

Digital Integrated Circuits

Monolithic Silicon

Preliminary CD4051AD, CD4051AE, CD4051AK Preliminary CD4052AD, CD4052AE, CD4052AK Preliminary CD4053AD, CD4053AE, CD4053AK

Preliminary Data

COS/MOS Analog Multiplexers

With Logic - Level Conversion

CD4051AD CD4051AE Single 8—Channel Multiplexer

CD4052AD CD4052AE Differential 4—Channel Multiplexer CD4052AK

CD4053AD CD4053AE Triple 2—Channel Multiplexer

RCA COS/MOS Analog Multiplexers CD4051A, CD4052A, and CD4053A are digitally controlled analog switches having low "ON" impedance and very low "OFF" leakage current. Control of analog signals up to 15 V p-p can be achieved by digital signal amplitudes of 3 to 15 V. For example, if VDD = ± 5 V, VSS = 0 V, and VEE = ± 5 V, analog signals from ± 5 V to ± 5 V can be controlled by digital inputs of 0 to 5 V. The multiplexer circuits dissipate extremely low quiescent power over the full VDD \pm VSS and VDD \pm VEE supply-voltage ranges, independent of the logic state of the control signals. When a logic "1" is present at the inhibit input terminal all channels are "OFF".

CD4051A is a single 8-channel multiplexer having three binary control inputs, A(LSB),B, and C(MSB) and an inhibit input. The three binary signals select 1 of 8 channels to be turned "ON" and connect the input to the output. The terminals marked "CHANNEL IN/OUT" and "COMMON OUT/IN" can be used as input or output terminals. For example, when the CD4051A is being used as a Multiplexer, the "CHANNEL IN/OUT" terminals are the inputs, and the "COMMON OUT/IN" terminal is the output; when the CD4051A is being used as a Demultiplexer, the "CHANNEL IN/OUT" terminals are the outputs and the "COMMON OUT/IN" terminal is the input.

CD4052A is a differential 4-channel multiplexer having two binary control inputs, A(LSB) and B(MSB), and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

Features:

- Wide range of digital and analog signal levels: Digital 3 to 15 V p-p analog to 15 V p-p
- Low "ON" resistance 50 Ω (typ) over entire 15-V p-p signal-input range for V_{DD} V_{EE} = 15 V
- High "OFF" resistance input leakage ± 10 pA (typ) @ VDD — VFF = 15 V
- Logic-level conversion for digital addressing signals of 3 to 15 V (V_{DD} V_{SS} = 3 V to 15 V) to switch analog signals to 15 V p-p (V_{DD} V_{EE} = 15 V)
- Matched switch characteristics ΔR_{ON} 5 Ω (typ) for $V_{DD} V_{FF} = 15 \text{ V}$
- Very low quiescent power dissipation under all digitalcontrol input and supply conditions — 0.1 μW typ @ VDD — VSS = VDD — VEE = 10 V
- Binary address decoding on chip

Applications:

- Analog and digital multiplexing and demultiplexing.
- A/D and D/A conversion.
- Signal gating.

CD4053A is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C and an inhibit input. Each control input selects one pair of channels which

are connected in a single-pole double-throw configuration. All six channels are "OFF" when a logic 1 is present at the inhibit input.

These devices are supplied in a 16-lead dual-in-line ceramic package (CD4051AD, CD4052AD, and CD4053AD), a 16-lead dual-in-line plastic package (CD4051AE, CD4052AE, and CD4053AE), or a 16-lead flat pack (CD4051AK, CD4052AK, and CD4053AK).

Maximum Ratings, Absolute Maximum Values

Maximum Hatings, 712001810 Months
Storage-Temperature Range $$ -65° C to $+150^{\circ}$ C
Operating-Temperature Range
Ceramic Packages
Plastic Packages
Dissipation Per Package
DC Supply Voltages
V _{DD} - V _{SS}
V _{DD} - V _{EE} 0.5 to +15 V
Channel Current

Maximum Ratings, (cont'd)

itrol Inputs $V_{SS} \le V_I \le V_{DD}$
$v_{\text{tet}} \leq v_{\text{I}} \leq v_{\text{DD}}$
Recommended Power Supply Voltages
V _{SS}
V _{EE}
perature (During soldering)
ance 1/16 ± 1/32 inch (1.59 ± 0.79 mm)
n case for 10 seconds max
VSS 3 V VEE 3 V December (During soldering) 3 V

ELECTRICAL CHARACTERISTICS @ TA = 25°C

CHARACTERISTIC	SYMBOL	TEST CONDITIONS			UNITS
Quiescent Device Dissipation Per Package	PD	$\begin{split} &V_{DD} = +10 \text{ V, V}_{SS} = 0 \text{ V, V}_{EE} = 0 \text{ V or V}_{DD} = +5 \text{ V, V}_{SS} = 0 \text{ V,} \\ &V_{EE} = -5 \text{ V All Digital Combinations On The Address Inputs} \\ &(\text{Note 1), All Analog Inputs V}_{EE} \leq V_{I} \leq V_{DD} \end{split}$			μW
Channel "ON"-Resistance	RON	$V_{DD} - V_{EE} = 15 \text{ V (i.e., } V_{DD} = +5 \text{ V, } V_{SS} = 0 \text{ V,}$ $V_{EE} = -10 \text{ V) Channel Selection see Note 1;}$ $V_{EE} \le V_I \le V_{DD}$		50	Ω
	0,1	$V_{DD} - V_{EE} = 10 \text{ V (i.e., } V_{DD} = +5 \text{ V, } V_{SS} = 0 $	120		
Channel △ "ON"—Resistance Between Any 2 Channels		V _{DD} - V _{EE} = 15 V (i.e., V _{DD} = +5 V, V _{SS} = 0 V, V _{EE} = -10 V)		5	Ω
Charmers	△Ron	V _{DD} - V _{EE} = 10 V (i.e., V _{DD} = +5 V, V _{SS} = 0 V,	10		
Leakage Current: Any Channel (Channel OFF)		V_{DD} = +5 V, V_{SS} = 0 V, V_{EE} = -5 V, $V_{EE} \le V_{I} \le V_{DD}$		±10	pΑ
Leakage Current:		CD4	CD4051A	±80	pA
Common (All		$V_{DD} = +5 \text{ V}, V_{SS} = 0 \text{ V}, V_{EE} = -5 \text{ V}$	CD4052A	±40	
Channels OFF)	Inhibit = +5 V		CD4053A	±20	ļ
Average Input Capacitance	C _I V _{DD} = +5 V, V _{SS} = 0 V, V _{EE} = -5 V Channel OFF		6	pF	
Average Output	co	VDD = +5 V, VSS = 0 V, VEE = -5 V	CD4051A	30	
Capacitance		Inhibit = +5 V CD4052A		18	pF
Capacitarios			CD4053A	10	
Turn-on Propagation Delay	^t pd	V _{DD} = +5 V, V _{SS} = 0 V, V _{EE} = -5 V		200	ns
Address Input Resistance	Rį			1011	Ω

NOTE 1: Positive Address - Logic: "O" = VSS, "1" = VDD

i.e., for CD4051A: C = 1, B = 1, A = 0, Inhibit = 0, turns ON CHANNEL 6

Fig.1-Functional diagram, CD4051A.

Fig.2-Functional diagram, CD4052A.

Fig.3-Functional diagram, CD4053A.

TRUTH TABLE

TΛ	RI	=	T

INPUT STATES			"ON" CHANNELS			
INHIBIT	С	В	Α	CD4051A	CD4052A	CD4053A
0	0	0	0	0	0x, 0γ	A0, B0, C0
0	0	0	1	1	1x, 1y	A1, B0, C0
0	0	1	0	2	2x, 2y	A0, B1, C0
0	0	1	1	3	3x, 3y	A1, B1, C0
0	1	0	0	4		A0, B0, C1
0	1	0	1	5		A1, B0, C1
0	1	1	0	6		A0, B1, C1
0	1	1	1	7		A1, B1, C1
1	*	*	*	NONE	NONE	NONE

* = Don't care condition

The ADDRESS (digital-control inputs) and INHIBIT logic levels are "0" = V_{SS} and "1" = V_{DD} . The analog signal (through the TG) may swing from V_{EE} to V_{DD} .

Fig.4-Typical bias voltages.

		JEDEC
Туре	Package	Dimensional Outline
CD4051AD, CD4052AD, CD4053AD	16-Lead Dual-In-Line Ceramic	MO-001-AE
CD4051AE, CD4052AE, CD4053AE	16-Lead Dual-In-Line Plastic	MO-001-AC
D4051AK, CD4052AK, CD4053AK	16-Lead Ceramic Flat Pack	MO-004-AG