

Small Signal Data Acquisition System

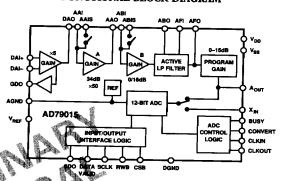
AD79015

FEATURES
Functional Complete DAS
Single Package
Monolithic
High Impedance Differential Inputs
Guaranteed Low 1 nA Input Bias Current
Guaranteed 80 dB Common-Mode Rejection
External Selectable Bandpass Filter Frequencies
Software Programmable Gain Selection
12-Bit A/D Converter with On-Chip Reference
Serial Communication Interface
Data Sampling 40,000 Samples/Second
± 5 V Supplies
Low 175 mW (typ) Power Consumption
Small 28-Terminal Surface Mount Package (PLCC)

APPLICATION
Small Signal Data Acquisition
ECG Signal Data Acquisition
Patient Monitoring

GENERAL DESCRIPTION

The AD79015 is a complete data admission system for very small signals (i.e., biomedical ECG) with a data sampling rate of minimum 40,000 samples/sec. It provides high accuracy, high stability, and functional completeness in a single 28-pin package.


It includes a high performance instrumentation amplifier at the front-end, bandpass filter, and an accurate 12-bit ADC with on-chip reference.

An on-chip clock circuit is provided, which may be used with a crystal for stand-alone operation. Alternatively, the clock input may be driven from an external CMOS-compatible clock source such as a microprocessor clock.

The AD79015 serial interface is compatible with many micro-processors and digital signal processors such as the ADSP-2100, TMS32020, μ PD7720, and DSP-56000. It can also be used with general purpose serial to parallel converters such as shift registers.

The AD79015 is fabricated in Analog Devices' linear compatible CMOS process (LC²MOS), an advanced, all ion-implanted process that combines fast CMOS logic and linear, bipolar circuits on a single chip, thus achieving excellent linear performance while still retaining low CMOS power levels.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

Single Chip, complete small signal DAS. It includes a high performance differential front end amplifier, programmable gain states externally controlled high and low corner frequencies, and a 12-bit AD converter with on-chip reference.

appur amplifier has extremely low input bias current of <1 nA over full temperature range. Typical input bias current at ambient temperature is 20 pA.

- 3. On-chip guard driver to minimize external components.
- Software programmable gain setting with a gain range of 0 dB to 31 dB.
- 5. On-chip clock oscillator to minimize external components.
- A serial interface is provided to make it easy to use AD79015 in applications where full isolation from the mains power is required.
- Serial interface supports multichannel applications with minimal external components.
- 8. LC²MOS circuitry gives low power drain (175 mW typ) from +5 V, and -5 V supplies.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

REV. 0

DATA ACQUISITION SUBSYSTEMS 7-49

AD79015 — SPECIFICATIONS ($V_{DD}=+5$ V \pm 5%, and $V_{SS}=-5$ V \pm 5%. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

Parameter	All Grades	Units	Test Condition/Comments
INPUT AMPLIFIER			
GAIN			
Gain Range	14	dB	
•	5	V/V	
Gain Error	±0.1	dB max	Over Full Temperature Range
VOLTAGE OFFSET			
Input Offset Voltage	10	mV max	
INPUT CURRENT	İ		
Input Bias Current	1	nA max	Over Full Temperature Range
Typical Input Bias	20	pA.	Typical at +25°C
INPUT		1	
Input Resistance	10°	Ω min	
Input Capacitance	6	pF typ	
Differential Input Voltage Range			
Gain = 5 (DC Coupled)	±0.5	V max	
Common-Mode Input Voltage	±0.5	V max	
Common-Mode Rejection Ratio	80	dB min	l
NOISE			
Voltage Noise (RTI)	2	μV p-p typ	Bandwiden 1 Pa-10 Hz @ +25℃
	4	μV p-p typ	Bandwid 0 Hz-100 Hz @ +25°C
	1		Assure Gaussian Noise $-V p-p = 6.6 \times V \text{ rms}$,
		_ 4 V	0.1 Probability of Error
GUARD DRIVER			
	100 . 🚓	FFFF .	
Capacitive Load Resistive Load	2	4	
		A21 IIIII	
AMPLIFIER A		LAAN	
Gain	34	T UB	
	50		
Gain Accuracy		GR max	
	1.2	% 1	*
Input Offset Voltage	2 ***	m v may	
Input Bias Current	5	nA typ	
AMPLIFIER B/LOW PASS FILTER			
Gain			
Low	0	dB	
	1.0	V/V	
High	16	dB	
	6.3	V/V	
Gain Error	0.2	dB max	
	2.4	%	1
Input Offset	2	mV max	1
Resistors in Network	5	% max	of Absolute Value, over Full Temperature Range
PROGRAMMABLE GAIN AMPLIFIER			
Gain			
Minimum Gain	0	dB	
	1.0	V/V	
Maximum Gain	15	dB	
Makinum Cam	5.6	V/V	
Gain Step Size	1	dB	
Gam Step Size	12.2	%	
Coin Accuracy	0.1	dB max	
Gain Accuracy	1.0	V/V	
Input Offset Voltage	1.0	mV max	

This information applies to a product under development, its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

Description	A11.0 . 1	T = 7 .	T . C . W C
Parameter	All Grades	Units	Test Condition/Comments
CONVERTER (Core Cell Is the AD7870)			
DYNAMIC PERFORMANCE			
Signal-to-Noise Ratio (SNR)	68	dB	min , $V_{IN} = 1$ kHz Sine, $f_{SAMPLE} = 10$ kHz
Total Harmonic Distortion	-80	dB	max, $V_{IN} = 1$ kHz Sine, $f_{SAMPLE} = 10$ kHz
No Missed Codes	Guaranteed		
Track/Hold Acquisition Time	2	μs	max
Conversion Time	13.25	μs	@ 4 MHz Clock Frequency
DC ACCURACY			
Resolution	12	Bits	
Relative Accuracy	±1	LSB	Typical
DNL	±1	LSB	Typical
Bipolar Zero Offset	±1	%	$ @V_{IN} = 0 V $
Full-Scale Error	±1	%	@ $V_{IN} = -3 \text{ V or } V_{IN} = +3 \text{ V}$, Relative to Reference
ANALOG INPUT	•		
Input Voltage Range	±3	l V	₫
Input Current	±550	μA	max
REFERENCE OUTPUT		1	
		V min/V	o
Reference Voltage @ +25℃	2.98/3.02	max	Decoupling Required 0.1µF + + 10µF
Reference Tempco	±40	prop C type	▼ ♦
DIGITAL INTERFACE	. 1%	16.60	
INPUTS		W > " a (
Logic "1" Voltage	420	Vmin	
Logic "0" Voltage	40.8		
Input Current	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Christ	$V_{DD} = 0$ to V_{DD}
Input Capacitance	10	oF max	The state of the s
OUTPUTS		4	
Logic "1" Voltage	+24	Vernige	I _{SOURCE} = 200 μA
Logic "0" Voltage	+0.4	V	I _{SINK} = 1.6 mA
Floating State Leakage	±10	max	-SINK
Floating State Capacitance	15	pF max	
POWER REQUIREMENTS		1	
V_{DD}	+5	V nominal	±5% for Specified Performance
V_{ss}	-5	V nominal	±5% for Specified Performance
IDD	25	mA max	
I _{ss}	25	mA max	
Power Dissipation	175	mW typ	
TEMPERATURE RANGE (T _{MIN} to T _{MAX}) 0 to +70	°C	
DISTRICT TANK TO I MAX	7 010 170		

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS* $(T_A = +25^{\circ}C \text{ unless otherwise noted})$ $V_{DD} \text{ to DGND} \qquad -0.3 \text{ V to } +7 \text{ V}$ $V_{DB} \text{ to DGND} \qquad +0.3 \text{ V to } -7 \text{ V}$

Derates above +75°C by 6 mW/°C

*Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

CAUTION

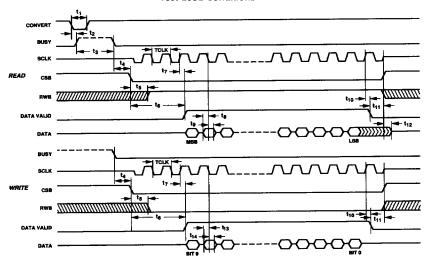
ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

This information applies to a product under development, its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

REV. 0

DATA ACQUISITION SUBSYSTEMS 7-51

AD79015

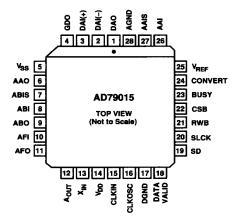

TIMING CHARACTERISTICS ($V_{00} = +5 \text{ V}, V_{SS} = -5 \text{ V}, \text{ Ambient Temperature } +25^{\circ}\text{C}$)

Parameter	Limit	Units	Conditions/Comments	
TIMING				
t _{CLK}	10	μs max	Clock Cycle Time 100 kHz Clock	
CLK	250	ns min	Clock Cycle Time 4 MHz Clock	
$\mathbf{t_1}$	t _{CLK}	ns min	ADC Start Convert Pulse Width	
t ₂	80	ns max	CONVERT↓ to BUSY↑	
t ₃	53* t _{CLK}	ns max	ADC Busy Period	
t ₄	0	ns min	BUSY ↓ to CSB ↓	
t ₅	2.5 t _{CLK}	ns max	CSB↓ to RWB	
t ₆	2.5 t _{CLK}	ns min	CSB↓ to DATA VALID↑	
*6	4.5 t _{CLK}	ns max	CSB↓ to DATA VALID↑	
t ₇	30	ns max	SCLK ↑ to DATA VALID ↑	
t ₈	30	ns min	Data at Output before SCLK !	
t ₉	50	ns min	Data at Output after SCLK↓	
	30	ns max	SCLK↑ to DATA VALID↓	
t ₁₀	0	ns min	DATA VALID ↓ to CSB/RWB↑	
t ₁₁	50	ns max	CSB↑ to Data and SCLK Float (See diagram below.)	
t ₁₂	i õ	ns min	Data Setup Time before SCLK	
t ₁₃ t ₁₄	0.5 t _{CLK}	ns min	Data Hold Time after SCLK	

^{*}The Internal Logic is dynamic so must be continuously clocked at 100 kHz minimum.

Test Load Conditions

Timing Diagram


This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

PIN FUNCTION DESCRIPTION

Pin	Mnemonic	Description
1	DAO	Differential Amplifier Out
2	DAI(-)	Differential Amplifier In (-)
3	DAI(+)	Differential Amplifier In (+)
4	GDO	Guard Drive Output
5	\mathbf{v}_{ss}	Negative Supply, -5 V
6	AAO	Amplifier A Out
7	ABIS	Amplifier B In (Switched)
8	ABI	Amplifier B In
9	ABO	Amplifier B Out
10	AFI	Active Filter In (-)
11	AFO	Active Filter Out
12	A _{OUT}	Analog Out
13	X _{IN}	External ADC Input
14	$\mathbf{V_{DD}}$	Positive Supply, +5 V
15	CLKIN	Clock Input Pin. An external TTL compatible clock may be applied to this pin
16	CLKOSC	Clock Oscillator Pin
17	DGND	Digital Ground
18	DATA VALID	This pin signals valid data in/out during SGLK low-high transition.
19	SDO	Serial Data In/Out. This pin it in tristate when CSD is high
20	SCLK	Serial Clock Output. This pin is in tristate when CSB is high
21	RWB	Read/Write Select
22	CSB	Chip Select
23	BUSY	Converter Busy
24	CONVERT	Start Conversion
25	V_{REF}	Voltage Reference Out
26	AAI	Amplifier A In
27	AAIS	Amplifier A In (Switched)
28	AGND	Analog Ground

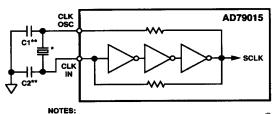
PIN CONFIGURATION

PLCC

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

REV. 0

DATA ACQUISITION SUBSYSTEMS 7-53


AD79015

CIRCUIT INFORMATION SIGNAL LEVELS

For an input gain of 5, the maximum Input Signal for Full-Scale ADC Output is ±10 mV.

INTERNAL CLOCK OSCILLATOR

Figure 1 shows the AD79015 internal clock circuit. A crystal or ceramic resonator may be connected as in Figure 1 to provide a clock oscillator for the internal timing. Alternatively, the crystal/ resonator may be omitted and an external CMOS-compatible clock source connected to CLKIN. The mark/space ratio of the external clock must be in the range of 45/55 and 55/45. An inverted CLKIN signal will appear at the SCLK output pin.

4MHz CRYSTAL/CERAMIC RESONATOR

C1 AND C2 CAPACITANCE VALUES DEPEND ON CRYSTAL/CERAMIC RESONATOR MANUFACTURES TYPICAL VALUES ARE FROM 30pF

Figure 1. AD79015 Internal Clo

ACTIVE LOW-PASS FILTER

The internal active filter is implemented with a 2nd order negative feedback configuration.

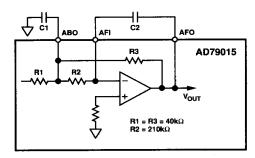
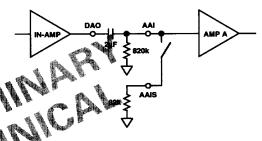
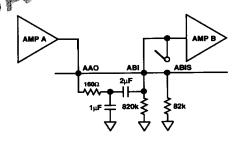


Figure 2. Low-Pass Filter


The filter cutoff frequency and filter damping factor are determined by selecting the appropriate values of C1 and C2. The resistor value for R1 and R3 is 40 k Ω and R2 is 210 k Ω .

$$d = \sqrt{\frac{C2}{C1}} \left[\sqrt{\frac{R2}{R3}} + \sqrt{\frac{R3}{R2}} + \sqrt{\frac{R2 \times R3}{R1}} \right] gain = \frac{R3}{R1}$$


Bandpass ripple
$$\frac{e_{OUT}}{e_{IN}} = -20 \log_{10} \left[\frac{d\sqrt{4-d^2}}{2} \right]$$

HIGH-PASS FILTER (Example Only)

This external high-pass filter can be implemented between the input gain stage and Amplifier A.

TAND PASS III. TER (Example Only)
This external band cass filter can be implemented between Amplifier A and Amplifier B.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

PROGRAMMING THE AD79015

The function of the part is set by writing a ten-bit word to the control register on chip using the serial interface. The timing for the write operation is provided in the timing diagrams.

The order and function of the bits in the control register is as follows:

Bit 9 A "1" sets external input to the ADC.
Bit 8 Internal use only. Must be set to a "1."
Bit 7 Internal use only. Must be set to a "1."

Bit 3-Bit 6 A 4-bit binary code to set the gain of the programmable gain block between 0 dB and 15 dB in steps of 1 dB.

"0000" is 0 dB and "1111" is 15 dB.

Bit 2 A "0" sets the gain of 3rd stage to 0 dB.
A "1" sets the gain of 3rd stage to 16 dB.

Bit 1 A "1" closes the internal switches at the inputs to

the 2nd and 3rd stage amplifiers.

Bit 0 Internal use only. Must be set to a "

Bit 0 Internal use only. Must be set to a "0."

Valid data available only after the first read from and write to the interface register

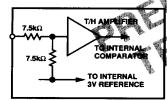


Figure 3. ADC Analog Input

ANALOG INPUT

Figure 3 shows the ADC analog input. The analog input range is 3 V into an input resistance of typically 15 k Ω . The designed code transition occurs midway between successive integer LSB values (i.e., 1/2 LSB, 3/2 LSBs, 5/2 LSBs . . . FS-3/2 LSBs). The output code is binary with 1 LSB = FS/4096 = 6 V/4096 = 1.46 mV. The ideal input/output transfer function is shown in Figure 4.

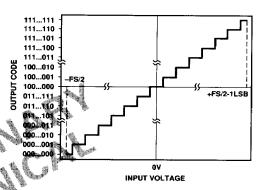


Figure 4. Bipolar Input/Output Transfer Function

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.