
FIFO_SYNC

Sychronous FIFO with generic width and depth
Rev. 1.1

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Fully synchronous design

● Configurable depth and data width

● Register or RAM-based storage1

● Full / Empty flags and FIFO fullness counter

● Uses a simple valid-ready streaming protocol

● Compatible with other streaming protocols such as: AMBA®
AXI4-stream, Altera® Avalon-ST and Xilinx® local-link

● 1 cycle latency2

● Very high-speed operation achieving 400 MHz+ on basic FPGA
devices

Applications

● General purpose buffering

● Adapting to different data rates

● Interfacing between other pipeline elements

● Registering the data-path in a pipeline to improve timing

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

fifo_full out FIFO full flag high

fifo_empty out FIFO empty flag high

fifo_fullness
[log2d:0]

out Counter indicating number
of entries in the FIFO that
are currently used

counter

datain [dw-1: 0] in FIFO input data data

datain_val in Indicates valid data at the
FIFO input

high

datain_rdy out Indicates that the FIFO is
ready to accept data

high

dataout [dw-1:0] out FIFO output data data

dataout_val out Indicates that the FIFO
contains valid data

high

dataout_rdy in Indicates that the output is
ready to receive data

high

1 Type of inferred storage depends on synthesis tool configuration
2 If output register is enabled then latency is 2 cycles

Block Diagram

Generic Parameters

Generic name Description Type Valid range

dw FIFO data width integer ≥ 1

depth FIFO depth integer ≥ 2

log2d Log2 FIFO depth integer log2 (depth)

regout Enable output data
register - improves
output timing when
enabled

boolean TRUE/FALSE

General Description

FIFO_SYNC is a general purpose synchronous FIFO with configurable
depth and data width.

Data flows in and out of the FIFO in accordance with the valid-ready
pipeline protocol3. Data is written to the FIFO on a rising clock-edge
when datain_val is high and datain_rdy is high. Data is read from the
FIFO on a rising clock-edge when dataout_val is high and dataout_rdy is
high.

In addition to these handshake signals, the flags fifo_full and fifo_empty
are also provided for compatibility with standard FIFO interfaces. The
signals datain_val and datout_rdy can respectively be considered as the
traditional write and read strobes into the FIFO. The counter value
fifo_fullness indicates how many entries are currently used in the FIFO.

3 For more examples of the valid-ready protocol and it's implementation
see Zipcores application nore: app_note_zc001.pdf

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 1 of 3

Figure 1: Synchronous FIFO

http://www.zipcores.com/synchronous-fifo-with-generic-width-and-depth.html
http://www.zipcores.com/skin1/zipdocs/appnotes/app_note_zc001.pdf

FIFO_SYNC

Sychronous FIFO with generic width and depth
Rev. 1.1

It is important to note that when the FIFO is configured with the output
register set to true, then the signals fifo_empty and fifo_fullness are
delayed by 1 clock cycle due to the 1 cycle latency of the output register.

If the FIFO is empty, then there is a 1 clock cycle delay (or latency)
between a write at the input and the read data being available at the
output. If the output register is enabled, then the latency is 2 clock cycles.

Functional Timing Diagrams

The following timing diagrams relate to a 16-deep FIFO design with the
output register option set to false.

Figure 2 shows a FIFO write operation when the FIFO state changes from
almost full to full. Figure 3 demonstrates a FIFO read operation when the
FIFO state changes from almost empty to empty. Note that data is only
transferred at the FIFO interfaces on a rising clock edge when valid and
ready are both active high.

For more examples of the valid-ready protocol and it's implementation see
Zipcores application note: app_note_zc001.pdf.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

pipeline_reg.vhd FIFO output register for the case
when the generic regout is set to
true

fifo_sync.vhd Top-level block

fifo_sync_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipeline_reg.vhd
2. fifo_sync.vhd
3. fifo_sync_bench.vhd

The VHDL testbench instantiates the FIFO component and the user may
modify the generic parameters as required.

The simulation must be run for at least 3 ms during which time a
randomized input data sequence will be written to the FIFO.

In addition to random input data, the testbench also generates
randomized valid-ready handshake signals at the input and output of the
FIFO in order to verify that the the flow-control is working correctly.

The simulation generates two text files called: fifo_sync_in.txt and
fifo_sync_out.txt. These files respectively contain the input and output
data captured at the FIFO interfaces during the test. Matching input and
output files indicate that the test has run successfully.

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● fifo_sync.vhd
○ pipeline_reg.vhd

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® Virtex 6
and Spartan-6 FPGA devices. Synthesis results for other FPGAs and
technologies can be provided on request.

Note that as the FIFO is highly generic in nature, the synthesis results will
vary significantly with choice of parameters. It is also important to note
that the type of inferred storage used by the FIFO is largely dependent on
the attributes set up in the synthesis tool.

If the output register is enabled, then internally, a FIFO memory read has
a 1 clock-cycle latency. This generally permits the tool to infer a dual-port
RAM. If the output register is disabled, then distributed RAM (registers)
are normally inferred.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 2 of 3

Figure 2: FIFO write operation

Figure 3: FIFO read operation

http://www.zipcores.com/synchronous-fifo-with-generic-width-and-depth.html

FIFO_SYNC

Sychronous FIFO with generic width and depth
Rev. 1.1

Trial synthesis results are shown with the generic parameters set to: dw =
16, depth = 32, log2d = 5, regout = true.

Resource usage is specified after Place and Route.

VIRTEX 6

Resource type Quantity used

Slice register 33

Slice LUT 39

Block RAM 0

DSP48 0

Occupied slices 14

Clock frequency (approx) 420 MHz

SPARTAN 6

Resource type Quantity used

Slice register 33

Slice LUT 56

Block RAM 0

DSP48 0

Occupied slices 19

Clock frequency (approx) 370 MHz

Revision History

Revision Change description Date

1.0 Initial revision 16/04/2008

1.1 Includes more efficient pipeline register
component

07/02/2014

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 3 of 3

http://www.zipcores.com/synchronous-fifo-with-generic-width-and-depth.html

