
APPLICATION NOTE : ZC003

Estimating polyphase filter coefficients with a windowed-sinc function
Rev. 1.1

Introduction

The digital video scalers in the Zipcores IP library use a series of
polyphase filters in the x and y dimensions. This application note
addresses some of the possible methods for sampling coefficient sets for
these types of filter.

The application note begins with a brief description of how a polyphase
filter works and uses a simple Bi-linear filter example as a starting point.
The discussion continues with a description of a 5-tap polyphase filter and
describes how to generate coefficients using a Lanczos2-windowed sinc
function. Finally, the application note provides an example Matlab® script
for the automatic generation of coefficient sets.

Polyphase filter architecture

Each 'phase' of a digital polyphase filter has it's own unique set of
coefficients which represent the filter impulse response for that particular
phase. In the context of the Zipcores video scaler filters, the phase refers
to the interpolation point used between pixels in the source image. This
means that as the interpolation point between pixels changes, then so
does the phase and the resulting filter coefficients.

Mathematically, an 'n' phase filter could be designed as 'n' discrete filters
in parallel - but obviously this would not make for a very practical design.
In practice, the Zipcores video filters are designed as a single filter with
multiplexed coefficients controlled by the phase. Figure 1 shows an
example architecture of an 'n' phase, 'm' tap polyphase filter.

Generating coefficient sets

For each phase of a polyphase filter, the filter impulse response changes.
This means that a different set of coefficients is required for each phase.
The easiest approach is to start by considering the characteristic of a filter
with only 2 taps. A 2-tap filter employs linear interpolation between
adjacent pixels. The following paragraphs demonstrate a number of
techniques for generating coefficient sets.

Bilinear polyphase filter

For a bilinear polyphase filter, the tap positions for phase '0' are located
as described by Figure 2.

As the interpolation point between pixels moves in the source image, so
does the phase. Zipcores filters generally have 16 phases meaning that
as the phase changes, the filter characteristic also changes in a way
described by Figure 3. As the phase increments, the curve is shifted to
the right by 1/16. Filter coefficients are sampled for each phase at the
points where the curve intersects the y-axis for taps 0 and 1. Figure 3
shows a simple linear interpolation between pixels.

Copyright © 2013 www.zipcores.com Page 1 of 3

Figure 1: N-Phase, M-tap polyphase filter Architecture

Figure 2: Bi-linear filter tap positioning

Figure 3: Sampling filter coefficients over 16 phases

APPLICATION NOTE : ZC003

Estimating polyphase filter coefficients with a windowed-sinc function
Rev. 1.1

Polyphase filters with more taps

For larger numbers of taps, a common approach is to use a windowed-
sinc function to design the filter kernel. To start with, the centre tap of the
filter is positioned over the central lobe of the function. Figure 5 shows an
example of this for a lanczos2-windowed sinc.

In this example, tap2 is the centre tap. In order to derive coefficients for
each phase of a 16 phase filter, the principal is exactly the same as for
the bi-linear case. As the phase increments, the curve is shifted to the
right in steps of 1/16. The filter coefficients are sampled for taps 0,1,2,3
and 4 where the curve intersects the y-axis. Figure 6 again demonstrates
this technique pictorially.

It is important to note that once the coefficients have been sampled and
quantized, the sum of each set of coefficients (the DC gain) should sum to
unity - otherwise visible artefacts may be present in the scaled output
image.

Choice of windowed sinc function

The best windowed sinc function to use for video scaling applications is a
matter of personal preference. The best method is to experiment with
different functions for your given application. Results will vary depending
on the scale factor and the type of image being scaled. Generally the
Lanczos2-windowed sinc gives good all round performance and is
commonly used for video scaling applications. Other popular windows
used are Hamming, Kaiser and Blackman. Figure 7 shows these
example filter windows sampled over the interval -2,2.

The functions in Figure 7 were generated in Matab® using the following
short script. The number of filter taps may be adjusted by modifying the
value 'N'. Currently this is set for a 5 tap filter.

% Lanczos2-windowed sinc over range -N/2,N/2
N = 5;
ks = -(N-1)/2:0.001:(N-1)/2;
kw = -(N-1)/2:0.001:(N-1)/2;

s = sinc(ks);
w = sinc(kw/2);

ws = s.*w;
plot (ks,ws)

% Blackman-windowed sinc over range -N/2,N/2
N = 5;
ks = -(N-1)/2:0.001:(N-1)/2;
kw = 0:0.001:(N-1);

s = sinc(ks);
w = 0.42 - 0.5*cos(2*pi*kw/(N-1)) +
0.08*cos(4*pi*kw/(N-1));

ws = s.*w;
plot (ks,ws)

% Hamming-windowed sinc over range -N/2,N/2
N = 5;
ks = -(N-1)/2:0.001:(N-1)/2;
kw = 0:0.001:(N-1);

s = sinc(ks);
w = 0.53836 - 0.46164*cos(2*pi*kw/(N-1));

ws = s.*w;
plot (ks,ws)

Copyright © 2013 www.zipcores.com Page 2 of 3

Figure 4: Filter tap positioning for the Lanczos2-windowed sinc

Figure 5: Sampling filter coefficients over 16 phases (5 taps)

Figure 6: Some common windowed-sinc functions

APPLICATION NOTE : ZC003

Estimating polyphase filter coefficients with a windowed-sinc function
Rev. 1.1

% Kaiser-windowed sinc over range -N/2,N/2
N = 5;
ks = -(N-1)/2:0.001:(N-1)/2;
kw = 0:0.001:(N-1);

s = sinc(ks);
alpha = 2*pi;
w = besseli(0,alpha*sqrt(1-(2*kw/(N-1) -1).^2))
/besseli(0,alpha);

ws = s.*w;
plot (ks,ws)

Generating Coefficients in Matlab®

The next script samples the coefficients for the Lanczos2-windowed sinc
function for 5 taps and 16 phases as per the description in Figure 6. The
script also generates a text file output.

% Calculate coefficients for Phases 0 to 15,
% Taps 0,1,2,3,4

for p_index = 1:16
 for t_index = 1:5
 p = (p_index - 1)/16;
 t = (t_index - 1);
 x = t - 2 - p;
 coeff(p_index, t_index) = sinc(x) * sinc(x/2);
 end
end

% Quantize to 2.6-bit signed numbers
coeff_quant = round(coeff * 64);

% Check they sum to 1
sum_coeff = sum(coeff,2);
sum_coeff_quant = sum(coeff_quant,2);

% Write coefficients to a file I=Phase, J=Tap
fid = fopen('coeffs_5tap.txt', 'w');
fprintf(fid, ' TAP0 TAP1 TAP2 TAP3 TAP4
SUM\n\n');
for I = 1:16
 fprintf(fid, 'PHASE%2d : ',I-1);
 for J = 1:5
 fprintf(fid, '%5d ', coeff_quant(I,J));
 end

 if sum_coeff_quant(I) == 64
 fprintf(fid, '%5d\n', sum_coeff_quant(I));
 else
 fprintf(fid, '%5d *\n', sum_coeff_quant(I));
 end
end

fclose(fid);

Coefficient file output

Note that minor adjustments to the coefficients must be made in order
that they sum to unity. These values are labelled with an asterisk '*' in the
output text file. All coefficients are output as 2.6-bit signed values.

 TAP0 TAP1 TAP2 TAP3 TAP4 SUM

PHASE 0 : 0 0 64 0 0 64
PHASE 1 : 0 -2 63 3 0 64
PHASE 2 : 0 -4 62 6 0 64
PHASE 3 : 0 -5 59 10 -1 63 *
PHASE 4 : -1 -5 56 15 -1 64
PHASE 5 : -1 -6 52 20 -2 63 *
PHASE 6 : -1 -5 47 26 -3 64
PHASE 7 : -1 -5 42 31 -3 64
PHASE 8 : -1 -4 37 37 -4 65 *
PHASE 9 : -1 -3 31 42 -5 64
PHASE10 : -1 -3 26 47 -5 64
PHASE11 : -1 -2 20 52 -6 63 *
PHASE12 : -1 -1 15 56 -5 64
PHASE13 : -1 -1 10 59 -5 62 *
PHASE14 : -1 0 6 62 -4 63 *
PHASE15 : 0 0 3 63 -2 64

Conclusion

In this application note, a detailed explanation of polyphase filters has
been provided in the context of digital video scaling applications. A
number of techniques have been presented for generating sets of
coefficients for the filter phases and, in addition, the application note has
described some common windowed-sinc functions for deriving the filter
kernels.

Finally, a Matlab® script has been provided to automatically generate
coefficients for a 5-tap, 16-phase filter using a Lanczos2-windowed sinc
function.

Revision History

Revision Change description Date

1.0 Initial revision 06/03/2009

1.1 Removed superfluous information and
simplified the text

21/01/2013

Copyright © 2013 www.zipcores.com Page 3 of 3

