
UART_CONT

UART Serial Interface Controller
Rev. 1.4

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● UART compatible serial interface controller

● Receive input FIFO with configurable depth

● Transmit output FIFO with configurable depth

● Supports all standard data rates from 9600 to 921600 baud

● Fully custom data rates also supported – limited only by system
clock frequency

● 5, 6, 7 or 8-bit data payload width with 1 or 2 stop bits

● Even, odd, mark, space or no parity

● Receive and transmit interrupt flags

● Receive and transmit FIFO full flags

Applications

● UART communications using a variety of electrical standards
such as RS232, RS422 and RS485 etc.

● Control in industrial, commercial and lab environments

● Basic PC-to-board interfacing and debug

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

rx_flag out Byte received flag high

rx_full out Receive FIFO full flag high

tx_flag out Byte transmitted flag high

tx_full out Transmit FIFO full flag high

rx_in in Serial bits in serial data

tx_out out Serial bits out serial data

rx_data[7:0] out Received data data

rx_err out Parity error flag
(qualified by rx_val)

high

rx_val out Received data valid high

rx_rdy in Received data ready
handshake

high

tx_data[7:0] in Transmit data data

tx_val in Transmit data valid high

tx_rdy out Transmit data ready
handshake

high

Block Diagram

Generic Parameters

Generic name Description Type Valid range

baudrate Baud rate in bits per
second

integer 9600 to
921600
(custom rates
also supported)

sclkfreq System clock
frequency in Hz

integer Ratio (sclkfreq /
baurate)
< 65536

databits Number of data bits integer 5,6,7 or 8

stopbits Number of stop bits integer 1,2

parity Enable parity bit after
data payload in
bitstream

integer 0: none
1: even
2: odd
3: mark
4: space

rxfifo_depth Receive data FIFO
depth

integer ≥ 2

rxfifo_depth_log2 Receive data FIFO
depth log2

integer log2
(rxfifo_depth)

txfifo_depth Transmit data FIFO
depth

integer ≥ 2

txfifo_depth_log2 Transmit data FIFO
depth log2

integer log2
(txfifo_depth)

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 1 of 4

Figure 1: UART serial interface controller architecture

http://www.zipcores.com/uart-serial-interface-controller.html

UART_CONT

UART Serial Interface Controller
Rev. 1.4

General Description

UART_CONT is a robust UART-compliant serial interface controller
capable of receiving and transmitting bits serially. It has a configurable
data payload from 5 to 8-bits (with or without parity) and supports either 1
or 2 stop bits.

Both the receiver and transmitter circuits have a configurable FIFO which
may be used to buffer the parallel input and output data as required. In
addition, the controller features a number of flags to indicate that a byte
has been received, a byte has been sent, and that the FIFOs are full.

Under normal conditions, the controller will support baud rates of 9600 to
921600 baud - although higher and lower rates may be supported
depending on the choice of system clock frequency. Fully custom baud
rates are also permitted. Internally, the controller uses a 16-bit clock
divider for UART serial timing. As long at the ratio: (sclkfreq / baudrate) is
in the range 16 to 65535 then the UART timing will be valid.

The UART controller is comprised of four main blocks as described by
Figure 1. These blocks are the Receiver (De-serializer), the Transmitter
(Serializer) and the receive and transmit FIFOs.

Both the receive and transmit FIFOs use the standard Zipcores valid-
ready handshake protocol. This means that data is written or read from
the FIFOs on the rising-edge of clk when val and rdy are both high1.

The transmit FIFO may be used to 'queue up' a sequence of bytes to be
sent via the UART interface. Likewise, the receive FIFO may be used to
buffer incoming words. When the receive FIFO is full the flag rx_full is
asserted and will remain high until the FIFO is emptied. If the receive
FIFO is full, then any further bytes received will be lost until the the FIFO
has sufficient capacity.

Functional Timing

Figure 2 shows the format of the bit stream at the UART receiver. The
example demonstrates the timing waveform at 9600 baud in which the
duration of a bit is approximately 104 us.

A frame begins with a START bit (logic '0') then the bits are read starting
with the LSB and ending with the MSB. The frame terminates with a
STOP bit (Logic '1'). The design may be configured to use 5, 6, 7 or 8
data bits, an optional parity bit and 1 or 2 stop bits.

Figure 3 demonstrates the corresponding receiver output for the input bit-
stream in Figure 2. Note that the interface is initially stalled with rx_rdy
asserted low. Once the rdy handshake is asserted high, the data is
transferred.

1 See Zipcores application note: app_note_zc001.pdf for more
examples of the valid-ready protocol and it's implementation

The UART transmitter timing is exactly the same, with the exception that
the data direction is reversed.

The additional signals rx_flag, tx_flag and rx_err are not shown in the
timing diagrams. The rx and tx flags function as simple strobes that are
asserted for one system clock cycle when data is written to and read from
and to the Rx and Tx FIFOs. The rx_err signal is a flag that is asserted
high when the receiver detects a parity error in the received data. This
signal is qualified by the rx_val signal and and when rx_val is low it should
be ignored.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

uart_fifo.vhd Transmit and Receive FIFOs

uart_tx.vhd UART Transmitter

uart_rx.vhd UART Receiver

uart_cont.vhd Top-level block

uart_cont_bench.vhd Top-level test bench

uart_file_reader.vhd File reader for transmit data

uart_tx_in.txt Transmit data text file

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. uart_fifo.vhd
2. uart_rx.vhd
3. uart_tx.vhd
4. uart_cont.vhd
5. uart_file_reader.vhd
6. uart_cont_bench.vhd

The VHDL test bench instantiates the UART_CONT component in a loop-
back configuration with the serial data transmit stream feeding into the
serial receive stream. The baud rate, parity, number of stop bits and
system clock frequency may be adjusted by the user as required.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 2 of 4

Figure 3: UART Receiver valid-ready handshake

Figure 2: UART serial bitstream format

http://www.zipcores.com/uart-serial-interface-controller.html

UART_CONT

UART Serial Interface Controller
Rev. 1.4

The input stimulus for the test is provided by the file uart_tx_in.txt. This
stimulus file should be put in the current top-level VHDL simulation
directory. The input text file is a sequence of 8-bit data words (in hex) on
consecutive lines that represent the data to be transmitted.

In the default set up, the simulation must be run for around 100 ms during
which time the file-reader module will read the 8-bit data to be
transmitted. The controller is set up in a loop-back configuration with
parity set to 'none'.

The simulation generates an output text file called: uart_rx_out.txt. This
file contains the 8-bit data captured at the receiver outputs during the
course of the simulation. At the end of the test, the input and output files
may be compared to verify correct operation. Both these files should be
identical as the UART is configured in loop-back.

Development Board Testing

The UART Serial Controller was implemented on a Xilinx® 2V3000
FPGA running at a system clock frequency of 65MHz. An Intersil®
ICL3232CPZ line-driver chip was used to provide the RS232-level
interfacing.

A simple serial communications program was written for a PC to allow a
series of characters to be sent and received using the standard (COM1)
serial port. The port was configured to use 8 data bits, 1 stop bit and no
parity. Various baud rates were tested to ensure correct operation at
different frequencies.

The first series of tests were carried out at 115200 baud. Figure 4
demonstrates the result of sending the character 'U' (0x55 in hex) to the
UART controller. The FPGA-based controller was set up in a loop-back
configuration so that the received bits were were re-transmitted. The
upper trace shows the serial bits on the Rx pin. The bottom trace shows
the resulting data on the Tx pin.

Figure 5 shows detail of the mark-space ratio of the same transmitted
output bits. For a baud rate of 115200, then the width of each bit should
be around 8.7 us.

Figure 6 shows the UART controller in the same loop-back configuration,
but this time working at 921600 baud. At this data rate, the PC serial
controller card was working at the limit of it's specified performance. The
resulting mark space ratio was quite poor. However, the FPGA-based
UART Controller was still capable of decoding the bit-stream correctly.

Note that the FPGA-based UART Controller resends the data 0x55 with a
correctly proportioned mark-space ratio.

Figure 8 on the following page shows a detailed view of the transmitted
bits. For a baud rate of 921600 then the duration of a bit should be
around 1.085 us.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 3 of 4

Figure 4: Receive/Transmit 0x55 at 115200 baud

Figure 5: Timing detail at 115200 baud

Figure 6: Receive/Transmit 0x55 at 921600 baud

http://www.zipcores.com/uart-serial-interface-controller.html

UART_CONT

UART Serial Interface Controller
Rev. 1.4

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● uart_cont.vhd
○ uart_fifo.vhd
○ uart_rx.vhd
○ uart_tx.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx® Virtex
6 and Spartan 6 FPGA devices. Synthesis results for other FPGAs and
technologies can be provided on request.

Note that in order to achieve the fastest and most area efficient designs
the size of the FIFOs should be kept to a minimum.

Trial synthesis results are shown with the generic parameters set to:
baudrate = 115200, sclkfreq = 3686400, databits = 8, stopbits = 1, parity
= 0, rxfifo_depth = 16, rxfifo_depth_log2 = 4, txfifo_depth = 16,
txfifo_depth_log2 = 4.

Resource usage and timing is specified after Place and Route.

VIRTEX 6

Resource type Quantity used

Slice register 75

Slice LUT 107

Block RAM 0

DSP48 0

Occupied Slices 35

Clock frequency (approx) 430 MHz

SPARTAN 6

Resource type Quantity used

Slice register 75

Slice LUT 108

Block RAM 0

DSP48 0

Occupied Slices 37

Clock frequency (approx) 320 MHz

Revision History

Revision Change description Date

1.0 Initial revision 03/11/2008

1.1 Added parity bit support 18/10/2011

1.2 Updated synthesis results for Xilinx® 6
series FPGAs

23/10/2012

1.3 Updated synthesis results in line with minor
source-code changes. Added the tx_full flag

04/05/2014

1.4 Added generic to allow cofigurable number
of data bits the the payload

07/07/2014

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 4 of 4

Figure 7: Timing detail at 921600 baud

http://www.zipcores.com/uart-serial-interface-controller.html

