sheet
167
168 push (PRGBASE/10h)
169 pop ds
170 xor si, si ; read from 0-1 and get
171 mov ax, ds:[si] ; Manu and Device ID
172 mov bx, ax ; save
173
174 MOV DI, OFFSET Message7 ; ’Device: Mfg=’
175 call print
176 call SerOut8
177

Line 137: we mask out the rightmost 3 hex digits of the BASE, as the ZF Logic hardware ignores these bits.
That way our FlashBase variable agrees with the hardware.

Lines 150-151: Subroutine process_basket_header is in our source file RLE_MEMW.ASM (not printed but
on the CD). It expects a parameter which is the 16-bit (OFFSET) address of where to go if it fails. The
source file provides some top-level documentation of the header structure. If the header checks out, this
procedure prints the message ’Source: ’ and then the basket name. You can see the printout in Figure 4-9
Monitoring COM1. The name printed is the one we put into the Basket Header using the Z-Tag Manager.
Variable "basketsize" is set by this routine. The ZTRead pointer is left at the start of the "payload" of the
basket.

Manual Revision 1.4 IDS Quick Start Guide Page 40

Demonstration Program - 4
178
179 ; if (MfgID != 1) fID_error = TRUE;
180
181 CMP AL, 1 ; hardwired for AMD
182 JE endMANUtest
183 MOV fIDError, TRUE
184 endMANUtest:
185
186 MOV DI, OFFSET Message8 ; ’ DevID=’
187 call print
188 shr ax, 8
189
190 ; if (DeviceID != 0xAD) fID_error = TRUE;
191
192 CMP AL, 0ADH ; hardwired for AMD 29F016D
193 JE endIDtest
194 MOV fIDError, TRUE
195 endIDtest:
196
197 call SerOut8
198 call CRLF
199
200 mov al, 0F0h ; reset command to
201 mov ds:[si], al ; end identification mode
202
203
204 ; if (fIDerror)
205
206 CMP fIDerror, TRUE ; hardwired for AMD 29F016D
207 JNE ChipSupported
208 LEA DI, Message13 ; chip not supported
209 CALL Print
210 JMP ExitPgmrFail
211
212
213 ChipSupported:
214
215 ; ====== Basket handling begins here ======
216
217 COMMENT * Note, that in order to maintain correct checksum for basket, we
218 must calculate data CRC for RLE header as well! Thus we resetCRC prior to
219 calling process_RLE_header but do not verify the checksum until after all
220 the basket data is read. *
221
222 call ResetCRC ; BUR API routine prior to INT 17H
223 MOV AX, OFFSET ExitPgmrFail

Line 179, 204: To verify that we are programming the correct chip, we check and printout out the mfg and
device ID. If we don’t find the specific chip we are looking for, we set fID_error TRUE and terminate.

Line 200: To check the chip/mfg ID, we executed a command sequence to put us in what AMD calls
autoselect mode. You terminate that with a reset. Note that ds was set to point to our memory window in
line 169

Line 222: The header of the RLE Compressed Basket (and the header of an uncompressed basket) con-
tains a checksum for the basket data. We piggyback on the INT 17H call which was written into the BUR for
YMODEM protocol checksum, and checksum the payload data as we read it in. First we reset it.

Manual Revision 1.4 IDS Quick Start Guide Page 41

Demonstration Program - 4
224 call process_RLE_header ; process RLE header if any
225 mov ebp, BasketSize ; total bytes to program
226
227 PrgLoop: ; Erase sector now
228 LEA DI, message3 ; ’0x’
229 CALL Print
230 mov eax, FlashBase
231 call SerOut32 ; write AX as xxxx in hex
232
233 LEA DI, message4 ; ’: Erasing .. ’
234 CALL Print
235
236 ; There are two 3-byte sequences to do a sector erase.
237
238 push (PRGBASE/10h)
239 pop fs ; fs:0 points to our memory window
240 xor si, si
241
242 mov al, 80h ; sector erase command part 1
243 call JEDEC_Cmd_8
244 mov al, 30h ; sector erase command part 2
245 call JEDEC_Cmd_8
246
247 comment * Erase is now in progress. Check, when we are ready. There is a
248 bur variable which is incremented 18.2 times/second. 182 times is a 10
249 second timeout. *
250
251 call DSBX2Var ; DS:BX -> BUR data area (RAM)
252 mov ax, 182
253 mov ds:[bx.CountDown], ax ; gives 10sec. timeout
254
255 mov dx, ZFINDEX
256 mov al, ZT_WRITE ; ZT_SIG_OUT
257 out dx, al ;
258 inc dx ;
259 in al, dx ;
260 and al, 11110101b ; turn off LED’s
261 out dx, al
262
263 call ZTPrepareRead ; ZFLogic back to track
264
265 comment * to test for erase, you only need to look at D7 which is forced to
266 a 0 until the erase is done. The FFFFFFF test below will accomplish the

Lines 224-225: Subroutine process_RLE_header will set variable BasketSize to the real (expanded value)
if this is a compressed basket. We then store BasketSize in EBP as we will use that as a count-down regis-
ter. This is a rather unconventional use of EPB, but we are not using stack frame parameter passing...

Lines 241-245: There are 6 bytes which need to be output to the AMDFLASH chip to cause an erase.
Bytes 1-2 and 4-5 are the same. JEDEC_Cmd_8 will output two bytes and then take the third from the
value passed in AL. See the AMD Data Sheet. The code is in flashpgm.asm. It uses PRGBASE to access
the memory segment.

Line 251: DSBS2Var sets DS:BX to point to a common data area in the BUR. Included in this is a word
variable which is decremented ever time tick, bx.CountDown. The ".CountDown" is a structure reference
and provides in the assembler the proper OFFSET and TYPE for the variable.

Manual Revision 1.4 IDS Quick Start Guide Page 42

Demonstration Program - 4
267 same thing. *
268
269
270 @@:
271 cmp word ptr ds:[bx.CountDown], 0 ; did we timeout
272 jz @f
273 cmp dword ptr fs:[si], 0FFFFFFFFh ; D7 = 1 is a
274 jnz @b ; loop until erase completes
275 @@:
276 mov word ptr ds:[bx.CountDown], 0 ; reset timer, so we will not
lose our blinking LED’s
277 cmp dword ptr fs:[si], 0FFFFFFFFh ; test again for branch
278 jz @f
279
280 LEA DI, message14 ; ’FAILED!’
281 call print
282
283 jmp ExitPgmrFail
284 @@:
285
286 ; All set. Programming ...
287
288 LEA DI, message10 ; ’Programming .. ’
289 call print
290
291 mov ecx, 64*1024
292 cmp ecx, ebp ; EBP is # of bytes left to program
293 jbe @f
294 mov ecx, ebp ; if less than 64K left, program it
295 @@:
296 cmp ecx, 0
297 jz PgmDone ; don’t do anything if basket size is 0
298
299 push (PRGBASE/10h)
300 pop ds
301 xor si, si
302
303 BytePrgLoop:
304 mov al, 0A0h ; "program" command
305 call JEDEC_Cmd_8
306
307 call ZTRead_RLE ; read and do INT 17 to maintain checksum
308
309 mov [si], al ; write byte
310 mov bl, al ; save byte for future compare
311
312 ; on the extreme case we can have PCI backside clock 80Mhz. ISA

Lines 270-275: The @f and @b constructs save labels in that you can jump to the previous or next @@. In
this case we go forward if we timeout and we go forward if we find a 32-bit FFFFFFFFH. When the flash
chip erases, it sets all the bits to 1. Also, during the erase bit 7 of each byte is held at 0 to indicate that it is
"working". So checking for FFFFFFFF is an OK way to test for erase completion. On line 277 we test again
to see if we got there due to timeout or to completion.

Line 292: We carry the remaining number of bytes to program in EBP. That was initialized in line 225.

Lines 303-310: There is a sequence of four bytes you need to send out to program. The standard JEDEC
two byte sequence, an A0H, and then the data. We have DS set in line 300 to our window, and SI is the
OFFSET.

Manual Revision 1.4 IDS Quick Start Guide Page 43

Demonstration Program - 4
313 ; divider is 8, so we have 10M ISA bus clock. Programming cycle can be
max.
314 ; 50us, so we need to wait here about 500 ISA cycles to kill that time.
315
316
317 mov di, 500
318 WaitWriting:
319 cmp ds:[si], bl
320 jz ByteOk
321 in al, 80h ; create one ISA cycle for delay
322 dec di
323 jnz WaitWriting
324
325 LEA DI, Message14 ; ’FAILED!’
326 CALL print
327 jmp ExitPgmrFail
328
329 ByteOk:
330 inc si ; advance address to next
331 loopd BytePrgLoop
332 PgmDone:
333 LEA DI, message15 ; ’OK!’
334 call print
335
336 ; Anything left?
337
338 sub ebp, 64*1024 ; if ((ebp-64K) <= 0) go to @f
339 jz @f
340 jc @f
341
342 ; move to next page - note that CS0 and page size are fixed, but that
343 ; flashbase came in from the parameter record
344
345 add FlashBase, 64*1024 ; update page to next
346 Call Set_Flash_Offset ; uses CS0, FlashBase
347
348 jmp PrgLoop
349
350 ; Now when programming is done, go check the data checksum if it was RLE
image
351
352 cmp BasketType, 0FFh

Lines 317-331: Since we need a short timeout, we are counting ISA bus cycles. Frankly, you never get a
timeout -- it always works. But we do have an upper limit here. To ascertain that we are done, we compare
the data we are writing with the data we read. AMD suggests an alternative way -- to wait until a busy bit in
the data field is done -- but this way seems to work just fine (and we do verify the data).

Lines 338-340: We may have programmed a partial sector, or we may have programmed a full 64K. If there
was more than 64K in EBP we still have something left to go. So we subtract 64K and if EBP is 0 we are
done. If EBP is negative we are done.

Lines 345-346: Every time we move forward 64K in the AMD, we need to move our ZF Logic Window to
point to that block. Note that although erase is flash sector specific, programming is byte specific. So the
fact that FlashBase did not start on a 64K boundary is not important. Thus FlashBase (and the ZF Logic
Memory Window) need not be 64K aligned.

Manual Revision 1.4 IDS Quick Start Guide Page 44

Demonstration Program - 4
353 jz @f
354
355 mov eax, RLE_CheckSum
356 cmp eax, RLE_Chk ; compare against calculated checksum
357 jz @f
358
359 LEA DI, message11 ; ’RLE basket checksum error ’
360 call print
361
362 call SerOut32
363 mov al, ’ ’
364 call SerSend2
365 mov eax, RLE_Chk
366 call SerOut32
367 call CRLF
368
369 jmp ExitPgmrFail
370 @@:
371 call ZTPrepareRead
372
373 ; Get original checksum
374
375 call ZTRead
376 shl ax, 8
377 call ZTRead
378 xchg al, ah
379
380 call DSBX2Var ; get variables block to DS:BX
381 cmp word ptr ds:[bx.YModemCRChi_C], ax
382 jz CRCOK
383
384 LEA DI, message12 ; ’Data CRC failure: ’
385 call print
386
387 call SerOut16
388 mov al, ’ ’
389 call SerSend2
390 mov ax, word ptr ds:[bx.YModemCRChi_C]
391 call SerOut16
392 call CRLF
393 jmp ExitPgmrFail
394 CRCOK:
395
396 LEA DI, message16 ; ’Data CRC was OK!’
397 CALL print
398 jmp ExitPgmrOk
399
400 ExitPgmrFail: ; Light up RED LED and do not do anything else!
401
402 mov dx, ZFINDEX
403 mov al, ZT_WRITE ;ZT_SIG_OUT
404 out dx, al
405 inc dx
406 in al, dx
407 and al, 11110101b or al, ZT_LED_RED ;00001000b

Manual Revision 1.4 IDS Quick Start Guide Page 45

Demonstration Program - 4
408 out dx, al
409
410 LEA DI, message17 ; ’Programming Failure ...’
411 CALL print
412 jmp $
413
414 ExitPgmrOk:
415 ; Light up GREEN LED and continue with BUR
416 mov dx, ZFINDEX
417 mov al, ZT_WRITE ;ZT_SIG_OUT - ZTAGWRITE
418 out dx, al
419 inc dx
420 in al, dx
421 and al, 11110101b
422 or al, ZT_LED_GREEN ;00000010b
423 out dx, al
424 ExitPgmr:
425 call CRLF
426
427 ; Set timer to maximum value. This is useful to prevent the
428 ; BUR from blinking with LED’s when loading next commands.
429 ; This way we maintain our RED or GREEN LED setting
430
431 call DSBX2Var
432 mov word ptr ds:[bx.CountDown], 0FFFFh
433
434 ; Always exit with ZFL registers prepared for accelerated read!
435
436 call ZTPrepareRead
437 retf ; resume with BUR
438
439
440 ; in-line includes here so no "space" wasted due to segment combination
441
442 include BURAPI.ASM ; interface to the BUR
443 include RLE_MEMW.ASM ; common routines
444 include FLASHPGM.ASM ; flash programmer common routines
445 code ends
446
447 END START
448 ENDS
449

Manual Revision 1.4 IDS Quick Start Guide Page 46

Demonstration Program - VxWorks Shell Demo 4
The VxWorks demos currently load off the
DOS partition. You may want to upgrade your
DOS partition (see ‘Using CD ROM Drive from
DOS’ on page 23), but that is not necessary
for the demo to operate. You may also wish to
set the default boot of your IDS to DOS rather
than Linux. See ‘Set the Boot Default to DOS’
on page 23.

4.2.1. Running the Shell Demo
The demo software is pre-installed on the
ZFx86 Integrated Development System in the
DOS partition:

To run the program, change to the vxworks0
directory and type vx. Here is what it does:

119 del \vxworks.*
120 copy vxworks.st \
121 vxload bootrom.sys
vx.bat in line 1 removes any previous
vxworks.* file from the root (as both demos put
their own version in the root). In line 2 it copies
the vxworks.st image to the root, and in line 3
it invokes VxLoad. VxLoad is a DOS program
which will load a VXworks executable from the
DOS file system1. We use VxLoad to load
bootrom.sys. In turn, bootrom.sys loads
vxworks.st from the root of the hard disk. How
does bootrom.sys know to do that? See the
DEFAULT BOOT LINE just below!

If you get the error message the error mes-
sage “Image memory is occupied - try to
reduce system space” -- make sure that there

is “nothing” in config.sys or autoexec.bat
which will consume memory.

When you run the demo, VxWorks will come
up in the shell. Once VxWorks is up, you
should be able to ping the “e” address of
192.168.200.144. See the line below from
VxWorks CONFIG.H file:

#undef DEFAULT_BOOT_LINE \
"ata=0,0(0,0)host:/ata0/vxWorks.st
h=192.168.200.129 e=192.168.200.144 u=tar-
get tn=target pw=target o=elPci"

The shell command hostShow shows you
your target and host IP addresses. They
appear as above. You may use the following
VxWorks shell control characters and com-
mands. Note that the commands are case
sensitive, and that with the help commands
you need to finish the scroll list <CR> or quit
them Q<CR>.

Besides the shell commands, we have pro-
vided the classic “hello world” task. In this
case it is:

You can run this task from the shell by enter-
ing sp charlie_task -- and you can see the
address of the symbol charlie_task by typing
lkup "charlie_task" or lkup "sam". You will

1. There are many ways of getting a VxWorks image into memory. In a typical target system, VxLoad
is not the way to go. However, it serves our purpose nicely on the IDS.

\ (root)

vxworks0
vxload.com
vxworks.st
vx.bat
bootrom.sys

Figure 4-12 VxWorks Shell Demo

Table 4-7: VxWorks Shell

Command Description

CTRL+C Abort and restart the shell.

CTRL+X Reboot (trap to the ROM monitor).

help print list of shell commands

i list current tasks

debHelp print debugger help info

netHelp print network help info

#include <stdio.h>
void charlie_task (void);
int sam;
void charlie_task (void) {
printf ("Hello There");
}

Figure 4-13 source file charlie.c

Manual Revision 1.4 IDS Quick Start Guide Page 47

Demonstration Program - VxWorks Menued Demo 4
note that charlie_task is a text symbol and
sam is a bss (block starting with symbol) or
data symbol. In the next section you can see
how to rebuild (or modify and rebuild) these
files.

4.2.2. Rebuilding the Shell Demo
The shell demo is simple in that the target files
BOOTROM.SYS and VXWORKS.ST are both
built from within the same directory. It is per-
haps simplistic in that it does not show off the
VxWorks Tornado Integrated Development
Environment. That said, here’s how to do it:

Install Tornado (we will use the compiler and
editor, but not the IDE) on your host develop-
ment system. Create a directory in the root
called ataboot (you may use your own name).
Then copy into that directory the contents of
the IDS CD folder ataboot: VxWorks Demos
DOS Bootable\VxWorks Shell Demo\ataboot.

Rebuilding BOOTROM.SYS

To rebuild bootrom.sys, execute the file mak-
bootunc.bat. This file contains:

1 call \Tornado\host\x86-win32\bin\torvars
2 make clean
3 make bootrom_uncmp
4 copy bootrom_uncmp a:\bootrom.sys

In line 1 we execute torvars.bat which sets up
the path for the Tornado tools. If you do this in
a DOS window, after a while your environment
string gets rather long as you keep calling tor-
vars.bat.

Rebuilding VXWORKS.ST

To rebuild vxworks.st, execute the file
makst.bat. This file contains the following
items:

1 call \Tornado\host\x86-win32\bin\torvars
2 rem make clean
3 make vxWorks.st
4 copy vxWorks.st a:\

The makefile contains a macro (a define) for
MACH_EXTRA as follows:

MACH_EXTRA = charlie.o # crc 08-09-00

This statement will cause charlie.c to be com-

piled and included in the vxworks image. You
can also compile charlie.c by typing make
charlie.o in the ataboot directory (once tor-
vars has been called). You do not have to
open the tornado IDE to do any of this.

4.3. VxWorks Menued Demo
The VxWorks Menued Demo features a “real”
application program and also uses the Tor-
nado IDE (project facility) to build the VxWorks
image. The VxWorks demo program itself cur-
rently uses a text menu, but a future demo will
make use of the Zinc Application to provide a
graphics interface. When you run text-mode
menu can select desired items and perform
specific actions. Included are:

• '1. PING Test".

• '2. Net Receiver Test", '3. Net Sender
Test", and '4. Net Loopback Test".

• '5. FTP Server Test".

• '6. Hard Disk Performance Test and
7. RAM-Disk Performance Test".

• Information about running tasks

• Stop running test processes

• Exit to VxWorks Shell

The user is able to run multiple demo
instances or performance tests concurrently
as separate tasks and thus see the perfor-
mance impact to whole system. Not all items
can be run as concurrent tasks, further fea-
tures are described in the “Using the Demo
Software” and “Test menu items in detail”
chapters.

Required Target Hardware

The standard ZFx86 Integrated Development
system is needed for running this VxWorks
demo program. This includes:

• 3Com905TX 10/100 network card
(required for network tests)

• Hard disk with 10-100 Mbytes of free
space (required for HD performance tests)

Required Host Hardware/SW

You only need a host computer if you decide

Manual Revision 1.4 IDS Quick Start Guide Page 48

Demonstration Program - VxWorks Menued Demo 4
to modify the VxWorks Menued demo. To do
this, you also need to use the Tornado Tools.

4.3.1. Running the Menued Demo
The demo software is pre-installed on the
ZFx86 IDS in the DOS partition:

To run the program, change to the vxworks1
directory and type vx. Here is what it does:

1 del \vxworks.*
2 copy vxworks \
3 vxload bootrom.sys

Using the Menued Demo

The source code of the demo follows.

When vxworks demo is successfully loaded by
bootrom and successfully starts, it first asks
user for the desired RAM-disk size. See Line
82 on page 54. Press Enter key to allocate 32
Mbytes for RAM-disk or enter any other
amount in kilobytes. When the RAM-disk is
created as “/RAMDISK” device, a correspond-
ing message is displayed.

Then the clock watchdog is started which is
used for measuring elapsed time during per-
formance tests. In addition the hard disk is
attached as “/ATA” device. Finally, the IDS
VxWorks Demonstration Program main menu
is presented to user. The items in menu are:

1. PING test
2. Net Receiver Test
3. Net Sender Test
4. Net Loopback Test
5. FTP Server Test
6. Hard disk performance test
7. RAM-disk performance test

i Show running tasks info
d Show info about available devices
s Stop running processes
q Exit to Shell

An “Enter option (h for help): “ - prompt is pre-
sented to user and user should select corre-
sponding number or letter and press the
Enter-key.

When some of the tests are executed, the out-
put results will appear after certain intervals on
the bottom of the screen. Other lines on
screen will be scrolled up and finally off the
screen. When multiple processes are running
and user wants to start additional test-tasks or
end some, then the user should just type in
the appropriate number or letter followed by
Enter.

The “s” menuitem allows you to stop all cur-
rently running network tests and performance
tests.

The “i” menuitem shows info about currently
running tasks and their status.

The “d” menuitem shows info about all defined
devices (serial ports, RAM-disks, block
devices) in the system.

The “q” menuitem ends the IDS Demonstra-
tion Program and exits to the VxWorks interac-
tive Shell.

The IDS demo program can the be restarted
only by rebooting the system. To do this, press
CTRL-X at the shell prompt.

Demo Menu Items In Detail

1. PING Test

Ping is just meant for testing network connec-
tivity between different machines. The user is
prompted for the target computer's IP address
and repetition count. The Ping to different
machines can be executed multiple times and
thus multiple Ping tasks are spawned in the
VxWorks environment. The Ping test is able to
run concurrently with all other test items. The
Ping test cannot be terminated by pressing “s”
in user menu so please be cautious with enter-
ing the ping repetition count.

2. Net Receiver Test

\ (root)

vxworks1
vxload.com
vxworks
vx.bat
bootrom.sys

Figure 4-14 VxWorks Shell Demo

Manual Revision 1.4 IDS Quick Start Guide Page 49

Demonstration Program - VxWorks Menued Demo 4
This item starts a network listener task for a
certain TCP-IP network port on the test
machine. The user is prompted for a port num-
ber. When the sender task is also executed
somewhere in the network for this IDS com-
puter and directed to the same port, then the
listener task prints out a network transfer rate
every 10 seconds. There is no output in the
case when there is no network traffic. The net-
work sender task can be launched using the
menu item “3”.

You may run multiple receiver tasks for differ-
ent port numbers on the same machine.

The receiver tasks can be running concur-
rently with all other test item tasks.

3. Net Sender Test

This starts a network sender task which sends
packets to certain destination machine's cer-
tain port. The machine IP address and port
number are asked from user. When there is no
network receiver task launched on target com-
puter for the same port number then the
sender task will also exit with corresponding
error message (connect failed).

There can be running multiple sender tasks on
the same machine with different target IP-s or
even for different ports on the same machine.

The sender tasks can be running concurrently
with all other test items except FTP server
test.

When sender task is running on the IDS
machine for example, then FTP file transfer
from remote host to this IDS machine is not
possible.

4. Net Loopback Test

This menu item is actually a combination of
two previous items. It prompts user for a
desired port number and then starts both the
network receiver task and sender task on the
same machine (actually for IP address
127.0.0.1 which is localhost) for the same
port. There can be also multiple concurrent
network loopback tests running in the system
and they can be running concurrently with all
other test items except FTP server. When the
sender task is running on this machine, then
FTP file transfer from remote host to this IDS
machine is not possible.

5. FTP Server Test

The FTP server is actually running on the sys-
tem as soon as the demo is started. When you
select “5” from the main menu, instructions are
displayed which describe how to do a FTP file
transfer from a remote machine to this test
machine's RAMDISK.

During network loopback tests, net sender
tests, or disk performance tests, the FTP
server tasks do no respond because of lower
priority of FTP Server tasks.

Instead of the proposed “/RAMDISK” directory
the user can also do a “cd /ATA” on remote
computer's FTP client prompt and thus trans-
fer a test file also to IDS test machine's hard
disk.

6. Hard Disk Performance Test and
7. RAM-Disk Performance Test

The menu items “6” and “7” use actually the
same subroutine for performing disk access
transfer rate measuring, only in case of “6” the
test files will be created on hard disk and in
case “7” the test files are created on RAM-
disk.

The user is prompted for a test file size in kilo-
bytes and the test repetition count.

After each read or write cycle to the target
device the read or write transfer rate is dis-
played on screen.

There can be multiple simultaneous disk
transfer tests running and they can run simul-
taneously with all test items except FTP test.
During disk tests the FTP server tasks are in a
“pending” state because of their lower priority.

4.3.2. Building Menued Demo Software
The demo software itself includes binaries and
source code for building needed Board Sup-
port Package (bootrom.sys) and for building
demo program (vxworks) using the WindRiver
Tornado 2.0 IDE. (In part 4.1, we used the
compiler and other GNU tools installed with
the IDE, but we did not use the IDE.)

Rebuilding BOOTROM.SYS

Manual Revision 1.4 IDS Quick Start Guide Page 50

Demonstration Program - VxWorks Menued Demo 4
BOOTROM.SYS and VXWORKS are built
from different directories. BOOTROM.SYS is
built from the DOS command line (as in the
previous demo), but VXWORKS is built using
the Tornado Project Facility. That said, here’s
how to do it:

Install Tornado (we will use the compiler and
editor, but not the IDE) on your host develop-
ment system. Create a directory in the root
called ataboot1 (you may use your own
name). Then copy into that directory the con-
tents of the IDS CD folder ataboot1: VxWorks
Demos DOS Bootable\VxWorks Menued
Demo\ataboot1.

To rebuild bootrom.sys, execute the file mak-
boot.bat. This file contains:

1 call \Tornado\host\x86-win32\bin\torvars
2 make clean
3 make bootrom_uncmp
4 copy bootrom_uncmp bootrom.sys

Before building BOOTROM.SYS, you may set
appropriate IP addresses for host and target in
\config.h. There in config.h are defined in mul-
tiple boot lines, edit the one which is not com-
mented (undef) out. If you want to use the
over-the-net boot, comment the ata boot line
and uncomment in the net boot line.

Copy the new bootrom.sys to the IDS hard
disk into directory VxWorks1.

Rebuilding VXWORKS

Build vxworks with Tornado Project facility.
The first step is to copy some files from the
IDS CD to your host system. Look on the IDS
CD for VxWorks Demos DOS Boota-
ble\VxWorks Menued Demo\Tornado\tar-
get\proj. Copy the files from the
...Tornado\target\proj folder on the CD to the
Tornado\target\proj folder on your host. Then
click on the wsp file.1

You can expand the file list with the [+] key,
and if you subsequently click right on any file
you get a menu of actions you can perform on
the file. This is called a “context” menu in that
it represents things that you might want to do
in the current “context”. See Figure 4-16.

1. If you hit F1 and get the Tornado help it says: “The workspace window divides your project
information into three categories: Files, VxWorks, and Builds. Move between the three categories
by using the tab controls at the bottom of the workspace window.
The Files view displays information about the files associated with the projects in the workspace.
The VxWorks view displays information about the operating system components that may be
included in VxWorks or bootable application projects. This view is empty for downloadable
application projects.
The Builds view displays information about the builds specifications defined for projects in the
workspace.”

Figure 4-15 IDStest: Files

Manual Revision 1.4 IDS Quick Start Guide Page 51

Demonstration Program - VxWorks Menued Demo 4
Tornado Build →Rebuild All

If you click “Build” on the Tornado Menu Bar,
you will see a pull-down which also allows you
to rebuild the project.

rior to a build, you can go to the VxWorks tab
of the Workspace:IDStest panel and expand
the list to see which components of VxWorks
are included in the build. You will note that the
ATA hard drive component is enabled, and
that the IDE hard drive is not. If you click right
on ATA hard drive, you will see the component
properties. note that “macro” or include for this
is INCLUDE_ATA. That is the philosophy of
the project tool: the project tool sets the nec-
essary includes in the configuration files for
you, and it checks for dependencies.

Figure 4-16 File Context Menu

Figure 4-17 Tornado - Build - Rebuild All

Manual Revision 1.4 IDS Quick Start Guide Page 52

Demonstration Program - VxWorks Menued Demo 4

If you execute Rebuild all, you will see the
build output on the screen, and at the end of
that you will see:

In this example, the total size of VxWorks is
825,844 bytes comprised of (t) text, (d) data,
and (b) bss. Bss represents uninitialized data
and stands for block starting with symbol.

If you now look into \Tornado\target\proj\IDSt-
est\default, you will find the object files created
and the vxWorks file. Copy the vxWorks file,
which is a vXworks image, to the vxworks1
directory of your IDS.

Optional Network Boot Feature

Many Wind River developers set up their
BOOTROM.SYS so that it will get the vxworks
image from the host over the LAN. In that way,
you do not have to copy the VxWorks file to
the target via a floppy.

If you built your bootrom.sys for network boot,
then after the bootrom.sys is executed, it auto-
matically loads the vxworks file from host com-
puter over the network and then launches it on
the IDS. In order the loading to succeed, the

Figure 4-18 IDStest: VxWorks

ld386 -X -N -e _sysInit -Ttext 00120000 \

dataSegPad.o partialImage.o ctdt.o symTbl.o -o vxWorks

C:\TORNADO\host\x86-win32\bin\vxsize 386 -v 00020000 00120000 vxWorks

vxWorks: 705920(t) + 85912(d) + 34012(b) = 825844

Done.

Manual Revision 1.4 IDS Quick Start Guide Page 53

Demonstration Program - VxWorks Menued Demo 4
Wind River “FTP server” must be running on
your host computer. The “FTP server” soft-
ware is installed along with Tornado 2 installa-
tion and it can be found in the Start menu
under "Programs\Tornado2". Run the FTP
server and check the “User Rights” option
under the “Security” menu. Add a new user
named “target” with password “target” and set
it's home directory to be D:\TORNADO\TAR-
GET\PROJ\IDSTEST\DEFAULT where d:\tor-
nado is your Tornado2 main installation
directory.

Make sure that before building a bootrom.sys
for network booting also the vxworks-file path
corresponds fully to your build path. The
example network boot line in config.h is:

#define DEFAULT_BOOT_LINE
"elPci(0,0)host:/tornado/target/proj/idst-
est/default/vxWorks h=192.168.100.34
e=192.168.100.15 u=target tn=target pw=tar-
get o=elPci f=8"

In this case the path to vxworks is /tornado/tar-
get/proj/idstest/default/vxWorks. The “h”
parameter in boot line describes the remote
host's (the development host) IP address and
“e” parameter defines the demo-machine's IP
address.

4.3.3. IDS Menu Demo Main Source File IDS Demo.C
5 /* this IDS Demo software main body file
6
7 Version History
8 0.0.1 14.08.00 RaJ First Draft
9
10 */
11 #include "stdio.h"
12 #include "taskLib.h"
13 #include "pingLib.h"
14 #include "shellLib.h"
15 #include "kernelLib.h"
16 #include "usrLib.h"
17 #include "wdLib.h"
18
19 int makeRamDisk (int sizeK, char * RDname);
20 int blastee(int port, int size, int blen); /* port,2000,16000 */
21 int blaster(char * destAddr,int port, int size, int blen); /* port,2000,16000 */
22
23 int DiskRWTest(char * diskname,int fsize,int repcnt);
24
25 extern int blasteeStop;
26 extern int blasterStop;
27
28 #define BUF_SIZE 1024
29
30 int writeNum=0;
31 int testfilecnt=0;
32
33 int exitflag=FALSE;
34 int stopflag=FALSE;
35
36 unsigned long clkticks=0;
37

Manual Revision 1.4 IDS Quick Start Guide Page 54

Demonstration Program - VxWorks Menued Demo 4
38 WDOG_ID clkWd=NULL;
39 void clkWdFn(int);
40
41
42 /***/
43 void demoHelp(void)
44 {
45 printf("\n***\n");
46 printf("IDS VxWorks Demonstration Program v.1.0 by RaJ %s %s\n",__DATE__,__TIME__);
47 printf("***\n\n");
48
49 printf(" 1. PING test\n");
50 printf(" 2. Net Receiver Test\n");
51 printf(" 3. Net Sender Test\n");
52 printf(" 4. Net Loopback Test\n");
53 printf(" 5. FTP server test\n");
54 printf(" 6. Hard disk performance test\n");
55 printf(" 7. RAM-disk performance test\n\n");
56 /*
57 printf(" 8. Graphics demo\n");
58 printf(" 9. Internet Browser demo\n\n");
59 */
60
61 printf(" i Show running tasks info\n");
62 printf(" d Show info about available devices\n");
63 printf(" s Stop running processes\n");
64 printf(" q Exits to Shell\n\n");
65 }
66
67 /***/
68 int IDSDemo(void)
69 {
70 int j,pnum;
71 int ret,filesize,rdsize=0,repcnt;
72 int taskcnt=0,tid;
73 char ch;
74 char buf[255];
75 char nbuf[80];
76 char abuf[80];
77 char sourcedisk[80];
78
79 /* enable round-robin scheduling */
80 kernelTimeSlice(1); /* 1 tick per task */
81
82 /* create RAM-DISK */
83 for(j=0;j<3;j++)
84 {
85 printf("Enter desired RAM-disk size in kbytes (press Enter for 32M): ");
86 gets(buf);
87 if(buf[0]==0)
88 rdsize=32768;
89 else
90 sscanf(buf,"%d",&rdsize);
91 ret=makeRamDisk(rdsize*1.2,"RAMDISK");
92 if(ret==0)

Manual Revision 1.4 IDS Quick Start Guide Page 55

Demonstration Program - VxWorks Menued Demo 4
93 break;
94 /* else try again for 2 times, then fail */
95 }
96
97 if (clkWd == NULL && (clkWd = wdCreate ()) == NULL)
98 {
99 printf ("cannot create CLK watchdog\n");
100 exit (1);
101 }
102
103 sysClkRateSet(100);
104 wdStart (clkWd, 1, clkWdFn, clkWd);
105 printf("Clock watchdog started, rate set to 100 ticks/sec.\n");
106
107 /* connect to ATA disk */
108 ret=usrAtaConfig(0,0,"/ATA");
109 if(ret!=OK)
110 {
111 printf("Attaching to ATA disk failed!\n");
112 }
113 else
114 {
115 printf("ATA disk attached OK.\n");
116 }
117
118 /* kill possibly running shell task */
119 /*
120 tid=taskNameToId("tShell");
121 taskDelete(tid);
122 */
123
124 demoHelp();
125
126 /* stay in demo as long as needed */
127 while(exitflag==FALSE)
128 {
129 printf("\nEnter option (h for help): ");
130 gets(buf);
131 ch=buf[0];
132
133 /* now begin selection processing */
134 switch(ch)
135 {
136 case ’h’:
137 case ’H’:
138 demoHelp();
139 break;
140
141 case ’1’:
142 printf("\n**************** PING TEST ********************\n");
143 printf("Enter IP to ping (press Enter for 127.0.0.1): ");
144 gets(buf);
145 if(buf[0]==0)
146 {
147 sprintf(buf,"127.0.0.1");

Manual Revision 1.4 IDS Quick Start Guide Page 56

Demonstration Program - VxWorks Menued Demo 4
148 }
149
150 printf("Enter number of times to ping (press Enter for 10): ");
151 gets(abuf);
152 if(abuf[0]==0)
153 {
154 pnum=10;
155 }
156 else
157 {
158 sscanf(abuf,"%d",&pnum);
159 }
160
161 taskcnt++;
162 sprintf(nbuf,"task%d",taskcnt);
163 taskSpawn(nbuf,150,0,10000,ping,buf,pnum,0,0,0,0,0,0,0,0);
164 printf("Ping task running for %d times...\n",pnum);
165 break;
166
167 case ’2’:
168 printf("\n************* Net Receiver Test ***************\n");
169 printf("Enter desired PORT nr (press Enter for 2000): ");
170 gets(buf);
171 if(buf[0]==0)
172 {
173 pnum=2000;
174 }
175 else
176 {
177 sscanf(buf,"%d",&pnum);
178 }
179
180 taskcnt++;
181 sprintf(nbuf,"task%d",taskcnt);
182 taskSpawn(nbuf,200,0,10000,blastee,pnum,2000,16000,0,0,0,0,0,0,0);
183 printf("Receiver task running...\n");
184 break;
185
186 case ’3’:
187 printf("\n************* Net Sender Test *****************\n");
188 printf("Enter desired PORT nr (press Enter for 2000): ");
189 gets(buf);
190 if(buf[0]==0)
191 {
192 pnum=2000;
193 }
194 else
195 {
196 sscanf(buf,"%d",&pnum);
197 }
198
199 printf("Enter receiver machine’s IP address (press Enter for 127.0.0.1): ");
200 gets(buf);
201 if(buf[0]==0)
202 {

Manual Revision 1.4 IDS Quick Start Guide Page 57

Demonstration Program - VxWorks Menued Demo 4
203 sprintf(buf,"127.0.0.1");
204 }
205
206 taskcnt++;
207 sprintf(nbuf,"task%d",taskcnt);
208 taskSpawn(nbuf,200,0,10000,blaster,buf,pnum,2000,16000,0,0,0,0,0,0);
209 printf("Sender task running...\n");
210 break;
211
212 case ’4’:
213 printf("\n************* Net Loopback Test ***************\n");
214 printf("Enter desired PORT nr (press Enter for 2000): ");
215 gets(buf);
216 if(buf[0]==0)
217 {
218 pnum=2000;
219 }
220 else
221 {
222 sscanf(buf,"%d",&pnum);
223 }
224
225 taskcnt++;
226 sprintf(nbuf,"task%d",taskcnt);
227 printf("Starting receiver for port %d...\n",pnum);
228 taskSpawn(nbuf,200,0,10000,blastee,pnum,2000,16000,0,0,0,0,0,0,0);
229
230 sprintf(buf,"127.0.0.1");
231
232 taskcnt++;
233 sprintf(nbuf,"task%d",taskcnt);
234 printf("Starting sending to %s:%d\n",buf,pnum);
235 taskSpawn(nbuf,200,0,10000,blaster,buf,pnum,2000,16000,0,0,0,0,0,0);
236 printf("Loopback test running...\n");
237 break;
238
239 case ’5’:
240 printf("\n************* FTP Server Test *****************\n");
241 printf(" FTP Server is already running, maximum space in /RAMDISK is %d kbytes.\n\n",rdsize);
242 ifAddrGet("elPci0",buf);
243 printf(" This machine’s IP address is %s\n\n",buf);
244 printf(" Establish a FTP connection from remote machine to this \n \
245 test machine by issuing ’FTP %s’ command from remote machine’s \n \
246 command line. Enter ’target’ as user and ’target’ as password.\n \
247 If successfully logged in, issue commands ’bin’ to set binary \n \
248 transfer mode and ’cd /RAMDISK’ to set target directory on this \n \
249 test machine.\n",buf);
250 printf(" Use ’lcd local_needed_dir’ command to set remote machine’s working \n \
251 directory, use ’put file_name’ to send files from remote machine to \n \
252 this test machine and use ’get filename’ to transfer files from this \n \
253 test machine to remote one. Use ’bye’ to log out, ’dir’ to get info \n \
254 about files in test machine’s RAMDISK.\n");
255 break;
256
257 case ’6’:

Manual Revision 1.4 IDS Quick Start Guide Page 58

Demonstration Program - VxWorks Menued Demo 4
258 printf("\n******** Hard-disk Performance Test ***********\n");
259 printf("Enter size of test file in kbytes (press Enter for 10M): ");
260 gets(buf);
261 if(buf[0]==0)
262 {
263 filesize=10*1024;
264 }
265 else
266 {
267 sscanf(buf,"%d",&filesize);
268 }
269
270 printf("Enter number of repetitions (0=forever, press Enter for 10): ");
271 gets(buf);
272 if(buf[0]==0)
273 {
274 repcnt=10;
275 }
276 else
277 {
278 sscanf(buf,"%d",&repcnt);
279 }
280
281 testfilecnt++;
282
283 sprintf(nbuf,"tstRW%d",testfilecnt);
284 taskSpawn(nbuf,200,0,10000,DiskRWTest,"ATA",filesize,repcnt,0,0,0,0,0,0,0);
285 printf("Hard-disk performance test running...\n");
286 break;
287
288
289 case ’7’:
290 printf("\n******** RAM-disk Performance Test ************\n");
291 printf("Enter size of test file in kbytes (max %d, press Enter for 32M): ",rdsize);
292 gets(buf);
293 if(buf[0]==0)
294 {
295 filesize=32*1024;
296 }
297 else
298 {
299 sscanf(buf,"%d",&filesize);
300 }
301
302
303 printf("Enter number of repetitions (0=forever, press Enter for 10): ");
304 gets(buf);
305 if(buf[0]==0)
306 {
307 repcnt=10;
308 }
309 else
310 {
311 sscanf(buf,"%d",&repcnt);
312 }

Manual Revision 1.4 IDS Quick Start Guide Page 59

Demonstration Program - VxWorks Menued Demo 4
313
314 testfilecnt++;
315
316 sprintf(nbuf,"tstRW%d",testfilecnt);
317 taskSpawn(nbuf,200,0,10000,DiskRWTest,"RAMDISK",filesize,repcnt,0,0,0,0,0,0,0);
318 printf("RAM-disk performance test running...\n");
319 break;
320
321 case ’s’:
322 case ’S’:
323 printf("\n******** Stopping Running Processes ***********\n");
324 blasteeStop=TRUE;
325 blasterStop=TRUE;
326 stopflag=TRUE;
327 break;
328
329 case ’q’:
330 case ’Q’:
331 printf("\n*********** Exiting to Shell ******************\n");
332
333 exitflag=TRUE;
334 stopflag=TRUE;
335
336 blasteeStop=TRUE;
337 blasterStop=TRUE;
338 shellInit(10000,TRUE);
339 break;
340
341 case ’i’:
342 case ’I’:
343 printf("\n******** Info about running tasks *************\n");
344 i(0);
345 break;
346
347 case ’d’:
348 case ’D’:
349 printf("\n********** Info about devices *****************\n");
350 devs();
351 break;
352
353 default:
354 break;
355 }
356 } /* while(not exit) */
357
358 wdCancel(clkWd);
359 wdDelete(clkWd);
360
361 return(0);
362 }
363
364 /**/
365 void clkWdFn (int parm)
366 {
367 clkticks++;

Manual Revision 1.4 IDS Quick Start Guide Page 60

Demonstration Program - VxWorks Menued Demo 4
368
369 if(clkticks%6000==0)
370 logMsg("Uptime %ld minutes.\n",clkticks/6000);
371
372 if(exitflag==FALSE)
373 {
374 wdStart (clkWd, 1, clkWdFn, 0);
375 }
376 else
377 {
378 wdCancel(clkWd);
379 wdDelete(clkWd);
380 logMsg("Clock WDOG stopped.\n");
381 }
382 }
383
384
385 /**/
386 int DiskRWTest(char * diskname,int fsize,int repcnt)
387 {
388 FILE * fp;
389 char fname[80];
390 int i,j,ret,kbytes;
391 unsigned long startticks;
392 float transfer;
393 char *buf1;
394 char *buf2;
395
396 stopflag=FALSE;
397
398 if(repcnt==0)
399 repcnt=2000000000;
400
401 sprintf(fname,"/%s/t%07d",diskname,clkticks);
402
403 buf1=(char *)malloc(2048);
404 if(buf1==NULL)
405 {
406 printf("Memory allocation for buf1 failed!\n");
407 return(-1);
408 }
409
410 /* initialize 1K buf */
411 for(j=0;j<1024;j=j+8)
412 {
413 sprintf(buf1+j,"%07ld",j);
414 }
415
416 buf2=(char *)malloc(2048);
417 if(buf2==NULL)
418 {
419 printf("Memory allocation for buf2 failed!\n");
420 free(buf1);
421 return(-1);
422 }

Manual Revision 1.4 IDS Quick Start Guide Page 61

Demonstration Program - VxWorks Menued Demo 4
423
424
425 writeNum=0;
426
427 for(i=0;i<repcnt;i++)
428 {
429 rm(fname);
430
431 startticks=clkticks;
432
433 if(stopflag==TRUE)
434 break;
435
436 fp=fopen(fname,"wb");
437 if(fp==NULL)
438 {
439 printf("\n%s open for write failed!\n",fname);
440 free(buf1);
441 free(buf2);
442 return(-1);
443 }
444
445 for (kbytes=0;kbytes<fsize;kbytes++) /* kbytes loop */
446 {
447 if(stopflag==TRUE)
448 break;
449
450 ret=fwrite(buf1,BUF_SIZE,1,fp);
451 if(ret<1)
452 {
453 printf("\nWrite to %s error!\n",fname);
454 fclose(fp);
455 free(buf1);
456 free(buf2);
457 return(-1);
458 }
459
460 writeNum+=BUF_SIZE;
461
462 } /* for fsize of kbytes */
463
464 fclose(fp);
465
466 if((clkticks-startticks)>0)
467 transfer=((float)fsize*1024)*(float)sysClkRateGet()/(float)(clkticks-startticks);
468 else
469 transfer=0.0;
470 printf("%s WRITE test %d done: %10.0f bytes/sec\n",fname,i+1,transfer);
471
472 /********** now reading test *****************************/
473 startticks=clkticks;
474
475 if(stopflag==TRUE)
476 break;
477

Manual Revision 1.4 IDS Quick Start Guide Page 62

Demonstration Program - VxWorks Menued Demo 4
478 fp=fopen(fname,"rb");
479 if(fp==NULL)
480 {
481 printf("\n%s open for read failed!\n",fname);
482 free(buf1);
483 free(buf2);
484 return(-1);
485 }
486
487 for (kbytes=0;kbytes<fsize;kbytes++) /* kbytes loop */
488 {
489 if(stopflag==TRUE)
490 break;
491
492 ret=fread(buf2,BUF_SIZE,1,fp);
493 if(ret<1)
494 {
495 printf("\n%s reading error at %d kbytes!\n",fname,kbytes);
496 fclose(fp);
497 free(buf1);
498 free(buf2);
499 return(-1);
500 }
501
502 } /* for fsize of kbytes */
503
504 fclose(fp);
505
506 if((clkticks-startticks)>0)
507 transfer=((float)fsize*1024)*(float)sysClkRateGet()/(float)(clkticks-startticks);
508 else
509 transfer=0.0;
510 printf("%s READ test %d done: %10.0f bytes/sec\n",fname,i+1,transfer);
511
512 }/* for repcnt */
513
514 free(buf1);
515 free(buf2);
516
517 rm(fname);
518
519 printf("DiskRWTest for %s ended.\n",fname);
520 return(0);

}

Manual Revision 1.4 IDS Quick Start Guide Page 63

Index

Index

Numerics
8254 PIT Clock 12

A
Acrobat 4.0 Reader 8
Adobe web site 22
annotated schematic 9

B
BOOTROM.SYS, rebuilding 49
Bootrom.sys, rebuilding 47
Bootstrap

bit 20 12
bit 21 14
bit 9 14, 18
bits 12 and 23 14
bits 16 and 17 17
bits 18, 19, and 20 11

BUR Flash Demo 34

C
CLK14M 12
Clocking 11

128MHz 11
14MHz 12
32MHz, RTC 12
64MHz 11
Clock source for PCI bus 12
JTAG 13
PCI 11
Watchdog Timer 13

CMOS Battery 13
Compressed basket 31
CPU clock speed 11, 17

D
Default jumper settings 11

128MHz 11
14MHz 12
64MHz 11
Clock source for PIC bus 12
clocking 11
JTAG 13
PCI clock 11
Real Time Clock 12
Watchdog Timer 13

Demonstration program, Z-tag Manager 25
Dongle types 26

Fast-PassThrough 26
Memory 26
On-Board dongle 26

F
Fast Dongle 34
Flash programmer, demo 26
FTP server test 49

H
halt 21

I
Image memory is occupied 46
Install the Z-Tag Manager software 27
ISA Sound Card 19

J
JP2 13
JP3 11
JP4 12
JP5 13
JP6 14
JP8 13
JP9 12
JTAG chain 13
JTAG jumper setting 13
Jumper settings 11

JTAG 13
SYSCLK source 16

L
log in screen 21

M
Memory Dongle 34
Menued demo, running 48
Monitoring the Flash programmer 31

N
Net loopback test 49
Net receiver test 48
Net sender test 49
Network Card 8

Manual Revision 1.4 IDS Quick Start Guide Page 64

Index

O
On-Board dongle 26
overview, IDS 7

P
PCI Clock 11
PCI Network Adapter 7
PCI Request/Grant #3 14
PCI Slot #3 8
Peripheral cards, supplied 8
PING test 48
PIT Clock 12

Jumper setting 17
Power

117 VAC at 60Hz 11
220V at 50Hz 11
cable 11

Preparing the Z-tag payload 29

R
Real Time Clock

Jumper setting 17
Rebuilding

BOOTROM.SYS 47
shell demo 47
VxWorks 50
VXWORKS.ST’VxWorks

Rebuilding Vxworks.st 47
Refresh bodies 33, 35
refresh bodies 28
Running the menued demo 48
Running the shell demo 46

S
S2 Switch

Key 8 14
S3 Switch

Key 1 and 8 14
Key 7 14
Keys 4, 5, and 6 11

Saving your work 32
Select serial device 27
Shell demo

rebuilding 47
running 46

Silk screen 9
Standard USA power cable 11
Stop processing 31

SYSCLK source jumper setting 16
System clock 11

U
update the BIOS 21
Upload and Execute Command 28
USB Test Mode 14

V
Video Card 8
VxWorks

FTP server test 49
Net loopback test 49
Net receiver test 48
Net sender test 49
Ping test 48
Rebuilding 50
Rebuilding the shell demo 47
Running the menued demo 48
Running the shell demo 46
Shell demo 35

W
Watchdog Timer 13

Z
ZF Micro Devices’ phone 9
ZFx86 Training Book 8
Z-tag Manager

Compressed basket 31
Demonstration program 25
Monitoring the Flash programmer 31
Preparing the payloac 29
Refresh bodies 33
Saving your work 32
Select serial device 27
Software installation 27
Stop porcessing 31
Upload and execute 28

Revision 1.4 IDS Quick Start Guide Page 65

ZF Micro Devices, Inc.

1052 Elwell Court

Palo Alto, California 94303

(650) 965-3800 · Fax 965-4050

www.zfmicro.com

http://zfmicro.com/
http://www.zflinux.com/

	Table of Contents
	1. Overview
	1.1. Rear Panel Connections
	1.2. Supplied Peripheral Cards
	1.3. Documents
	1.3.1. The ZFx86 Training Book
	1.3.2. Annotated Eval I Schematic
	1.3.3. Annotated Eval I Silk Screen
	1.3.4. Design Orcad and Pads Files

	2. Hardware Setup
	2.1. Power and Cabling
	2.2. Default Jumper Settings
	2.2.1. Clocking
	2.2.2. Clock Source for PCI Bus
	2.2.3. Watchdog Timer Oscillator Source
	2.2.4. JTAG Chain
	2.2.5. CMOS Battery
	2.2.6. PCI Request/Grant #3
	2.2.7. JP6 - DMA or PCI Req/Grant
	2.2.8. External Boot
	2.2.9. USB Test Mode - disabled
	2.2.10. Flash Chip Selection
	2.2.11. System Clocking Tables

	2.3. Jumper Settings Details
	2.3.1. JP3 SYSCLK Source Jumper
	2.3.2. S1Clock Multiplier DIP Switches
	2.3.3. CPU Speed
	2.3.4. PCI Clocking
	2.3.5. JP1: 8254 PIT Clock (14MHz)
	2.3.6. JP9 - Real Time Clock (32KHz)
	2.3.7. PCI Request/Grant Bootstrap�9

	3. Software, Documentation and Design Aids
	3.1. Powering Up
	3.2. System BIOS
	3.3. Software on the Hard Drive
	3.4. Software on the ZF CD
	3.4.1. Z-Tag Manager Win 95/98
	3.4.2. Acrobat Readers Win/Linux

	3.5. Documentation on the ZF CD
	3.6. Usage Tips
	3.6.1. Shutting Down Linux
	3.6.2. Using CD ROM Drive from DOS
	3.6.3. Set the Boot Default to DOS
	3.6.4. VxWorks Setup
	3.6.5. Using the Flash

	4. Demonstration Program
	4.1. Dongle Flash Programmer
	4.1.1. Analysis: ZFx86 Power On
	4.1.2. Dongle Types
	4.1.3. Demo of the Flash Programmer
	4.1.4. Build Command Set In the Z-tag Manager
	4.1.5. Using the Command Sequence
	4.1.6. Analysis: Source Code
	4.1.7. Program Preparation Steps

	4.2. VxWorks Shell Demo
	4.2.1. Running the Shell Demo
	4.2.2. Rebuilding the Shell Demo

	4.3. VxWorks Menued Demo
	4.3.1. Running the Menued Demo
	4.3.2. Building Menued Demo Software
	4.3.3. IDS Menu Demo Main Source File IDS Demo.C

	Index

