
PIPELINE_REG

Pipeline Register with generic width
Rev. 1.1

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Fully synchronous design

● Configurable data width

● Uses a simple valid-ready streaming protocol

● Compatible with other streaming protocols such as: AMBA® 
AXI4-stream, Altera® Avalon-ST and Xilinx® local-link

● Self flushing

● 1 cycle latency

Applications

● High-speed data streaming interfaces for DSP, video and data

● Interfacing between other pipeline elements

● Interfacing with other Zipcores IP Cores

● Registering the data path to improve timing

● Registering the data path on and off chip

● Simple buffering

Generic Parameters

Generic name Description Type Valid range

dw data width integer ≥ 1

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

datain [dw-1:0] in Pipeline register input data data

datain_val in Indicates valid data at the 
pipeline register input

high

datain_rdy out Indicates that the pipeline 
register is ready to accept 
data

high

dataout [dw-1:0] out Pipeline register output 
data

data

dataout_val out Indicates that the pipeline 
register contains valid data

high

dataout_rdy in Indicates that the output is 
ready to receive data

high

Block Diagram

General Description

PIPELINE_REG (Figure 1) is a self-flushing register element used as a
fundamental building block in pipelined architectures.  It's principal use is
to register the data path between series elements in a pipeline and also to
interface between blocks using a simple data-streaming protocol.  

Data flows in and out of the pipeline register in accordance with the valid-
ready protocol1.   Data  is  written  to the  register  on a rising clock-edge
when both  datain_val  and  datain_rdy are high.  Data is read out of the
register  on a rising clock-edge when both  dataout_val and  dataout_rdy
are high.  The component has a latency of 1 clock cycle.

The pipeline  register  is self-flushing in that  once data  is written  to the
register  then  it  will  try  and  empty  this  data  on the  next  clock  cycle  -
irrespective of whether there is new input data or not.  In this way, the
register works somewhat like a one-deep FIFO.

If  the  register  is  full  then  the  internal  state-machine  will  maintain
dataout_val asserted until the register is empty or no further valid input
data  is  present.   Conversely,  if  the  register  is  empty,  then  the  state-
machine  will  assert  datain_rdy high  to  actively  request  data  from  the
upstream interface.

1 For more examples of the valid-ready streaming protocol and it's 
implementation see Zipcores application note: app_note_zc001.pdf

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 1 of 3

Figure 1: Pipeline register

http://www.zipcores.com/pipeline-register-with-generic-width.html


PIPELINE_REG

Pipeline Register with generic width
Rev. 1.1

Functional Timing

Figure 2 shows a simple data transfer when the pipeline register is initially
empty and the downstream side is stalling.  The downstream side then
asserts  dataout_rdy high  to  complete  the  data  transfer.   Figure  3
demonstrates a series of sequential data transfers without stalling.

Note that data is only transferred at the pipeline register interfaces on a
rising clock-edge when valid and ready are both active high.

Source File Description

All source files are provided as text files coded in VHDL.  The following
table gives a brief description of each file.

Source file Description

pipeline_reg.vhd Top-level block

pipeline_reg_bench.vhd Top-level test bench

Functional Testing

An example  VHDL testbench  is  provided  for  use  in  a  suitable  VHDL
simulator.  The compilation order of the source code is as follows:

1. pipeline_reg.vhd
2. pipeline_reg_bench.vhd

The VHDL testbench instantiates the pipeline register component and the
user may modify the generic parameters as required.

The  simulation  must  be  run  for  at  least  3  ms  during  which  time  a
randomized input data sequence will be written to the pipeline register.  In
addition  to  the  random  input  data,  the  test  bench  also  generates
randomized valid and ready signals at the input and output of the pipeline
register in order to verify that the the flow-control is working correctly.

The  simulation  generates  two  text  files  called:  pipeline_reg_in.txt and
pipeline_reg_out.txt.  These files respectively contain the input and output
data captured at the interfaces during the test.  Matching input and output
files indicate that the test has run successfully.

Synthesis

The source file 'pipeline_reg.vhd'  is the only file required for synthesis.
There are no sub-modules in the design.

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® Virtex 6
and Spartan-6 FPGA devices.  Synthesis  results for other  FPGAs and
technologies can be provided on request.

Trial synthesis results are shown with the generic parameters set to: dw =
32.  Resource usage is specified after Place and Route.

VIRTEX 6

Resource type Quantity used

Slice register 33

Slice LUT 34

Block RAM 0

DSP48 0

Occupied Slices 10 MHz

Clock frequency (approx) 600 MHz

SPARTAN 6

Resource type Quantity used

Slice register 34

Slice LUT 33

Block RAM 0

DSP48 0

Occupied Slices 10

Clock frequency (approx) 600 MHz

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 2 of 3

Figure 2: Pipeline stalling

Figure 3: Sequential data transfers

http://www.zipcores.com/pipeline-register-with-generic-width.html


PIPELINE_REG

Pipeline Register with generic width
Rev. 1.1

Revision History

Revision Change description Date

1.0 Initial revision 19/04/2008

1.1 Minor source-code changes.  Previous data 
held as default value when no further valid 
input present.

06/04/2014

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 3 of 3

http://www.zipcores.com/pipeline-register-with-generic-width.html

