
TXT_OVERLAY

Text Overlay Module
Rev. 1.6

Key Design Features

● Synthesizable, technology independent IP Core for FPGA and
ASIC

● Supplied as human readable VHDL (or Verilog) source code

● Text overlays (On Screen Display) over real-time video

● 24-bit RGB pixels supported as standard - other formats (e.g.
YCbCr 4:2:2) supported on request

● Character buffer maps directly to the display

● No external memory or frame buffer required

● Supports all video resolutions up to 4096 x 4096 pixels

● Programmable text-box position and size

● Programmable clip-box (clip-plane) region

● Independent horizontal and vertical scrolling

● Programmable foreground and background colours

● Programmable 8-bit alpha transparency

● Three sizes of text: 8x16, 16x32 or 32x64

● Normal or highlighted text

● Used-defined ROM supports different fonts, characters and
custom bitmap graphics

● Ships with four pre-defined character sets

● No complex programming required

● Optional I2C, SPI or UART interfaces for simple programming
via micro-processor or micro-controller

Applications

● Digital TV and home-media solutions

● Interactive guides, menus, tables, lists, video games etc.

● Terminal and Console windows

● Animated text and graphics including hardware sprites, mouse
pointers and cursors

● Window movement in the same manner as a 2D 'BitBlt'

● Scrolling text and moving wrap-around 'banner' displays

● Instrumentation and monitoring applications including animated
gauges, charts, dials, meters, counters etc.

● Low cost text and graphics applications

Block Diagram

Generic Parameters

Generic name Description Type Valid Range

text_size Text size selection integer 0: small (8x16)
1: medium (16x32)
2: large (32x64)

use_alpha Enable/disable
alpha-blend support

boolean True / False

pixels_per_line No. of pixels in each
input video line

integer < 4096

lines_per_frame No. of lines in each
input video frame

integer < 4096

General Description

The TXT_OVERLAY IP Core is a highly versatile On Screen Display
(OSD) module that allows text and bitmap graphics to be inserted over
RGB video. The module supports a wide range of text effects and the
programming interface is very simple. Text is written to a 64x32 character
buffer which is mapped (via a bitmap ROM) directly to the display.

The characters in the buffer are displayed in a 'text-box' which may be
positioned anywhere in the video display area. Bitmaps for each
character are stored in a ROM which may be modified to support different
font styles or bitmap graphics.

Pixels and syncs flow in and out of the overlay module in accordance with
the valid-ready pipeline protocol. Pixels are sampled at the module inputs
on a rising clock-edge when pixin_val and pixin_rdy are both high.
Likewise, pixels are transferred out of the module on a rising clock-edge
when pixout_val is high and pixout_rdy is high. The pipeline protocol
allows both input and output interfaces to be stalled independently if
necessary. Any number of text overlay modules may be cascaded in
series. By placing more than one overlay module together, the user is
able to achieve more complex text and 2D effects.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 1 of 8

Figure 1: Text overlay module architecture

PIXEL PIPELINE

reset

IN
P

U
T

 P
IX

E
L

 B
U

F
F

E
R

 /
A

D
D

R
E

S
S

 G
E

N
E

R
A

T
O

R

clk

txt_top_x

txt_bot_x

txt_bot_y

pixin_rdy

12

te
xt

_
si

ze

txt_top_y

pixin (RGB)

pixin_hsync

pixin_val

24
pixin_vsync

64 x 32

CHARACTER
BUFFER

8 x 16
16 x 32
32 x 64

CHARACTER
BITMAP

ROM

R
O

M
 A

D
D

R

G
E

N
E

R
A

T
O

R

P
IX

E
L

 B
L

E
N

D
IN

G
 U

N
IT

24

12

12

12

pixout_rdy

pixout (RGB)

pixout_hsync

pixout_val

pixout_vsync

col

row

char

8

col

row

1-bit
pixel

ch
a

r_
e

n

ch
a

r_
w

e

ch
a

r_
w

d
a

ta

ch
a

r_
co

l_
a

d
d

r

ch
a

r_
ro

w
_

a
d

d
r

ch
a

r_
rd

a
ta

I2C / SPI / UART I/F
(Optional Extra)

tx
t_

fg
n

d
_

co
l

tx
t_

b
g

n
d

_
co

l

tx
t_

b
o

x_
a

lp
h

a

tx
t_

b
o

x_
m

o
d

e

source
pixel +
syncs

u
se

_
a

lp
h

a

p
ix

e
ls

_
p

e
r_

lin
e

lin
e

s_
p

e
r_

fr
a

m
e

2424

clp_top_x

clp_bot_x

clp_bot_y

12
clp_top_y

12

12

12

txt_shift_x

txt_shift_y
12

12

http://www.zipcores.com/text-overlay-module.html

TXT_OVERLAY

Text Overlay Module
Rev. 1.6

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

txt_fgnd_col [23:0] in Text foreground colour as
24-bit RGB

data

txt_bgnd_col [23:0] in Text background colour as
24-bit RGB

data

txt_box_alpha [7:0] in Alpha transparency of text
box region

data

txt_box_mode in Text background fill enable
0 = unfilled, 1 = filled

data

txt_top_x [11:0] in Top-left x position of textbox data

txt_top_y [11:0] in Top-left y-position of textbox data

txt_bot_x [11:0] in Bottom-right x position of
textbox

data

txt_bot_y [11:0] in Bottom-right y position of
textbox

data

txt_shift_x[11:0] in Horizontal shift in pixels data

txt_shift_y[11:0] in Vertical shift in pixels data

clp_top_x[11:0] in Top-left x position of clipbox data

clp_top_y[11:0] in Top-left y-position of clipbox data

clp_bot_x[11:0] in Bottom-right x position of
clipbox

data

clp_bot_y[11:0] in Bottom-right y position of
clipbox

data

char_en in Character buffer enable high

char_we in Character buffer write
enable

high

char_wdata [7:0] in Character buffer write data data

char_col_addr [5:0] in Character buffer column
address

data

char_row_addr [4:0] in Character buffer row
address

data

char_rdata [7:0] out Character buffer read data data

pixin [23:0] in 24-bit RGB source pixel in data

pixin_vsync in Vertical sync in
(signifies start of frame)

high

pixin_hsync in Horizontal sync in
(signifies start of line)

high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input pixel
(handshake signal)

high

pixout [23:0] out 24-bit pixel out data

pixout_vsync out Vertical sync out high

pixout_hsync out Horizontal sync out high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output pixel
(handshake signal)

high

Input pixel buffer / Address generator

Source video pixels are sampled at the input pixel buffer. The generic
parameters pixels_per_line and lines_per_frame must be set correctly to
match the exact number of pixels in the x and y dimensions of the input
video.

The main function of the input pixel buffer is to handle the valid-ready flow
control and to to generate the column and row addresses into the
character buffer RAM. The circuit also detects whether the current pixel
lies within the text-box region defined by the parameters txt_top_x,
txt_top_y, txt_bot_x and txt_bot_y. If the current pixel lies outside the
text-box region, the input pixel passes though unchanged. If the pixel lies
inside the text-box, then the pixel is processed in the text overlay pipeline.

As well as the text-box, the user may also specify a clip-box region. The
clip-box is defined by the generic parameters clp_top_x, clp_top_y,
clp_bot_x and clp_bot_y. Only the areas of the text-box that lie within the
clip-box boundaries will be displayed. Use of the clip-box gives an extra
level of control, permitting the user to dynamically bring various areas of
the text-box into view.

One final feature of the address generator is the implementation of a
vertical or horizontal shift of the text in the text-box region. The desired
shift in pixels is specified in the txt_shift_x and txt_shift_y parameters.
Applying a shift is useful for scrolling text and moving banner displays.

All address generator parameters may be updated 'on-the-fly'. If these
parameters are not static, then it is desirable that they be updated
simultaneously and once per frame in order to avoid corruption in the
output video. Figure 2 shows the relationship between the input video
display area, the text-box region and the clip-box.

By modifying the text-box position, a similar effect to a 2D bit-blt operation
is achievable. This is useful for the simple animation of 'sprites', pointers
or the implementation of simple screen savers.

Numerous text overlay modules may be cascaded together in series for
more complex animated effects.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 2 of 8

Figure 2: User-defined text-box and clip-box regions

Display bottom-right position
(pixels_per_line, lines_per_frame)

D a t e : 0 / 0

T i m e :

4 7 0 9

0 : 56 5 : 3 7

/

Text-box top-left position
(txt_top_x, txt_top_y)

Display origin
(0, 0)

Text-box bottom-right
position
(txt_bot_x, txt_bot_y)

Display top-right position
(pixels_per_line, 0)

Display bottom-left position
(0, lines_per_frame)

Clip-box bottom-right position
(clp_bot_x, clp_bot_y)

Clip-box top-left
position
(clp_top_x, clp_top_y)

http://www.zipcores.com/text-overlay-module.html

TXT_OVERLAY

Text Overlay Module
Rev. 1.6

Character buffer

The character buffer is a dual-port RAM organized as 64 columns x 32
rows of 8-bit characters (Figure 3). By default, the values written to the
character buffer correspond to a 7-bit standard ASCII code. The MSB of
the character value is an 'invert' bit which indicates to the blender unit that
the character in that position must be inverted. Setting the invert bit is
useful for highlighting text in tables and lists.

Each character in the 64x32 array is uniquely addressable and may be
updated as and when required. A character is written to the buffer on the
rising-edge of clk when char_en and char_we are both high. Likewise, a
character is read from the buffer on the rising-edge of clk when char_en is
high and char_we is low. A character write has a latency of 2 clock cycles
and a read 3 cycles. By updating the buffer dynamically on a frame-by-
frame basis, the animation of text and simple 2D shapes can be achieved.

Each character in the buffer maps to a bitmap stored in the character
ROM. Depending on the parameter text_size, the character in the buffer
will map to a different size bitmap: either 8x16, 16x32 or 32x64 pixels.

Referring to Figure 3, the characters are logically arranged with char (0,0)
positioned in the top-left corner of the text-box. Note that if the text-box
size is smaller than than the space required to display the characters in
the buffer, then then resulting text will be clipped to fit the text-box region.

The character codes are subsequently passed to the ROM address
generator circuit which looks up the current pixel in the character bitmap
ROM. The 'invert' bit bypasses the ROM and goes directly to the blender
unit as a text invert control flag.

Character bitmap ROM

The bitmap ROM contains the bitmaps for the standard ASCII character
set. By default, the printable characters from ASCII 32 (space) to ASCII
126 (~) are supported. The remaining non-printable characters are left
'blank'.

The bitmaps are defined in three separate ROM images corresponding to
the three different text-sizes: 8x16, 16x32 and 32x64. The source files for
these images are respectively: txt_rom_8x16.vhd, txt_tom_16x32.vhd
and txt_rom_32x64.vhd.

The text-overlay module is supplied with four different character sets as
standard which are defined in the files 'XXX_rom.txt'. The user is free to
modify the bitmap files as required to support different fonts and simple
2D shapes1.

Figure 5 gives an example layout of the capital letter 'A' in the bitmap
ROM. By convention a '0' designates an 'active' pixel and a '1' designates
an 'inactive' pixel. An active pixel will be visible in the output video display
and an inactive pixel will be ignored2.

The resulting output pixel from the ROM is passed onto the pixel blending
unit where it will be blended with the source input pixel.

1 Different fonts and simple bitmap graphics such as icons, bars and
dials are available on request

2 The actual appearance of the bitmap pixel will depend on the chosen
blending parameters

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 3 of 8

Figure 3: Character buffer layout

64 x 32 x 8-bit
Character

Buffer
DP-RAM

Column address 0 ... 63

R
ow

 a
dd

re
ss

 0
 .

..
 3

1

7 6 5 4 3 2 1 0

Char
(0,0)

Char
(1,0)

Char
(2,0)

Char
(63,0)

Char
(0,1)

Char
(0,2)

Char
(0,31)

Char
(63,31)

INV 7-BIT ASCII CODE

Figure 4: Standard character sets:
Original, Smallfnt, Fixedsys, Terminal

(from top to bottom)

Figure 5: 8x16 Character bitmap as it's
stored in ROM

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1
0 1 1 1 1 1 0 1
0 1 1 1 1 1 0 1
0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 1
0 1 1 1 1 1 0 1
0 1 1 1 1 1 0 1
0 1 1 1 1 1 0 1
0 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

8 x 16 Bitmap 0 : Foreground colour
1 : Background colour

http://www.zipcores.com/text-overlay-module.html

TXT_OVERLAY

Text Overlay Module
Rev. 1.6

Pixel blending unit

The pixel blending unit generates the output pixel to be displayed. The
appearance of the pixel depends on whether the pixel lies inside the text-
box region and also the text-box attributes and chosen blending
parameters. Figure 6 demonstrates the action of the blender graphically.

The parameters txt_fgnd_col and txt_bgnd_col specify the colours of the
active and inactive pixels in the character bitmap. (Note that the
background colour is only relevant when txt_box_mode is set to '1'). If the
'invert' bit is set in the respective character code then the state of the
active pixels in the bitmap is changed. An active pixel now becomes logic
'1' and an inactive pixel logic '0' resulting in an inverted character.

In the above examples, 'mode' refers to the parameter txt_box_mode.
Setting mode to '0' results in a character without a filled background.
When mode is '1' then the inactive pixels in the bitmap are filled with the
chosen background colour.

The transparency of the character to be displayed may be modified by
varying the 8-bit alpha value txt_box_alpha. Setting alpha to 0xFF results
in a fully opaque character. Setting alpha to 0x00 makes it fully
transparent. Dynamically modifying the transparency can be used to
fade-in and fade-out text in the video display area.

Note that alpha blending is only supported with the generic parameter
use_alpha set to true. When set to false, the alpha blending hardware is
not generated.

Functional Timing

The internal character buffer has an independent read/write interface.
Characters are written to the buffer on a rising clock edge when char_en
and char_we are both high. A read occurs when char_en is high and
char_we is low. Each character in the 64x32 array is uniquely
addressable with separate column and row addresses. Figure 7
demonstrates a sequence of write and read operations. A write has a
latency of two clock cycles before the buffer is updated. A read has a
latency of three clock cycles.

RGB pixels are sampled according to the valid-ready pipeline protocol3.
Figure 8 shows the signalling at the input of the text overlay module at the
start of a new frame. The first line of a new frame begins with
pixin_vsync and pixin_hsync asserted high together with the first pixel.

It is important to note that input pixels and syncs are only sampled on a
rising clock-edge when pixin_val and pixin_rdy are both high. If this
protocol is not observed, then pixels will be lost and the resulting output
video will be corrupted. As an example, the diagram shows what
happens when pixin_rdy is de-asserted. In this case, the pipeline is
stalled and the upstream interface must hold-off before further pixels are
sampled.

3 See application note: app_note_zc001.pdf on the Zipcores website for
more examples of the valid-ready pipeline protocol

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 4 of 8

Figure 6: Pixel blending operations

Figure 7: Writing and reading the character buffer

0x01

0x4A

clk

char_wdata

Write

0x4E

char_col_addr

char_en

char_row_addr

0x4C 0x4D

char_we

0x4B

Read Write Write Write

char_rdata 0x4A

0x10 0x140x12 0x130x11

0x00 0x040x02 0x03

Figure 8: First line of a new frame

Pixel 0

clk

pixin

Pipeline stall

Pixel 1 Pixel 2 Pixel 3 Pixel 4

pixin_val

pixin_hsync

pixin_rdy

Start of new frame and new line

pixin_vsync

http://www.zipcores.com/text-overlay-module.html

TXT_OVERLAY

Text Overlay Module
Rev. 1.6

Figure 9 shows the signalling at the output of the text overlay module.
The output uses exactly the same protocol as the input. Each new output
line begins with pixout_hsync and pixout_val asserted high. In this
particular example, it shows pixout_val de-asserted for 1 clock-cycle, in
which case, the output pixel should be ignored. Transfers at a valid-
ready interface are only permitted when valid and ready are both
simultaneously high.

All other parameters used by the text overlay module (including the text
and clip-box coordinates and text-box attributes) are sampled on the
rising edge of the system clock. In the following clock cycle, these
attributes will be active and be ready for use in the text overlay module.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in.txt Source video text file

char_in.txt Character buffer text file

video_file_reader.vhd Source video file reader

char_file_reader.vhd Character buffer input file reader

pipeline_reg.vhd Pipeline register component

fifo_sync.vhd Synchronous FIFO component

txt_char_buffer.vhd Character buffer DP-RAM

txt_input_buffer.vhd Input pixel buffer

txt_blend.vhd Pixel blending unit

txt_rom_8x16.vhd Small font bitmap ROM image

txt_rom_16x32.vhd Medium font bitmap ROM image

txt_rom_32x64.vhd Large font bitmap ROM image

txt_overlay.vhd Text overlay top-level component

txt_overlay_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. video_file_reader.vhd
2. char_file_reader.vhd
3. pipeline_reg.vhd
4. fifo_sync.vhd
5. txt_char_buffer.vhd
6. txt_input_buffer.vhd
7. txt_blend.vhd
8. txt_rom_8x16.vhd
9. txt_rom_16x32.vhd
10. txt_rom_32x64.vhd
11. txt_overlay.vhd
12. txt_overlay_bench.vhd

The VHDL testbench instantiates the TXT_OVERLAY component and the
user may modify the generic parameters as required. In the example
testbench provided, a 640x480 (VGA) image is used as the source video
and a simple text-box is configured to appear in it's centre.

The characters to be written to the character buffer are stored in the file
char_in.txt. This file should be placed in the top-level simulation directory.
Each line of this text file defines the state of the char_en, char_we,
char_wdata, char_col_addr and char_col_row signals on a clock-by-clock
basis. For example the line:

1 1 2B 02 04

Signifies a write of the value 0x2B ('+' in ASCII) to column 2 row 4 of the
buffer.

The source video for the simulation is generated by the video file-reader
component. As with the character buffer, this component requires a text
file to placed in the top-level simulation directory. The file is called
video_in.txt and it contains the source pixels and syncs for the test.

The file video_in.txt follows a simple format which defines the state of
signals: pixin_val, pixin_vsync, pixin_hsync and pixin on a clock-by-clock
basis. An example file might be the following:

1 1 1 00 11 22 # pixel 0 line 0 (start of frame)
1 0 0 33 44 55 # pixel 1
0 0 0 00 00 00 # don't care!
1 0 0 66 77 88 # pixel 2
.
.
1 0 1 00 11 22 # pixel 0 line 1etc..

In this example, the first line of of the video_in.txt file asserts the input
signals pixin_val = 1, pixin_vsync = 1, pixin_hsync = 1 and pixin =
0x001122.

The simulation must be run for at least 10 ms during which time an output
text file called video_out.txt will be generated. This file contains a
sequential list of 24-bit output pixels in the same format as video_in.txt.

Figure 10 shows the resulting output video generated from the test
provided. The output demonstrates the full 96 printable characters of the
standard ASCII character set. A medium font has been chosen with a red
foreground colour and text-box fill disabled. The second group of
characters have their 'invert' bits set.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 5 of 8

Figure 9: Text overlay output showing invalid pixel

Pixel 0

clk

pixout

Pixel invalid - ignore

Pixel 1 Pixel 4

pixout_val

pixout_hsync

pixout_rdy

Start of new output line

Pixel 2 Pixel 3

pixout_vsync

http://www.zipcores.com/text-overlay-module.html

TXT_OVERLAY

Text Overlay Module
Rev. 1.6

Example Text-overlay outputs

Figure 11 is the output of four text-overlay modules cascaded in series -
each module configured with a different text size. The text: 'Date:
04/07/09' is in normal font. The text: 'Time: 16:55:37' is in inverted font.
The first 3 text-boxes are configured with txt_box_mode set to '1' resulting
in a filled text background. The last text-box is configured with
txt_box_mode set to '0'.

The text overlay module is ideal for the generation of text windows. In
this example, a single text overlay module was used to emulate a simple
command window (Figure 12). For example, an external microprocessor
could manage the character buffer in response to keyboard presses.
Window movement and resizing could be mouse-driven and achieved
simply by modifying the text-box top-left and bottom right x,y positions.

Figure 13 is an example of an interactive style menu. Two text-overlay
modules were cascaded in series - the first module to give the general
menu layout and the second module to add some lines under the text to
delineate each entry. The menu also demonstrates how rows of text may
be highlighted using the character 'invert' feature. Interactive menus and
lists are easy to implement for digital TV and home media solutions.

Figure 14 demonstrates the same example as Figure 13, but this time
with transparency enabled. For this example alpha was set to 0xAA
(66%) to give the desired effect. The alpha channel is an ideal way to
achieve smooth fade-in and fade-out video effects.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 6 of 8

Figure 10: Output video from test bench example

Figure 11: Different sized text

Figure 12: Console or Terminal window

Figure 13: Interactive menus, tables and lists

http://www.zipcores.com/text-overlay-module.html

TXT_OVERLAY

Text Overlay Module
Rev. 1.6

In the final example (Figure 15) a custom character set was programmed
to include a series of shapes and icons. The result shows how the text
overlay module can be adapted to produce charts, counters, dials and
gauges. By defining a series of 2D shapes the charts and gauges may be
animated in real time.

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

● txt_overlay.vhd
○ txt_input_buffer.vhd
○ txt_char_buffer.vhd
○ txt_rom_8x16.vhd
○ txt_rom_16x32.vhd
○ txt_rom_32x64.vhd
○ txt_blend.vhd
○ fifo_sync.vhd

■ pipeline_reg.vhd

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® 7- series
FPGAs. Synthesis results for other FPGAs and technologies can be
provided on request.

Note that the generic parameter text_size will effect the number of
embedded Block RAM components in the design. The largest size of
32x64 pixels will result in the greatest utilization of block RAM. For further
block RAM savings, the character buffer can be made write only if
necessary.

If the application does not require alpha blending support, then the
parameter use_alpha may be set to false. The result will be a saving on
embedded multiplier components.

Trial synthesis results are shown in the following tables. The design was
synthesized with the generic parameters set as follows: text_size = 1,
use_alpha = true, pixels_per_line = 640, lines_per_frame = 480.

Resource usage is specified after place and route of the design.

XILINX® 7-SERIES FPGAS

Resource type Artix-7 Kintex-7 Virtex-7

Slice Register 462 462 462

Slice LUTs 280 941 940

Block RAM 3 3 3

DSP48 6 6 6

Occupied Slices 222 475 498

Clock freq. (approx) 190 MHz 250 MHz 300 MHz

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 7 of 8

Figure 14: Menu with text-box alpha channel at 66%

http://www.zipcores.com/text-overlay-module.html

TXT_OVERLAY

Text Overlay Module
Rev. 1.6

Revision History

Revision Change description Date

1.0 Initial revision 15/07/2009

1.1 Fixed various document typos and updated
synthesis results

12/02/2010

1.2 Changed character buffer to 64x32 entries
in keeping with hardware

13/09/2010

1.3 Included extra character sets
Updated synthesis results

18/10/2011

1.4 Added horizontal/vertical shift 19/03/2012

1.5 Added clip-plane functionality 17/04/2012

1.6 Updated synthesis results for Xilinx® 7-
series FPGAs and also for some minor sub-
component changes

21/08/2015

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 8 of 8

http://www.zipcores.com/text-overlay-module.html

