
GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

Key Design Features

● Synthesizable, technology independent VHDL Core

● 2D bitmap overlays over real-time video

● 24-RGB pixels supported as standard - other formats (e.g.
YCbCr 4:2:2) supported on request

● Supports all video resolutions up to 4096x4096 pixels

● No external memory or frame buffer required

● Bitmaps organized into tiles with a choice of four possible tile
sizes: 8x8, 16x16, 32x32 or 64x64

● Tiles organized into 3 bit-planes offering 3-bits/pixel

● Tile numbers written to a buffer that map directly to the display

● Programmable graphics-window position and size

● Programmable clip-box (clip-plane) region

● Independent horizontal and vertical scrolling

● Choice of 8 x 24-bit colours from a user defined palette or
per-pixel alpha blending with 8 levels of transparency

● Per-pixel alpha-blending removes jagged edges to give a
smooth anti-aliased result

● User-defined 8-bit alpha transparency

● No complex programming required

● Cascade any number of overlay cores in series for more
complex graphical displays

● Optional I2C, SPI or UART interfaces for simple micro-
processor programming

Applications

● Professional and functional 2D graphic displays and video
overlays

● Digital TV and home-media solutions

● Interactive guides, menus, tables, lists etc.

● Animated 2D graphics including hardware sprites, mouse
pointers, cursors , parallax scrolling, moving banners etc.

● Window movement in a similar manner to a 2D 'BitBlt'

● Instrumentation and monitoring applications including
animated gauges, charts, dials, meters, counters etc.

● Informational displays and simple HUDs for commercial,
military and automotive applications

Block Diagram

General Description

GFX_OVERLAY is a highly versatile on-screen display that allows high-
quality anti-aliased bitmap graphics to be inserted over RGB video. The
module supports a wide range of graphics effects and the programming
interface is very simple to use. The bitmap overlay is partitioned into an
array of tiles which are addressed by means of an 8-bit value stored in a
64x64 tile buffer. There are four tile sizes available - either 8x8, 16x16,
32x32 or 64x64.

The tiles in the buffer are displayed in a graphics window which may be
positioned anywhere within the display area. Bitmaps for each tile are
stored in a user-defined ROM which can contain up to 256 different
bitmaps stored over three bit-planes. Depending on the chosen graphics
mode, the 3-bits per pixel may be used to select one colour from a palette
of eight, eight levels of alpha transparency or seven colours on a
transparent background.

Pixels and syncs flow in and out of the overlay module in accordance with
the valid-ready pipeline protocol. Pixels and syncs are sampled at the
module inputs on a rising clock-edge when pixin_val is high and pixin_rdy
is high. Likewise, pixels and syncs are transferred out of the module on a
rising clock-edge when pixout_val is high and pixout_rdy is high. The
pipeline protocol allows both input and output interfaces to be stalled
independently.

The pipeline protocol is very versatile and permits any number of graphics
overlay modules to be cascaded in series. By placing more than one
module together, the user is able to achieve more complex 2D effects.

Figure 1 shows the architecture of the graphics overlay module in more
detail.

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 1 of 8

Figure 1: 2D Graphics overlay module architecture

http://www.zipcores.com/2d-graphics-overlay-module.html

GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

Generic Parameters

Generic name Description Type Valid Range

tile_size Tile size selection integer 0: small (8x8)
1: medium (16x16)
2: large (32x32)
3: xlarge (64x64)

use_alpha Enable/disable
alpha-blend support

boolean True / False

gfx_mode Graphics mode
selection

integer 0: 1-colour with
per-pixel alpha
blending

1: 8-colour palette
with 8-bit user
defined alpha

2: 7-colour palette
with 8-bit user
defined alpha +
transparent
background

pixels_per_line No. of pixels in each
input video line

integer ≤ 4096

lines_per_frame No. of lines in each
input video frame

integer ≤ 4096

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

gfx_alpha [7:0] in Alpha transparency of
graphics window region

data

gfx_colour0-7 [23:0] in User defined palette of
8x24-bit colours

data

gfx_top_x [11:0] in Top-left x position of
graphics-window

data

gfx_top_y [11:0] in Top-left y-position of
graphics-window

data

gfx_bot_x [11:0] in Bottom-right x position of
graphics-window

data

gfx_bot_y [11:0] in Bottom-right y position of
graphics-window

data

gfx_shift_x[11:0] in Horizontal shift in pixels data

gfx_shift_y[11:0] in Vertical shift in pixels data

clp_top_x [11:0] in Top-left x position of clipbox data

clp_top_y [11:0] in Top-left y-position of clipbox data

clp_bot_x [11:0] in Bottom-right x position of
clipbox

data

clp_bot_y [11:0] in Bottom-right y position of
clipbox

data

Pin-out Description cont ...

Pin name I/O Description Active state

tile_en in Tile buffer enable high

tile_we in Tile buffer write enable high

tile_wdata [7:0] in Tile buffer write data data

tile_col_addr [5:0] in Tile buffer column address data

tile_row_addr [5:0] in Tile buffer row address data

tile_rdata [7:0] out Tile buffer read data data

pixin [23:0] in 24-bit RGB source pixel in data

pixin_vsync in Vertical sync in
(signifies start of frame)

high

pixin_hsync in Horizontal sync in
(signifies start of line)

high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input pixel
(handshake signal)

high

pixout [23:0] out 24-bit pixel out data

pixout_vsync out Vertical sync out high

pixout_hsync out Horizontal sync out high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output
pixel (handshake signal)

high

Input pixel buffer / Address generator

Source video pixels are sampled at the input pixel buffer. The generic
parameters pixels_per_line and lines_per_frame must be set correctly to
match the exact number of pixels in x and y of the input video.

The main function of the input pixel buffer is to handle the valid-ready flow
control and to to generate the column and row addresses into the tile
buffer RAM. The circuit also detects whether the current pixel lies within
the graphics window defined by the parameters gfx_top_x, gfx_top_y,
gfx_bot_x and gfx_bot_y. If the current pixel lies outside the graphics
window, the input pixel passes though unchanged. If the pixel lies inside
the graphics window, then the pixel is processed in the graphics overlay
pipeline.

As well as the graphics window, the user may also specify a clip-box
region. The clip-box is defined by the generic parameters clp_top_x,
clp_top_y, clp_bot_x and clp_bot_y. Only the areas of the graphics
window that lie within the clip-box boundaries will be displayed. Use of the
clip-box gives an extra level of control, permitting the user to dynamically
bring various areas of the graphics window into view.

One final feature of the address generator is the implementation of a
vertical or horizontal shift of the graphics in the graphics window region.
The desired shift in pixels is specified in the gfx_shift_x and gfx_shift_y
parameters. Applying a shift is useful for scrolling graphics (e.g. parallax
scrolling) and moving banner displays.

All address generator parameters may be updated 'on-the-fly'. If these
parameters are not static, then it is desirable that they be updated
simultaneously and once per frame in order to avoid corruption in the
output video. Figure 2 shows the relationship between the input video
display area, the graphics window region and the clip-box.

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 2 of 8

http://www.zipcores.com/2d-graphics-overlay-module.html

GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

By modifying the graphics-window position, a similar effect to a 2D bit-blt
operation is achievable. This is useful for the simple animation of
'sprites', pointers or the implementation of simple screen savers.
Numerous graphics overlay modules may be cascaded together in series
for more complex animated effects.

Tile buffer

The tile buffer is a dual-port RAM organized as 64 columns x 64 rows of
8-bit values (Figure 3). Each 8-bit value in the buffer is a tile number that
uniquely addresses a tile in the tile bitmap ROM.

The tile numbers in the tile buffer are uniquely programmable and may be
updated as and when required. A value is written to the buffer on the
rising-edge of clk when tile_en and tile_we are both high. Likewise, a
value is read from the buffer on the rising-edge of clk when tile_en is high
and tile_we is low. A write has a latency of 2 clock cycles and a read 3
cycles. By updating the buffer dynamically on a frame-by-frame basis
with different tile numbers, it is possible to achieve 2D animated effects.

Each tile in the buffer maps to a bitmap stored in the ROM. Depending
on the parameter tile_size, the tile number in the buffer will map to a
different size tile: either 8x8, 16x16, 32x32 or 64x64 pixels. Referring to
Figure 3, the tiles are logically arranged with tile(0,0) positioned in the top-
left corner of the graphics window. Note that if the graphics window is
smaller than than the space required to display all the tiles in the buffer,
then then resulting graphics overlay will be clipped to fit within the window
region.

The tile numbers in the buffer are subsequently passed to the ROM
address generator circuit which looks up the current pixel in the bitmap
ROM.

Tile bitmap ROM

The bitmap ROM contains the bitmap images for the tiles to be displayed.
The bitmaps are defined in four separate ROM files corresponding to the
four available tile sizes: 8x8, 16x16, 32x32 and 64x64. The source files
for these images are called: gfx_rom_8x8.vhd, gfx_rom_16x16.vhd,
gfx_rom_32x32.vhd and gfx_rom_64x64.vhd.

By default, the ROM is left undefined and it is left to the user to define the
contents of each tile. Up to 256 unique tiles may be defined - each tile
being split over three bit-planes. The individual bitmaps for each tile may
be coded manually but the simplest method is to use a third-party
illustration or vector-drawing application with the ability to export drawings
as bitmaps1.

Figure 4 gives an example bitmap image of a series of concentric squares
in an 8x8 tile. By combining the bits over three bit-planes, a value
between 0x0 and 0x7 is generated for each pixel. Depending on the
graphics mode, the pixel will be decoded as either an alpha value or one
of 8 possible colours from the palette.

In the example, the central square is decoded as “111”, the next square
as “011” and the outer square as “001”. This is represented by the three
different shades of grey in the resulting image.

1 Zipcores can supply scripts to parse bitmap images and generate a
VHDL file suitable for the ROM. Please contact us for further details.

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 3 of 8

Figure 4: 8x8 tile bitmap as it´s stored in ROM

Figure 3: Tile buffer layout

Figure 2: Graphics window and clip-box positioning and size

http://www.zipcores.com/2d-graphics-overlay-module.html

GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

Pixel blending unit

The pixel blending unit generates the output pixel to be displayed. The
appearance of the pixel depends on whether the pixel lies inside the
graphics-window and the chosen graphics mode. Figure 5 demonstrates
the action of the blender graphically.

When the parameter gfx_mode is set to '0' then the 3-bits/pixel from the
bitmap ROM is decoded as an alpha value with the pixel colour defined in
the parameter gfx_colour0. If the pixel value is “000” then this denotes a
fully transparent pixel. If the pixel value is “111” then this denotes a fully
opaque pixel. Values between “000” and “111” represent varying degrees
transparency between the two extremes. Choosing this graphics mode
allows mono-colour graphics to be displayed with smooth 'anti-aliased'
edges. This is demonstrated in the first image of Figure 5.

When the parameter gfx_mode is set to '1' then the 3-bits/pixel from the
bitmap ROM is decoded as a unique colour from the palette of 8 possible
colours. The colour palette is defined in the parameters gfx_colour0 to
gfx_colour7. For example, if the pixel value is “000” then the pixel will be
displayed as gfx_colour0, if the pixel has the value “001” then the pixel
will be displayed as gfx_colour1 etc. In addition, when gfx_mode is set to
'1', the parameter gfx_aplha defines an 8-bit alpha channel for the whole
bitmap overlay. The second image in Figure 5 demonstrates this mode of
operation in more detail. Each colour is a different shade of pink in the
concentric circle pattern. An alpha value of 0xFF has been chosen to
give a fully opaque bitmap overlay.

The next example image in Figure 5 shows the same series of circles, but
this time, the alpha value has been set to 0xAA. This results in an overlay
with 66% transparency. Dynamically modifying the transparency can be
used to fade-in and fade-out graphics in the video display area. (Note
that alpha blending is only supported with the generic parameter
use_alpha set to true. When set to false, the alpha blending hardware is
not generated).

The final example of Figure 5 shows the blending operation when
gfx_mode is set to '2'. This mode is identical to mode '1' with the
exception that gfx_colour0 is decoded as totally transparent. This mode
is useful if the user wants to 'key' the background video in the middle of a
bitmap object.

Functional Timing

The internal tile buffer has an independent read/write interface. Tile
numbers are written to the buffer on a rising clock edge when tile_en and
tile_we are both high. A read occurs when tile_en is high and tile_we is
low. Each tile number in the 64 x 64 array is uniquely addressable with
separate column and row addresses. Figure 6 demonstrates a sequence
of write and read operations. A write has a latency of two clock cycles
before the buffer is updated. A read has a latency of three clocks.

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 4 of 8

Figure 6: Writing and reading the tile buffer

Figure 5: Pixel blending operations

http://www.zipcores.com/2d-graphics-overlay-module.html

GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

RGB pixels are sampled according to the valid-ready pipeline protocol2.
Figure 7 shows the signalling at the input of the graphics overlay module
at the start of a new frame. The first line of a new frame begins with
pixin_vsync and pixin_hsync asserted high together with the first pixel.

It is important to note that input pixels and syncs are only sampled on a
rising clock-edge when pixin_val and pixin_rdy are both high. If this
protocol is not observed, then pixels and syncs will be lost and the
resulting output video will be corrupted. As an example, the diagram
shows what happens when pixin_rdy is de-asserted. In this case, the
pipeline is stalled and the upstream interface must hold-off before further
pixels are sampled.

Figure 8 shows the signalling at the output of the graphics overlay
module. The output uses exactly the same protocol as the input. Each
new output line begins with pixout_hsync and pixout_val asserted high.
In this particular example, it shows pixout_val de-asserted for 1 clock-
cycle, in which case, the output pixel should be ignored. Remember that
transfers at a valid-ready interface are only permitted when valid and
ready are both simultaneously high.

2 See application note: app_note_zc001.pdf on the Zipcores website for
more examples of the valid-ready pipeline protocol

The graphics-window coordinates and the user-defined alpha channel are
sampled on the rising edge of the system clock. In the following clock
cycle, these values will be active and be ready for use in the graphics
overlay module. It is the responsibility of the user to ensure that these
parameters are updated once per frame in order to avoid the possibility of
corrupted output video.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in.txt Source video text file

tile_in.txt Tile buffer text file

video_file_reader.vhd Source video file reader

tile_file_reader.vhd Tile buffer input file reader

pipeline_reg.vhd Pipeline register component

fifo_sync.vhd Synchronous FIFO component

gfx_tile_buffer.vhd Tile buffer DP-RAM

gfx_input_buffer.vhd Input pixel buffer

gfx_blend.vhd Pixel blending unit

gfx_rom_8x8.vhd Small tile-size bitmap ROM image

gfx_rom_16x16.vhd Medium tile-size bitmap ROM image

gfx_rom_32x32.vhd Large tile-size bitmap ROM image

gfx_rom_64x64.vhd XLarge tile-size bitmap ROM image

gfx_overlay.vhd Graphics overlay top-level component

gfx_overlay_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. video_file_reader.vhd
2. tile_file_reader.vhd
3. pipeline_reg.vhd
4. fifo_sync.vhd
5. gfx_tile_buffer.vhd
6. gfx_input_buffer.vhd
7. gfx_blend.vhd
8. gfx_rom_8x8.vhd
9. gfx_rom_16x16.vhd
10. gfx_rom_32x32.vhd
11. gfx_rom_64x64.vhd
12. gfx_overlay.vhd
13. gfx_overlay_bench.vhd

The VHDL testbench instantiates the GFX_OVERLAY component and the
user may modify the generic parameters as required. In the example
testbench provided, a SVGA(1024x768) image is used as the source
video and a simple checker board pattern is configured to appear in the
top left of the display.

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 5 of 8

Figure 7: First line of a new frame

Figure 8: Graphics overlay output showing invalid pixel

http://www.zipcores.com/2d-graphics-overlay-module.html

GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

The generic parameter gfx_mode has been set to '1' and tile_size set to
'2'. Figure 9, below shows the resulting video output from the testbench
example.

The tile numbers to be written to the tile buffer are stored in the file
tile_in.txt. This file should be placed in the top-level simulation directory.
Each line of this text file defines the state of the tile_en, tile_we,
tile_wdata, tile_col_addr and tile_col_row signals on a clock-by-clock
basis.

For example the line: '1 1 2B 02 04' will write tile number 0x2B to column
2 row 4 of the buffer.

The source video for the simulation is generated by the video file-reader
component. As with the tile buffer, this component requires a text file to
placed in the top-level simulation directory. The file is called video_in.txt
and it contains the source pixels and syncs for the test.

The file video_in.txt follows a simple format which defines the state of
signals: pixin_val, pixin_vsync, pixin_hsync and pixin on a clock-by-clock
basis. An example file might be the following:

1 1 1 00 11 22 # pixel 0 line 0 (start of frame)
1 0 0 33 44 55 # pixel 1
0 0 0 00 00 00 # don't care!
1 0 0 66 77 88 # pixel 2
.
.
1 0 1 00 11 22 # pixel 0 line 1etc..

In this example, the first line of of the video_in.txt file asserts the input
signals pixin_val = 1, pixin_vsync = 1, pixin_hsync = 1 and pixin =
0x001122.

The simulation must be run for at least 20 ms during which time an output
text file called video_out.txt will be generated. This file contains a
sequential list of 24-bit output pixels in the same format as video_in.txt.

Example 2D-Graphics Overlay Outputs

Figure 10 is shows a 'target' example with alpha blending disabled. The
overlay is inserted over RGB video at 512x512 resolution. The parameter
gfx_mode is set to '1' meaning that all 8 colours in the palette are used.
The palette has been programmed with varying shades of pink. The
parameter gfx_alpha is set to 0xFF making the overlay fully opaque.

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 6 of 8

Figure 9: Output video from testbench example

Figure 10: Pink 'target' with full use of colour palette

Figure 11: Pink 'target' with 66% alpha channel

http://www.zipcores.com/2d-graphics-overlay-module.html

GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

Figure 11 demonstrates the same pink 'target' example, but this time the
parameter gfx_alpha is set to 0xAA. This enables 66% alpha
transparency for the the whole graphics overlay.

Figure 12 is an example of a more complex graphics overlay. In this
particular case, gfx_mode has been set to '0', enabling mono-colour
graphics with per-pixel alpha blending. The result is a smooth anti-
aliased image avoiding jagged edges in the curves and lines.

In this particular example, a number of graphics overlay3 modules have
been cascaded in series to generate the different coloured components of
the image. For the dial animation, different tiles are defined for the
different dial positions. By dynamically updating the tile numbers in the
buffer, the dials can be animated seamlessly on a frame-by-frame basis.

In Figure 12, the graphics were inserted over a black background. Figure
13 demonstrates the same overlay (with modified colours) over an RGB
video source.

3 The text overlay IP core was used for the text in the bottom panels.
Please see the Zipcores website for more details.

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● gfx_overlay.vhd
○ gfx_input_buffer.vhd
○ gfx_tile_buffer.vhd
○ gfx_rom_8x8.vhd
○ gfx_rom_16x16.vhd
○ gfx_rom_32x32.vhd
○ gfx_rom_64x64.vhd
○ gfx_blend.vhd
○ fifo_sync.vhd

■ pipeline_reg.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx Virtex 5
and the Altera Stratix III series of FPGA devices. The lowest and highest
speed grade devices have been chosen in both cases for comparison.

Note that the generic parameter tile_size will effect the number of
embedded Block RAM components in the design. The largest size of
64x64 pixels will result in the greatest utilization of RAM. For further block
RAM savings, then the character buffer can be made write only if
necessary.

If the application does not require alpha blending support, then the
parameter use_alpha may be set to false. The result will be a saving on
embedded multiplier components.

Trial synthesis results are shown in the following tables. The design was
synthesized with the generic parameters set as follows: tile_size = 1,
use_alpha = true, gfx_mode = 0, pixels_per_line = 1024, lines_per_frame
= 1024.

Resource usage is specified after Place and Route.

VIRTEX 5
Resource type Quantity used

Slice register 405

Slice LUT 330

Block RAM 7

DSP48 6

Clock frequency (worst case) 205 MHz

Clock frequency (best case) 252 MHz

STRATIX III
Resource type Quantity used

Register 549

ALUT 334

Block Memory bit 57552

DSP block 18 6

Clock frequency (worse case) 280 MHz

Clock frequency (best case) 322 MHz

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 7 of 8

Figure 12: Animated 2D-graphics overlay

Figure 13: Animated dashboard overlay

http://www.zipcores.com/2d-graphics-overlay-module.html

GFX_OVERLAY

2D Graphics Overlay Module
Rev. 1.5

Revision History

Revision Change description Date

1.0 Initial revision 13/08/2009

1.1 Fixed errors in tile buffer layout block
diagrams

12/02/2010

1.2 Added descriptions for new graphics
blending mode

14/09/2010

1.3 Updated synthesis results 26/10/2011

1.4 Added horizontal/vertical shift 19/03/2012

1.5 Added clip-plane functionality 17/04/2012

Copyright © 2012 www.zipcores.com Download this VHDL Core Page 8 of 8

http://www.zipcores.com/2d-graphics-overlay-module.html

