
FIFO_ASYNC

Asychronous FIFO with generic width and depth
Rev. 1.3

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Dual-clock architecture

● Configurable data width and depth

● Gray-encoded read/write pointers

● Full / Empty flags

● Uses a simple valid-ready streaming protocol

● Compatible with other streaming protocols such as: AMBA®
AXI4-stream, Altera® Avalon-ST and Xilinx® local-link

● Output register option for improved timing

● Very high-speed operation achieving 400 MHz+ on basic FPGA
devices

Applications

● Re-synchronizing between clock domains

● Registering the data-path on and off chip

● General purpose buffering

● Adapting to different data rates - e.g. digital video applications
with varying pixel clock frequencies or frame rates

Pin-out Description

Pin name I/O Description Active state

clk_a in Input clock domain a rising edge

clk_b in Input clock domain b rising edge

reset in Asynchronous reset low

fifo_full out FIFO full flag
(clock domain a)

high

fifo_empty out FIFO empty flag
(clock domain b)

high

a_data [dw-1:0] in FIFO input data data

a_val in Indicates valid data at the
FIFO input

high

a_rdy out Indicates that the FIFO is
ready to accept data

high

b_data [dw-1:0] out FIFO output data data

b_val out Indicates that the FIFO
contains valid data

high

b_rdy in Indicates that the output is
ready to receive data

high

Block Diagram

Generic Parameters

Generic name Description Type Valid range

dw FIFO data width integer ≥ 1

depth FIFO depth integer 8 or 16

regout Enable output data
register - improves
output timing

boolean TRUE/FALSE

General Description

FIFO_ASYNC (Figure 1) is an Asynchronous FIFO with a configurable
depth of 8 or 16 entries and a generic data width. The FIFO uses
register-based storage by default.

The FIFO has two independent clocks 'a' and 'b' in order to allow the re-
synchronization of the datapath across different clock domains. Internally,
the FIFO uses gray-encoded read and write pointers. This ensures that
the pointers are re-synchronized as single-bit transitions only.

Data flows in and out of the FIFO in accordance with the valid-ready
pipeline protocol1. Data is written to the FIFO on the rising clock-edge of
clk_a when a_val is high and a_rdy is high. Data is read from the FIFO
on the rising clock-edge of clk_b when b_val is high and b_rdy is high.

In addition to these handshake signals, the flags fifo_full and fifo_empty
are also provided for compatibility with standard FIFO interfaces. The
signal fifo_full is synchronized to clock domain 'a' and fifo_empty to clock
domain 'b'. Both signals immediately reflect the internal state of the FIFO.
The signals a_val and b_rdy can be considered as the traditional write
and read strobes into the FIFO.

It is important to note that when the FIFO is configured with the output
register set to true, then the signal fifo_empty is delayed by 1 clock cycle
due to the 1 cycle latency of the output register.

1 For more examples of the valid-ready protocol and it's implementation
see Zipcores application note: app_note_zc001.pdf.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 1 of 3

Figure 1: Asynchronous FIFO

http://www.zipcores.com/asynchronous-fifo-with-generic-width.html
http://www.zipcores.com/skin1/zipdocs/appnotes/app_note_zc001.pdf

FIFO_ASYNC

Asychronous FIFO with generic width and depth
Rev. 1.3

Functional Timing Diagrams

The following timing diagrams relate to a FIFO design with the output
register option set to false. Figure 2 shows a FIFO write operation when
the FIFO state changes from almost full to full.

Figure 3, below, demonstrates a FIFO read operation when the FIFO
state changes from almost empty to empty.

Note that data is only transferred at the FIFO interfaces on a rising clock
edge when valid and ready are both active high.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

pipeline_reg.vhd Output register used when the
parameter regout is set to true

fifo_async8.vhd 8-deep FIFO component

fifo_async16.vhd 16-deep FIFO component

fifo_async.vhd Top-level block

fifo_async_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipeline_reg.vhd
2. fifo_async.vhd
3. fifo_async8.vhd
4. fifo_async16.vhd
5. fifo_async_bench.vhd

The VHDL testbench instantiates the FIFO component and the user may
modify the generic parameters as required. In addition, the user may
specify the frequency of clk_a and clk_b in order to observe the data flow
under different asynchronous clocking conditions.

The simulation must be run for at least 3 ms during which time a
randomized input data sequence will be written to the FIFO.

In addition to random input data, the test bench also generates
randomized valid-ready handshake signals at the input and output of the
FIFO in order to verify that the the flow-control is working correctly.

The simulation generates two text files called: fifo_async_in.txt and
fifo_async_out.txt. These files respectively contain the input and output
data captured at the FIFO interfaces during the test. Matching input and
output files indicates that the test has run successfully.

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● fifo_async.vhd
○ fifo_async8.vhd
○ fifo_async16.vhd
○ pipeline_reg.vhd

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® Virtex 6
and Spartan-6 FPGA devices. Synthesis results for other FPGAs and
technologies can be provided on request.

Setting the parameter regout to true and using an 8-deep FIFO will result
in the fastest and most efficient implementation. In this configuration,
clock speeds of up to 500 MHz or better are attainable on some FPGA
devices.

Trial synthesis results are shown with the generic parameters set to: dw =
32, depth = 16, regout = true.

Resource usage is specified after Place and Route.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 2 of 3

Figure 2: FIFO write operation

Figure 3: FIFO read operation

http://www.zipcores.com/asynchronous-fifo-with-generic-width.html

FIFO_ASYNC

Asychronous FIFO with generic width and depth
Rev. 1.3

VIRTEX 6

Resource type Quantity used

Slice register 71

Slice LUT 91

Block RAM 0

DSP48 0

Occupied slices 28

Clock frequency (approx) 420 MHz

SPARTAN 6

Resource type Quantity used

Slice register 71

Slice LUT 89

Block RAM 0

DSP48 0

Occupied slices 30

Clock frequency (approx) 333 MHz

Revision History

Revision Change description Date

1.0 Initial revision 21/04/2008

1.1 Updated synthesis results 21/04/2010

1.2 Added 8-deep and 16-deep options.
Optimized for very high-speed operation

08/09/2011

1.3 Includes more efficient pipeline register
component

07/02/2014

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 3 of 3

http://www.zipcores.com/asynchronous-fifo-with-generic-width.html

