
BAYER_TO_RGB

Bayer-mapped to RGB converter
Rev. 1.4

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Decoding of a bayer-mapped image from an image sensor or
Colour Filter Array (CFA)

● Supports all image resolutions from 16 x 16 pixels up to 216 x 216

● Support for all sensor pixel widths from 2-bits and above

● Support for different CFA sensor alignments

● Fully pipelined architecture with simple flow control

● Input and output ports can interface directly to a FIFO if
required

● Features a 5x5 polyphase interpolation filter

● Output 1 x 24-bit pixel per clock

● No frame buffer required

● Small implementation size

● Support for 300 MHz+ operation on basic FPGA devices1

Applications

● Bayer-mapped to 24-bit RGB decoding (de-mosaicing)

● Digital camera image processing

● Forms an essential first stage in most digital processing
pipelines that contain an image sensor

Generic Parameters

Generic name Description Type Valid range

dw Sensor width in bits integer ≥ 2

line_width Width of linestores in
pixels

integer 24 < pixels < 216

log2_line_width Log2 of linestore width integer log2(line_width)

sensor_align Bayer pattern sensor
alignment

integer 0 : BGBG ...
 GRGR …

1 : GBGB ...
 RGRG ...

2 : GRGR ...
 BGBG …

3 : RGRG ...
 GBGB ...

1 Xilinx Virtex6 used as a benchmark

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

pixels_per_line in Number of pixels per line
Range: 24 < lines < 216

data

lines_per_frame in Number of lines per frame
Range: 24 < lines < 216

data

pixin [dw - 1:0] in n-bit bayer-mapped pixel in data

pixin_vsync in Vertical sync in
(Coincident with first pixel
of input frame)

high

pixin_hsync in Horizontal sync in
(Coincident with first pixel
of input line)

high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input pixel
(Handshake signal)

high

pixout [23:0] out 24-bit RGB pixel out data

pixout_vsync out Vertical sync out
(Coincident with first pixel
of output frame)

high

pixout_hsync out Horizontal sync out
(Coincident with first pixel
of output line)

high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output
pixel (Handshake signal)

high

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 1 of 4

Figure 1: Bayer-to-RGB converter architecture

http://www.zipcores.com/bayer-to-rgb-converter.html

BAYER_TO_RGB

Bayer-mapped to RGB converter
Rev. 1.4

General Description

BAYER_TO_RGB (Figure 1) is a fully pipelined Bayer-mapped to RGB
converter IP core. The IP core may be used to process the raw pixels
from an image sensor or Colour Filter Array (CFA). These pixels are
typically organized as a bayer pattern of discrete Red, Green and Blue
values which must be interpolated to recover the original image - a
process that is commonly known as de-mosaicing.

Internally, the circuit uses a 5x5 pixel filter with dynamic coefficients to
interpolate the pixels from the CFA. The resulting output is a high-quality
RGB image at 24-bits/pixel.

Bayer-mapped pixels flow into the design in accordance with the valid
ready pipeline protocol2. Input pixels and syncs are sampled on the rising
edge of clk when pixin_val and pixin_rdy are both high. Likewise, at the
output interface, pixels and syncs are sampled on a the rising edge of clk
when pixout_val and pixout_rdy are both high.

The image size is fully programmable with standard support for anything
from 16x16 pixels and above. The width of the input pixels is specified
using the generic parameter dw. Output pixels are standard 24-bit RGB.

Sensor alignment

The sensor alignment parameter modifies the central starting position of
the 5x5 filter according to the alignment of the bayer pattern. Figure 2
below demonstrates the 4 possible sensor alignments in the CFA.

By setting the sensor_align parameter correctly, the design can adapt to
the four possible patterns. If the alignment is wrong, then the colours in
the output image will be corrupted.

2 See Zipcores application note: app_note_zc001.pdf for more
examples of how to use the valid-ready pipeline protocol

Image resolution

The size of the image to be interpolated is fully programmable and is
specified in the parameters: pixels_per_line and lines_per_frame. These
parameters can be changed on a frame-by-frame basis if necessary. It is
recommended that a system reset is asserted once the parameters have
been changed to avoid possible image corruption. After reset, the IP core
will start generating output pixels after the next clean input frame.

The generic parameters line_width and log2_line_width must also be set
correctly to accommodate the maximum line length of the input image.
The line width must be specified as the nearest power of 2 - e.g. 1024,
2048, 4096 etc.

De-mosaicing filter

The internal filter is a 5x5 pixel filter that is used to interpolate the bayer-
mapped image. The filter architecture uses a polyphase filter design in
which the filter kernel changes depending on the interpolation point in the
bayer pattern. The filter kernels are based on the Malvar-He-Cutler
algorithm which has been shown to give excellent results for a very
reasonable resource cost. For optimum results it is recommended that
the image sensor has a capacity of at least 5M pixels or better.

Functional Timing

Figure 3 shows the signalling at the input interface at the start of a new
frame. The first line of a new frame begins with pixin_vsync and
pixin_hsync asserted high together with the first pixel. Note that the
signals pixin, pixin_vsync and pixin_hsync are only valid if pixin_val is
also asserted high. For demonstration purposes, the diagram also shows
what happens when pixin_rdy is de-asserted. In this case, the pipeline is
stalled and the upstream interface must hold-off before further pixels are
processed.

Figure 4 shows the signalling at the start of a new line. Note that the
timing diagram is the same as for the start of a new frame with the
exception that pixin_vsync is held low while pixin_hsync is held high
together with the first valid pixel. In this example, pixin_rdy is held high
for the duration so the input interface does not stall.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 2 of 4

Figure 2: CFA sensor alignments
Figure 3: Start of new input frame

http://www.zipcores.com/bayer-to-rgb-converter.html

BAYER_TO_RGB

Bayer-mapped to RGB converter
Rev. 1.4

The final timing waveform (Figure 5) shows the output signalling for the
start of a new output frame. The output flow-control is identical to the
input with the use of the same valid-ready protocol. In this example, the
pixout_rdy signal is held high during the output of the frame. (Note that if
the downstream interface can always accept pixels then pixout_rdy may
be tied to logic '1').

Source File Description

The source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

bayer_in.txt Text-based source image file

pipeline_reg.vhd Pipeline register component

fifo_sync.vhd Synchronous FIFO

bayer_file_reader.vhd Reads image file into test bench

ram_dp_w_r.vhd Dual-port RAM component

bayer_buffer.vhd Line buffer component

bayer_filter.vhd 5x5 pixel filter component

bayer_to_rgb.vhd Top-level component

bayer_to_rgb_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipeline_reg.vhd
2. fifo_sync.vhd
3. ram_dp_w_r.vhd
4. bayer_buffer.vhd
5. bayer_filter.vhd
6. bayer_to_rgb.vhd
7. bayer_file_reader.vhd
8. bayer_to_rgb_bench.vhd

The VHDL testbench instantiates the BAYER_TO_RGB component and
the user may modify the generic parameters as required. In particular the
user must ensure that the image dimensions and sensor alignment are
correct for the input source image.

The input source image for the simulation is generated by the file reader
component. The component reads a text file that contains the discrete
R,G,B bayer-mapped pixels. The text file is called bayer_in.txt and
should be placed in the top-level simulation folder.

The file bayer_in.txt follows a simple format which defines the state of the
signals: pixin_val, pixin_vsync, pixin_hsync and pixin on a clock-by-clock
basis. An example file might be the following:

1 1 1 0052 # pixel 0 line 0 (start of frame)
1 0 0 0073 # pixel 1
1 0 0 0052 # pixel 2
1 0 0 0072 # pixel 3
.
.
1 0 1 0072 # pixel 0 line 1 (start of line)
1 0 0 0050 # pixel 1
1 0 0 0071 # pixel 2
1 0 0 004d # pixel 3 etc ..

In this example the first line of the bayer_in.txt file asserts the input
signals pixin_val = 1, pixin_vsync = 1, pixin_hsync = 1 and pixin =
0x0052.

In the example simulation shipped with the source code, a sample VGA
image is processed by the Bayer to RGB converter. The simulation must
be run for at least 10 ms during which time an output text file called
bayer_out.txt is generated3. This file contains a sequential list of 24-bit
RGB output pixels in a similar format to bayer_in.txt.

Figure 6 and 7 show the images before and after de-mosaicing. High
quality images can be provided on request.

3 PERL scripts for generating and processing input and output text files
are provided with the IP Core package

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 3 of 4

Figure 4: Start of new input line

Figure 5: Start of new output frame

http://www.zipcores.com/bayer-to-rgb-converter.html

BAYER_TO_RGB

Bayer-mapped to RGB converter
Rev. 1.4

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

● bayer_to_rgb.vhd
○ bayer_buffer.vhd

■ ram_dp_w_r.vhd
○ bayer_filter.vhd
○ fifo_sync.vhd

■ pipeline_reg.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx® Virtex
6 and Spartan 6 FPGA devices. Synthesis results for other FPGAs and
technologies can be provided on request.

There are no special constraints required for synthesis. The IP core is
completely technology independent.

Trial synthesis results are shown with the generic parameters set to: dw =
8, line_width = 2048, log2_line_width = 11, sensor_align = 0.

Resource usage is specified after Place and Route.

VIRTEX 6

Resource type Quantity used

Slice register 903

Slice LUT 1277

Block RAM 8

DSP48 0

Occupied slices 441

Clock frequency (approx) 300 MHz

SPARTAN 6

Resource type Quantity used

Slice register 903

Slice LUT 1266

Block RAM 9

DSP48 0

Occupied slices 436

Clock frequency (approx) 190 MHz

Revision History

Revision Change description Date

1.0 Initial revision 04/10/2012

1.1 Moved to 5x5 filter architecture based on
Malvar-He-Cutler algorithm

01/03/2013

1.2 Updated synthesis results in line with minor
code changes. Corrected sensor alignment
generic description

15/11/2013

1.3 Added full valid-ready flow control to the
output interface

27/02/2014

1.4 Added sensor width generic. Increased
maximum image resolution (16-bit
addressing). Various filter optimizations for
improved speed.

18/02/2015

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 4 of 4

Figure 6: Bayer-mapped source image

Figure 7: Output image after de-mosaicing

http://www.zipcores.com/bayer-to-rgb-converter.html

