This Materi al

Am386™SX

High-Performance, 32-Bit Microprocessor

with 16-Bit Data Bus

n

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

m Compatible with 386SX systems and software
® 25- and 20-MHz operating speeds

m Pin-for-pin replacement of the Intel i386SX

|

Supports 387SX-compatible math
coprocessors

m 100-lead PQFP package with optional
protective ring for better lead coplanarity

B 24-bit address bus, 16-bit data bus
B Advanced 0.8 micron CMOS technology

GENERAL DESCRIPTION

The Am386SX microprocessor is a compatible imple-
mentation of the Intel i386SX. It is engineered to meet
strict requirements for compatibility. It is compatible with
hardware designed for 386SX systems and is, in fact, a
pin-for-pin replacement of the Intel i386SX. It is also
compatible with operating systems written for the 386
and the wide variety of commercially available software

applications. ,

The Am386SX microprocessor is a 32-bit CPU with a
16-bit external data bus, and a 24-bit external address

bus. It provides the performance and compatibility
benefits of the 386 architecture with the cost savings as-
sociated with 16-bit hardware. This device offers a 25%
increase in performance from 20 to 25 MHz.

The device is manufactured using the AMD® advanced
0.8 micron CMOS process. It is packaged in a 100-pin
plastic quad flat pack (PQFP). This package may be
shipped in an optional protective ring for better lead
protection during manufacturing.

BLOCK DIAGRAM

Segmentation Unit Paging Unit Bus Control HOLD. INTR
/ 3-Input Request NM!, ERROR
Adder eques NM|, E)
Effective Address Bus ’[32 > Adder Prioritizer BUSY, RESET,
; . a 3 HLDA, FLT*
Eflective Address Bus] > Descriptor [Page 2
T32 Registers Cache é
Limit and Control & 3
2 Attribute :> Attribute < ‘L. i
Protection < PLA PLA 5| 1§
Test Unit >
§ 7 s Address |—p BHE, BLE
AN < @ E Driver A23-A1
o ¢ & — M0, DT,
e cones 3 < ::) Pipeline W/F;, _I&E_C_K',
] 3 DS, NA,
5 A READY
§ MUX/
Barrel Decode Prefetcher/ Trans- le 5 p15-DO
Shifter,) Instruction olc ceivers
Adder and Decoder :> Limit
Sequencing Checker
Multiply/ | Status
Divide | Flags Sode
3-Decoded tream Code
Control !
Register <——__ ROM <: Instruction <: Queue
File ALU Queue 32 Bi
Control it
T} ALU Control Instruction Precode Instruction Prefetch
ri
Dedicated ALU Bug [
"a2
15022A-001

*Contact AMD for availability of Float feature, PQFP only.

Publication # 15022 Rev. B Amendment 0
issue Date: May 1991

Copyrighted By Its Respective Manufacturer

n AMD

CONNECTION DIAGRAM

Top View
o ~ o -
582333885 888555 88255388447
ananonaonononoopooononoonon
§8§3'&8338868%838838%582&"&.‘2
DO] te 75 =3 A20
Vs T 2 74 3 A19
HLDA] 3 73 B33 A18
HOLD —] 4 72 3 A7
Vs T 5 71 3 Ve
NA g ¢ 70 3 A6
READY — 7 69 [T Ve
Voo] 8 68 [Vg
Vee T 9 67 3 Vs
Vee T 10 66 |1 Als
Ves T 11 65 1 A14
Ves [12 64 |1 A13
Ves £ 13 63 [Vs
Ves] 14 62 [A2
CLk2 —1 15 61 [Af1
ADS . 16 60 [/ A10
BLE . 17 59 1 A9
Al] 18 58 O A8
BHE] 190 57 3 Ve
NC 20 56 [A7
Vee £ 21 55 =3 As
Ves [22 54 [As
MIC 3 23 — A4
DT —] 24 52 1 A3
WR —] 25 51 0O A2
ERAABHRIBLRERIBRITYIIVLYELLZRL]
ULUOuooooouoouoooooroooon
E%E%%%ﬁg%#é@;ﬁgiﬁ%%%%%ﬁﬁﬁ
& & B
15022B-002
Notes: NC = No Connect
Pin 1 is marked for orientation.
*Contact AMD for availability of Float feature, PQFP only.
2 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

PIN DESIGNATIONS (Sorted by Pin Name)

Address Data Control NC Vee Vss

Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin No. | Pin No. | Pin No.

A1 18 DO 1 ADS 16 20 8 2

A2 51 D1 100 BHE 19 27 9 5

A3 52 D2 99 BLE 17 29 10 11

A4 53 D3 96 BUSY 34 30 21 12

25 54 D4 95 CLK2 15 31 32 13
6 55 Ds 94 Dic 24 43 39 14

A7 56 D6 93 ERRCR 36 44 42 22

A8 58 D7 92 FLT 28 a5 48 35

A9 59 D8 90 HLDA 3 46 57 41

A10 60 HOLD 4

A11 61 bs 89 INTR A a7 69 | 4o

D10 88

A12 62 D11 87 LOCK 26 4 >

A13 64 M0 23 84 63

Al4 65 D12 8e NA 6 91 67

At5 66 013 83 NMI a8 97 68

A16 70 D14 82 PEREQ 37 77

A17 72 D1 5 81 READY 7 78

A18 73 RESET 33 85

A19 74 WiR 25 08

A20 75

A21 76

A22 79

A23 80

PIN DESIGNATIONS (Sorted by Pin Number)

Pin No. | PinName | Pin No. { Pin Name | Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name
1 Do 21 Vee 41 Vas 61 A1 81 D15
2 Vss 22 Vss 42 Vee 62 A12 82 D14
3 HLDA 23 MAO 43 NC 63 Vss 83 D13
4 HOLD 24 D/C 44 NC 64 A13 84 Vee
5 Vss 25 W/R 45 NC 65 Al4 85 Vss
6 NA 26 LOCK 46 NC 66 A15 86 D12
7 READY 27 NC 47 NC 67 Vss 87 D11
8 Veo 28 FT™ 48 Veeo 68 Ves 88 D10
9 Vee 29 NC 49 Vss 69 Veo 89 D9

10 Vee 30 NC 50 Vss 70 A6 90 D8
1 Vss 31 NC 51 A2 71 Vee 91 Vee
12 | Vss 32 Vee 52 A3 72 A17 92 D7
13 Vss 33 RESET 53 A4 73 A18 93 Ds
14 Vss 34 BUSY 54 A5 74 A19 94 Ds
15 CLK2 35 Vss 55 A6 75 A20 95 D4
16 ADS 36 ERROR 56 A7 76 A21 96 D3
17 BLE 37 PEREQ 57 Vee 77 Vss 97 Vee
18 A1 38 NMI 58 A8 78 Ves 98 Ves
19 BHE 39 Vee 59 A9 79 A22 99 D2
20 NC 40 INTR 60 A10 80 A23 100 D1

*Contact AMD for availability of Float feature, PQFP only.

Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

n AMD

LOGIC SYMBOL
2X Clock — CLK2
Fi I“_
Data Bus D15-DO PEREQ
) ERROR |je——
< 23 A23-A1 BUSY j¢——m
Address Bus 4
<Z BLE, BAE Am386SX NMi e
\ Mlcroprocessor RESET
r «——— WR
INTR j¢——
« DiC HLDA |—»
Bus Cycle $
Definition
+— MI0 HOLD j——
<+—— [OCK —
' ADS NA READY
ADS NA READY

Bus Cycle Control

*Contact AMD for availability of Float feature, PQFP only.

>

S

|

Float

Math
Coprocessor
Control

Interrupt Control

Bus
Arbitration
Control

15022B-003

4

This Materi al

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

ORDERING INFORMATION
Standard Products

AMD® standard products are available in several packages and operating ranges. The order number (Valid Combination) is

formed by a combination of the elements below.

1Z
19

Valid Combinations

NG

-25
-20
-18*

80386SX

-25F
—20F
-16F*

-258
~208
-168*

*Contact AMD for 16-MHz availability.

OPTIONAL PROCESSING

None = Trimmed and Formed PQFP in high-temp trays
F = Ringed PQFP in horizontal tubes
S = Ringed PQFP in coin-stack tubes

TEMPERATURE RANGE
Blank = Commercial (0°C to +100°C)

SPEED OPTION
—25 =25 MHz
—20=20 MHz
-16 =16 MHz"

DEVICE NUMBER/DESCRIPTION
80386SX

Am386SX High-Performance,

32-Bit Microprocessor with 16-Bit Data Bus

PACKAGE TYPE
NG = 100-Pin Plastic Quad Flat Pack (PQ100, PQB100)

Valid Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMD sales office to confirm availability of
spacific valid combinations and to check on newly
released combinations.

This Materia

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

PIN DESCRIPTION

A23-A1
Address Bus (Outputs)

Outputs physical memory or port I/O addresses.

ADS
Address Status (Active Low; Output)

Indicates that a valid bus cycle definition and address
(W/R, D/C, M/IO, BHE, BLE, and A23-A1) are being
driven at the Am386SX microprocessor pins.

BHE, BLE
Byte Enables (Active Low; Outputs)

Indicate which data bytes of the data bus take part
in a bus cycle.

BUSY

Busy (Active Low; Input)

Signals a busy condition from a processor extension.
CLK2

CLK2 (Input)

Provides the fundamental timing for the Am386SX
microprocessor.

D15-DO
Data Bus (Inputs/Outputs)

Inputs data during memory, I/O, and interrupt
acknowledge read cycles; outputs data during memory
and I/O write cycles.

D/C
Data/Control (Output)

Abus cycle definition pin that distinguishes data cycles,
either memory or I/O, from control cycles which are:
interrupt acknowledge, halt, and code fetch.

ERROR

Error (Active Low; Input)

Signais an error condition from a processor extension.
FLT*

Float (Active Low; Input)

An input which forces all bi-directional and output
signals, including HLDA, to the three-state condition.

HLDA
Bus Hold Acknowledge (Active High; Output)

Output indicates that the Am386S X microprocessor has
surrendered control of its logical bus to another bus
master.

*Contact AMD for availability of Float feature, PQFP only.

HOLD
Bus Hold Request (Active High; Input)

Input allows another bus masterto request control of the
local bus.

INTR
Interrupt Request (Active High; Input)

A maskable input that signals the Am386SX micropro-
cessor to suspend execution of the current program
and execute an interrupt acknowledge function.

LOCK
Bus Lock (Active Low; Output)

A bus cycle definition pin that indicates that other
systembus masters are not to gain control of the system
bus while it is active.

M/i0
Memory/IO (Output)

A bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

NA

Next Address (Active Low; Input)

Used to request address pipelining.

NC
No Connect

Should always be left unconnected. Connection of a NC
pin may cause the processor to malfunction, or be in-
compatible with future steppings of the Am386SX
microprocessor.

NMI
Non-Maskable Interrupt Request
(Actve High; Input)

A non-maskable input that signails the Am386SX micro-
processor to suspend execution of the current program
and execute an interrupt acknowledge function.

PEREQ
Processor Extension Request (Active High; Input)

Indicates that the processor has data to be transferred
by the Am386SX microprocessor.

READY
Bus Ready (Active Low; Input)

Terminates the bus cycle.

6 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

AMD a

RESET
Reset (Active High; Input)

Suspends any operation in progress and places the
Am386S X microprocessor in a known reset state.

Ve
System Power (Active High; Input)

Provides the +5 V nominal DC supply input.

Vi
System Ground (Input)

Provides the 0 V connection from which all inputs and
outputs are measured.

W/R
Write/Read (Output)

A bus cycle definition pin that distinguishes write cycles
from read cycles.

Am386SX Microprocessor 7

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

INTRODUCTION

The Am386SX microprocessor is 100% object-code
compatible with the Am386DX, 80286, and 8086
microprocessors. System manufacturers can provide
Am386DX CPU based systems optimized for perform-
ance and Am386SX CPU based systems optimized for
cost, both sharing the same operating systems and
application software. Systems based on the Am386SX
CPU can access the world’s largest existing micro-
computer software base. Only the Am386DX architec-
ture can run UNIX, OS/2, and MS-DOS.

Instruction pipelining, high-bus bandwidth, and a very
high-performance ALU ensure short average instruction
execution times and high system throughput. The
AmM386SX CPU is capable of execution at sustained
rates of 2.5-3.0 million instructions per second.

The integrated Memory Management Unit (MMU)
includes an address translation cache, advanced multi-
tasking hardware, and a four-level hardware-enforced
protection mechanism to support operating systems.
The virtual machine capability of the Am386SX CPU
allows simultaneous execution of applications from
multiple operating systems such as MS-DOS and UNIX.

The Am386SX CPU offers on-chip testability and
debugging features. Four breakpoint registers allow
conditional or unconditional breakpoint traps on code
execution or data accesses for powerful debugging of
even ROM-based systems. Other testability features
include self-test, three-state of output buffers, and direct
access to the page translation cache.

BASE ARCHITECTURE

The Am386SX microprocessor consists of a central
processing unit, a memory management unit, and a bus
interface.

The central processing unit consists of the execution
unitand the instruction unit. The execution unit contains
the eight 32-bit general purpose registers which are
used for both address calculation and data operations
and a 64-bit barrel shifter used to speed shift, rotate,
multiply, and divide operations. The instruction unit
decodes the instruction op-codes and stores theminthe
decoded instruction queue for immediate use by the
execution unit.

The MMU consists of a segmentation unit and a paging
unit. Segmentation allows the managing of the logical
address space by providing an extra addressing
component, one that allows easy code and data
relocatability, and efficient sharing. The paging
mechanism operates beneath and is transparent to the
segmentation process, to allow management of the
physical address space.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the

operating system from each other. The hardware
enforced protection allows the design of systems with a
high degree of integrity.

The Am386SX microprocessor has two modes of
operation: Real Address Mode (Real Mode) and
Protected Virtual Address Mode (Protected Mode). In
Real Mode the Am386SX CPU operates as a very fast
8086, but with 32-bit extensions, if desired. RealMode is
required primarily to set up the processor for Protected
Mode operation.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086
semantics, thus allowing 8086 software (an application
program or an entire operating system) to execute. The
Virtual 8086 tasks can be isolated and protected from
one another and the host Am386SX microprocessor
operating system by use of paging.

Finally, to facilitate high-performance system hardware
designs, the Am386SX microprocessor bus interface
offers address pipelining and direct Byte Enable signals
for each byte of the data bus.

Register Set

The Am386SX microprocessor has 34 registers as
shown in Figure 1. These registers are grouped into the
following seven categories:

General Purpose Registers: The eight 32-bit general
purpose registers are used to contain arithmetic and
logical operands. Four of these (EAX, EBX, ECX, and
EDX) can be used either in their entirety as 32-bit
registers, as 16-bit registers, or split into pairs of
separate 8-bit registers.

Segment Registers: Six 16-bit special purpose
registers select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data.

Flags and Instruction Pointer Registers: The two
32-bit special purpose registers in Figure 1 record or
control certain aspects of the Am386SX microprocessor
state. The EFLAGS register includes status and control
bits that are used to reflect the outcome of many
instructions and modify the semantics of some
instructions. The instruction Pointer (EIP) is 32-bits
wide. The EIP controls instruction fetching, and the
processor automatically increments it after executing an
instruction.

Control Registers: The four 32-bit control registers are
used to control the global nature of the Am386S X micro-
processor. The CRO register contains bits that set the
different processor modes (Protected, Real, Paging,
and Coprocessor Emulation). CR2 and CRS3 registers
are used in the paging operation.

8 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD a

31 16 15 8 7 0
AH A[X AL | EAX |
BH B|X BL EBX
CH C|X CL ECX
DH DIX DL EDX General Purpose Registers
Si ESI
DI EDI
BP EBP
SP ESP _
15 0 .
(o]
SS
DS .
ES Segment Registers
FS
GS]
31 16 15 0 _
FLAGS EFLAGS Flags & Instruction Pointer
P EIP]
crRo |
4 CR1 .
Page Fault Linear Address Register CR2 Control Registers
Page Directory Base Register CR3 n
47 16 15 0
GDTR
63 48 IDTR System Address Registers
LDTR
TR]
31 0 .
Linear Breakpoint Address 0 DRo
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3)
DR4 Debug Registers
DRs
Breakpoint Status DRé
Breakpoint Control DR7 |
31 0 _
Test Control TR6 Test Registers
Test Status TR7 |

Reserved for future use—do not use.

15022B-004

Figure 1. Am386SX Microprocessor Registers

Am386SX Microprocessor 9

This Material Copyrighted By Its Respective Manufacturer

n AMD

System Address Registers: These four special regis-
ters reference the tables or segments supported by the
80286/Am386SX/Am386DX CPU’s protection model.
These tables or segments are:

GDTR (Globat Descriptor Table Register),
IDTR (Interrupt Descriptor Table Register),
LDTR (Local Descriptor Table Register),
TR (Task State Segment Register).

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debugging.
The use of the debug registers is described in the
section Debugging Support.

Test Registers: Two registers are used to control the
testing of the RAM/CAM (Content Addressabie
Memories) in the Translation Look-Aside Buffer portion
of the Am386SX microprocessor. Their use is discussed
in section Testability.

EFLAGS Register

The flag register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS, shown in
Figure 2, control certain operations and indicate the
status of the Am386SX microprocessor. The lower 16
bits (bits 15-0) of EFLAGS contain the 16-bit flag
register named FLAGS. This is the default flag register

used when executing 8086, 80286, or real mode code.
The functions of the flag bits are given in Table 1.

Control Registers

The Am386SX microprocessor has three control
registers of 32 bits, CR3-CRO, to hold the machine state
of a global nature. These registers are shown in Figures
1 and 2. The defined CRO bits are described in Table 2.

Instruction Set

The instruction set is divided into nine categories of
operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High-Level Language Support
Operating System Support
Processor Control

These instructions are listed in the Instruction Set Clock
Count Summary (pages 72-86).

Special Fields:
/O Privilege Level

Nested Task

17 16 15 114 13l12

Status Flags:

Overflow

Sign
Zero

Aux Carry
Parity

Carry
1110 9 8 |7 |6 5 |4 3 |2 1 |o
L vy A A4

VMIRF] 0 INT] IOPL
1

OFIDF} IF | TF|SF|ZF| O JAF| O [PF| 1 |CF| EFLAGS

Control Flags:
Trap

Interrupt

Direction

Resume

Protection Enable
Paging Enable Monitor Coprocessor
Emulate Coprocessor

Virtual 8086 Mode

Task Switched
1 y v ¥

TS|EM|MP|PE| CRO

I
31 16 15
L

MSW
15022B-005

Figure 2. Status and Control Register Bit Functions

10 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

Table 1. Flag Definitions

Bit Position Name Function

0 CF Carry Flag—Set on high-order bit carry or borrow; cleared otherwise.

2 PF Parity Flag—Set if low-order 8 bits of result contain an even number of 1 bits;
cleared otherwise.

4 AF Auxiliary Carry Flag—Set on carry from or borrow to the low-order 4 bits of
AL; cleared otherwise.

6 ZF Zero Flag—Set if result is zero; cleared otherwise.

7 SF Sign Flag—Set equal to high-order bit of result (0 if positive, 1 if negative).

8 TF Single-Step Flag—Once set, a single-step interrupt occurs after the next
instruction executes. TF is cleared by the single-step interrupt.

9 IF Interrupt-Enable Flag—When set, maskable interrupts will cause the CPU to
transfer control to an interrupt vector specified location.

10 DF Direction Flag—Causes string instructions to auto-increment (default) the
appropriate index registers when cleared. Setting DF causes auto-decrement.
Overtlow Flag—Set if the operation resulted in a carry/borrow into the sign bit

11 OF (high-order bit) of the result but did not result in a carry/borrow out of the high-
order bit or vice-versa.
/O Privilege Level—Indicates the maximum CPL permitted to execute I/0
instructions without generating an Exception 13 fault or consulting the /O

12,13 IOPL permission bit map while executing in protected mode. For virtual 8086 mode

it indicates the maximum CPL allowing alteration of the IF bit.

14 NT Nested Task-—Indicates that the execution of the current task is nested within
another task.
Resume Flag—Used in conjunction with debug register breakpaints. it is

16 RF checked at instruction boundaries before breakpoint processing. If set, any
debug fault is ignored on the next instruction.
Virtual 8086 Mode—If set while in protected mode, the Am386SX micro-

17 VM processor will switch to virtual 8086 operation, handling segment loads as
8086 does, but generating Exception 13 faults on privileged op-codes.

Table 2. CRO Definitions
Bit Position Name Function

Protection Mode Enable—Places the Am386SX microprocessor into
Protected Mode. if PE is reset, the processor operates again in Real

0 PE Mode. PE may be set by loading MSW or CRO. PE can be reset only
by loading CRO; it cannot be reset by the LMSW instruction.

1 MP Monitor Coprocessor Extension—Allows WAIT instructions to cause a
processor extension Not Present exception (number 7).
Emulate Processor Extension—Causes a processor extension Not Present

2 EM exception (number 7) on ESC instructions to allow emulating a processor
extension.
Task Switched—Indicates the next instruction using a processor extension

3 TS will cause an Exception 7, allowing software to test whether the current
processor extension context belongs to the current task.

a1 PG Paging Enable Bit—Is set to enable the on-chip paging unit. It is reset to

disable the on-chip paging unit.

This Materi al

Copyri ght ed

Am386SX Microprocessor 11

By Its Respective Manufacturer

This Materi al

n AMD

All Am386SX microprocessor instructions operate on
either 0, 1, 2, or 3 operands; an operand resides in a
register, in the instruction itself, or in memory. Most
zero operand instructions (e.g., CLI, STI) take only
one byte. One operand instructions generally are two
bytes long. The average instruction is 3.2 bytes long.
Since the Am386SX CPU has a 16-byte prefetch in-
struction queue, an average of 5 instructions will be
prefetched. The use of two operands permits the follow-
ing types of common instructions:

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory

The operands can be either 8, 16, or 32 bits long. As a
general rule, when executing code written for the
Am386SX microprocessor (32-bit code), operands are
8 or 32 bits; when executing existing 8086 or 80286
code (16-bit code), operands are 8 or 16 bits. Prefixes
can be added to all instructions which override the de-
fault length of the operands (i.e., use 32-bit operands for
16-bit code, or 16-bit operands for 32-bit code).

Memory Organization

Memory on the Am386SX microprocessor is divided
into 8-bit quantities (Bytes), 16-bit quantities (Words),
and 32-bit quantities (Dwords). Words are stored in two
consecutive bytes in memory with the low-order byte
at the lowest address. Dwords are stored in four
consecutive bytes in memory with the low-order byte at
the lowest address. The address of a Word or Dword is
the byte address of the low-order byte.

in addition to these basic data types, the Am386SX
microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up into
one or more variable length segments, which can be
swapped to disk or shared between programs. Memory
can also be organized into one or more 4-Kb pages.
Finally, both segmentation and paging can be
combined, gaining the advantages of both systems.
The Am386SX microprocessor supports both pages
and segmentation in order to provide maximum
flexibility to the system designer. Segmentation and
paging are complementary. Segmentation is useful for
organizing memory in logical modules, and, as such, isa
tool for the application programmer, while pages are
useful to the system programmer for managing the
physical memory of a system.

Effective Address Calculation
Index
Base Displacement
Scale
1,2,4,8 15 0
:é BHE-BLE
A23-A1 .
Physical
a2 Effective Address Memory
z
15 2 0 4
. . 32 Paging Unit 24
R Logical or segntjen_tanon 7~ (Optional Use) 7

Virtual Address nit L .

Selector P |14, _ Inear Physical

L ra Address Address
Descriptor
Segment Register Index
15021B-011
Figure 3. Address Translation
12 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

Address Spaces

The Am386SX microprocessor has three types of
address spaces: logical, linear, and physical. A logical
address (also known as a virtual address) consists of
a selector and an offset. A selector is the contents
of a segment register. An offset is formed by summing
all of the addressing components (Base, Index,
Displacement), discussed in the section Addressing
Modes, into an effective address. This effective
address, along with the selector, is known as the logical
address. Since each task on the Am386SX CPU has a
maximum of 16K (2'4-1) selectors, and offsets can be
4 Gb (with paging enabled), this gives a total of 2* bits,
or 64 tb, of logical address space per task. The pro-
grammer sees the logical address space.

The segmentation unit translates the logical address
space into a 32-bit linear address space. If the paging
unit is not enabled then the 32-bit linear address is
truncated into a 24-bit physical address. The physical
address is what appears on the address pins.

The primary differences between Real Mode and
Protected Mode are how the segmentation unit
performs the translation of the logical address into the
linear address, size of the address space, and paging
capability. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
effective address to form the linear address. This linear
address is limited to 1 Mb. In addition, Real Mode has
no paging capability.

Protected Mode will see one of two different address
spaces, depending on whether or not paging is enabled.
Every selector has a logical base address associated
with it that can be up to 32 bits in length. This 32-bit
logicalbase address is added to the effective address to
form a final 32-bit linear address. If paging is disabled,
this final linear address reflects physical memory and is
truncated so that only the lower 24 bits of this address
are used to address the 16-Mb memory address space.
It paging is enabled, this final linear address reflects a
32-bit address that is transiated through the paging unit
to form a 16-Mb physical address. The logical base
address is stored in one of two operating system tables
(i.e., the Local Descriptor Table or Global Descriptor
Table).

Figure 3 shows the relationship between the various
address spaces.

Segment Register Usage

The main data structure used to organize memory is the
segment. On the AmM386S X microprocessor, segments
are variable sized blocks of linear addresses which have
certain attributes associated with them. There are two
main types of segments, code and data. The segments
are of variable size and can be as small as 1 byte or as
large as 4 Gb (2% bits).

In order to provide compact instruction encoding and
increase processor performance, instructions do not

need to explicitly specify which segment register is
used. The segment register is automatically chosen
according to the rules of Table 3 (Segment Register
Selection Rules). in general, data references use the
selector contained in the DS register; stack references
use the SS register; and, instruction fetches use the CS
register. The contents of the Instruction Pointer provide
the offset. Special segment override prefixes allow the
explicit use of a given segment register, and override the
implicit rules listed in Table 3. The override prefixes also
allow the use of the ES, FS, and GS segment registers.

There are no restrictions regarding the overlapping of
the base addresses of any segments. Thus, all six
segments could have the base address set to zero and
create a system with 4-Gb linear address space. This
creates a system where the virtual address space is the
same as the linear address space. Further details of
segmentation are discussed in the section Protected
Mode Architecture.

Addressing Modes

The Am386SX microprocessor provides a total of eight
addressing modes for instructions to specify operands.
The addressing modes are optimized to allow the
efficient execution of high-level ianguages such as C
and FORTRAN, and they coverthe vast majority of data
references needed by high-level languages.

Register and Immediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands.

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operand is included in
the instruction as part of the op-code.

32-Bit Memory Addressing Modes

The remaining six modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the
segment base address and an effective address. The
effective address is calculated by summing any
combination of the following three address elements
(see Figure 3).

Displacement: an 8-,16-, or 32-bit immediate value,
following the instruction.

Base: The contents of any general purpose register.
The base registers are generally used by compilers to
point to the start of the iocal variable area.

Index: The contents of any general purpose register
except for ESP. The index registers are used to access
the elements of an array or a string of characters. The
index register’s value can be multiplied by a scale factor,
either 1, 2, 4, or 8. The scaled index is especially useful
for accessing arrays or structures.

This Materi al

Am386SX Microprocessor 13

Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

Table 3. Segment Register Selection Rules

Type of Memory Reference Implied (Defauit) Segment Use Segment Override Prefixes Possible
Code Fetch CS None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA Instructions
Source of POP, POPA, POPF, SS None
IRET, RET Instructions
Destination of STOS, MOVE, REP ES None

STOS, REP MOVS Instructions

Other Data References, with
Effective Address Using Base

Register of:
[EAX] DS
[EBX] DS
[ECX] DS
[EDX] DS
[ESI] DS
[EDI} DS
[EBP] Ss
[ESP] ss

CS, SS, ES, F§,GS
CS, SS, ES, FS,GS
CS, SS,ES, FS,GS
CS, SS,ES, FS,GS
CS, SS,ES, FS,GS
CS, SS, ES, FS,GS
CS, DS, ES, FS,GS
CS, DS, ES, FS, GS

Combinations of these three components make up the
six additional addressing modes. There is no perform-
ance penalty for using any of these addressing
combinations, since the effective address calculation is
pipelined with the execution of other instructions. The
one exception is the simultaneous use of Base and
Index components which requires one additional clock.

As shown in Figure 4, the Effective Address (EA) of
an operand is calculated according to the following
formula:

EA = Basenegiue + (INdEXnegen X Scaling) + Displacement

1. Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16-, or 32-bit
displacement.

2. Register Indirect Mode: A Base register contains
the address of the operand.

3. Based Mode: A Base register’s contents are added
to a Displacement to form the operand’s offset.

4. Scaled Index Mode: An Index register's contents
are multiplied by a Scaling factor, and the result is
added to a Displacement to form the operand's
offset.

5. Based Scaled Index Mode: The contents of an
Index register are multiplied by a Scaling factor, and
the result is added to the contents of a Base register
to obtain the operand’s offset.

6. Based Scaled Index Mode with Displacement:
The contents of an Index register are multiplied by a
Scaling factor, and the result is added to the contents
of a Base register and a Displacement to form the
operand's offset.

Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with the 8086
and the 80286, the Am386SX microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the
instructions it is executing by examining the D bit in a
Segment Descriptor. if the D bit is 0, then all operand
lengths and effective addresses are assumed to be
16-bits long. If the D bit is 1, then the default iength for
operands and addresses is 32 bits. In Real Mode the
detault size for operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386SX microprocessor is able to
execute either 16- or 32-bitinstructions. This is specified
through the use of override prefixes. Two prefixes,
the Operand Length Prefix and the Address Length
Prefix, override the value of the D bit on an individual
instruction basis. These prefixes are automatically
added by assemblers.

The Operand Length and Address Length Prefixes can
be applied separately or in combination to any
instruction. The Address Length Prefix does not allow
addresses over 64 Kb to be accessed in Real Mode.
A memory address which exceeds OFFFFH will result
in a General Protection Fault. An Address Length
Prefix only allows the use of the additional Am386SX
microprocessor addressing modes.

When executing 32-bit code, the Am386SX micropro-
cessor uses either 8- or 32-bit displacements, and any
register can be used as base or index registers. When
executing 16-bit code, the displacements are either 8-
or 16-bits, and the Base and Index registers conform to
the 80286 model. Table 4 illustrates the differences.

14 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

AMD a

Segment Registers

SS { Base Register]
GS
FS Index Register
ES
DS Selector
—» CS { X)
Scale
1,2,4,0r8
Displacement
(In Instruction)
Effective Segment
Address / Cimit
Descriptor Registers Linear \
i Address
Access Rights SS | Target Address
Access Rights GS |
Access Rights FS | gexectedt
Access Rights ES] egmen
Access Rights DS |
- Access Rights CS
Limit I /
Base Address Segment Base Address
15021B-012
Figure 4. Addressing Mode Calculations
Data Types Unsigned Quad Word: An unsigned 64-bit quantity.

The Am386SX microprocessor supports all of the data
types commonly used in high-level languages.

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits, which
spans a maximum of four bytes.

Bit String: A set of contiguous bits; on the Am386SX
microprocessor, bit strings can be up to 4 Gbits long.

Byte: A signed 8-bit quantity.
Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Dword): A signed 32-bit quantity. All
operations assume a 2's compiement representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.

Unsigned Long Integer (Dword): An unsigned 32-bit
quantity.

Signed Quad Word: A signed 64-bit quantity.

Pointer: A 16- or 32-bit offset-only quantity which
indirectly references another memory location.

Long Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCIl alphanumeric
or control character.

String: A contiguous sequence of bytes, Words, or
Dwords. A string may contain between 1 byte and 4 Gb.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0—9 storing one digit in each nibble.

When the Am386SX microprocessor is coupled with a
387SX math coprocessor, the following common com-
patible floating point types are supported.

Floating Polnt: A signed 32-, 64-, or 80-bit real number
representation. Floating point numbers are supported
by a 387SX-compatible math coprocessor.

Am386SX Microprocessor 15

Copyrighted By Its Respective Manufacturer

This Materi al

u AMD

Table 4. Base and Index Registers for 16- and
32-Bit Addresses

16-Blt 32-Bit
Addressing Addressing
Base Register | BX, BP Any 32-bit GP Register

Index Register | g, DI Any 32-bit GP Register

Except ESP
Scale Factor None 1,2,4,8
Displacement 0, 8, 16 bits 0, 8, 32 bits

Figure 5 illustrates the data types supported by the
Am386SX CPU and a 387SXmath coprocessor.

I/O Space

The Am386SX microprocessor has two distinct physical
address spaces: physical memory and I/0. Generally,
peripherals are placed in /O space, although the
Am386SX CPU also supports memory-mapped peri-
pherals. The /0O space consists of 64 Kb which can be
divided into 64K 8-bit ports or 32K 16-bit ports, or any
combination of ports which add up to no more than
64 Kb. The 64K I/0 address space refers to physical
addresses rather than linear addresses since /O
instructions do not go through the segmentation or
paging hardware. The M/IO pin acts as an additional
address line, thus allowing the systemdesigner to easily
determine which address space the processor is
accessing.

The /O ports are accessed by the In and Out
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the DX
register. All 8-bit and 16-bit port addresses are zero
extended on the upper address lines. The I/O
instructions cause the M/I0 pin to be driven Low. I/O
port addresses 00F8H through O0FFH are reserved for
future use.

Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow in order to handle external events, report errors,
or report exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT n
instruction, the processor treats software interrupts as
exceptions.

Hardware interrupts occur as the result of an external
event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the interrupt
handler is finished servicing the interrupt, execution
proceeds with the instruction immediately after the
interrupted instruction.

Exceptions are classified as faults, traps, or abors,
depending on the way they are reported and whether or

not restart of the instruction causing the exception is
supported. Faults are exceptions that are detected and
serviced before the execution of the faulting instruction.
Traps are exceptions that are reported immediately
after the execution of the instruction which caused the
problem. Aborts are exceptions that do not permit the
precise location of the instruction causing the exception
to be determined.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. Onthe
other hand, the return address from an exception fauit
routine will always point to the instruction causing the
exception and will include any leading instruction
prefixes. Table 5 summarizes the possible interrupts for
the Am386SX microprocessor and shows where the
return address points to.

The Am386SX microprocessor has the ability to handle
up to 256 different interrupts/exceptions. In order to
service the interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are
simply pointers to the appropriate interrupt service
routine. In Real Mode, the vectors are 4-byte quantities,
a Code Segment plus a 16-bit offset; in Protected
Mode, the interrupt vectors are 8-byte quantities
which are put in an Interrupt Descriptor Table. Of the
256 possible interrupts, 32 are reserved for future use
and the remaining 224 are free to be used by the system
designer.

Interrupt Processing

When an interrupt occurs, the following actions happen.
First, the current program address and Flags are saved
on the stack to allow resumption of the interrupted
program. Next, an 8-bit vector is supplied to the
Am386SX microprocessor which identifies the appro-
priate entry in the interrupt table. The table contains the
starting address of the interrupt service routine. Then,
the user supplied interrupt service routine is executed.
Finally, when an IRET instruction is executed the old
processor state is restored and program execution
resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am386SX
microprocessor in several different ways: exceptions
supply the interrupt vector internally; software INT
instructions contain or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maskable
hardware interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events. A
hardware interrupt occurs when the INTR is pulled High
and the Interrupt Flag bit (IF) is enabled. The processor
only responds to interrupts between instructions (string
instructions have an interrupt window between mem-
ory moves that allows interrupts during long string

16 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n
0

, +N +1
. Binary L 7 7
Signed TTTT Coded [TTTTTTT IERERERI LRRNEEE
Byte Decimal see
. . (BCD)
Sign Bit | | BCD BCD BCD
Magnitude Digit N Digit 1 Digit 0
7 +N 7 +1 0
. z 0 07
Unsigned III[IIT lllllll llll’lllllllllT
Byte ASCII eee
| | AsCIil ASCll ASCIl
Magnitude Charactery Character, Charactero
+1 [+}
15 14 87 . +N . +1 07 0 o
Signed [[T TFTTTTTTTTTTT TTT[TIT TTT [T VIfIT T[T T
Word Packed BCD eoe
Sign Bit JIL MSB | l | |
N Most Least
Magnitude e
agni Significant Significant
Digit Digit
+1 0 +N +1 o]
15 0 7/15 7/18 0 7/15
Unsigned[TT T[T T T [TTT[TT1 TTT T LILELE LN UL LA
Byte coe
Word String
L 1
Magnitude
3 2 1 0 +2 Gbits -2 Gbits
31+ * 615 0 210
Signed TTTTTT T[T T T [T T [T T 0T T VT v rrIT X
Double I ! l I Bit § g
Word String
sign Bit 4 L MsB Bit 0
(. |
Magnitude
31 +3 +2 +1 o] 0 a1 +3 +2 +1 o] 0
Unsigned[TT T JITT T I T JITTTTITTITTT[TTTTITT Short [TV T J VTV T T T [T T T JITT[TTI T[T TIT 17T
Double I ; ! I 32-%2: ' ! ! !
Word Pointer
L 1 L J
Magnitude Offset
+7 +6 +5 +4 +3 +2 +1 0 +5 +4 +3 +2 +1 0
63 48 47 32 31 16 15 0 47 0
Signed Long [TVTJTITITI[IRT AT I AT JITOQUIITJIT T T IV I]T7T
igned Long [TTT] | | I I |
Word Pointer
Sign Bit 4 L MsB
L=] | | |
Magnitude Selector Offset
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 [¢] 0
Floating
I | [[[[]
Sign BitJl [|
Exponent Magnitude
+5 +4 +3 +2 +1 0
aogit |V VTV [T I T T I T IV I [T I T I T Tv T ooT
Bit Field
— Bit Field —|
1 to 32 Bits
“Supported by a 387SX-compatible math coprocessor. 15021B-013
Figure 5. Am386SX Microprocessor Supported Data Types
Am386SX Microprocessor 17

This Materia

| Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

Table 5. Interrupt Vector Assignments

Interrupt Instruction Which Return Address Points

Function Number Can Cause Exception to Faulting Instruction Type
Divide Error 0 DIV, IDIV Yes FAULT
Debug Exception 1 Any instruction Yes TRAP*
NMI Interrupt 2 INT2 or NMI No NMI
One Byte Interrupt 3 INT No TRAP
Interrupt on Overflow 4 INTO No TRAP
Array Bounds Check 5 BOUND Yes FAULT
Invalid Op-code 6 Any lllegal Instruction Yes FAULT
Device Not Available 7 ESC, WAIT Yes FAULT
Double Fault 8 s;xgeigtsiérrx{ucﬂon that can generate an ABORT
Coprocessor Segment Overrun 9 ESC No ABORT
Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT
Segment Not Present 11 Segment Register Instructions Yes FAULT
Stack Fault 12 Stack References Yes FAULT
General Protection Fault 13 Any Memory Reference Yes FAULT
Page Fault 14 Any Memory Access or Code Fetch Yes FAULT
Coprocessor Error 16 ESC, WAIT Yes FAULT
Reserved for Future Use 17-32
Two Byte Interrupt 0-255 INT n No TRAP

Note: *Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.

moves). When an interrupt occurs the processor reads
an 8-bit vector supplied by the hardware which identifies
the source of the interrupt (one of 224 user defined
interrupts).

Interrupts through interrupt gates automatically reset IF
bit, disabling INTR requests. Interrupts through Trap
Gates leave the state of the IF bit unchanged. interrupts
through a Task Gate change the IF bit according to the
image of the EFLAGS register in the task’s Task State
Segment (TSS). When an IRET instruction is executed,
the original state of the IF bit is restored.

Non-Maskable Interrupt

Non-maskabile interrupts provide a method of servicing
very high priority interrupts. When the NMI input is
pulled High it causes an interrupt with an internally
supplied vector value of 2. Unlike a nhormal hardware
interrupt, no interrupt acknowledgment sequence is
performed for an NMI.

While executing the NMI servicing procedure, the
AmM386SX microprocessor will not service any further
NMI request or INT requests until an Interrupt Return
(IRET) instruction is executed or the processor is reset.
If NM! occurs while currently servicing an NM|, its pres-
ence will be saved for servicing after executing the first
IRET instruction. The IF bit is cleared at the beginning of
an NMI interrupt to inhibit further INTR interrupts.

Software Interrupts

A third type of interrupt/exception for the Am386SX
microprocessor is the software interrupt. An INT n
instruction causes the processorto execute the interrupt

service routine pointed to by the nth vector in the
interrupt table.

A special case of the two byte software interrupt INT nis
the one byte INT 3, or breakpoint interrupt. By inserting
this one byte instruction in a program, the user can set
breakpoints in his-program as a debugging tool.

A final type of software interrupt is the single-step
interrupt. It is discussed in section Single-Step Trap.

Interrupt and Exception Priorities

Interrupts are externally generated events. Mask-
able Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at
instruction boundaries. When NMi and maskable INTR
are both recognized at the same instruction boundary,
the Am386SX microprocessor invokes the NMI service
routine first. If maskable interrupts are still enabled after
the NMi service routine has been invoked, then the
Am386SX CPU will invoke the appropriate interrupt
service routine.

As the Am386SX microprocessor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 6. This cycle is repeated
as each instruction is executed, and occurs in parallel
with instruction decoding and execution.

Instruction Restart

The Am386SX microprocessor fully supports restarting
allinstructions after Faults. If an exception is detected in
the instruction to be executed (exception categories 4

18 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

through 10 in Table 6), the Am386SX microprocessor
invokes the appropriate exception service routine. The
Am386SX CPU is in a state that permits restart of
the instruction, for all cases by those given in Table 7.
Note that all such cases will be avoided by a properly
designed operating system.

Double Fault

A Double Fault (Exception 8) results when the
processor attempts to invoke an exception service
routine for the segment exceptions (10, 11, 12, or 13),
but in the process of doing so detects an exception other
than a Page Fault (Exception 14).

One other cause of generating a Double Fault is the
Am386SX microprocessor detecting any other excep-
tion when it is attempting to invoke the Page Fault
(Exception 14) service routine (e.g., if a Page Fault is
detected when the Am386SX CPU attempts to invoke
the Page Fault service routine). Of course, in any func-
tionai system, not only the Am386SX microprocessor-
based systems, the entire Page Fault service must
remain present in memory.

Reset and Initialization

When the processor is initialized or Reset, the registers
have the values shown in Table 8. The Am386SX
microprocessor will then start executing instructions
near the top of physical memory, at location OFFFFFOH.
When the first intersegment Jump or Call is executed,
address lines A23—-A20 will drop Low for CS-relative
memory cycles, and the Am386SX microprocessor will
only execute instructions in the lower 1 Mb of physical
memory. This allows the system designer to use a
shadow ROM at the top of physical memory to initialize
the system and take care of Resets.

Resetforces the Am386SX microprocessorto terminate
all execution and local bus activity. No instruction
execution or bus activity will occur as long as Reset
is active. Between 350- and 450-CLK2 periods after
Reset becomes inactive, the Am386SX CPU will start
executing instructions at the top of physical memory.

Table 6. Sequence of Exception Checking

Consider the case of the 386SX microprocessor having just completed an instruction. It then performs the following checks before

reaching the point where the next instruction is completed.

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data Breakpoints set in the

Debug Registers).
2. Check for external NMI and INTR.

3. Chack for Exception 1 Faults in the next instruction (instruction Execution Breakpoint set in the Debug Registers for the next

instruction).

4. Check for Segmentation Faults that prevented fetching the entire next instruction (Exceptions 11 and 13).

i

Check for Page Faults that prevented fetching the entire next instruction (Exception 14).

6. Check for Faults decoding the next instruction (Exception 6 if illegal op-code; Exception 6 if in Real Mode or in Virtual 8086
Mode and attempting to execute an instruction for Protected Mode only; or Exception 13 if instruction is longer than 15 bytes, or
privilege violation in Protected Mode (i.e., not at IOPL or at CPL =0)).

7. f WAIT op-code, check if TS=1 and MP = 1(Exception 7 if both are 1).

®

If ESCape op-code for math coprocessor, check if EM=1 or TS =1 (Exception 7 if either are 1).

9. If WAIT op-code or ESCape op-code for math coprocessor, check ERROR input signal (Exception 16 if ERROR input is

asserted).

10. Check in the following order for each memory reference required by the instruction.

a. Check for Segmentation Fauits that prevent transferring the entire memory quantity (Exceptions 11, 12, and 13).
b. Check for Page Faults that prevent transferring the entire memory quantity (Exception 14).

Note: Segmentation exceptions are generated before paging exceptions.

Table 7. Conditions Preventing Instruction Restart

- An instruction causes a task switch to a task whose Task State Segment (TSS) is partially not present (an entire not present

TSS is restartable). Partially present TSSs can be avoided sither by keeping the TSSs of such tasks present in memory, or by
aligning TSS segments to reside entirely within a single 4K page (for TSS segments of 4 Kb or less).

A coprocessor operand wraps around the top of a 64-Kb segment or a 4-Gb segment and spans three pages, and the page
holding the middle portion of the operand is not present. This condition can be avoided by starting at a page boundary any
segments containing coprocessor operands, if the sagments are approximately 64K—200K bytes or larger (i.e., large enough
for wraparound of the coprocessor operand to possibly occur).

Note: These conditions are avoided by using the operating system designs mentioned in this table.

This Materia

Am386SX Microprocessor 19

Copyrighted By Its Respective Manufacturer

This Materi al

u AMD

Table 8. Register Values after Reset

Flag Word (EFLAGS) uuuu0002H Note 1
Machine Status Word (CRO) uuuuuuioH

Instruction Pointer (EIP) O0COOFFFOH

Code Segment (CS) FOOOH Note 2
Data Segment (DS) 0000H Note 3
Stack Segment (SS) 0000H

Extra Segment (ES) 0000H Note 3
Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

EAX Register 0000H Note 4
EDX Register Component and Stepping {D Note 5
All Other Registers Undefined Note 6

Notes: 1. EFLAGS Register. The upper 14 bits of the EFLAGS register are undefined, all defined fiag bits are zero.

The Code Segment register (CS) will have its Base Address set to OFFFFO000H and Limit set to OFFFFH.

The Data and Extra Segment registers (DS and ES) will have their Base Address set to 000000000H and Limit set to OFFFFH.

the part.

EDX register always holds a component and stepping identifier.
All undefined bits are reserved for future use and shouid not be used.

1.
2.
3.
4. If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found, the self-test has detected a flaw in
5.
6.

Testability

The Am386SX microprocessor, like the Am386DX
microprocessor, offers testability features that include
a seli-test and direct access to the page translation
cache.

Self-Test

The Am386SX microprocessor has the capability to
perform a self-test. The self-test checks the function of
all of the Control ROM and most of the non-random logic
of the part. Approximately one-half of the Am386SX
CPU can be tested during self-test.

Self-Test is initiated on the Am386SX microprocessor
when the Reset pintransitions from High to Low, and the
BUSY pin is Low. The self-test takes about 2% clocks, or
approximately 33 ms with a 16-MHz Am386SX CPU. At
the completion of self-test the processor performs reset
and begins normal operation. The part has successfully
passed self-test if the contents of the EAX are zero. ifthe
results of the EAX are not zero, then the self-test has
detected a flaw in the part.

TLB Testing

The Am386SX microprocessor also provides a mech-
anism for testing the Translation Look-Aside Buffer
(TLB), if desired. This particular mechanism may not be
continued in the same way in future processors.

There are two TLB testing operations: 1) writing entries
into the TLB; and, 2) performing TLB lookups. Two test
registers, shown in Figure 6 are provided for the
purpose of testing. TR6 is the test command register,
and TR7 is the test data register.

Debugging Support

The Am386SX microprocessor provides several
features which simplify the debugging process. The
three categories of on-chip debugging aids are:

1. The code execution breakpoint op-code (0CCH).

2. The single-step capability provided by the TF bit in
the flag register.

3. The code and data breakpoint capability provided by
the Debug Registers DR3-DRO, DR6, and DR7.

Breakpoint Instruction

A single-byte software interrupt (INT 3) breakpoint
instruction is available for use by software debuggers.
The breakpoint op-code is 0CCH, and generates an
Exception 3 trap when executed.

Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAGS register
is found to be set at the end of an instruction, a
single-step exception occurs. The single-step exception
is auto-vectored to Exception 1.

Debug Registers

The Debug Registers are an advanced debugging
feature of the Am386SX microprocessor. They allow
data access breakpoints as well as code execution
breakpoints. Since the breakpoints are indicated by
on-chip registers, an instruction execution breakpoint
canbe placed in ROM code orin code shared by several
tasks, neither of which can be supported by the INT 3
breakpoint op-code.

20 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

AMD n

Table 9. Exceptions in Real Mode

Interrupt
Function Number Related Instructions Return Address Location
Interrupt table limit too small 8 INT vector is not within table limit Before
instruction
CS, DS, ES, FS, GS 13 Word memory reference with Before
Segment Overrun exception offset = OFFFFH. An attempt to Instruction
execute past the end of CS segment.
SS Segment Overrun exception 12 Stack Reference Before
beyond offset = OFFFFH. Instruction

Command
Writable
User
Dirty
Valid
Test
| A Control
Linear Address V|ID|{D|U|U|wW TR6
31 1211 10 9 8 6
Test
Status
Physical Address TR7
31 12 4 3 2 0
Reserved for future use —do not use. 15022B-006

Figure 6. Test Registers

The Am386SX microprocessor contains six Debug
Registers, consisting of four breakpoint address
registers and two breakpoint control registers. Initially
after reset, breakpoints are in the disabled state;
therefore, no breakpoints wilt occur unless the debug
registers are programmed. Breakpoints set up in the
Debug Registers are auto-vectored to Exception 1.
Figure 7 shows the breakpoint status and control
registers. -

REAL MODE ARCHITECTURE

When the processor is reset or powered up it is
initialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the 32-bit
register set of the Am386SX microprocessor. The
addressing mechanism, memory size, and interrupt
handling are all identical to the Real Mode onthe 80286.

The detault operand size in Real Mode is 16 bits, as in
the 8086. In order to use the 32-bit registers and
addressing modes, override prefixes must be used. In
addition, the segment size on the Am386SX CPU in
Real Mode is 64 Kb, so 32-bit addresses must have a
value less than 0000FFFFH. The primary purpose of
Real Mode is to set up the processor for Protected
Mode operation.

Memory Addressing

In Real Mode the linear addresses are the same as
physical addresses (paging is not allowed). Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register which is
shifted left by four bits to an effective address. This
addition results in a 20-bit physical address or a 1-Mb
address space. Since segment registers are shifted left
by 4 bits, Real Mode segments always start on 16-byte
boundaries.

All segments in Real Mode are exactly 64-Kb long, and
may be read, written, or executed. The Am386SX CPU
will generate an Exception 13 if a data operand or in-
struction fetch occurs past the end of a segment.

Reserved Locations

There are two fixed areas in memory that are reserved
in Real address mode: the system initialization area
and the interrupt table area. Locations 00000H through
003FFH are reserved for interrupt vectors. Each
one of the 256 possible interrupts has a 4-byte jump
vector reserved for it. Locations OFFFFFOH through
OFFFFFFH are reserved for system initialization.

Am386SX Microprocessor

21

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Interrupts

Many of the exceptions discussed in section Interrupts
and Exceptions are not applicable to Real Mode
operation; in particular, Exceptions 10, 11, and 14 do
not occur in Real Mode. Other exceptions have slightly
different meanings in Real Mode; Table 9 identifies
these exceptions.

Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, FLT*, INTR with interrupts en-
abled (IF=1), or Reset will force the Am386SX CPU
out of halt. If interrupted, the saved CS:IP will point to
the next instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode, shut-
down can occur under two conditions:

1. Aninterrupt or an exception occurs (Exceptions 8 or
13) and the interrupt vector is larger than the
Interrupt Descriptor Table.

2. A Cali, INT, or Push instruction attempts to wrap
around the stack segment when SP is not even.

An NMI{ input can bring the processor out of shutdown if
the Interrupt Descriptor Table limit is large enough to
containthe NMlinterrupt vector (at least 000FH) and the
stack has enough room to contain the vector and flag in-
formation (i.e., SP is greater than 0005H). Otherwise,
shutdown can only be exited by a processor reset.

LOCK Operation

The LOCK prefix on the Am386SX microprocessor,
even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Am386SX CPU in Protected Mode and Virtual 8086
Mode. The LOCK prefix is not supported during repeat
string instructions.

The only instruction forms where the LOCK prefix is
legal on the Am386SX microprocessor are shown in
Table 10.

Table 10. Legal Instructions for the LOCK Prefix

Operands
Op-Code (Dest, Source)
BIT Test and Mem, Reg/Immed
SET/RESET/COMPLEMENT
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB Mem, Reg/lmmed
AND, SUB, XOR
NOT, NEG, INC, DEC Mem

*Contact AMD for availability of Float feature, PQFP only.

An Exception 6 will be generated if a LOCK prefix is
placed before any instruction form or op-code not listed
above. The LOCK prefix allows indivisible read/modify/
write operations on memory operands using the instruc-
tions above.

The LOCK prefix is not IOPL-sensitive onthe Am386SX
microprocessor. The LOCK prefix can be used at any
privilege level, but only on the instruction forms listed in
Table 10.

PROTECTED MODE ARCHITECTURE

The complete capabilities of the Am386SX micropro-
cessor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to 4 Gb (2% bytes), and allows the running of
virtual memory programs of almost unlimited size (64 tb
(2*¢ bytes)). In addition, Protected Mode allows the
Am386SX CPU to run all of the existing Am386DX
CPU (using only 16 Mb of physical memory), 80286,
and 8086 CPU's software, while providing a sophisti-
cated memory management and a hardware-assisted
protection mechanism. Protected Mode allows the use
of additional instructions specially optimized for
supporting multitasking operating systems. The base
architecture of the Am386SX microprocessor remains
the same; the registers, instructions, and addressing
modes described in the previous sections are retained.
The main difference between Protected Mode and Real
Mode from a programmer’s viewpoint is the increased
address space and a different addressing mechanism.

Addressing Mechanism

Like Real Mode, Protected Mode uses two components
to form the logical address: a 16-bit selector is used to
determine the linear base address of a segment, the
base address is added to a 32-bit effective address to
form a 32-bit linear address. The linear address is then
either used as a 24-bit physical address, or if paging is
enabled, the paging mechanism maps the 32-bit linear
address into a 24-bit physical address.

The difference between the two modes lies in
calculating the base address. In Protected Mode, the
selector is used to specify an index into an operating
system defined table (see Figure 8). The table contains
the 32-bit base address of a given segment. The
physical address is formed by adding the base address
obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Am386SX microprocessor, as paging
operates beneath segmentation. The page mechanism
translates the protected linear address which comes
from the segmentation unit into a physical address.
Figure 9 shows the complete Am386S X microprocessor
addressing mechanism with paging enabled.

22 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

AMD u

Breakpoint 0 Debug Fault/Trap

Breakpoint 1 Debug Fault/Trap

Breakpoint 2 Debug Fault/Trap

Breakpoint 3 Debug Fault/Trap

Register Access Fault

Debug

Single-Step Debug Trap

Status

Task Switch Debug Trap

Control

1

Gi: Global Breakpoint Enable i 7]

Li: Local Breakpoint Enable i I
Local Exact Breakpoint Match

Global Exact Breakpoint Match
Global Debug Register Access Detect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BTlBSIBD[83|B2|B1 |BO| DR6
15 14 13 3 2 1 0
Breakpoint
Control
y y' !

T T T T T T T T
I LEINS l n\{vs [LElNz l R\{VZ l LE1N1 l R\iw I LE1N°l R\{VO

GEILEIG3|L3|G2[L2|G1IL1 |GO| LO] DR?7

L

|

Reserved for future use —do not use.

13 9 8 7 6 5§ 4 3 2 1 0

[LENi: Breakpoint Length i
L RWi: Memory Access Qualifier i

15022B-007

Figure 7. Debug Registers

Segmentation

Segmentation is one method of memory management.
Segmentation provides the basis for protection.
Segments are used to encapsulate regions of memory
which have common attributes. For example, all of the
code of a given program could be contained in a
segment, or an operating system table may reside in a
segment. All information about each segment is stored
in an 8-byte data structure catled a descriptor. All of the
descriptors in a system are contained in descriptor
tables which are recognized by hardware.

Terminology

The following terms are used throughout the discussion
of descriptors, privilege leveils, and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged
level and level 3 is the least privileged.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is
determined by the least two significant bits of a
selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that
descriptor (and the segment associated with that
descriptor). Descriptor Privilege Level is deter-

mined by bits 6:5 in the Access Right Byte of a
descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals
the privilege level of the code segment being
executed. CPL can also be determined by
examining the lowest 2 bits of the CS register,
except for conforming code segments.

EPL: Effective Privilege Level—The effective privilege
level is the least privileged of the RPL and the
DPL. EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

Descriptor Tables

The descriptor tables define all of the segments which
are used in an Am386SX microprocessor system. There
are three types of tables which hold descriptors: the
Global Descriptor Table, Local Descriptor Table, and
Interrupt Descriptor Table. All of the tables are variable
length memory arrays and can vary in size from 8 bytes
to 64 Kb. Each table can hold up to 8192 8-byte des-
criptors. The upper 13 bits of a selector are used as an
index into the descriptor table. The tables have registers
associated with them which hold the 32-bit linear base
address and the 16-bit limit of each table.

Am386SX Microprocessor 23

Copyrighted By Its Respective Manufacturer

a AMD

48/32 Bit Pointer Segment Limit
Selector Offset /
47/31 31/15 0 T
+ Memory Operand
16 Mb v\;i? Paging Selected
Access Rights 4 Gb with Paging / Segment
Limit l
»| Base Address
Segment Segment Base
Descriptor Address
15021B-018
Figure 8. Protected Mode Addressing
48 Bit Pointer Physical Address
4 Kb
Selector l Offset
4 Kb
15 031 0
Accsss Rights Microprocessor | Physical
Limit Paging Address .
Mechanism Memory Operand Physical Page:
-> Base Address |[Page Frame 4 Kb
Segment 32 Linear L] Address 4Kb
Descriptor Address
4 Kb
4 Kb
15022B-005
Figure 9. Paging and Segmentation
AT o
15 0 ! | LDT Limit !
LOTR | LDT DESCR Selector | [LDT Base Linear Address
' 31]
15 0 . Program Invisible !
[DT Limit X Automatically Loaded
IDTR [IDT Base Linear Address i FromLDT Descriptor
31 0
15 0
| GDT Limit
GDTR | GDT Base Linear Address
3 0 15021B-020
Figure 10. Descriptor Table Registers
24 Am386SX Microprocessor

This Materi al

Copyrighted By Its Respective Manufacturer

This Materi al

AMD u

Each of the tables has a register associated with it:
GDTR, LDTR, and IDTR (see Figure 1). The LGDT,
LLDT, and LIDT instructions load the base and limit of
the Gilobal, Local, and Interrupt Descriptor Tables into
the appropriate register. The SGDT, SLDT, and SIDT
store the base and limit values. These are privileged
instructions.

Global Descriptor Table

The Global Descriptor Table (GDT) contains descriptors
which are available to all of the tasks in a system. The
GDT can contain any type of segment descriptor except
for interrupt and trap descriptors. Every Am386SX CPU
system contains a GDT.

The first slot of the Global Descriptor Table corresponds
to the nuli selector and is not used. The null selector
defines a null pointer value.

Local Descriptor Table

LDTs contain descriptors which are associated with a
given task. Generally, operating systems are designed
so that each task has a separate LDT. The LDT may
contain only code, data, stack, task gate, and call gate
descriptors. LDTs provide @ mechanism for isolating a
given task’s code and data segments fromthe rest of the
operating system, while the GDT contains descriptors
for segments which are common to all tasks. A segment
cannot be accessed by a task if its segment descriptor
does not exist in either the current LDT orthe GDT. This
provides both isolation and protection for a task’s seg-
ments while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers which contain a
base address and limit, the visible portion of the LDT
register contains only a 16-bit selector. This selector
refers to a Local Descriptor Table descriptor in the GDT
(see Figure 1).

Interrupt Descriptor Table

The third table needed for Am386SX microprocessor
systems is the Interrupt Descriptor Table. The IDT con-
tains the descriptors which point to the location of the up
to 256 interrupt service routines. The IDT may contain
only task gates, interrupt gates, and trap gates. The IDT

should be at least 256 bytes in size in order to hold the
descriptors for the 32 interrupts reserved for future
use. Every interrupt used by a system must have an
entry in the IDT. The IDT entries are referenced by INT
instructions, external interrupt vectors, and exceptions.

Descriptors

The object to which the segment selector points to is
called adescriptor. Descriptors are eight byte quantities
which contain attributes about a given region of linear
address space. These attributes include the 32-bit base
linear address of the segment, the 20-bit length and
granularity of the segment, the protection level, read,
write, or execute privileges, the default size of the oper-
ands (16 bit or 32 bit), and the type of segment. All of
the attribute information about a segment is contained
in 12 bits in the segment descriptor. Figure 11 shows
the general format of a descriptor. All segments on the
Am386SX microprocessor have three attribute fields
in common: the P bit, the DPL bit, and the S bit. The
P (Present) Bit is 1 if the segment is loaded in physical
memory. If P=0, then any attempt to access this
segment causes a Not Present exception (number 11).
The Descriptor Privilege Level (DPL) is a two bit field
which specifies the protection level, 0-3, associated
with a segment.

The Am386S X microprocessor has two main categories
of segments: system segments and non-system seg-
ments (for code and data). The segment bit (S) deter-
mines if a given segment is a system segment or a code
or data segment. If the S bit is 1, then the segment is
either a code ordata segment; if itis 0, thenthe segment
is a system segment.

Code and Data Descriptors (S=1)

Figure 12 shows the general format of a code and data
descriptor, and Table 11 illustrates how the bits in the
Access Right Byte are interpreted.

Code and data segments have several descriptor fields
in common. The accessed bit (A) is set whenever the
processor accesses a descriptor. The granularity bit (G)
specifies if a segment length is byte-granular or page-
granular.

31 0 Byte Address
Segment Base 15—0 Segment Limit 150 0
Limit Base
-~ D

Base 31-24 G 0| AVL 19-16 P S “]fyp? A 2316 +4
Base Base Address of the segment A Accessed Bit
Limit The length of the segment G Granularity Bit (1 = Segment length is page granular,
P Present Bit (1 = Present, 0 = Not Present) 0 =Segment length is byte granular)
DPL Descriptor Privilege Level 0-3 Default Operation Size (recognized in code segment
S Segment Descriptor (0 = System Descriptor, descriptors only; 1 =32-bit segment, 0 = 16-bit segment)

1 =Code or Data Segment Descriptor)
Type Type of Segment

Bit must be zero for compatibility with future processors
AVL Available field for user or OS

15021B-022

Figure 11. Segment Descriptors

Am386SX Microprocessor 25

Copyrighted By Its Respective Manufacturer

n AMD

31 0 Byte Address
Segment Base 150 Segment Limit 15-0 0
Limit . Base
Base 31-24 G|DfoO| AVL 19-16 Access Rights Bytes 23 16 +4
p/B 1 = Default Instruction Attributes are 32 bits G Granularity Bit 1=Segment legnth is gage—granular
0 = Default Instruction Attributes are 16 bits 0 =Segment length is byte-granular
AVL Availabie field for user or OS [o] Bit must be zero for compatibility with future processors
150218023
Figure 12. Code and Data Descriptors
31 0 Byte Address
Segment Base 15-0 Segment Limit 150 0
Limit Base
- o|o P 0 T 4
Base 31-24 GiD 19-16 P DIL . ylpe] 2316 +
Type Defines Type Defines
0 Invalid 8 Invalid
1 Available 80286 TSS 9 Available TSS
2 LDT A Undefined (Reserved)
3 Busy 80286 TSS B Busy TSS
4 80286 Call Gate C Am386SX CPU Call Gate
5 Task Gate (for 80286 or Am386SX CPU Task) D Undefined (Reserved)
6 80286 Interrupt Gate E Am386SX CPU Interrupt Gate
7 80286 Trap Gate F Am386SX CPU Trap Gate
15021B-024
Figure 13. System Descriptors
Table 11. Access Rights Byte Definition for Code and Data Descriptors
Bit
Position Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exists, Base and Limit are
not used.
6-5 Descriptor Privilege Levels (DPL) Segment privilege attribute used in privilege tests.
4 Segment Descriptor (S) S=1 Code or Data (includes stacks) Segment Descriptor.
) S=0 System Segment Descriptor or Gate Descriptor.
Executable (E) E=0 Descriptor type is data segment: A
Expansion Direction (ED) ED=0 Expand up segment, offsets must be < limit. gData
. egment
ED=1 Expand down segment, offsets must be > limit. 4 S =1
1 Wiriteable (W) W=0 Data segment may not be written into. E=0)
W=1 Data segment may be written into. J
3 Executable (E) E=1 Descriptor type is code segment: 3
2 Conforming (C) C=1 Code segment may only be executed when gg;niz nt
CPL>DPL and CPL remains unchanged. r S =1
1 Readable (R) R=0 Code segment may not be read. E=1)
R=1 Code segment may be read.)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.
26 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

Thi s

System Descriptor Formats (S=0)

System segments describe information about operating
system tables, task, and gates. Figure 13 shows the
general format of system segment descriptors, and the
various types of system segments. Am386SX CPU
system descriptors (which are the same as Am386DX
CPU system descriptors) contain a 32-bit base linear
address and a 20-bit segment limit. 80286 system
descriptors have a 24-bit base address and a 16-bit
segment limit. 80286 system descriptors are identified
by the upper 16 bits being all zero.

Differences Between Am386SX Microprocessor
and 80286 Descriptors

In order to provide operating system compatibility with
the 80286, the Am386SX CPU supports all of the 80286
segment descriptors. The 80286 system segment des-
criptors contain a 24-bit base address and 16-bit limit,
while the Am386SX CPU system segment descriptors
have a 32-bit base address, a 20-bit limit field, and a
granularity bit. The word count field specifies the
number of 16-bit quantities to copy for 80286 call gates
and 32-bit quantities for Am386SX CPU call gates.

Selector Fields

A selector in Protected Mode has three fields: Local or
Global Descriptor Table indicator (Ti), Descriptor Entry
Index (index), and Requestor (the selector’s) Privilege
Level (RPL), as shown in Figure 14. The TI bit selects
either the Global Descriptor Table or the Local
Descriptor Table. The index selects one of 8K descrip-
tors in the appropriate descriptor table. The RPL bits
allow high speed testing of the selector's privilege
attributes.

AMD n
Segment Descriptor Cache

In addition to the selector value, every segment register
has a segment descriptor cache register associated
with it. Whenever a segment register's contents are
changed, the 8-byte descriptor associated with the
selector is automatically loaded (cached) on the chip.
Once loaded, all references to that segment use the
cached descriptor information instead of reaccessing
the descriptor. The contents of the descriptor cache are
not visible to the programmer. Since descriptor caches
only change when a segment register is changed,
programs which modify the descriptor tables must
reloadthe appropriate segment registers after changing
a descriptor’s value.

Protection

The Am386SX microprocessor has four levels of pro-
tection which are optimized to support a multitasking
operating system and to isolate and protect user
programs from each other and the operating system.
The privilege levels control the use of privileged
instructions, 1/O instructions, and access to segments
and segment descriptors. The Am386SX CPU also
offers an additional type of protection on a page basis
when paging is enabled.

The four-level hierarchical privilege system is an
extension of the user/supervisor privilege mode
commonly used by minicomputers. The user/supervisor
mode is fully supported by the Am386SX micropro-
cessor paging mechanism. The privilege levels (PL) are
numbered 0 through 3. Level 0 is the most privileged
level.

Selector
25 4 3 2 1ﬁ0
Segment TI|RPL
Register |0] Q-=-=-<----- ocjol1]1]1] |
= M - Table
Index Indicator
TI=1 Ti- o—l
o — " |
/L Descriptor ‘1/1
‘/L Number N

6 6

5 5

4 4

3 Descriptor 3

2 2

1 1

[¢] 0 Null

Local Descriptor Table Global Descriptor Table
15021B-027
Figure 14. Example Descriptor Selection
Am386SX Microprocessor 27

Mat eri al

Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

Table 12. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET" Code Segment GDT/LDT
Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or Interrupt DT

Exception, External Gate

Interrupt
Intersegment to a lower privilege level RET, IRET* Code Segment GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

CALL, JMP Task Gate GDT/LDT
Task Switch IRET** Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) =0
**NT (Nexted Task bit of flag register) = 1

Rules of Privilege

The Am386SX microprocessor controls access to both
data and procedures between levels of a task,
according to the following rules:

—nData stored in a segment with privilege level p can be
accessed only by code executing at a privilege level at
least as privileged as p.

-—A code segment/procedure with privilege level p can
only be called by a task executing at the same or
lesser privilege level than p.

Privilege Levels

At any point in time, a task on the Am386SX micropro-
cessor always executes at one of the four privilege
levels. The Current Privilege Level (CPL) specifies what
the task’s privilege level is. A task’s CPL may only be
changed by controi transfers through gate descriptors to
a code segment with a different privilege level. Thus, an
application' program running at PL=3 may cali an
operating system routine at PL=1 (via a gate) which
would cause the task's CPL to be set to 1 until the
operating system routine was finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the RPL
field. The selector’'s RPL is only used to establish a less
trusted privilege level than the current privilege level of
the task for the use of a segment. This levelis called the
task’s Effective Privilege Level (EPL). The EPL is
defined as being the least privileged (numerically larger)
level of a task’s CPL and a selector's RPL. The RPL is
most commonly used to verify that pointers passedto an
operating system procedure do not access data that is

of higher privilege than the procedure that originated the
pointer. Since the originator of a selector can specify
any RPL value, the Adjust RPL (ARPL) instruction is
provided to force the RPL bits to the originator's CPL.

l/O Privilege

The I/O Privilege Level (IOPL) lets the operating system
code executing at CPL =0 define the least privileged
ievel at which 1/O instructions can be used. An
Exception 13 (General Protection Violation) is gen-
erated if an I/O instruction is attempted when the CPL
of the task is less privileged then the IOPL. The IOPL
is stored in bits 13 and 14 of the EFLAGS register. The
following instructions cause an Exception 13 if the CPL
is greater than IOPL: IN, INS, OUT, OUTS, STI, CLI,
and LOCK prefix.

Descriptor Access

There are basically two types of segment accesses:
those invoiving code segments such as control trans-
fers, and those invoiving data accesses. Determining
the ability of a task to access a segment involves the
type of segment to be accessed, the instruction used,
the type of descriptor used, and CPL, RPL, and DPL as
described above.

Any time an instruction loads a data segment register
(DS, ES, FS, GS) the Am386SX microprocessor makes
protection validation checks. Selectors loaded in the
DS, ES, FS, GS registers must refer only to data
segment or readable code segments.

Finally, the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is more
privileged than the CPL, an Exception 13 (General Pro-
tection Fault) is generated.

28 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

31 16 15 0 5o
0000000000000000 | Back Link | o
ESPO 4)
0000000000000000 | $S0 8
ESP1 c | Sk
0000000000000000 | SSt w0 [Py
ESP2 14 Y
0000000000000000 { SS2 18
cR3 1
EIP 20
EFLAGS 24
EAX 28
ECX 2C
EDX 30
EBX 34
ESP as | Current
EBP 3C State
ESI 40
EDI 44
0000000000000000 ES 48
0000000000000000 cs ac
0000000000000000 SS 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 GS 5C
0000000000000000 LDT 60 J
BIT_MAP_OFFSET(15:0) 0000000000000000 [7 Juss Debug
A, Available SN— 68 ~ Trap
n~ System Status, etc. X Bit
in TSS
31 24 | 23 16} 15 8|7 o=,
63 56 | 55 a8 | 47 40] 39 32| BIT_MAP_OFFSET
95 88 | 87 80| 79 72{ 71 64
96| OFFSET+C
EETTTErE : OFFSET + 10
[Froree | Lt pH AL Y
1 onts | mi i n~ (9]
1 1] . . .
: BASE e 65407 110 Permission Bitmap OFFSET+ 1FEC
1 3program 0! 65439 (One Bit per Byte /O OFFSET + 1FFO
LTI 65471 Port. Bitmap may be OFFSET + 1FF4
Task Register 65503 truncated using TSS Limit.) 55472 OFFSET + 1FF8
TR | Selector ' 65535 [65504 | OFFSET+1FFC
15 0 *FFH" OFFSET +2000
4 1SS Limit = OFFSET + 2000H
31 TSS Descriptor {in GDT) 0
. Segment Base 15-0 Segment Limit 150
>
Base31-24 [G|1jo[o| Mmt fp °Ptio] | TYTG | Base
Type=9: Available TSS. 15022B-006

Type =B: Busy TSS.

Figure 15. TSS and TSS Registers

Am386SX Microprocessor 29

This Material Copyrighted By Its Respective Manufacturer

This Materi al

u AMD

313029282726 25 24 23 22 21 20 19 18 17 16 151413 1211 10 98 7 6 6§ 4 3 2 1 0

311+ 1+ 1101t 1 0|0 0O0O0OT1T1 1 1{0 1 0 01 1 00|0C00CO0O0COT1 1
3o ot ooo11)jt 10010190}t 11 11 100|111 1001
5|1 11 111+ 1 11111 1111 11 11 11 11111111111
1270 0 0 0 OO0 O O|J]O O O O O O O OjO 0 0 00 OOO0]jOOOOCOOO0O
111 11111

= etc. =

/0O Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

15021B-032b

Figure 16. Sample I/O Permission Bit Map

The rules regarding the stack segment are slightly differ-
ent than those involving data segments. Instructions
that load selectors into SS must refer to data segment
descriptors for writeable data segments. The DPL and
RPL must equal the CPL of all other descriptortypesora
privilege level violation will cause an Exception 13. A
stack not present fault causes an Exception 12.

Privilege Level Transfers

Intersegment control transfers occur when a selector is
loaded in the CS register. For a typical system most of
these transfers are simply the result of acall or a jump to
another routine. There are five types of control transfers
which are summarized in Table 12. Many of these
transters resutlt in a privilege level transfer. Changing
privilege leveis is done only by control transfers, using
gates, task switches, and interrupt or trap gates.

Control transfers can only occur if the operation which
loaded the selector references the correct desriptor
type. Any violation of these descriptor usage rules will
cause an Exception 13.

CALL Gates

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines ali of the gates in a system, it can ensure
that all gates only allow entry into a few trusted
procedures.

Task Switching

A very important attribute of any muititasking/multi-user
operating system is its ability to rapidly switch between
tasks or processes. The Am386SX microprocessor
directly supports this operation by providing a task
switch instruction in hardware. The task switch
operation saves the entire state of the machine (all of the
registers, address space, and a link to the previous
task), loads a new execution state, performs protection
checks, and commences executionin the new task. Like
transfer of control by gates, the task switch operation is
invoked by executing an inter-segment JMP or CALL
instruction which refers to a Task State Segment (TSS),
or a task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may

also invoke the task switch operation if there is a task
gate descriptor in the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure 15)
containing the entire execution state. A task gate
descriptor contains a TSS selector. The Am386SX
microprocessor supports both 80286 and Am386SX
CPU TSSs. The limit of an Am386SX microprocessor
TSS must be greater than 64H (2BH for a 80286 TSS),
and can be as large as 16 Mb. In the additional TSS
space, the operating system is free to store additional
information such as the reason the task is inactive,
the time the task has spent running, or open files be-
longing to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
AmM386SX microprocessor called the Task State
Segment Register (TR). This register contains a
selector referring to the task state segment descriptor
that defines the current TSS. A hidden base and fimit
register associated with TSS descriptor are loaded
whenever TR is loaded with a new selector. Returning
from a task is accomplished by the IRET instruction.
When IRET is executed, control is returned to the task
which was interrupted. The currently executing task’s
state is saved in the TSS and the old task state is
restored from its TSS.

Several bits in the flag register and machine status word
(CRO) give information about the state of a task which is
useful to the operating system. The Nested Task bit
(NT) controls the function of the IRET instruction. If
NT = 0, the IRET instruction performs the regular return.
IfNT =1, IRET performs a task switch operation base to
the previous task. The NT bit is set or reset in the
following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that
does not cause a task switch will clear NT (the NT
bit will be restored after execution of the interrupt
handier). NT may also be set or cleared by POPF
or IRET instructions.

30

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD u

The Am386SX microprocessor task state segment is
marked busy by changing the descriptor type field from
Type 9 to Type OBH. An 80286 TSS is marked busy by
changing the descriptor type field from Type 1to Type 3.
Use of a selector that references a busy task state
segment causes an Exception 13.

The VM (Virtual Mode) bit is used to indicate if atask is a
Virtual 8086 task. If VM = 1 then the tasks will use the
Real Mode addressing mechanism. The Virtual 8086
environment is only entered and exited by a task switch.

The coprocessor's state is not automatically saved
when a task switch occurs. The Task Switched Bit (TS)
in the CRO register helps deal with the coprocessor’s
state in a multitasking environment. Whenever the
AmM386SX microprocessor switches tasks, it sets the TS
bit. The Am386SX CPU detects the first use of a
processor extension instruction after a task switch
and causes the processor extension Not Available
Exception 7. The exception handler for Exception 7
may then decide whether to save the state of the
COprocessor.

The T bit in the Am386SX microprocessor TSS
indicates that the processor should generate a debug
exception when switching to a task. If T=1, then
upon entry to a new task a debug Exception 1 will be
generated.

Initialization and Transition To Protected Mode

Since the Am386SX microprocessor begins executing
in Real Mode immediately after RESET, it is necessary
1o initialize the system tables and registers with the
appropriate values. The GDT and IDT registers must
referto a valid GDT and IDT. The IDT should be at least
256 bytes long, and the GDT must contain descriptors
for the initial code and data segments.

Protected Mode is enabled by loading CRO with PE bit
set. This can be accomplished by using the MOV CRO,
R/M instruction. After enabling Protected Mode, the

next instruction should execute an intersegment JMP
to load the CS register and flush the instruction decode
queue. The final step is to load all of the data segment
registers with the initial selector values.

An alternate approach to entering Protected Mode is to
use the built in task-switch to load all of the registers. In
this case the GDT would contain two TSS descriptors in
addition to the code and data descriptors needed for the
first task. The first JMP instruction in Protected Mode
would jump to the TSS causing a task switch and load-
ing all of the registers with the values stored in the TSS.
The Task State Segment Register should be initialized
to point to a valid TSS descriptor.

Paging

Paging is another type of memory management useful
for virtual memory multitasking operating systems. Un-
like segmentation, which modularizes programs and
data into variable length segments, paging divides pro-
grams into multiple uniform size pages. Pages bear no
direct relation to the logical structure of a program.
While segment selectors can be considered the logical
name of a program module or data structure, a page
most likely corresponds to only a portion of a module or
data structure.

Page Organization

The Am386SX microprocessor uses two levels of tables
to translate the linear address (from the segmentation
unit) into a physical address. There are three compon-
ents to the paging mechanism of the Am386SX CPU:
the Page Directory, the Page Tables, and the page itself
(Page Frame). All memory-resident elements of the
Am386SX microprocessor paging mechanism are the
same size, namely 4 Kb. A uniform size for all of the
elements simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 17 shows how the paging
mechanism works.

Two Level Paging Scheme

31 22 12 0
Directory I Table | Offset User Memory
Linear Address l T | 12 OFFFFFFH
104 10,1/_— 7
31 Y Address
31 0 31 0 +
CRO I
v 0
CR1 +\
Page Table
CR2 %
CR3 Root
- Directory
Control Registers 150218038
Figure 17. Paging Mechanism
Am386SX Microprocessor 31

This Material Copyrighted By Its Respective Manufacturer

u AMD

31 1211 10 9 8 7 6 5 4 3

System
Software 0O0JO|D|JAjJO]O
Defineable

wic|n
S

Page Table Address 31—12

150218-037
Figure 18. Page Directory Entry (Points to Page Table)

31 1211 10 9 8 7 6 5 4 3

System
Software oO|OIDjA|O]|O
Defineable

Page Frame Address 31-12

wic|n
SIo|-
)

15021B-038
Figure 19. Page Table Entry (Points to Page)

This Materi al

Page Fault Register

CR2 is the Page Fault Linear Address register. it holds
the 32-bit linear address which caused the last Page
Fault detected.

Page Descriptor Base Register

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of the
Page Directory (this value is truncated to a 24-bit value
associated with the Am386SX CPU’s 16-Mb physical
memory limitation). The lower 12 bits of CR3 are always
zero to ensure that the Page Directory is always page
aligned. Loading it with a MOV CR3, reg instruction
causes the Page Table entry cache to be flushed, as will
atask switch through a TSS which changes the value of
CRO.

Page Directory

The Page Directory is 4-Kb long and allows up to 1024
Page Directory entries. Each Page Directory entry
contains information about the Page Table and the
address of the next level of tables, the Page Tables. The
contents of a Page Directory entry are shown in Figure
18. The upper 10 bits of the linear address (A31-A22)
are used as anindex to select the correct Page Directory
entry.

The Page Table address contains the upper 20 bits of a
32-bit physical address that is used as the base address
for the next set of tables, the Page Tables. The lower
12 bits of the Page Table addresses appear on 4-Kb
boundaries. For an Am386DX CPU system, the upper
20 bits will select one of 2% Page Tables, but for an
AmM386SX microprocessor system, the upper 20 bits
only select one of 2'2 Page Tables. Again, this is
because the Am386SX CPU is limited to a 24-bit
physical address, and the upper 8 bits (A31-A24) are
truncated when the address is output on its 24 address
pins.

Page Tables

Each Page Table is 4-Kb long and allows up to 1024
Page Table entries. Each Page Table entry contains in-
formation about the Page Frame and its address. The
contents of a Page Table entry are shown in Figure 13.

The middle 10 bits of the linear address (A21-A12) are
used as anindex to select the correct Page Table entry.

The Page Frame address contains the upper 20 bits of
a 32-bit physical address which is used as the base
address for the Page Frame. The lower 12 bits of the
Page Frame address are zero so that the Page Frame
addresses appear on 4-Kb boundaries. For an
Am386DX CPU system, the upper 20 bits will select
one of 2%° Page Frames, but for an Am386SX micropro-
cessor system, the upper 20 bits only select one of
2'? page Frames. Again, this is because the Am386SX
CPU is limited to a 24-bit physical address space, and
the upper 8 bits (A31-A24) are truncated when the
address is output on its 24 address pins.

Page Directory/Table Entries

The lower 12 bits of the Page Table entries and Page Di-
rectory entries contain statistical information about
pages and Page Tables, respectively. The P (Present)
bit indicates if a Page Directory or Page Table entry can
be used in address transiation. If P = 1, the entry can be
used for address translation. If P = 0, the entry cannot
be used for translation. All of the other bits, are available
for use by the software. For example, the remaining 31
bits could be used to indicate where on disk the page is
stored.

The A (Accessed) bit is set by the Am386SX CPU for
both types of entries before a read or write access
occurs to an address covered by the entry. The D (Dirty)
bitis set to 1 before a write to an address covered by that
Page Table entry occurs. The Dbitis undefined for Page
Directory entries. When the P, A, and D bits are updated
by the Am386SX CPU, the processor generates a
Read-Modify-Write cycle which locks the bus and pre-
vents conflicts with other processors or peripherals.
Software which modifies these bits should use the
LOCK prefix to ensure the integrity of the Page Tables in
multi-master systems.

The 3 bits marked system software definable (in Figures
18 and 19) are software definable. System software
writers are free to use these bits for whatever purpose
they wish.

32 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

This Materi al

Page Level Protection (R/W, U/S Bits)

The Am386SX microprocessor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of
protection: User, which corresponds to level 3 of the
segmentation based protection; and Supervisor, which
encompasses all of the other protection levels (0, 1,
and 2). Programs executing at Level 0, 1, or 2 bypass
the page protection, although segmentation-based
protection is still enforced by the hardware.

The U/S and R/W bits are used to provide
User/Supervisor and Read/Write protection for indi-
vidual pages, or for all pages covered by a Page Table
Directory entry. The U/S and R/W bits in the second
level Page Table entry apply only to the page described
by that entry. The U/S and R/W bits in the first level Page
Directory Table apply to all pages described by the Page
Table pointed to by that directory entry. The U/S and
R/W bits for a given page are obtained by taking the
most restrictive of the U/S and R/W bits from the Page
Directory Table entries and using these bits to address
the page.

Translation Look-Aside Buffer

The Am386SX microprocessor paging hardware is
designed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processorwas required to access two
levels of tables for every memory reference. To solve
this problem, the Am386SX CPU keeps a cache of
the most recently accessed pages; this cache is called
the Translation Look-Aside Buffer (TLB). The TLB is
a four-way set associative 32-entry Page Table cache.
It automatically keeps the most commonly used Page
Table entries in the processor. The 32-entry TLB
coupled with a 4K page size results in coverage of 128
Kb of memory addresses. For many common multitask-
ing systems, the TLB will have a hit rate of greater than
98%. This means that the processor will only have to
access the two-level page structure for less than 2% of
all memory references.

Paging Operation

The paging hardware operates in the following fashion.
The paging unit hardware receives a 32-bit linear
address fromthe segmentation unit. The upper 20 linear
address bits are compared with all 32 entries in the TLB
to determine if there is a match. If there is a match (i.e., a
TLB hit), then the 24-bit physical address is calculated
and is placed on the address bus.

If the Page Table entry is not in the TLB, the Am386SX
microprocessor will read the appropriate Page Direc-
tory entry. if P = 1 on the Page Directory entry, indi-
cating that the Page Table is in memory, then the
Am386SX CPU will read the appropriate Page Table
entry and set the Access bit. If P = 1 on the Page
Table entry, indicating that the page is in memory, the
AmM386SX microprocessor will update the Access and
Dirty bits as needed and fetch the operand. The upper
20 bits of the linear address, read from the Page Table,

will be stored in the TLB for future accesses. if P =0 for
either the Page Directory entry or the Page Table entry,
then the processor will generate a Page Fault
(Exception 14).

The processor will also generate a Page Fault
(Exception 14) if the memory reference violated the
page protection attributes. CR2 will hold the linear
address which caused the Page Fault. Since Exception
14 is classified as a fault, CS:EIP will point to the
instruction causing the Page Fault. The 16-bit error
code, pushed as part of the Page Fault handler, will
contain status bits which indicate the cause of the Page
Fault.

The 16-bit error code is used by the operating systemto
determine how to handle the Page Fault. Figure 20
shows the format of the Page Fault error code and the
interpretation of the bits. Even though the bits in the
error code (U/S, W/R, and P) have similar names as the
bits in the Page Directory/Table Entries, the interpreta-
tion of the error code bits is different. Figure 21 indicates
what type of access caused the Page Fault.

15 3 0

Ujujujuju|uUjuUjuUjuUjuUjuUjuju

]
W
-l
R

mnicin

Figure 20. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access causing
the fault occurred when the processor was executing in
User Mode (U/S = 1) or in Supervisor mode (U/S = 0).

W/R: The W/R bit indicates whether the access causing
the fault was a Read (W/R = 0) or a Write (W/R = 1).
P: The P bit indicates whether a Page Fault was caused
by a not-present page (P = 0), or by a page level protec-
tion violation (P=1).

U = Undefined
uU/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program is
executing at level 3.

Figure 21. Type of Access Causing Page Fault

Operating System Responsibilities

When the operating system enters or exits paging mode
(by setting or resetting bit 31 in the CRO register), a
short JMP must be executed to flush the Am386SX
microprocessor’s prefetch queue. This ensures that all
instructions executed after the address mode change
will generate correct addresses.

Am386SX Microprocessor 33

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

The Am386SX microprocessor takes care of the page
address translation process, relieving the burden from
an operating system in a demand-paged system. The
operating system is responsible for setting up the initial
Page Tables and handling any Page Faults. The
operating system is also required to invalidate (i.e.,
flush) the TLB when any changes are made to any of the
Page Table entries. The operating system must reload
CRS3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading CR3
with the address of the Page Directory, and allocating
space for the Page Directory and the Page Tables. The
primary responsibility of the operating system is to
implement a swapping policy and handle all of the Page
Faults.

A final concern of the operating system is to ensure that
the TLB cache matches the information in the paging
tables. In particular, any time the operating systems sets
the P (Present) bit of Page Table entry to zero, the TLB
must be flushed by reloading CR3. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group of
tasks its own set of Page Tables.

Virtual 8086 Environment

The Am386SX microprocessor allows the execution of
8086 application programs in both Real Mode and in
Virtual 8086 Mode. The Virtual 8086 Mode allows the
execution of 8086 applications, while still aliowing the
system designer to take full advantage of the Am386SX
CPU’s protection mechanism.

Virtual 8086 Addressing Mechanism

One of the major differences between Am386SX CPU
Real and Protected modes is how the segment
selectors are interpreted. When the processor is
executing in Virtual 8086 Mode, the segment registers
are used in a fashion identical to Real Mode. The
contents of the segment register are shifted left four
bits and added to the offset to form the segment base
linear address.

The Am386SX microprocessor allows the operating
system to specify which programs use the 8086 address
mechanism and which programs use Protected Mode
addressing on a per task basis. Through the use of
paging, the 1-Mb address space of the Virtual Mode task
can be mapped to anywhere in the 4-Gb linear address
space of the Am386SX CPU. Like Real Mode, Virtual
Mode addresses that exceed 1 Mb will cause an Excep-
tion 13. However, these restrictions should not prove to
be important, because most tasks running in Virtual
8086 Mode will simply be existing 8086 application
programs.

Paging In Virtual Mode

The paging hardware allows the concurrent running of
multiple Virtual Mode tasks, and provides protection and

Virtual Mode tasks or to relocate the address space of a
Virtual Mode task to physical address space greater
than 1 Mb.

The paging hardware aliows the 20-bit linear address
produced by a Virtuai Mode program to be divided into
as many as 256 pages. Each one of the pages can be
located anywhere within the maximum 16-Mb physical
address space of the Am386SX microprocessor. In
addition, since CR3 (the Page Directory Base Register)
is loaded by a task switch, each Virtual Mode task can
use a different mapping scheme to map pages to
different physical locations. Finally, the paging
hardware aliows the sharing of the 8086 operating
system code between multiple 8086 applications.

Protection and i/O Permission Bit Map

All Virtual Mode programs execute at privilege level 3.
As such, Virtual Mode programs are subject to all of the
protection checks defined in Protected Mode. This
is different from Real Mode, which implicitly is executing
at privilege level 0. Thus, an attempt to execute a
privileged instruction in Virtual Mode will cause an
Exception 13 fault.

The following are privileged instructions, which may be
executed only at Privilege level 0. Attempting to execute
these instructions in Virtual 8086 Mode (or anytime
CPL = 0) causes an Exception 13 fault:

LIDT; MOV DRn, REG; MOV reg,DRn;
LGDT; MOV TRn, reg; MOV reg, TRn;
LMSW; MOV CRn, reg; MOV reqg,CRn;
CLTS;

HLT;

Several instructions, particularly those applying to the
muititasking and the protection model, are available
only in Protected Mode. Therefore, attempting to exe-
cute the following instructions in Real Mode or in Virtual
8086 Mode generates an Exception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR;
LSL; VERW;
ARPL;

The instructions which are IOPL sensitive in Protected
Mode are:

IN; STI;

ouT; CLI

INS;

OUTS;

REP INS;

REP OUTS;

In Virtual 8086 Mode the following instructions are IOPL
sensitive:

operating system isolation. Although it is not strictly INT n; STI;
necessary to have the paging hardware enabled to run PUSHF; CLI;
Virtual Mode tasks, it is needed in order to run multiple POPF'; IRET;
34 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

AMD u

The PUSHF, POPF, and IRET instructions are |OPL
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag to be virtualized to the virtual 8086
Mode program. The INT n software interrupt instruction
is also IOPL sensitive in Virtual 8086 Mode. Note that
the INT 3, INTO, and BOUND instructions are not IOPL
sensitive in Virtual 8086 Mode.

The 1/O instructions that directly refer to addresses in
the processor’s I/0 space are IN, INS, OUT, and OUTS.
The Am386SX microprocessor has the ability to
selectively trap references to specific 1/0 addresses.
The structure that enables selective trapping is the I/0
Permission Bit Map in the TSS segment (see Figures 15
and 16). The I/0O permission map is a bit vector. The size
of the map and its location in the TSS segment are
variable. The processor locates the 1/0 permission map
by means of the I/O map base field in the fixed portion of
the TSS. The IO map base field is 16-bits wide and
contains the offset of the beginning of the 1/0 permission
map.

In protected mode, when an /O instruction (IN, INS,
OUT, or OUTS) is encountered, the processor first
checks whether CPL < IOPL. If this condition is true, the
/0 operation may proceed. If not true, the processor
checks the 1/O permission map (in Virtual 8086 Mode,
the processor consults the map without regard for the
IOPL).

Each bit in the map corresponds to an I/O port byte
address; for example, the bit for port 41 is found at I’O
map base +5, bit offset 1. The processor tests all the bits
that correspond to the I/0 addresses spanned by an /10O
operation; for example, a Dword operation tests fou

bits corresponding to four adjacent byte addresses.
It any tested bit is set, the processor signals a general
protection exception. If all the tested bits are zero, the
I/0 operations may proceed.

It is not necessary for the I/O permission map to
represent all the I/0 addresses. /0O addresses not
spanned by the map are treated as if they had one-bits in
the map. The I/O map base should be at least one byte
less than the TSS limit; the last byte beyond the /O
mapping information must contain all 1s.

Because the l/O permission map is inthe TSS segment,
different tasks can have different maps. Thus, the
operating system can allocate ports to a task by
changing the /O permission map in the task’s TSS.

Important Implementation Note: Beyond the last byte
of /O mapping information in the 1/0 permission bit map
must be a byte containing all 1s. The byte of all 1s must
be within the limit of the Am386SX CPU TSS segment
(see Figure 15).

Interrupt Handling

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are handled in
a unique fashion. When running in Virtual Mode all
interrupts and exceptions involve a privilege change
back to the host Am386SX CPU operating system.
The Am386SX CPU operating system determines if the

interrupt comes from a Protected Mode application, or
from a Virtual Mode program, by examining the VM bitin
the EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted, and
execution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in the
EFLAG image on the stack.

The Am386SX microprocessor operating systeminturn
handles the exception or interrupt and then returns
control to the 8086 program. The Am386SX micro-
processor operating system may choose to let the 8086
operating system handle the interrupt, or it may emu-
late the function of the interrupt handler. For example,
many 8086 operating system calls are accessed by
PUSHing parameters on the stack, and then executing
an INT n instruction. If the IOPL is set to 0, then all
INT n instructions will be intercepted by the Am3865X
CPU operating system.

An Am386SX microprocessor operating system can
provide a Virtual 8086 environment which is totally
transparent to the application software by intercepting
and then emulating 8086 operating system’s calls, and
intercepting IN and OUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 Mode is entered by executing a 32-bit IRET
instruction at CPL = 0, where the stack has a 1 in the
VM bit of its EFLAGS image, or a Task Switch (at any
CPL) to an Am386SX microprocessor task whose
Am386SX CPU TSS has an EFLAGS image containing
a 1 in the VM bit position, while the processor is
executing in the Protected Mode. POPF does not
affect the VM bit, but a PUSHF always pushes a 0 inthe
VM bit.

The transition out of Virtual 8086 Mode to Protected
Mode occurs only on receipt of an interrupt or exception.
In Virtual 8086 Mode, all interrupts and exceptions
vector through the Protected Mode IDT, and enter an
interrupt handler in Protected Mode. As part of the
interrupt processing the VM bit is cleared.

Because the matching IRET must occur from Level 0,
Interrupt or Trap Gates used to field an interrupt or
exception out of Virtual 8086 Mode must perform an
inter-level interrupt only to Level 0. Interrupt or Trap
Gates through conforming segments, or through
segments with DPL > 0, will raise a GP fault with the CS
selector as the error code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in Virtual 8086 Mode must be
described by a TSS with the Am386SX CPU format
(Type 9 or 11 descriptor). A task switch out of Virtual
8086 Mode will operate exactly the same as any other
task switch out of a task with an Am386SX CPU TSS. All
of the programmer visible state, including the EFLAGS
register with the VM bit setto 1, is stored inthe TSS. The
segment registers in the TSS will contain 8086 segment
base values rather than selectors.

Am386SX Microprocessor 35

Copyrighted By Its Respective Manufacturer

This Materia

n AMD

Atask switchinto a task described by an Am386SX CPU
TSS will have an additional check to determine if the
incoming task should be resumed in Virtual 8086 Mode.
Tasks described by 80286 format TSSs cannot be re-
sumed in Virtual 8086 Mode, so no check is required
there (the FLAGS image in 80286 format TSS has only
the low-order 16 FLAGS bits). Before loading the
segment register images from an Am386SX CPU TSS,
the FLAGS image is loaded, so that the segment
registers are loaded from the TSS image as 8086
segment base values. The task is now ready to resume
in Virtual 8086 Mode.

Transitions Through Trap and Interrupt Gates, and
IRET

A task switch is one way to enter or exit Virtual 8086
Mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and to
enter as part of executing an IRET instruction. The
transition out must use an Am386SX CPU Trap Gate
(Type 14), or Am386SX CPU Interrupt Gate (Type 15),
which must point to a non-conforming Level 0 segment
(DPL = 0) in order to permit the trap handier to IRET
back to the Virtual 8086 program. The Gate must point
to a non-conforming Level 0 segment to perform a level
switch to Level O so that the matching IRET can change
the VM bit. Am386SX CPU gates must be used since
80286 gates save only the lower 16 bits of the EFLAGS
register (the VM bit will not be saved). Also, the 16-bit
IRET used to terminate the 80286 interrupt handler will
pop only the iower 16 bits from FLAGS, and will not
affect the VMbit. The actiontaken foran Am386SX CPU
Trap or Interrupt gate, if an interrupt occurs while the
task is executing in Virtual 8086 Mode, is given by the
following sequence:

1. Save the FLAGS register in a temp to push later.
Turn off the VM, TF, and IF bits.

2. Interrupt and Trap gates must perform a level switch
from 3 (where the Virtual 8086 Mode program
executes) to 0 (so IRET can return).

3. Pushthe 8086 segment register values onto the new
stack, in this order: GS, FS, DS, and ES. These are
pushed as 32-bit quantities. Then load these 4
registers with null selectors (0).

4. Push the old 8086 stack pointer onto the new stack
by pushing the SS register (as 32 bits), then pushing
the 32-bit ESP register saved above.

5. Push the 32-bit EFLAGS register saved in step 1.

6. Push the old 8086 instruction onto the new stack by
pushingthe CSregister (as 32 bits), then pushing the
32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine in
protected mode.

The transition out of Virtual 8086 Mode performs a level
change and stack switch, in addition to changing back to
protected mode. Also, all of the 8086 segment register
images are stored on the stack (behind the SS:ESP
image), and then loaded with null (0) selectors before

entering the interrupt handler. This will permit the
handier to safely save and restore the DS, ES, FS, and
GS registers as 80286 selectors. This is needed so that
interrupt handlers, which do not care about the mode of
the interrupted program, can use the same prologue
and epilogue code for state saving, regardless of
whether or not a native mode or Virtuai 8086 Mode
program was interrupted. Restoring null selectors to
these registers before executing the IRET will cause a
trap in the interrupt handler. Interrupt routines which
expect or return values in the segment registers will
have to obtain/return vaiues from the 8086 register
images pushed onto the new stack. They will need to
know the mode of the interrupted program in order to
know where to find/return segment registers, and also to
know how to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended IRET instruction
(operand size = 32) can be used, and must be executed
at Level 0, to change the VM bitto 1.

1. Ifthe NT bitinthe FLAGS register is On, an intertask
return is performed. The current state is stored in the
current TSS, and the link field in the current TSS is
used to locate the TSS for the interrupted task which
is to be resumed. Otherwise, continue with the
following sequence.

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value active
in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is pop-
pedfirst, then a 32-bit word is popped which contains
the CS value in the lower 16 bits. If VM = 0, this CS
load is done as a protected mode segment load. If
VM = 1, this will be done as an 8086 segment load.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was popped in step 1.

5. If VM = 1, load segment registers ES, DS, FS, and
GS from memory locations SS:[ESP +8], SS[ESP +
12], SS{ESP + 16}, and SS;{ESP = 20], respectively,
where the new value of ESP stored in step 4 is used.
Since VM = 1, these are done as 8086 segment
register loads.

Else if VM =0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routines. Null
out invalid selectors to trap, if an attempt is made to
access through them.

6. If RPL (CS) > CPL, pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32 bits containing SS in the lower 16
bits. If VM = 0, SS is loaded as a protected mode
segment register load. If VM = 1, an 8086 segment
register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) determines
whether the processor resumes the interrupted
routine in Protected Mode or Virtual 8086 Mode.

36 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD a

FUNCTIONAL DATA

The Am386SX microprocessor features a straight-
forward functional interface to the external hardware.
The Am386SX CPU has separate parallel buses for
data and address. The data bus is 16-bits in width,
and bi-directional. The address bus outputs 24-bit
address values using 23 address lines and two Byte
Enable signals.

The Am386SX microprocessor has two selectable
address bus cycles: address pipelined and non-address
pipelined. The address pipelining option allows as much
time as possible for data access by starting the pending
bus cycle before the present bus cycle is finished. A
non-pipelined bus cycle gives the highest bus
performance by executing every bus cycle in two
processor CLK cycles. For maximum design flexibility,
the address pipelining option is selectable on a
cycle-by-cycle basis.

The processor’s bus cycle is the basic mechanism for
information transfer, either from system to processor, or
from processor to system. The Am386SX microproces-
sor bus cycles perform data transfer in a minimum of
only two clock periods. The maximum transfer band-
width at 16 MHz is therefore 16 Mb/s. However, any
bus cycle will be extended for more than two clock per-
iods if external hardware withholds acknowledgment of
the cycle.

The Am386SX microprocessor can relinquish controt of
its local buses to allow mastership by other devices,
such as Direct Memory Access (DMA) channels. When

relinquished, HLDA is the only output pin driven by the
Am386SX microprocessor, providing near complete
isolation of the processor from its system (all other
output pins are in a float condition).

Signal Description Overview

Below is a brief description of the Am386SX micropro-
cessor input and output signals arranged by functional
groups.

Example signal: M/IG—High voltage indicates memory
selected

—Low voltage indicates IO
selected

The signal descriptions sometimes refer to Switching
timing parameters, such as t25 Reset Setup Time and
126 Reset Hold Time. The values of these parameters
can be found in the Switching Characteristics table.

Clock (CLK2)

CLK2 provides the fundamental timing for the
Am386SX microprocessor. it is divided by two inter-
nally to generate the internal processor clock used for
instruction execution. The internal clock is comprised of
two phases, phase one and phase two. Each CLK2
period is a phase of the internal clock. Figure 23
illustrates the relationship. If desired, the phase of the
internal processor clock can be synchronized to a
known phase by ensuring the falling edge of the RESET
signal meets the applicable setup and hold times, t25
and t26.

2X Clock{ %D Address Bus) A23-A1
BHE 24-Bit Address
16-Bit oata{ D15-D0 —5 > | Bree
—; Enables
ADS
— *’
Bus ool { ——PA o, [DB,
READY Microprocessor M/1O Bus Cycle Definition
P TOCK
EEEEE—
HOLD PEREQ
— Il ——
Bus Arbitration 4———HLDA ‘-—BUSY Math Coprocessor Signaling
ERROR
l—
INTR > ¢ Vcc
NMI } Power Connections
Interrupts { ———————W
RESET > FLT'
} Float
15022B-010
Figure 22. Functional Signal Groups
Am386SX Microprocessor 37

This Material Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Period

CLK2 Period
o1 o2

Processor Clock

CLK2 Period

Processor Clock
Period

CLK2 Period| CLK2 Period
%1 02

oz [2V N2V T N2vA N2Vt \2vF \

Internal N
Processor Clock

N A

62.5 ns Min (16 MHz Max)
50 ns Min (20 MHz Max)

40 ns Min (25 MHz Max)

15022B-011

Figure 23. CLK2 Signal and Internal Processor Clock

Data Bus (D15-D0)

These three-state, bi-directional signals provide the
general purpose data path between the Am386SX
microprocessor and other devices. The data bus
outputs are active High and will float during Bus Hold
Acknowledge. Data bus reads require that read-data
setup and hold times (t21 and t22) be met relative to
CLK2 for correct operation.

Address Bus (A23-A1, BHE, BLE)

These three-state outputs provide physical memory
addresses or I/O port addresses. A23—-A16 are Low
during /O transfers, except for I/O transfers automati-
cally generated by coprocessor instructions. During
coprocessor /O transfers, A22—-A16 are driven Low
and A23 is driven High, so that this address line can be
used by external logic to generate the coprocessor
select signal. Thus, the I/O address driven by the
AmM386SX microprocessor for coprocessor commands
is 8000F8H, the 1/0 addresses driven by the Am386SX
CPU for coprocessor data are 8000FCH or 8000FEH
or cycles to a 387SX math coprocessor.

The address bus is capable of addressing 16 Mb of
physical memory space (000000H through FFFFFFH),
and 64 Kb of I/O address space (000000H through
OOFFFFH) for programmed 1/O. The address bus is
active High and will float during Bus Hold Acknowledge.
The Byte Enable outputs, BHE and BLE, directly
indicate which bytes of the 16-bit data bus are invoived
with the current transfer. BHE applies to D15-D8 and
BLE applies to D7-DO0. If both BHE and BLE are
asserted, then 16 bits of data are being transferred. See
Table 13 for a complete decoding of these signals. The
Byte Enables are active Low and will float during Bus
Hold Acknowledge.

Bus Cycle Definition Signals (W/R, D/C, M/O,
LOCK)

These three-state outputs define the type of bus cycle
being performed: W/R distinguishes between write and
read cycles; D/C distinguishes between data and
control cycles; M/IO distinguishes between memory and
/O cycles; and, LOCK distinguishes between locked
and uniocked bus cycles. Ali of these signals are active
Low and will float during Bus Acknowledge.

The primary bus cycle definition signals are W/R, D/C,
and M/IO, since these are the signals driven valid as
ADS (Address Status output) becomes active. The
LOCK is driven valid at the same time the bus cycle be-
gins, which, due to address pipelining, could be after
ADS becomes active. Exact bus cycle definitions, as a
function of W/R, D/C, and M/IO, are given in Table 14.

Table 13. Byte Enable Definitions

BHE LE Function
(o} o] Word Transfer
0 1 Byte transfer on upper byte
of the data bus, D15-D8
1 0 Byte transfer on lower byte
of the data bus, D7-D0
1 1 Never occurs

LOCK indicates that other system bus masters are not
to gain control of the system bus while it is active. LOCK
is activated on the CLK2 edge that begins the first
locked bus cycle (i.e., it is not active at the same time as
the other bus cycle definition pins) and is deactivated
when READY is returned at the end of the last bus cycle

38 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

Table 14. Bus Cycle Definltion

This Materi al

MI10 D/C W/R Bus Cycle Type Locked?
0 0 0 Interrupt Acknowledge Yes
0 0 1 Does not occur —
0 1 0 /O Data Read No
0 1 1 /O Data Write No
1 0 Memory Code Read No
1 0 1 Halt: Shutdown: No
Address = 2 Address =0
BHE =1 BHE =1
BLE =0 BLE =0
1 1 0 Memory Data Read Some Cycles
1 1 1 Memory Data Write Some Cycles

which is to be locked. The beginning of a bus cycle is
determined when READY is returned in a previous bus
cycle and another is pending (ADS is active), or the
clock in which ADS is driven active if the bus was idle.
This means that it follows more closely with the write
data rules when it is valid, but may cause the bus to
be locked longer than desired. The LOCK signal may
be explicitly activated by the LOCK prefix on certain
instructions.

LOCK is always asserted when executing the XCHG
instruction, during descriptor updates, and during the
interrupt acknowledge sequence.

Bus Control Signals (ADS, READY, NA)

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS)
This three-state output indicates that a valid bus cycle

definition and address (W/R, D/C, M/10, BAE, BLE, and
A23-A1) are being driven at the Am386SX micropro-
cessor pins. ADS is an active Low output. Once ADS
is driven active, valid address, Byte Enables, and defini-
tion signals will not change. In addition, ADS will remain
active until its associated bus cycle begins (when
READY is returned for the previous bus cycle when
running pipelined bus cycles). When address pipe-
lining is utilized, maximum throughput is achieved by
initiating bus cycles when ADS and READY are active in
the same clock cycle. ADS will float during Bus Hold
Acknowledge. See sections Non-Pipelined Address
and Pipelined Address for additional information on how

ADS is asserted for different bus states.

Transfer Acknowledge (READY)

This input indicates the current bus cycle is complete,
and the active bytes indicated by BHE and BLE are
accepted or provided. When READY is sampled active
during a read cycle or interrupt acknowledge cycle, the
Am386SX microprocessor latches the input data and
terminates the cycle. When READY is sampled active
during a write cycle, the processor terminates the bus
cycle.

READY is ignored on the first bus state of all bus cycles,
and sampled each bus state thereafter until asserted.
READY must eventually be asserted to acknowledge
every bus cycle, including Halt Indication and Shutdown
Indication bus cycles. When being sampled, READY
must always meet setup and hold times (19 and t20)
for correct operation.

Next Address Request (NA)

This is used to request address pipelining. This input
indicates the systemis preparedto accept new values of
BHE, BLE, A23-A1, W/R, D/C, and M/IO from the
Am386S X microprocessor even if the end of the current
cycle is not being acknowledged on READY. If this in-
put is active when sampled, the next address is driven
onto the bus, provided the next bus request is already
pending internally. NA is ignored in CLK cycles in
which ADS or READY is activated. This signal is active
Low and must satisfy setup and hold times (t15 and
t16) for correct operation. See sections Read and
Write Cycles and Pipelined Address for additional
information.

Am386SX Microprocessor 39

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Bus Arbitration Signals (HOLD, HLDA)

This section describes the mechanism by which the
processor relinquishes controt of its local buses when
requested by another bus master device. See section
Entering and Exiting Hold Acknowledge for additional
information.

Bus Hold Request (HOLD)

This input indicates some device other than the
Am386SX microprocessor requires bus mastership.
When contro! is granted, the Am386SX CPU floats
A23-A1, BHE, BLE, D15-D0, LOCK, M/IO, D/C, W/R,
and ADS, and then activates HLDA, thus entering the
Bus Hold Acknowledge state. The local bus will remain
granted to the requesting master until HOLD becomes
inactive. When HOLD becomes inactive, the Am386SX
microprocessor will deactivate HLDA and drive the local
bus (at the same time), thus terminating the Hold
Acknowledge condition.

HOLD must remain asserted as long as any other
device is a local bus master. External pull-up resistors
may be required when inthe Hold Acknowledge (HLDA)
state, since none of the Am386SX microprocessor
floated outputs have internal pull-up resistors. See sec-
tion Resistor Recommendations for additional infor-
mation. HOLD is not recognized while RESET is active.
If RESET is asserted while HOLD is asserted, RESET
has priority and places the bus into an idle state, rather
than the Hold Acknowledge (high impedance) state.

HOLD is a level-sensitive, active High, synchronous
input. HOLD signals must always meet setup and hold
times (123 and t24) for correct operation.

Bus Hold Acknowledge (HLDA)

When active (High), this output indicates the Am386SX
microprocessor has relinquished control of its local bus
in response to an asserted HOLD signal, and is in the
Bus Hold Acknowledge state.

The Bus Hold Acknowledge state offers near complete
signal isolation. in the HLDA state is the only signal
being driven by the Am386SX microprocessor. The
other output or bi-directional signals (D15-D0, BHE,
BLE, A23-A1, W/R, D/C, M/TO, LOCK, and ADS) are in
a high-impedance state so the requesting bus master
may control them. These pins remain Off throughout the
time that HLDA remains active (see Table 15). Pull-up
resistors may be desired on several signals to avoid
spurious activity when no bus master is driving them.
See section Resistor Recommendations for additional
information.

When the HOLD signal is made inactive, the Am386SX
microprocessor will deactivate HLDA and drive the bus.
One rising edge on the NMI input is remembered for
processing after the HOLD input is negated.

Table 15. Output Pin State During HOLD

Pin Value Pin Names

1 HLDA

Float LOCK, M/, D/C, W/R, ADS,
A23-A1, BHE, BLE, D15-D0

In addition to the normal usage of Hold Acknowledge
with DMA controllers or master peripherals, the near
complete isolation has particular attractiveness during
systemtest whentest equipment drives the system, and
in hardware fault-tolerant applications.

HOLD Latencies

The maximum possible HOLD latency depends on the
software being executed. The actual HOLD latency at
any time depends on the current bus activity, the state of
the LOCK signal (internal to the CPU) activated by the
LOCK prefix, and interrupts. The Am386SX micropro-
cessor will not honor a HOLD request until the current
bus operation is complete.

The Am386SX microprocessor breaks 32-bit data or /0
accesses into 2 internally locked 16-bit bus cycles; the
LOCK signal is not asserted. The Am386SX micro-
processor breaks unaligned 16-bit or 32-bit data or I/O
accesses into 2 or 3 internally locked 16-bit bus cycles.
Again, the LOCK signal is not asserted but a HOLD
request will not be recognized until the end of the entire
transfer.

Wait states affect HOLD latency. The Am386SX micro-
processor will not honor a HOLD request until the end of
the current bus operation, no matter how many wait
states are required. Systems with DMA where data
transfer is critical must insure that READY returns
promptly.

Coprocessor Interface Signals (PEREQ, BUSY,
ERROR)

In the following sections are descriptions of signals
dedicated to the math coprocessor interface. In addition
to the data bus, address bus, and bus cycle definition
signals, the following signals control communication
between the Am386SX microprocessor and its 387SX
math coprocessor extension.

Coprocessor Request (PEREQ)

When asserted (High), this input signal indicates a
coprocessor request for a data operand to be
transferred to/from memory by the Am386SX Micro-
processor. in response, the Am386SX microprocessor
transfers information between the math coprocessor
and memory. Because the Am386SX CPU has
internally stored the math coprocessor op-code being
executed, it performs the requested data transfer with
the correct direction and memory address.

40 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

PEREQ is level-sensitive active High asynchronous
signal. Setup and hold times (t29 and t30) relative to
the CLK2 signal must be met to guarantee recognition
at a particular clock edge. This signal is provided with a
weak internal pull-down resistor of around 20 Kohms to
Ground so that it will not float active when left
unconnected.

Coprocessor Busy (BUSY)

When asserted Low, this input indicates that the
coprocessor is still executing an instruction, and is not
yet able to accept another. When the Am386SX CPU
encounters any coprocessor instruction which operates
on the numerics stack (e.g., load, pop, or arithmetic
operation), or the WAIT instruction, this input is first
automatically sampled until it is seento be inactive. This
sampling of the BUSY input prevents overrunning the
execution of a previous coprocessor instruction.

The FNINIT, FNSTENV, FNSAVE, FNSTSW,
FNSTCW, and FNCLEX coprocessor instructions are
allowed to execute even if BUSY is active, since these
instructions are used for coprocessor initialization and
exception-clearing.

BUSY is an active Low, level-sensitive, asynchronous
signal. Setup and hold times (t29 and t30), relative to
the CLK2 signal, must be met to guarantee recognition
at a particular clock edge. This pin is provided with
a weak internal pull-up resistor of around 20 Kohms to
Ve so that it will not float active when left unconnected.

BUSY serves an additional function. If BUSY is sampled
Low at the falling edge of RESET, the Am386SX micro-
processor performs an internal self-test (see section
Bus Activity During and Following Reset). if BUSY is
sampled High, no self-test is performed.

Coprocessor Error (ERROR)

When asserted Low, this input signal indicates that
the previous coprocessor instruction generated a
coprocessor error of a type not masked by the
coprocessor's control register. This input is auto-
matically sampled by the Am386SX microprocessor
when a coprocessor instruction is encountered, and
if active, the Am386SX CPU generates Exception 16
to access the error-handling software.

Several coprocessor instructions, generally those which
clear the numeric error flags in the coprocessor or save
coprocessor state, do execute without the Am386SX
CPU generating Exception 16 even if ERROR is active.
These instructions are FNINIT, FNCLEX, FNSTSW,
FNSTSWAX, FNSTCW, FNSTENV, and FNSAVE.

ERROR is an active Low, level-sensitive, asynchronous
signal. Setup and hold times (129 and t30), relative to
the CLK2 signal, must be met to guarantee recognition
at a particular clock edge. This pin is provided with a
weak internal pull-up resistor of around 20 Kohms to Ve
so that it will not float active when left unconnected.

AMD n
Interrupt Signals (INTR, NMI, RESET)

The following descriptions cover inputs that can
interrupt or suspend execution of the processor's
current instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for
interrupt service, which can be masked by the
Am386SX microprocessor Flag Register IF bit. When
the Am386SX CPU responds to the INTR input, it
performs two interrupt acknowledge bus cycles and, at
the end of the second, latches an 8-bit interrupt vector
on D7-DO0 to identify the source of the interrupt.

INTR is an active High, level-sensitive, asynchronous
signal. Setup and hold times (127 and 128}, relative to
the CLK2 signal, must be met to guarantee recognition
at a particular clock edge. To assure recognition of an
INTR request, INTR should remain active until the first
interrupt acknowledge bus cycle begins. INTR is
sampled at the beginning of every instruction in the
Am386SX microprocessor’s Execution Unit. In order to
be recognized at a particular instruction boundary, INTR
must be active at least eight CLK2 clock periods before
the beginning of the instruction. If recognized, the
AmM386SX CPU will begin execution of the interrupt.

Non-Maskable Interrupt Request (NMi)

This input indicates a request for interrupt service which
cannot be masked by software. The non-maskable
interrupt request is always processed according to the
pointer or gate in slot 2 of the interrupt table. Because of
the fixed NM! slot assignment, no interrupt acknowledge
cycles are performed when processing NMI.

NMI is an active High, rising edge-sensitive, asyn-
chronous signal. Setup and hold times (27 and 128),
relative to the CLK2 signal, must be met to guarantee
recognition at a particular clock edge. To assure
recognition of NMI, it must be inactive for at least eight
CLK2 periods, and then be active for at least eight CLK2
periods before the beginning of the instruction boundary
in the Am386SX microprocessor's Execution Unit.

Once NMI processing has begun, no additional NMI's
are processed until after the next IRET instruction,
which is typically the end of the NMI service routine. If
NMI is re-asserted prior to that time, however, one rising
edge on NMI will be remembered for processing after
executing the next IRET instruction.

Interrupt Latency

The time that elapses before an interrupt request is
serviced (interrupt latency) varies according to several
factors. This delay must be taken into account by the
interrupt source. Any of the following factors can affect
interrupt iatency:

1. Ifinterrupts are masked, an INTR request will not be
recognized until interrupts are re-enabled.

Am386SX Microprocessor 41

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

2. If an NMI is currently being serviced, an incoming
NMt request will not be recognized until the
Am386SX microprocessor encounters the IRET
instruction.

3. An interrupt request is recognized only on an in-
struction boundary of the Am386SX microproces-
sor's Execution Unit except for the following cases:

— Repeat string instructions can be interrupted after
each iteration.

—If the instruction loads the Stack Segment
register, an interrupt is not processed until after
the following instruction, which should be an ESP.
This allows the entire stack pointer to be loaded
without interruption.

—If an instruction sets the interrupt flag (enabling
interrupts), an interrupt is not processed until after
the next instruction.

The longest latency occurs when the interrupt
request arrives while the Am386SX microprocessor
is executing a long instruction such as multiplication,
division, or a task switch in the Protected Mode.

4. Saving the Flags register and CS:EIP registers.

5. If interrupt service routine requires a task switch,
time must be allowed for the task switch.

6. It the interrupt service routine saves registers
that are not automatically saved by the Am386SX
microprocessor.

Reset

This input signal suspends any operation in progress
and places the Am386SX microprocessor in a known
reset state. The Am386SX CPU is reset by asserting
RESET for 15 or more CLK2 periods (80 or more CLK2
periods before requesting self-test). When RESET is
active, all other input pins, except FLT*, are ignored, and
all other bus pins are driven to an Idle Bus state, as
shown in Table 16. If RESET and HOLD
are both active at a point in time, RESET takes priority
even if the Am386SX microprocessorwas in a Hold Ac-
knowledge state prior to RESET active.

Reset is an active High, level-sensitive, synchronous
signal. Setup and hold times (125 and t26) must be met
in order to assure proper operation of the Am386SX
microprocessor.

Bus Transfer Mechanism

All data transfers occur as a result of one or more bus
cycles. Logical data operands of byte and word iengths
may be transferred without restrictions on physical
address alignment. Any byte boundary may be used,
although two physical bus cycles are performed as
required for unaligned operand transfers.

The Am386SX microprocessor address signals are
designed to simplify external system hardware. Higher-

*Contact AMD for availability of Float feature, PQFP only.

order address bits are provided by A23—A1. BHE and
BLE provide linear selects for the two bytes of the 16-bit
data bus.

Byte Enable outputs BHE and BLE are asserted when
their associated data bus bytes are involved with the
present bus cycle, as listed in Table 17.

Each bus cycle is composed of at least two bus states.
Each bus state requires one processor clock period.
Additional bus states added to a single bus cycle are
called wait states. See section Bus Functional
Description.

Table 16. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset
ADS 1

D15-DO Float

BRE, BLE 0

A23-A1 1

WR]

D/C 1

M0]

LOCK 1

HLDA 0

Table 17. Byte Enables and Associated
Data and Operand Bytes

Byte Enabie Signal Assoclated Data Bus Signals

BLE D7-DO (Byte 0—least significant)
BHE D15-D8 (Byte 1—most significant)

Memory and I/O Spaces

Bus cycles may access physical memory space or /O
space. Peripheral devices in the system may either be
memory-mapped, I/O-mapped, or both. As shown in
Figure 24, physical memory addresses range from
000000H to OFFFFFFH (16 Mb) and /0 addresses from
000000H to 00FFFFH (64 kb). Note the I/0 addresses
used by the automatic 1/O cycles for coprocessor
communication are 8000F8H to 8000FFH, beyond the
address range of programmed /0, to allow easy
generation of a coprocessor chip select signal using the
A23 and M/IO signals.

Bus Functional Description

The Am386SX microprocessor has separate, parallel
buses for data and address. The data bus is 16-bits in
width, and bi-directional. The address bus provides a
24-bit value using 23 signals for the 23 upper-order
address bits and 2 Byte Enable signals to directly
indicate the active bytes. These buses are interpreted
and controlled by several definition signals.

42 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

FFFFFFH
Not
Accessible
Physical Memory 8000FFH
16 Mb 8000F8H <—1— Coprocessor
(Note)
OOFFFFH Accessible
Programmed
000000H 000000H VO Space
Physical Memory Space /O Space

Note: Since A23 is High during automatic communication with coprocessor, A23 High and M3 Low can be used to easily generate a
coprocessor select signal.

15022B-012

Figure 24. Physical Memory and /O Spaces

Cycle 1 Cycle 2 Cycle 3
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Read) (Read)
T T2 T T2 T T2
o1 | 62 f o1 o2 | ot |e2]o1|oe2]0er | o2 o1]oe2| o
co3 I T A O O O S A |
BHE, BLE, A23-A1, |
i, o5, wi [DX Valid 1 Valid 2 Valid 3
(Output)
LNV NN N
(lnpr:g [
(Input)
(OIL%CU:; [IX Valid 1 Valid 2 Valid 3
D15-D0O [_In _ ———Crlﬂ}—— ——— In3 -
(Input during Read) l

Fastest non-pipelined bus cycles consist of T1 and T2
15022B-013

Figure 25. Fastest Read Cycles with Non-Pipelined Address Timing

Am386SX Microprocessor 43
This Material Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

The definition of each bus cycle is given by three
signals: M/IO, W/R, and D/C. At the same time, a valid
address is present on the Byte Enable signals, BHE
and BLE, and the other address signals, A23—-A1. A
status signal, ADS, indicates when the Am386SX micro-
processor issues a new bus cycle definition and
address.

Collectively, the address bus, data bus, and all assoc-
iated control signals are referred to simply as the bus.
When active, the bus performs one of the bus cycles
below:

1. Read from memory space;

- Locked read from memory space;

Write to memory space;

Locked write to memory space;

Read from I/O space (or math coprocessor);

S ENESN

6. Write to I/O space (or math coprocessor);
7. Interrupt acknowledge (always locked);
8. Indicate halt, or indicate shutdown.

Table 14 shows the encoding of the bus cycle definition
signals for each bus cycle. See section Bus Cycle Defi-
nition Signals for additional information.

When the Am386SX microprocessor bus is not per-
forming one of the activities listed above, it is either idle
or in the Hold Acknowledge state, which may be
detected externally. The idle state can be identified by
the Am386SX CPU giving no further assertions on its
address strobe output (ADS) since the beginning of its
most recent cycle, and the most recent bus cycle having
beenterminated. The Hold Acknowledge state is identi-
fied by the Am386SX microprocessor asserting its
Hold Acknowledge (HLDA) output.

Cycle 1 Cycle 2 Cycle 3
Pipelined Pipelined Pipelined
(Read) (Read) (Read)
TP T2P TiP T2P TP T2P
o1]oz|or|ez|e1 o201 |o2]o1|o2]|01]0z
e gigh
wpop L LT LML L L L .
BHE, BLE, A23-A1, - " " "
0. DIC, WR [Valid 1 Valid 2 Valid 3 Valid 4
(Outputs)
ADS
(Output) [— \—/ / /
NA —
(input) [

(input)
LOCK " " -
(Output) [Valid 1 Valid 2 Valid 3
—t— In2 —_——t—— I3 >

D15-D0 .
(Input during Read) I: _iD-__ - In

Fastest pipelined bus cycles consist of TIP and T2P

15022B-014

Figure 26. Fastest Read Cycles with Pipelined Address Timing

44 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

The shortest time unit of bus activity is abus state. Abus
state is one processor clock period (two CLK?2 periods)
in duration. A complete data transfer occurs during a
bus cycle, composed of two or more bus states.

The fastest Am386SX microprocessor bus cycle
requires only two bus states. For example, three
consecutive bus read cycles, each consisting of two bus
states, are shown in Figure 25. The bus states in each
cycle are named T1 and T2. Any memory or I/O address
may be accessed by such a two-state bus cycle, if the
external hardware is fast enough.

Every bus cycle continues until it is acknowledged by
the external system hardware, using the Am386SX
microprocessor READY input. Acknowledging the bus
cycle at the end of the first T2 results in the shortest bus
cycle, requiring only T1 and T2. If READY is not
immediately asserted however, T2 states are repeated
indefinitely until the READY input is sampled active.

The address pipelining option provides a choice of bus
cycle timings. Pipelined or non-pipelined address timing
is selectable on a cycle-by-cycle basis with the Next
Address (NA) input.

When address pipelining is selected, the address (BHE,
BLE, and A23-A1) and definition (W/R, D/C, M/IO, and
LOCK) of the next cycle are available before the end of
the current cycle. To signal their availability, the
Am386S X microprocessor address status output (ADS)
is asserted. Figure 26 illustrates the fastest read cycles
with pipelined address timing.

Note from Figure 26 the fastest bus cycies using
pipelined address require only two bus states, named
T1P and T2P. Therefore, cycles with pipelined address
timing allow the same data bandwidth as non-pipelined
cycles, but address-to-data access time is increased by
one T-state time compared to that of a non-pipelined
cycle.

Processor CLK I: I

Idle Cycle 1 Cycle 2
Non-Pipelined Non-Pipelined
(Write) (Read)

BHE, BLE,

Ti Tt T2 T1 T2

amhhhhhhhhiiihhhhhhhhihhil
"~ Ya

Cycle 3 Idle Cycle 4 Idle
Non-Pipelined Non-Pipelined
(Write) (Read)

T T2 Ti T T2

A23-A2, |: Valid 1 Valid 2 Valid 3 Valid 4
M/AO, D/C

W/ﬁl:

Aps [NV NV /

m[

READ

<

[!

Y
End Cycle 1

End Cycle 2

&
P
Y

End Cycle 3 End Cycle 4

[OCK [Valid 1 Valid 2

Valid 3 Valid 4

D1s-Do [— - Out --——<j‘rl__>— out i Ip— _—@———

Note: Idie states are shown here for diagram variety only. Write cycles are not always followed by an idle state; an active bus cycle

can immediately follow the write cycle.

15022B-015

Figure 27. Various Bus Cycles with Non-Pipelined Address (Zero Wait States)

This Materi al

Am386SX Microprocessor

45

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Read and Write Cycles

Data transfers occur as a result of bus cycles, classified
as read or write cycles. During read cycles, data is
transferred from an external device to the processor.
During write cycles, data is transferred from the
processor to an external device.

Two choices of address timing are dynamically
selectable: non-pipelined or pipelined. After an idle bus
state, the processor always uses non-pipelined address
timing. However, the NA (Next Address) input may be
asserted to select pipelined address timing for the next
bus cycle. When pipelining is selected and the
Am386SX microprocessor has a bus request pending
internally, the address and definition of the next cycle is
made available even before the current bus cycle is
acknowledged by READY.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor
inserts wait states into the bus cycle, to allow adjustment

forthe speed of any external device. External hardware,
which has decoded the address and bus cycle type,
asserts the READY input at the appropriate time.

At the end of the second bus state within the bus cycle,
READY is sampled. At that time, if external hardware
acknowledges the bus cycle by asserting READY, the
bus cycle terminates as shown in Figure 27. if READY is
negated, as in Figure 28, the Am386SX microprocessor
executes another bus state (a wait state) and READY is
sampled again at the end of that state. This continues
indefinitely until the cycle is acknowledged by READY
asserted.

When the current cycle is acknowledged, the Am386SX
microprocessor terminates it. When a read cycle is
acknowledged, the Am386SX CPU latches the infor-
mation present at its data pins. When a write cycle is
acknowledged, the Am386SX microprocessor's write
data remains valid throughout phase one of the next bus
state, to provide write data hold time.

Idle Cycle 1 Cycle 2 Idie Cycle 3 Idle
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Write) (Read)
Ti T1 T2 T1 T2 T3 Ti T T2 T3

CLK2 |:

Processor CLK [

Vs Ve Va Vs Vs Vs Va Va2 Vs Va

BHE, BLE,
A23-A1, Valid 1 Valid 2 Valid 3
MO, D/IC
W/R [
ADS [/ N__V /
w
READY [
End Cycle 1 End Cycle 2 End Cycle 3
Tock [XPOXKXX __Vaiid 1 Valid 2 Valid 3
D15-D0 [————}——— ___GF}< Out ==t
|

___q,D__._

[|

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state; an active bus cycle

can immediately follow the write cycle.

15022B8-016

Figure 28. Various Bus Cycles with Non-Pipelined Address (Various Number of Wait States)

46

Am386SX Microprocessor
Copyrighted By Its Respective Manufacturer

AMD n

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined

address timing. For example, Figure 27 shows a mixture

of read and write cycles with non-pipelined address

timing. Figure 27 shows that the fastest possible cycles

with non-pipelined address have two bus states per bus
: cycle. The states are named T1 and T2. In phase one of
i T1, the address signals and bus cycle definition signals
i are driven valid and, to signal their availability, address
1 strobe (ADS) is simultaneously asserted.

During read or write cycles the data bus behaves

as follows. If the cycle is a read, the Am386SX micro-

processor floats its data signal to allow driving by the

external device being addressed. The Am386SX micro-

i processor requires that all data bus pins be at a valid
logic state (High or Low) at the end of each read cycle,
when READY is asserted. The system must be design-
ed to meet this requirement. If the cycle is a write, data
signals are driven by the Am386SX CPU beginning in
phase two of T1 until phase one of the bus state
following cycle acknowiedgment.

Figure 28 illustrates non-pipelined bus cycles with one
wait state added to Cycles 2 and 3. READY is sampled
inactive at the end of the first T2 in Cycles 2 and 3.
Therefore, Cycles 2 and 3 have T2 repeated again. At
the end of the second T2, READY is sampled active.

When address pipelining is not used, the address and
bus cycle definition remain valid during all wait states.
When wait states are added, and it is desirable to
maintain non-pipelined address timing, itis necessary to
negate NA during each T2 state, except the last one, as
shown in Figure 28, Cycles 2 and 3. If NA is sampled
active during a T2 other than the last one, the next state
would be T2l or T2P instead of another T2.

The bus states and transitions, when address pipelining
is not used, are completely illustrated by Figure 29. The
bus transitions between four possible states, T1, T2, Ti,
and Th. Bus cycles consist of T1 and T2, with T2 being
repeated for wait states. Otherwise the bus may be idle,
Ti, or in the Hold Acknowledge state Th.

HOLD Negated ¢ No Request

HOLD Asserted

READY Asserted « HOLD Asserted

HOLD Negated e
Request Pending

HOLD Asserted

READY Asserted ¢ HOLD Negated » No Request

ALWAYS

HOLD Negated ¢
‘ No Request

™o

Request Pending

HOLD Negated READY Asserted o

HOLD Negated e
Request Pending

RESET
Asserted

READY Negated o
Bus States:

i
|
|
l
! : o . NA Negated
(Tt— First clock of a non-pipelined bus cycle (Am386SX CPU drives new address and asserts ADS).
‘ T2— Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.

Ti — Idle state.

Th— Hold Acknowledge state (Am386SX CPU asserts HLDA).
| The fastest bus cycle consists of two states: T1 and T2.
| Four basic bus states describe bus operation when not using pipelined address. 15022B-017

Figure 29. Bus States (Not Using Pipelined Address)
Am386SX Microprocessor 47

This Material Copyrighted By Its Respective Manufacturer

This Materi al

u AMD

Bus cycles always begin with T1. T1 always leadsto T2.
If a bus cycle is not acknowledged during T2 and NA is
inactive, T2 is repeated. When a cycle is acknowledged
during T2, the following state will be T1 of the next bus
cycle, if a bus request is pending internally, or Ti, if there
is no bus request pending, or Th, if the HOLD input is
being asserted.

Use of pipelined address allows the Am386SX micro-
processor to enter three additional bus states not shown
in Figure 29. Figure 33 is the complete bus state
diagram, including pipelined address cycles.
Pipelined Address

Address pipelining is the option of requesting the
address and the bus cycle definition of the next
internally pending bus cycle before the current bus

cycle is acknowledged with READY asserted. ADS is
asserted by the Am386SX microprocessor when the
next address is issued. The address pipelining option
is controlled on a cycle-by-cycle basis with the NA
input signal.

Once a bus cycle is in progress and the current address
has been valid for at least one entire bus state, the NA
input is sampled at the end of every phase one until the
bus cycle is acknowledged. During non-pipelined bus
cycles, NA is sampled at the end of phase one in every
T2. An example is Cycle 2 in Figure 30, during which
NA is sampled at the end of phase one of every T2
(it was asserted once during the first T2 and has no
further effect during that bus cycle).

Idle Cycie 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)
Ti T T2 T1 T2P T2P TP T2l Ti

cuwe[ML
Processor CLK [_\ﬁv—v—\/_

\ o

BHE, BLE,
A23-A1, [Valid 1 Valid 2 Valid 3 Valid 4
MO, D/C of of of
wR[
ADS [

Na [

)
.
‘bﬂ\\

AL/
Ffés_/ [

q

oY [

TOCK [Valid 1

Valid 2

Valid 3

D15-D0 [—f———1— (| om) S -

—"“{]‘D‘(ot - "—-G'D---

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycies, NA is only sampled during
wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined

cycie with at least one wait state (Cycle 2 above).

150228018

Figure 30. Transitioning to Pipelined Address During Burst of Bus Cycles

48 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

If NA is sampled active, the Am386SX microprocessor
is free to drive the address and bus cycle definition of
the next bus cycle, and assert ADS, as soon as it has
a bus request internally pending. It may drive the next
address as early as the next bus state, whether the
current bus cycle is acknowledged at that time or not.

Regarding the details of address pipelining, the
Am386SX microprocessor has the following
characteristics:

1. The next address may appear as early as the bus
state after NA was sampled active (see Figures 30
and 31). in that case, state T2P is entered immed-
iately. However, when there is not an internal bus
request already pending, the next address will not be
available immediately after NA is asserted and T2l is
entered instead of T2P (see Figure 32, Cycle 3).

Provided the current bus cycle is not yet acknow-
ledged by READY asserted, T2P will be entered as
soon as the Am386SX microprocessor does drive
the next address. External hardware should
therefore observe the ADS output as confirmation
the next address is actually being driven on the bus.

Any address which is validated by a pulse on the
ADS output will remain stable on the address pins for
at least two processor clock periods. The Am386SX
microprocessor cannot produce a new address
more frequently than every two processor clock
periods (see Figures 30, 31, and 32).

Only the address and bus cycle definition of the very
next bus cycle is available. The pipelining capability
cannot look further than one bus cycle ahead (see
Figure 32, Cycle 1).

This Materi al

idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)
Ti Tt T2 T2P TiP T2P TP T2P TP T21 T2i Ti
e [MUY U U uoyoyuyuyuyuy
g1 VNV Ve Ve W W Wan W Van Wan Wan Wan
Bigﬁks I: Valid 1 Valid 2 Valid 3 Valid 4
M/0, DT //' of /’ of
wiR [/ /
Aos [\ \ N—
NA [)| J)
READY [AN RN
Tock [Valid 1 Valid 2 Valid 3 Valid 4
D15-DO I: —-————t— Out)————~Grlz>—(Out)—j ——————‘C}D———
|

Note: Following any idle bus state (Ti) the address is always non-pipelined and NA is only sampled during wait states. To start
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

15022B-019

Figure 31. Fastest Transition to Pipelined Address Following Idle Bus State

Am386SX Microprocessor 49

Copyrighted By Its Respective Manufacturer

a AMD

The complete bus state transition diagram, including The fastest bus cycle with pipetined address consists of
operation with pipelined address, is given in Figure 33. just two bus states, T1P and T2P (recall for non-
Note thatitis a superset of the diagram for non-pipelined pipelined address it is T1 and T2). T1P is the first bus
address only, and the three additional bus states for state of a pipelined cycle.

pipelined address are drawn in bold.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
Pipelined Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)

T2P T2P TiP T2 T2P TP T2! T2P TP

G hhLhLGhhEGRGRG LR
\M/r_\&/r_\L/F_N\/F_\L/F—\L/F_\u/ﬁ—\;/r_\u/_—\u/_—

Processor CLK [-

BHE, BLE,
A23-A1, [Valid 1 Valid 2

MAG, DIC /

WR |: f

Valid 3 Valid 4

v |]

ADS is asserted as soon
as the CPU has another
bus cycle to perform, which
is not always immediately
after NA is asserted.

r
s [%

Wﬁ_; v
Note: ADS is asserted As long as the CPU enters the T2P
in every T2P state. state during Cycle 3, address pipelining

is maintained in Cycle 4.

v
Asserting NA morethan| NA could have been asserted in
once durmg any cycle] T1P if desired. Assertion now is
has no additional the latest time possible to allow
effects. the CPU to enter T2P state to
maintain pipelining in Cycle 3.

READY [XA _AXX R | AXX

TocK [Valid 1 Valid 2 Valid 3 Valid 4
D1s-Do [_out X Out)—-~-———--——Gr|D—< out —{—
| l |
15022A~020

Figure 32. Details of Address Pipelining During Cycles with Wait States

50 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

HOLD Asserted

READY Asserted »
HOLD Asserted

HOLD Negated e
Request Pending

HOLD Negated
No Request

HOLD
Asserted

| ___ READY Asserted s
HOLD Negateds
b No Request

~

Always

READY Asserted
HOLD Asserted

(No Request +
HOLD Asserted) o

NA Asserted o
NA Asserted « 1) b Asserted +
READY Negated No Request)
L}

T
Request Pending e
HOLD Negated

]
HOLD Negated o

No Request Request Pending

READY Asserted o
HOLD Negated o
Request Pending

READY Asserted o
HOLD Negated o

READY Negated o
NA Negated

READY Negated o
NA Asserted »

HOLD Negated »

READY Asserted « HOLD Negated « No Request

Bus States:
T1 — Firstclock of a non-pipelined bus cycle (Am386SX CPU drives new address
and asserts AD3).

T2 — Subsequent clocks of a bus cycle when NA has notbeen sampled asserted
in the current bus cycle.

T2I— Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle but there is not yet an internal bus request pending
(Am386SX CPU will not drive new address or assert ADS).

T2P—Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle and there is an internal bus request pending
(Am386SX CPU drives new address and asserts ADS).

T1P—First clock of a pipelined bus cycle.

Ti — Idle state.

Th — Hold Acknowledge state (Am386SX CPU asserts HLDA).

Asserting NA for pipelined address gives access to three more bus states: T2,
T2P, and T1P.

Using pipelined address, the fastest bus cycle consists of T1P and T2P.

Request Pending

READY Negated o

{No Request +
HOLD Asserted)
READY Negated e
Regquest Pending e NA Asserted
HOLD Negated HOLD Negated «

Request Pending

READY Asserted

READY Negated

150228021

Figure 33. Complete Bus States (Including Pipelined Address)

Am386SX Microprocessor 51

This Material Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

Initiating and Maintaining Pipelined Address

Using the state diagram Figure 33, observe the
transitions from an idie state (Ti) to the beginning of a
pipelinedbus cycle (T1P). From anidle state (Ti) the first
bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA is asserted and the
first bus cycle ends in a T2P state (the address for the
next bus cycle is driven during T2P). The fastest path
fromanidle state to a bus cycle with pipelined address is
shown in bold below:

Ti, Ti, Ti, T1-T2-T2P, T1P-T2P,

Idie Non-Pipelined Pipelined
States Cycle Cycle

T1-T2-T2P are the states of the bus cycle that establish
address pipelining for the next bus cycle, which begins
with T1P. The same is true after a bus hold state, shown
below:

Th, Th, Th, T1-T2-T2P, T1P-T2P,

Hold Acknowledge Non-Pipelined Pipelined
States Cycle Cycle

The transition to pipelined address is shown functionally
by Figure 31, Cycle 1. Note that Cycle 1 is used to
transition into pipelined address timing for the
subsequent Cycles 2, 3, and 4, which are pipelined. The
NA input is asserted at the appropriate time to select
address pipelining for Cycle 2, 3, and 4.

Once abus cycle is in progress and the current address
has been valid for one entire bus state, the NA input is
sampled at the end of every phase one until the bus
cycle is acknowledged. Sampling begins in T2 during
Cycle 1 in Figure 31. Once NA is sampled active during
the current cycle, the Am386SX microprocessor is free
to drive a new address and bus cycle definition on the
bus as early as the next bus state. In Figure 31, Cycle 1
forexample, the next address is driven during state T2P.
Thus, Cycle 1 makes the transition to pipelined address
timing, since it begins with T1 but ends with T2P.
Because the address for Cycle 2 is available before
Cycle 2 begins, Cycle 2 is called a pipelined bus cycle,
and it begins with T1P. Cycle 2 begins as soon as
READY asserted terminates Cycle 1.

Examples of transition bus cycies are Figure 31, Cycle 1
and Figure 30, Cycle 2. Figure 31 shows transition
during the very first cycle after an idle bus state, which is
the fastest possible transition into address pipelining.
Figure 30, Cycle 2 shows a transition cycle occurring
during a burst of bus cycles. In any case, a transition
cycle is the same whenever it occurs: it consists at least
of T1, T2 (NA is asserted at that time), and T2P (pro-
vided the Am386SX microprocessor has an internal bus
request already pending, which it almost always has).
T2P states are repeated if wait states are added to the
cycle.

Note that only three states (T1, T2, and T2P) are
required in a bus cycle performing a transition from
non-pipelined address into pipelined address timing
(e.g., Figure 31, Cycle 1). Figure 31, Cycles 2, 3, and 4
show that address pipelining can be maintained with
two-state bus cycles consisting only of T1P and T2P.
Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting NA
and detecting that the Am386S X microprocessor enters
T2P during the current bus cycle. The current bus cycle
must end in state T2P for pipelining to be maintained
in the next cycle. T2P is identified by the assertion of
ADS. Figures 30 and 31, however, each show pipelining
ending after Cycle 4, because Cycle 4 ends in T2l. This
indicates the Am386SX CPU did not have an internal
bus request prior to the acknowledgement of Cycle 4. If
a cycle ends with a T2 or T2l, the next cycle will not be
pipelined.

Realistically, address pipelining is almost always
maintained as long as NA is sampled asserted. This is
so because inthe absence of any other request, a code
prefetch request is always internally pending until the
instruction decoder and code prefetch queue are
completely full. Therefore, address pipelining is main-
tained for long bursts of bus cycles, if the bus is available
(i.e., HOLD inactive), and NA is sampled active in each
of the bus cycles.

Interrupt Acknowledge (INTA) Cycles

In response to an interrupt request on the INTR input
when interrupts are enabled, the Am386SX micropro-
cessor performs two interrupt acknowledge cycles.
These bus cycles are similar to read cycles in that bus
definition signals define the type of bus activity taking
place, and each cycle continues until acknowledged by
READY sampled active.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address driven
during the first interrupt acknowledge cycle is 4
(A23-A3, A1, BLE Low, A2 and BHE High). The byte
address driven during the second interrupt acknow-
ledge cycle is 0 (A23—-A1, BLE Low, and BHE High).

The LOCK output is asserted from the beginning of
the first interrupt acknowledge cycle until the end of
the second interrupt acknowledge cycle. Four idie bus
states (Ti) are inserted by the Am386SX microproces-
sor between the two interrupt acknowledge cycles for
compatibility with spec TRHRL of the 8259A Interrupt
Controller.

During both interrupt acknowledge cycles, D15-D0
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second interrupt
acknowledge cycle, the Am386SX microprocessor will
read an external interrupt vector from D7-D0 of the data
bus. The vector indicates the specific interrupt number
(from 0—255) requiring service.

52 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

Processor CLK [_

AuD ol

Halt Indication Cycle

The execution unit halts as a result of executing a HLT
instruction. Signaling its entrance into the halt state, a
halt indication cycle is performed. The halt indication
cycle is identified by the state of the bus definition
signals shown on page 39, Bus Cycle Definition Signals,
and an address of 2. The halt indication cycle must be
acknowledged by READY asserted. A halted Am386SX
microprocessor resumes execution when INTR (if in-
terrupts are enabled), NMIi, or RESET is asserted.

Shutdown Indication Cycle

The Am386S X microprocessor shuts down as a result of
a protection fault while attempting to process a double
fault. Signaling its entrance into the shutdown state, a
shutdown indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus

definition signals shown in section Bus Cycle Definition
Signals and an address of 0. The shutdown indication
cycle must be acknowledged by READY asserted. A
shut-down Am386SX microprocessor resumes execu-
tion when NMI or RESET is asserted.

Entering and Exiting Hold Acknowledge

The Bus Hold Acknowledge state (Th) is entered in
response to the HOLD input being asserted. In the Bus
Hold Acknowledge state, the Am386SX microprocessor
floats all outputs or bi-directional signals, except for
HLDA. HLDA is asserted as long as the Am386SX CPU
remains in the Bus Hold Acknowledge state. In the Bus
Hold Acknowledge state, ali inputs except HOLD, LT,
and RESET are ignored.

*Contact AMD for availability of Float feature, PQFP only.

Previous Interrupt
Cycle Acknowledge
Cycle 1

T T2 T2

ahhhihhhhiiil
Ve Va Ve Vs Va

Idle Interrupt Idle
(4 Bus States) Acknowledge
Cycle 2
Ti Ti Ti T T2 T2

/"

jups
N NS NS

B

LE, A23-A3,

A1, M/IO, [
D/C, WR

/

This Materia

2 [
Tock [/|

05 [%
NA[
reRoY ['\

W YV
Ignored Vector
D7-Do I: -t [e e o e e e e e e e e e — -

Ignored Ignored
D15-D8 I: -——_———t————t————]—— -<__)I<t>-——r———-,—-————-————————————— -
Interrupt Vector (0—255) is read on D7-D0 at end of second Interrupt Acknowledge bus cycle. Because each Interrupt Acknow-
ledge bus cycle is followed by idie bus states, asserting NA has no practical effect. Choose the approach which is simplest for
your system hardware design.

15022B-022
Figure 34. Interrupt Acknowledge Cycles
Am386SX Microprocessor 83

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Th may be entered from a bus idle state, as in Figure 37,
or after the acknowledgement of the current physical
bus cycle, if the LOCK signal is not asserted, as in
Figures 38 and 39.

Th is exited in response to the HOLD input being
negated. The following state will be Ti if no bus request
is pending, as in Figure 37. The following bus state will
be T1if abus request s internally pending, as in Figures
38 and 39. Th is exited in response to RESET being
asserted.

If a rising edge occurs on the edge-triggered NMI in-
put while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exited,
unless the Am386SX microprocessor is reset before Th
is exited.

Reset During Hold Acknowledge

RESET being asserted takes priority over HOLD being
asserted. If RESET is asserted while HOLD remains
asserted, the Am386SX microprocessor drives its pins
to defined states during reset, as in Table 16 (Pin State
During Reset), and performs internal reset activity as
usual.

If HOLD remains asserted when RESET is inactive, the
Am386SX CPU enters the Hold Acknowledge state
before performing its first bus cycle, provided HOLD
is still asserted when the Am386SX microprocessor
would otherwise perform its first bus cycle.

FLOAT

Activating the FLT* input fioats all Am386SX micro-
processor bi-directional and output signals, including
HLDA. Asserting FLT" isolates the Am386SX micro-
processor from the surrounding circuitry.

As the Am386SX microprocessor is packaged in a
surface mount PQFP, it cannot be removed from the
motherboard _when In-Circuit Emulation (ICE) is
needed. The FLT" input allows the Am386SX CPU to be
electrically isolated from the surrounding circuitry. This
allows connection of an emulator to the Am386SX
microprocessor PQFP without removing it from the
PCB. This method of emulation is referred to as
ON-Circuit Emulation (ONCE).

*Contact AMD for availability of Float feature, PQFP only.

Cycle 1 Cycle 2
Non-Pipelined Non-Pipelined
(Write) (Halt)

T T2 Tt T2

cve [_MUMLMUMU UL UL
procsser ook [N_/ N/ N/ N NSNS

Idle

Ti Ti Ti Ti

Am386SX CPU remains halted until
L INTR, NMI, or RESET is asserted.

— Am386SX CPU responds to HOLD

BHE, A1, -
MO, WA [Valid 1
BLE, D/C -

A23-A2, [Vaiid 1

input while in the Halt state.

= N 7 NI

w [

READY [
Note: Halt cycle must be acknowledged by
READY asserted. Wait states may be added to
the cycle if delsired.

ook [Valid 1 Valid 2

|

p1s-D0 [out X | ouwr | X
T I

Undefined)— (Flloating)
I

15022B-023

Figure 35. Example Halt Indication Cycle from Non-Pipelined Cycle

54 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

Entering and Exiting FLOAT

FLT* is an asynchronous, active Low input. It is recog-
nized on the rising edge of CLK2. When recognized, it
aborts the current bus cycle and floats the outputs of
the Am386SX microprocessor (Figure 41). FLT* must
be held Low for a minimum of 16-CLK2 cycles. Reset
should be asserted and held asserted until after FLT" is
deasserted. This will ensure that the Am386SX CPU will
exit FLOAT in a valid state.

Asserting the FLT* input unconditionally aborts the
current bus cycle and forces the Am386SX micropro-
cessor into the FLOAT mode. Since activating FLT*
unconditionally forces the Am386SX CPU into FLOAT
mode, the Am386S X microprocessor is not guaranteed
to enter FLOAT in a valid state. After deactivating FL1*,
the Am386SX CPU is not guaranteed to exit FLOAT
mode in a valid state. This is not a problem, as the FLT*
pin is meant to be used only during ONCE. After exiting
FLOAT, the Am386SX microprocessor must be reset to
returnitto a valid state. Reset should be asserted before

FLT" is deasserted. This will ensure that the Am386SX
CPU will exit FLOAT in a valid state.

FLT* has an internal pull-up resistor, and if it is not used
it should be unconnected.

Bus Activity During and Following Reset

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is asserted.
A bus cycle in progress can be aborted at any stage, or
idle states and Bus Hold Acknowledge states discon-
tinued, so that the reset state is established.

RESET should remain asserted for at least 15-CLK2
periods to ensure it is recognized throughout the
Am386SX microprocessor, and at least 80-CLK2
periods if self-test is going to be requested at the falling
edge. RESET asserted pulses less than 15-CLK2
periods may not be recognized. RESET pulses less
than 80-CLK2 periods followed by a self-test may cause
the self-test to report a failure when no true failure
exists.

*Contact AMD for availability of Float feature, PQFP only.

TP T2P TP

Processor CLK []

YA\

Cycle 1 Cycle 2
Pipelined Pipelined
(Read) (Shutdown)

c_mmmﬁmm
s]

Idle

Ti Ti Ti Ti

Am386SX CPU remains

__BHE, [[Vaidi

BLE is Low for
Shutdown Cycle|

A23-A1, DIC [Valid 1

shutdown until NMI or RESET
is asserted.

Am386SX CPU

— responds to HOLD
input while in the

Shutdown state.

ADS [/
NA
READY [
v
Note: Shutdown cycle must be acknowledged
by READY asserted. Wait states may be added
to the cycle ifldesired.
ok [Valid 1 Valid 2

D15-DO [GP__“_— In 1

Undefined)- (F—iloating) ———————

15022B-024

Figure 36. Example Shutdown indication Cycle from Non-Pipelined Cycle

Am386SX Microprocessor 55

This Material Copyrighted By Its Respective Manufacturer

This Materi al

:‘ AMD

Provided the RESET falling edge meets setup and hold
times (25 and 126), the internal processor clock phase is
defined at that time as illustrated by Figure 40 and
Figure 48.

A self-test may be requested at the time RESET goes
inactive by having the BUSY input at a Low level, as
shown in Figure 40. The self-test requires approx-
imately (2% + 60) CLK2 periods to complete. The self-
test duration is not affected by the test resuits. Even if
the self-test indicates a problem, the Am386SX micro-
processor attempts to proceed with the reset sequence
afterwards.

After the RESET falling edge (and after the self-test
if it was requested), the Am386SX microprocessor
performs an internal initialization sequence for approx-
imately 350- to 450-CLK2 periods.

Self-Test Signature

Upon completion of self-test (if self-test was requested
by driving BUSY Low at the falling edge of RESET) the
EAX register will contain a signature of 00000000H,

indicating the Am386SX microprocessor passed its
self-test of microcode and major PLA contents with no
problems detected. The passing signature in EAX,
00000000H, applies to all revision levels. Any non-zero
signature indicates the unit is faulty.

Component and Revision ldentifiers

To assist users the Am386SX microprocessor, after
reset, holds a component identifier and revision
identifier in its DX register. The upper 8 bits of DX hold
23H as identification of the Am386SX CPU (the lower
nibble, 03H, refers to the Am386DX microprocessor
architecture. The upper nibble, 02H, refers to the
second member of the Am386DX microprocessor
Family). The lower 8 bits of DX hold an 8-bit unsigned
binary number related to the component revision level.
The revision identifier will, in general, chronologically
track those component steppings which are intended to
have certain improvements or distinction from previous
steppings. The Am386SX microprocessor revision
identifier will track that of the Am386DX CPU where
possible.

| e |

Hold Acknowledge J Idle I
!

Ti | Th Th Th Ti
cwe [MU UHUYHUYULY
et o Ve Ve Ve V2 Vs
oo [| 4% ™
HOA [
BHE, BLE,

AZS_/!.\)}?'S,MV/V% L —= (Floating) 1————000O0)
#os [- —- (Floating) + ———1 2

W [

READY [
Tock [—= (Floating) 1————XXX)
p1s-D0 [—f———f—— (||=|oa:ing)-—-——————

Note: For maximum design fiexibility the Am386SX CPU has no internal pull-up resistors on its outputs. Your design may require an
external pull-up on ADS and other outputs to keep them negated during float periods.

15022B-025

Figure 37. Requesting Hold from Idle Bus

56 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD a

Cycle 1 Hold Cycle 2
Non-Pipelined Acknowledge Non-Pipelined
(Read) (Write)
T T2 T2 Th Th Tt T2

CLK2

:
:
:
:
:
:

L L
N NI NIV NIV NI NI NI

Processor CLK

HOLD asserted no later
than READY asserted

Valid1 | | [>-e-e--p-c----- K Valid 2

(Negated, or Last-Locked Cycle
Valid 1 R Rl EEE TR, K Valid 2

wo.._ (Floating | ___ S Cloatg) Jo T ow
[(Floating) —

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (123 and 124)
requirements are met. This waveform is useful for determining Hold Acknowledge latency.

LOCK

D15-Do

[
L

|
|
|2
(e T e T i S e TR s TR s TN s T s B s B
I

15022B—026

Figure 38. Requesting Hold from Active Bus (NA Inactive)

Am386SX Microprocessor 57

This Material Copyrighted By Its Respective Manufacturer

a AMD

Cycle 1 Hold Cycle 2
Pipelined Acknowledge Non-Pipelined
(Write) (Read)
TP T21 T21 Th Th T1

Processor CLK []

Y Spiiniainiizinipginisininininigl
N | N |

N N N N NS

o [XIXXY % o

HOLD asserted in same bus
state as NA asserted

-

HLDA [

(Floating)
BHE, BLE, [Jvaid [1 DOXHKPKXKKD> ------p === - K Valid 2

_ A23-A1,
M/IO, D/C, W/R

Ros [_

ol

’
uj
[+]
L
5
a

WAL 2
READY [™™z
{Negated, or Last-Locked Cycle)
TR Floatin
[ock [Valid 1 NURPL ks U < Valid 2
(Floating)
p15-Do [_out XX out P R e R -ee-in

l

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24)
requirements are met. This waveform is useful for determining Hold Acknowledge latency.

15022B-027

Figure 39. Requesting Hold from Idle Bus (NA Active)

58 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

CLK2

RESET

CLK (Internal)

Processor CLK

BUSY

READY

D15-DoO

Notes:

j&—— Reset
215 CLK2 duration if not
going to request self-test.

2 80 CLK2 duration before
requesting self-test. (

10l o
5

XX XXX\ /]
\VANVANVANE

3

o Internal ————3 Cycle 1
initialization
Non-Pipelined
if self-test is performed, add (Read)
2% 4+ 60" to these numbers T T2
17 18 |19 |[395* 396" 397" [398*
" Approximately
[02]01][02f 01] 02 02| 01] 02

NN
2\

rrmnmry r r i Mo

XXX
[XRXXKXRXKKH
[XKXRKKR -+

No self-test
(Note 1)
fe— ¢ Low to begin self-test (Note 2)

Up to 30 CLK2 —¥

Low || _During Reset /<><>00<>‘ Valid 1
Up to 30 CLK2 —» I

High|] During Reset Valid 1
Up to 30 CLK2 —#¥

High|] During Reset B \ /_

U S [

1. BUSY should be held stable for 8-CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.
2. if self-test is requested, the outputs remain in their reset state as shown here.

Figure 40. Bus Activity from Reset Until First Code Fetch

15022B-028

cik2 [
™ C
Control [
Data [
Address [
Reset [

“Contact AMD for availability of Float feature, PQFP only.

Figure 41. Entering and Exiting FLT*

15022B-029

This Materi al

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

59

This Materi al

n AMD

The revision identifier is intended to assist users to a
practical extent. However, the revision identifier value is
not guaranteed to change with every stepping revision,
or to follow a completely uniform numerical sequence,
depending on the type or intention of revision, or
manufacturing materials required to be changed.

Table 18. Component and
Revision Identifier History

Am386SX
Intel i386SX Microprocessor
Stepping Revision Revision Identifler
B Al 05H
Cc B 08H

Coprocessor Interfacing

The Am386SX microprocessor provides an automatic
interface for a 387SX math coprocessor. A 387SX
math coprocessor uses an /O mapped interface driven
automatically by the Am386SX CPU and assisted by
three dedicated signals: BUSY, ERROR, and PEREQ.

As the Am386SX microprocessor begins supporting a
math coprocessor instruction, it tests the BUSY and
ERROR signals to determine if the coprocessor can
accept its next instruction. Thus, the BUSY and ERROR
inputs eliminate the need for any preambie bus cycles
for communication between processor and math
coprocessor. A 387SX math coprocessor can be given
its command op-code immediately. The dedicated
signals provide instruction synchronization and elim-
inate the need of using the WAIT op-code (9BH) for
387SX math coprocessor instruction synchronization
(the WAIT op-code was required when the 8086 or 8088
was used with the 8087 math coprocessor).

Custom math coprocessors can be included in
Am386SX microprocessor based systems by
memory-mapped or I/O-mapped interfaces. Such math
coprocessor interfaces allow a completely custom
protocol, and are not limited to a set of math coproces-
sor protocol primitives. Instead, memory-mapped or
I/O-mapped interfaces may use all applicable
instructions for high-speed math coprocessor com-
munication. The BUSY and ERROR inputs of the
Am386SX microprocessor may also be used for the
custom math coprocessor interface, if such hardware
assist is desired. These signals can be tested by the
WAIT op-code (9BH). The WAIT instruction will wait
until the BUSY input is inactive (interruptable by an NMI
or enabled INTR input), but generates an Exception 16
fault if the ERROR pin is active when the BUSY goes (or
is) inactive. If the custom math coprocessor interface
is memory-mapped, protection of the addresses used
for the interface can be provided with the Am386SX

CPU’s on-chip paging or segmentation mechanisms. if
the custom interface is 1/0-mapped, protection of the
interface can be provided with the IOPL (I/O Privilege
Level) mechanism.

A 387SX math coprocessor interface is YO mapped as
shownin Table 19. Note that a 387SX math coprocessor
interface addresses are beyond the 0H-0FFFFH range
for programmed /0. When the Am386SX microproces-
sor supports the 387SX math coprocessor, the
Am386SX CPU automaticaily generates bus cycles to
the coprocessor interface addresses.

Table 19. Math Coprocessor Port Address

Address in Am386SX 387SX-Compatible Math
CPU I/O Space Coprocessor Register
8000F8H Op-code Register
8000FCH/8000FEH" Operand Register

*Generated as 2nd bus cycle during Dword transfer.

To correctly map a 387SX math coprocessor registers
to the appropriate I/O addresses, connect the CMDO
and CMD1 lines of a 387SX math coprocessor, as
listed in Table 20.

Table 20. Connections for CMDO
and CMD1 Inputs for a 387SX

Signal Connection
CMDO Connected directly to 386SX CPU A2 signal.
CMD1 Connect to ground.

Software Testing for Math Coprocessor Presence

When software is used to test for math coprocessor
(387SX) presence, it should use only the following math
coprocessor op-codes: FINIT, FNINIT, FSTCW mem,
FSTSW mem, and FSTSW AX. To use other math
coprocessor op-codes when a math coprocessor is
known to be not present, first set EM = 1 in the
Am386SX CPU’s CRO register.

PACKAGE THERMAL SPECIFICATIONS

The Am386SX microprocessor is specified for operation
when case temperature is within the range of
0°C—100°C. The case temperature may be measured in
any environment to determine whether the Am386SX
CPU is within specified operating range. The case
temperature should be measured at the center of the top
surface opposite the pins.

The ambient temperature is guaranteed as long as Tc is
not violated. The ambient temperature can be caicu-
lated from the 6jc and 6ja from the following equations:
Tj=Tc+Peojc

Ta=Tj—Pebja

Tc = Ta+Pe[0ja-0jc]

60 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

ELECTRICAL SPECIFICATIONS

The following sections describe recommended electri-
cal connections for the Am386SX microprocessor, and
its electrical specifications.

Power and Grounding

The Am386SX microprocessor has modest power
requirements. However, its high clock frequency and
47 output buffers (address, data, control, and HLDA)
can cause power surges as muitiple output buffers drive
new signal levels simultaneously. For clean on-chip
power distribution at high frequency, 14 Vcc and 18 Vs
pins separately feed functiona! units of the Am386SX
microprocessor.

Power and ground connections must be made to
all external Ve and Vss pins of the Am386SX micro-
processor. On the circuit board, all V. pins should be
connected on a V. plane, and Vg pins should be
connected on a GND plane.

Power Decoupling Recommendations

Liberal decoupling capacitors shouid be placed nearthe
Am386SX microprocessor. The Am386SX micropro-
cessor driving its 24-bit address bus and 16-bit data bus
at high frequencies can cause transient power surges,
particularly when driving large capacitive loads. Low
inductance capacitors and interconnects are recom-
mended for best high frequency electrical performance.
Inductance can be reduced by shortening circuit board
traces between the Am386SX microprocessor and
decoupling capacitors as much as possibie.

AMD u
Resistor Recommendations

The ERROR, FLT*, and BUSY inputs have intemal pull-
up resistors of approximately 20 Kohms, and the
PEREQ input has an internal pull-down resistor of
approximately 20 Kohms, built into the Am386SX
microprocessor to keep these signals inactive when a
387SX math coprocessor is not present in the system
(or temporarily removed from its socket).

in typical designs, the external pull-up resistors shown
in Table 21 are recommended. However, a particular
design may have reason to adjust the resistor values
recommended here, or alter the use of pull-up resistors
in other ways.

Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. NC pins should atways re-
main unconnected. Connection of NC pins to Vec or Vs
will result in component malfunction or incompatibility
with future steppings of the Am386SX microprocessor.
Particularly when not using the interrupts or bus hold (as

when first prototyping), prevent any chance of spurious
activity by connecting these associated inputs to GND:

Pin Signal
40 INTR
38 NMI

4 HOLD

If not using address pipelining, connect pin 6 (NA)
through a puli-up in the range of 20 Kohms t0 V.

*Contact AMD for availability of Float feature, PQFP only.

Table 21. Recommended Resistor Pull-Ups to V..

Pin Signal Pull-Up Value Purpose
Lightly pull ADS inactive during Am386SX
16 ADS 20 Kohms £10% CPU Hold Acknowledge states.
TBER o Lightly pull LOCK inactive during Am386SX
26 LOCK 20 Kohms £10% CPU Hold Acknowledge states.

Am386SX Microprocessor 61

Copyrighted By Its Respective Manufacturer

a AMD

ABSOLUTE MAXIMUM RATINGS OPERATING RANGES

Ambient Temperature under bias -6510 125°C Supply Voltage with respectto Ves -0.5Vto7V
Storage Temperature —6510 150°C Voltage on otherpins =05 V1o (Ve + 0.5V
Stresses above those listed may cause permanent Operating ranges define those limits between which the
damage to the device. Exposure to absolute maximum functionality of the device is guaranteed.

rating conditions for extended periods of time may affect

device reliability.

DC CHARACTERISTICS over COMMERCIAL operating ranges
Vee =5V £10%; Tease = 0°C to 100°C

Symbol Parameter Description Notes Min Max Unit
Vi Input Low Voltage -0.3 +0.8 v
Vin Input High Voltage 2.0 Vec+0.3 \
Vie CLK2 Input Low Voitage -0.3 +0.8 v
Ve CLK2 input High Voltage Vec—0.8 Vee+ 0.3 \%
VoL Output Low Voltage

lo. = 4 mA: A23-A1, D15-Do 0.45 \
lo. = 5 mA: BHE, BLE, W/R, 0.45 \"
D/C, M/1O, LOCK,
ADS, HLDA
Von Output High Voltage
low = 1.0 mA: A23-At1, D15-D0O 24 \
lov = 0.2 mA: A23-Af1, D15—_DO Vee—0.5 \'
low = 0.9 mA: BHE, BLE, W/R, 2.4 v
D/C, M/iO, TOCK,
ADS, HLDA
lox = 0.18 mA: BHE, BLE, WR, Ve —0.5
D/C, M/10, LOCK,
ADS, HLDA
Iy Input Leakage Current OV < Vi< Ve +15 HA

(for all pins except PEREQ,
BUSY, FLT*, and ERROR)

b Input Leakage Current Vim=2.4V(1) 200 HA
(PEREQ pin)
he Input Leakage Current Vie=0.45V (2) —400 WA
(BUSY, ERROR, and FLT* pins)
lo » Output Leakage Current 0.45 V < Vour < Ve +15 WA
lec Supply Current
CLK2 = 32 MHz: with —16** lec Typ = 175 mA (3) 275 mA
CLK2 = 40 MHz: with —20 lec Typ = 200 mA (3) 305 mA
CLK2 = 50 MHz: with -25 lec Typ = 225 mA (3) 335 mA
Cw Input Capacitance Fc = 1 MHz (4) 10 pF
Cour Output or /O Capacitance Fc = 1 MHz (4) 12 pF
Cew CLK2 Capacitance Fc = 1 MHz (4) 20 pF

N

Notes: Tested at the minimum operating frequency of the part. . PEREQ input has an internal pull-down resistor.
Contact AMD for availability of Float feature, PQFP only. 2. BUSY, FLT, and ERROR inputs each have an internal
**Contact AMD for 16-MHz availability. pull-up resistor.
3. lgc Max measurement at worst case frequency, Ve, and temp-
erature, outputs unloaded.
. Not 100% tested.

'S

62 Am386SX Microprocessor
This Material Copyrighted By Its Respective Manufacturer

AMD a

SWITCHING CHARACTERISTICS

The switching characteristics given consist of output de-
lays, input setup requirements, and input hold require-
ments. All switching characteristics are relative to the
CLK2 rising edge crossing the 2.0 V level.

Switching characteristic measurement is defined by
Figure 1. Inputs must be driven to the voltage levels
indicated by Figure 1 when switching characteristics are
measured. Output delays are specified with minimum
and maximum limits measured, as shown. The mini-
mum delay times are hold times provided to external
circuitry. Input setup and hold times are specified as

minimums, defining the smallest acceptable sampling
window. Within the sampling window, a synchronous
input signal must be stable for correct operation.

Outputs NA, W/R, D/C, M/I0O, LOCK, BHE, BLE,
A23-A1, and HLDA only change at the beginning of
phase one. D15-D0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ, FLT*, and D15-D0 (read cycles)
inputs are sampled at the beginning of phase one. The
NA, INTR, and NMl inputs are sampled at the beginning
of phase two.

Tx

e [iV %%ﬁ

Outputs 2 -] Min

Max

(A23-A1, BHE, BLE, Valid o\
ADS, M/IC, D/C, Outputn ' %,

tput n+1

W/R, LOCK, HLDA)

Outputs
(D15-D0)

Max

Valid

Output n "5\’,., ; 1.5V Output n+1

3.0V
_ Inputs
(NA, INTR, NMI)
ov

15V oo 15V

Valid

Inputs

(READY, HOLD,

FLT*, ERROR, BUSY,
PEREQ, D15-D0)

Legend: A— Maximum Output Delay Characteristic
B — Minimum Output Delay Characteristic
C—Minimum Input Setup Characteristic

D — Minimum Input Hold Characteristic

3.0V

oV

This Materi al

15022B-030
“Contact AMD for availability of Float feature, PQFP only.
Figure 42. Drive Levels and Measurement Points for Switching Characteristics
Am386SX Microprocessor 63

Copyrighted By Its Respective Manufacturer

a AMD

SWITCHING CHARACTERISTICS over operating ranges

Switching Characteristics at 25 MHz: V.. = 5 V+10%; Tease = 0°C to 100°C

Ref.
Symbol| Parameter Description Notes Figure Min Max Unit
Operating Frequency Half CLK2 freq. 2 25 MHz
1 CLK2 Period 43 20 250 ns
2a CLK2 High Time at2 Vv 43 7 ns
2b CLK2 High Time at (Vec—0.8 V) 43 4 ns
3a CLK2 Low Time at2Vv 43 7 ns
3b CLK2 Low Time at0.8V 43 5 ns
4 CLK2 Fall Time (Vec—0.8 V)10 0.8 V (Note 3) 43 7 ns
5 CLK2 Rise Time 0.8 Vto (Vcc—0.8 V) (Note 3) 43 7 ns
6 A23~A1 Valid Delay C. = 50 pF 46 4 17 ns
7 A23-A1 Float Delay (Note 1) 47 4 30 ns
8 BHE, BLE, LOCK Valid Delay C. = 50pF 46 4 17 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 47 4 30 ns
10 M/IO, D/C, W/R, ADS Valid Delay C. = 50pF 46 4 17 ns
11 W/R, M/iO, D/C, ADS Float Delay {Note 1) 47 4 30 ns
12 D15-D0 Write Data Valid Delay C. = 50 pF 486 7 23 ns
12a D15-D0 Write Data Hold Time C_ = 50 pF 2 ns
13 D15-D0 Write Data Float Delay (Note 1) 47 4 22 ns
14 HLDA Valid Delay C. = 50pF 46 4 22 ns
15 NA Setup Time 45 5 ns
16 NA Hold Time 45 3 ns
19 READY Setup Time 45 9 ns
20 READY Hold Time 45 4 ns
21 D15-D0 Read Data Setup Time 45 7 ns
22 D15-D0 Read Data Hold Time 45 5 ns
23 HOLD Setup Time 45 9 ns
24 HOLD Hoid Time 45 3 ns
25 RESET Setup Time 48 8 ns
26 RESET Hold Time 48 3 ns
27 NMI, INTR Setup Time (Note 2) 45 6 ns
28 NMI, INTR Hold Time {Note 2) 45 6 ns
29 PEREQ, ERROR, BUSY, FLT* Setup Time (Note 2) 45 6 ns
30 PEREQ, ERROR, BUSY, FLT* Hold Time (Note 2) 45 5 ns

Notes: *Contact AMD for availability of Float feature, PQFP only.

1. Float condition occurs when maximum output current becomes less than | .o in magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hoid specifications are given for testing purposes, to

assure recognition within a specific CLK2 period.

3. These are not tested. They are guaranteed by design characterization.

64

This Materi al

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

SWITCHING CHARACTERISTICS over operating ranges (continued)
Switching Characteristics at 20 MHz: V.. =5 V110%; Tcase = 0°C to 100°C

Ref.
Symbol| Parameter Description Notes Figure Min Max Unit
Operating Frequency Half CLK2 freq. 2 20 MHz
1 CLK2 Period 43 25 250 ns
2a CLK2 High Time at2V 43 8 ns
2b CLK2 High Time at (Vec—0.8 V) 43 5 ns
3a CLK2 Low Time at2V 43 8 ns
3b CLK2 Low Time at 0.8 V 43 6 ns
4 CLK2 Fall Time (Vec—0.8 V) t0 0.8 V (Note 3) 43 8 ns
5 CLK2 Rise Time 0.8 Vo (Vcc—0.8 V) (Note 3) 43 8 ns
6 A23-At Valid Delay C. = 120 pF (Note 4) 46 4 30 ns
7 A23-A1 Float Delay (Note 1) 47 4 32 ns
8 BHE, BLE, LOCK Valid Delay C. = 75 pF (Note 4) 46 4 30 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 47 4 32 ns
10a M/iO, D/C Valid Delay C. = 75 pF (Note 4) 46 4 28 ns
10b | W/R, ADS Valid Delay C. = 75 pF (Note 4) 46 4 26 ns
11 W/R, M/iO, D/C, ADS Float Delay (Note 1) | 47 6 30 ns
12 D15-D0 Write Data Valid Delay C. = 120 pF (Note 4) 46 4 38 ns
13 D15-D0 Write Data Float Delay (Note 1) 47 4 27 ns
14 HLDA Valid Delay C. = 75 pF (Note 4) 46 4 28 ns
15 NA Setup Time 45 5 ns
16 NA Hold Time 45 12 ns
19 READY Setup Time 45 12 ns
20 READY Hold Time 45 4 ns
21 D15-D0 Read Data Setup Time 45 9 ns
22 D15-D0 Read Data Hold Time 45 6 ns
23 HOLD Setup Time 45 17 ns
24 HOLD Hold Time 45 5 ns
25 RESET Setup Time 48 12 ns
26 RESET Hold Time 48 4 ns
27 NMI, INTR Setup Time (Note 2) 45 16 ns
28 NM|, INTR Hold Time (Note 2) 45 16 ns
29 PEREQ, ERROR, BUSY, FLT* Setup Time (Note 2) 45 14 ns
30 PEREQ, ERROR, BUSY, FLT" Hold Time (Note 2) 45 5 ns

Notes: *Contact AMD for availability of Float feature, PQFP only.
Float condition occurs when maximum output current becomes less than i, in magnitude. Float delay is not 100% tested.
These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to

1.
2.

3.
4.

assure recognition within a specific CLK2 period.

These are not tested. They are guaranteed by design characterization.
Tested with C, set at 50 pF and derated to support the indicated distributed capacitive load. See Figures 8-10 for the capacitive

derating curve.

This Materi al

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

65

n AMD

SWITCHING CHARACTERISTICS over operating ranges (continued)
Switching Characteristics at 16 MHz**: Vi = 5 V£10%; Tease = 0°C to 100°C

Ref.
Symbol| Parameter Description Notes Figure Min Max Unit
Operating Frequency Half CLK2 freq. 2 16 MHz
1 CLK2 Period 43 31 250 ns
2a CLK2 High Time at2V (Note 3) 43 9 ns
2b CLK2 High Time at (Vec—0.8V) (Note 3) 43 5 ns
3a CLK2 Low Time at2 Vv (Note 3) 43 9 ns
3b CLK2 Low Time at 0.8 V (Note 3) 43 7 ns
4 CLK2 Fall Time (Vec—0.8 V)10 0.8 V (Note 3) 43 8 ns
5 CLK2 Rise Time 0.8 Vto (Vcc—0.8 V) (Note 3) 43 8 ns
6 A23-A1 Valid Delay C. = 120 pF (Note 4) 46 4 36 ns
7 A23-A1 Float Delay (Note 1) 47 4 40 ns
8 BHE, BLE, LOCK Valid Delay C,. = 75 pF (Note 4) 46 4 36 ns
9 BHE, BLE, LOCK Fioat Delay (Note 1) 47 4 40 ns
10 W/R, MO, D/C, ADS Valid Delay C. = 75pF (Note 4) | 46 4 33 ns
11 W/R, M/I0, D/C, ADS Float Delay (Note 1) 47 6 35 ns
12 D15-D0 Write Data Valid Delay C. = 120 pF (Note 4) 46 4 40 ns
13 D15-D0 Write Data Float Delay (Note 1) 47 4 35 ns
14 HLDA Valid Delay C. = 75pF (Note 4) 46 4 33 ns
15 NA Setup Time 45 5 ns
16 NA Hold Time 45 21 ns
19 READY Setup Time 45 19 ns
20 | READY Hold Time 45 4 ns
21 D15-D0 Read Data Setup Time 45 9 ns
22 D15-D0 Read Data Hold Time 45 6 ns
23 HOLD Setup Time 45 26 ns
24 HOLD Hold Time 45 5 ns
25 RESET Setup Time 48 13 ns
26 RESET Hold Time 48 4 ns
27 NMI, INTR Setup Time (Note 2) 45 16 ns
28 NMI, INTR Hold Time {Note 2) 45 16 ns
29 PEREQ, ERROR, BUSY, FLT* Setup Time (Note 2) 45 16 ns
30 PEREQ, ERROR, BUSY, FLT* Hold Time (Note 2) 45 5 ns

Notes: *Float feature will be available in future revisions.
**Contact AMD for 16-MHz availability.

1.
2.

3.
4.

Float condition occurs when maximum output current becomes less than |, in magnitude. Float delay is not 100% tested.

These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to
assure recognition within a specific CLK2 period.

These are not tested. They are guaranteed by design characterization.

Tested with C_ set at 50 pF and derated to support the indicated distributed capacitive load. See Figures 49-51 for the capacitive

derating curve.

66

This Materi al

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD a

t1

t2a

t2b
Vee—0.8V
CLK2 20V
0.8V

150228031
Figure 43. CLK2 Timing
Am386SX CPU Output O—j
C.
15022B-032
Figure 44. AC Test Circuit
AmMARBSKY Micranrocassor 67

This Material Copyrighted By Its Respective Manufacturer

n AMD

SWITCHING WAVEFORMS

Tx 02 01 Tx 02 61 Tx
CLK2 [J‘{me
19 | 20
READY [
23 | 104
HoD [
t21 122
D15-DO [
(Inputs)
29 | 130
BUSY, ERROR, [y
PEREQ, FLT*
L 15 116
e
NA |:)IK):
127 28
b Il i |
INTR, NMI [}*(X
i

*Contact AMD for availability of Float feature, PQFP only.

15022B-033
Figure 45. Input Setup and Hold Timing
b2 o1 Tx 02 1
ckz [mmw
18 -
BHE, BLE, -
ock L Valid
t10
W/R, M/IO, -
D/C, ADS [Valid
A23-A1 [
112
D15-DO -
(Outout) [Validn §
HLDA [
150228034
Figure 46. Output Valid Delay Timing
68 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

SWITCHING WAVEFORMS (continued)

Th TiorT1
02 %1 92 01 2
ClLKz [l__Jl_\J[___J
9 Min Max 8 Min Max
BH,BL,I: I I A P N R
LOCK (High Z)
B Min Maxt1o Min Max
WRLWE, I — 1 |
D/ DS (High 2)
v Min Max 16 Min Max
resm | 1 ¢Highy | ——F—
3 Min Max 12 Min Max
t13—Also applies to data float when write
cycle is followed by read or idle.
14 Min Max”4 Min Max
4)
noa [v NN
15022B-035
Figure 47. Output Flioat Delay and HLDA Valid Delay Timing
RESET Initialization Sequence _
2 or 91 02 or ¢1 ¢ 2 ¢ 1
CLK2
126
RESET I: K
t25
15022B-036
Figure 48. RESET Setup and Hold Timing and Internal Phase
Am386SX Microprocessor 69

This Material Copyrighted By Its Respective Manufacturer

a AMD

nom + 6 I I I
nom + 3 |— —
Output nom
Valid |
Delay |
(ns} nom -3 |— :
|
|
nom —6 I
|
|
nom -9] | 1
50 75 100 125 150
C. (picofarads)
15022B-037

Figure 49. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (C, = 120 pF)

nom + 9] I I
nom + 6
Output Nom+ 3
Valid
Delay
(ns) nom
nom -3
nom -6 | |
75 100 125 150
C. (picofarads)
15022B-038

Figure 50. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (C. =75 pF)

nom + 9 [— —

Output nom + 6
Valid
Delay

(") nom+3

nom

nom -3 — | I |

50 75 100 125

C. (picofarads)

150

Note: This graph will not be iinear outside of the C_ range shown.

Figure 51. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (C.=50 pF)

Rise Time (ns)
0.8V-20V

8 | I |

50 75 100 125
C. (picofarads)

150

15022B-039

Figure 52. Typical Output Rise Time Versus Load
Capacitance at Maximum Operating Temperature

DIFFERENCES BETWEEN THE Am386SX
CPU AND THE Am386DX CPU

The following are the major differences between the
Am386SX CPU and the Am386DX CPU:

1. The Am386SX CPU generates byte selects on BHE
and BLE (like the 8086 and 80286) to distinguish the

upper and lower bytes on its 16-bit data bus. The
Am386DX CPU uses four byte selects, BE3-BEQ, to
distinguish between the different bytes on its 32-bit
bus.

2. The Am386SX CPU has no bus sizing option. The
Am386DX CPU can select between either a 32-bit

70 Am386SX Microprocessor

This Materi al

Copyrighted By Its Respective Manufacturer

bus or a 16-bit bus by use of the BS16 input. The
Am386SX CPU has a 16-bit bus size.

3. The NA pin operation in the Am386SX CPU is

identical to that of the NA pin on the Am386DX CPU
with one exception: the Am386DX CPU NA pin
cannot be activated on 16-bit bus cycles (where
BS16 is Low in the Am386DX CPU case), whereas
NA can be activated on any Am386SX CPU bus
cycle.

4. The contents of alil Am386SX CPU registers at reset
are identicai to the contents of the Am386DX CPU
registers at reset, except the DX register. The DX
register contains a component-stepping identifier at
reset, that is,
in Am386DX CPU, after reset

DH =3 indicates Am386DX CPU
Di=revision number;

in Am386SX CPU, after reset

DH =23H indicates Am386SX CPU
DL =revision number.

5. The Am386DX CPU uses A31 and M/1O as selects
for the math coprocessor. The Am386SX CPU uses
A23 and M/IO as selects.

6. The Am386DX CPU prefetch unit fetches code in
four-byte units. The Am386SX CPU prefetch_unit
reads two bytes as one unit (like the 80286). InBS16
mode, the Am386DX CPU takes two consecutive
bus cycles to complete a prefetch request. If there is
a data read or write request after the prefetch starts,
the Am386DX CPU will fetch all four bytes before
addressing the new request.

7. Both Am386DX CPU and Am386SX CPU have the
same logical address space. The only difference is
that the Am386DX CPU has a 32-bit physical
address space and the Am386SX CPU has a 24-bit
physical address space. The Am386SX CPU has a
physical memory address space of up to 16 Mb
instead of the 4 Gb available to the Am386DX CPU.
Therefore, in Am386SX CPU systems, the operating
system must be aware of this physical memory limit
and should allocate memory for applications
programs within this limit. f an Am386DX CPU
system uses only the lower 16 Mb of physical
address, then there will be no extra effort required to
migrate Am386DX CPU software to the Am386SX
CPU. Any application which uses more than 16 Mb of
memory can run on the Am386SX CPU, if the
operating system utilizes the Am386SX CPU's
paging mechanism. In spite of this difference in
physical address space, the Am386SX CPU and
AmM386DX CPU can runthe same operating systems
and applications within their respective physical
memory constraints.

8. The Am386SX has an input called FLT* which three-

states all bi-directional and output pins, including
HLDA, when asserted. It is used with ON-Circuit
Emulation (ONCE).

*Contact AMD for availability of Float feature, PQFP only.

avo £
INSTRUCTION SET

This section describes the instruction set. The Instruc-
tion Set Clock Count Summary lists all instructions
along with instruction encoding diagrams and clock
counts. Further details of the instruction encoding are
then provided in the following sections, which
completely describe the encoding structure and the
definition of all fields occurring within instructions.

The Am386SX CPU Instruction Encoding
and Clock Count Summary

To calculate elapsed time for an instruction, multiply the
instruction clock count, as listed in the instruction Set
Clock Count Summary, by the processor clock period
(e.g., 40 ns for a 25-MHz, 50 ns for a 20-MHz, and 62.5
ns for a 16-MHz Am386SX microprocesso). The actual
clock count of an Am386SX microprocessor program
will average 5% more than the calculated clock count
due to instruction sequences which execute faster than
they can be fetched from memory.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded, and
is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No exceptions are detected during instruction
execution.

5. If an effective address is calculated, it does not use
two general register components. One register,
scaling and displacement can be used within the
clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count shown.

Instruction Clock Count Notation
1. If two clock counts are given, the smaller refers to a

register operand and the larger refers to a memory
operand.

2. n=number of times repeated.

3. m = number of components in the next instruction
executed, where the entire displacement (if any)
counts as one component, the entire immediate data
(if any) counts as one component, and all other bytes
of the instruction and prefix(es) each count as one
component.

Misaligned or 32-Bit Operand Accesses

— If instructions access a misaligned 16-bit operand or
32-bit operand on even address add:

2* clocks for read or write
4** clocks for read and write

—If instructions access a 32-bit operand on odd
address add:

4* clocks for read or write
8** clocks for read and write

This Materi al

Am386SX Microprocessor 71

Copyrighted By Its Respective Manufacturer

n AMD

Am386SX Instruction Set Clock Count Summary

Clock Count Notes
anem | Prowcted | ReM | prgiacied

Mode/ Virtual Mode/ Virtual
Instruction Format so‘:s"ﬁl:‘de A;‘Jdo’::‘ m‘é%"»“azke Aador::.
GENERAL DATA TRANSFER
MOV =Move:
Register to Register/Memory [1 000100w l mod reg /m I 22 22* b h
Register/Memory to Register I1 000101 w l mod reg r/m] 24 2/4° b h
Immediate to Register/Memory l: 00011w I mod0 00 /m I immediate data 272 2* b h
Immediate to Register (short form) immediate data 2 2
Memory to Accumulator (short form) full displacement 4 4° b h
Accumulator to Memory (short form) full displacement 2* 2* b h
Register/Memory to Segment Register MO 01110 I mod sreg 3 rm 2/5 22/23 b h, i j
Segment Register to Register/Memory [1 0001100 I mod sreg r/m] 22 22 b h
MOVSX = Move with Sign Extension
Register from Register/Memory [0 0001111 [1 011111 wI mod reg r/m] 3/6* 38* b h
MOVZX = Move with Zero Extension
Register from Register/Memory lm 01111 I 1011011 Wl mod reg r/m 3/6* e* b h
PUSH =Push:
Register/Memory b 111111 lmod 110 rm I 57t 719* b h
Register (short form) 2 4 b h
Segment Register (ES,CS,SS, or DS) (short form) 2 4 b h
Segment Register (ES, CS, SS, DS, FS, or GS) [o 0001111]10seg3 000 | 2 4 b h
Immediate immediate data 2 4 b h
PUSHA =Push All 18 34 b h
POP=Pop
Register/Memory {10001 111 | modo 00 wm 57 719 b h
Register (short form) 6 6 b h
Segment Register (ES, CS, SS, or DS) 7 25 b h, i,
Segment Register (ES, CS, S, DS,FS,0rGS) [00001 11110 sreg3 001 7 25 b hoij
POPA =Pop All 24 40 b h
XCHG = Exchange
Register/Memory with Register I 100001 1w l mod reg r/m—l 3/5* 3/5* b, f f,h
Register with Accumulator (short form) 3 3
IN =Input From: Vim?all—goiosu:;ode
Fixed Port [1 110010w I port number 28 12° 6°/26* sit,m
Variable Port 27 13* 727" st,m

“IfCPLSIOPL **IfCPL>IOPL ***Clock count shown applies if O permission allows V'O to the port in Virtual 8086 mode. If /O bit map

denies permission Exception 13 tault occurs; refer to clock counts for INT3 instruction.

72 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
A:;:.. Protected Adee:“ Protected
Mode/ Virtual Mode/ Virtual

Instruction Format w:g‘;‘oldn A;’ndo':e“ aoZ?;:la A;’Ador::s
OUT = Output To: vm&'i'éo%%uﬂode
Fixed Port [1 11001 1w] port number 24 10° 4%/24* st,m
Variable Port 25" 11 525" sit,m
LEA =Load EA to Register I1 0001101 l mod reg r/mJ 2 2
SEGMENT CONTROL
LDS =Load Pointer to DS l1 1000101 I mod reg r/m] 7 26'/28* b h,0j
LES = Load Pointer to ES [{1000100]modreg wm] 7 26°/28° b M
LFS =Load Pointer to FS [cooor111[1or10100 [modreg _wm|[7 26*/28° b R
LGS =Load Pointer to GS 00001111]|10110101 ! mod reg o/m I 7 26°/28* b h,i,j
LSS =Load Pointer to SS 00001111]10110010 modreg om || 7+ | 26028 b hii
FLAG CONTROL
CLC =Clear Carry Flag 2 2
CLD = Clear Direction Flag 2 2
CLI =Clear Interrupt Enabie Flag 8 8 m
CLTS =Clear Task Switched Flag [eo001111 00000110 s 5 c [
CMC =Compiement Carry Flag 2 2
LAHF =Load AH into Flag 2 2
POPF =Pop Flags 5 5 b h,n
PUSHF = Push Flags 4 4 b h
SAHF = Store AH into Flags 3 3
STC = Set Carry Flag 2 2
STD = Set Direction Flag
STi=Set Interrupt Enable Flag 8 8 m
ARITHMETIC
ADD=Add
Register to Register [0 00000dw l mod reg r/m I 2 2
Register to Memory [0 000000 W I mod reg r/m l 7 7+ b h
Memory to Register 10000001 w|modreg wm | 6 6 b h
Immediate to Register/Memory [1 00000sw I mod 0 0 O rlm] immediate data 27 27 b h
Immediate to Accumulator (short form) immediate data 2 2
ADC = Add with Carry
Register to Register fooo100dw]|modreg om | 2 2

*ICPL<IOPL **IfCPL>IOPL ***Clock count shown applies if VO permission allows VO to the port in Virtual 8086 mode. If /O bit map
denies permission Exception 13 fault occurs; refer to clock counts for INT3 instruction.

Am386SX Microprocessor 73
This Material Copyrighted By Its Respective Manufacturer

This Materi al

u AMD

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes

il Rl B
Instruction Format ao:r H“:’ds A:do:e“ ao::s"l‘;;lda A;do::.
ADC = Add with Carry (continued)
Register to Memory MO 1000w I mod reg r/m] 7 7 b h
Memory to Register [o 001001 w] mod reg r/m] 6* 6* b h
Immediate to Register/Memory ho 0000sw lmod 010 r/m] immediate data 27 27* b h
immediate to Accumuiator (short form) immediate data 2 2
INC =Increment
Register/Memory {t111111w[mdooo wm] 276+ 6™ b h
Register (short form) 2 2
SUB = Subtract
Register from Register [0 01010dw I mod reg m 2 2
Register from Memory lo 010100w l mod reg r/m 7 7 b h
Memory from Register [o 010101 w l mod reg /m] 6* 6* b h
Immediate from Register/Memory I1 00000s wl mod 1 0 1 r/m] immediate data 27+ 27 b h
Immediate from Accumulator (short form) immediate data 2 2
SBB=Subtract with Borrow
Register from Register ho 0110dw l mod reg m 2 2
Register from Memory [c001100w][modreg wm] 7 7 b h
Memory from Register LO 001101w] mod reg r/m l 6 6° b h
Immediate from Register/Memory [1 00000sw] mod 0 1 1 r/m] immediate data 27 27 b h
Immediate from Accumulator (short form) immediate data 2 2
DEC=Decrement
Register/Memory L1 11111 1w l reg 0 01 r/ml 2/6 26 b h
Register (short form) 2 2
CMP =Compare
Register with Register LO 01110dw I mod reg r’m l 2 2
Memory with Register [O 011100w l mod reg r/m] 5° 5° b h
Register with Memory m 11101 w l mod reg r/m] 6° 6° b h
Immediate with Register/Memory L1 00000sw I mod 1 11 m immediate data 5 2/5¢ b h
Immediate with Accumulator (short form) immediate data 2 2
NEG = Change Sign [1111011w[modo 11 om 26 6 b h
AAA = ASCII Adjust for Add 4 4

*IfCPL<IOPL It CPL>IOPL

74

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
‘::.:“ Pro'teﬂed A:::“ Pro_tecled
Mode/ Virtusl Mode/ Virtual
" Virtual Address Virtual Address

Instruction Format 8086 Mode Mode 8086 Mode Mode

AAS = ASCIl Adjust for Subiract 4 4

DAA =Decimal Adjust for Add 00100111 4 4

DAS = Decimal Adjust for Subtract 00101111 4 4

MUL = Multiply (unsigned)

Accumulator with Register Memory [1 111011 w l mod 1 0 0 r/ml

Multiplier — Byte 12-17/15-20* | 2-17/15-20" b,d d h
—Word 12-25/15-28" | 2-26/15-28* b, d d, nh
—Doubleword 12-41/17-46" | 2-41/17-46" b,d d,h

{MUL = Integer Multiply (signed)

Accumulator with Register Memory [1 111011 wlmod 101 r/m]

Multiplier — Byte 12-17/15-20° §2-17/15-20" b, d d, h
—Word 12-25/15-28* | 2-25/15-28" b, d d h
—Doubleword 12-41/17-46° | 2-41/17-46" b, d d h

Register with Register/Memory fooocot111 10101111 modreg wm |

Multiplier -- Byte 12-17/15-20* §2-17/15-20° b, d d, h
~Word 12-25/15-28* }2-26/15-28° b, d d, h
— Doubleword 12-41/17-46° | 2-41/17-46* b, d d, h

Register/Memory with Immediate to Register [0 1101081 l mod reg r/m | immediate data
—Word 13-26 3-26/14-27 b, d d h
-Doubleword 1342 3-42/16-45 b, d d, h

DIV =Divide (unsigned)

Accumutator by Register/Memory 111101 1w I mod 1t 1 0O t/m

Divisor —Byte 14/17 14117 b.e e h
—Word 22125 22/25 b, e e h
- Doubleword 38/43 38/43 b, e e h

IDIV = Integer Divide (signed)

Accumulator by Register/Memory [1 111011 w [mod 111 rm

Divisor —Byte 19122 19722 b, e e h
—Word 27130 27/30 b, e e h
—Doubleword 43/48 43/48 b, e e h

AAD = ASCH Adjust for Divide |1 1010101 100001 010] 19 19

AAM = ASCIl Adjust for Multiply [1 1010100]o 000101 o] 17 17

CBW =Convert Byte to Word 10011000 3 3

CWD =Convert Word to Double Word 10011001 2 2

LOGIC

Shift/Rotate Instruction

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1 [1 101000w I mod TTT r/mJ 37+ 37+ b h

*IfCPL<IOPL **IfCPL>IOPL

Am386SX Microprocessor 75

This Material Copyrighted By Its Respective Manufacturer

This Materi al

n AMD

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
Resl Real
Protected Protected
Noser | vimwar | AUSS | vituas
Virtual Address Virtual Address

Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
LOGIC (continued)
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) ~{continued)
Register/Memory by CL |1 101001w I mod TTT r/m I a7t 37 b h
Register/Memory by immediate Count I1 100000w I mod TTT r/m] [¢)) 7t a7 b h
Through Carry (RCL and RCR)
Register/Memory by 1 [1101000w | moa TTT om | w10° 10* b h
Register/Memory by CL I1 101001 w I mod TTT r/m] 9/10* 9/10* b h
Register/Memory by Immediate Count [1100000w][mod 77T im | o) 910 oo b h

T Instruction

000 ROL

001 ROR

010 RCL

011 RCR

100 SHL/SAL

101 SHR
SHLD =Shift Left Double 111 SAR
Register/Memory by Immediate [oo001111[10100100 {modreg om|m| a7 37+
Register/Memory by CL loooo1111 [10100101 I modreg m | a a
SHRD = Shift Right Double
Register/Memory by Immediate f[oooori11 10101100 modreg vm]|m| a7 3
Register/Memory by CL !0 0001111 11 0101101] mod reg r/m I 37 37*
AND = And
Register to Register [001000dw][modreg vm | 2 2
Register to Memory [cot10000w[mdreg wm] 7 7 b h
Memory to Register [o010001w |modreg om] 3 6 b h
Immediate to Register/Memory I1 00000O0W l mod 1 00 r/m] immediate data 7 27 b h
immediate to Accumulator (short form) 00100 10w |immediate data 2 2
TEST=And Function to Flags, No Result
Register/Memory and Register [1 000010wW] mod reg r/m] 2/5* 25 b h
Immediate Data and Register/Memory I1 111011 wI mod 0 0 O r/m—l immediate data 2/5* 5* b h
Immediate Data and Accumulator (shortform) |1 0 1 0 1 0 0 w | immediate data 2 2
OR=0Or
Register to Register [coo010dw]modreg wm] 2 2
Register to Memory [0000100w][moareg om] 7 7 b h
Memory to Register [0000101w[modreg — wm] 6 6 b h

“IfCPL<IOPL ** IfCPL>IOPL

(1) Immediate 8-Bit Data

76

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD a

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes

aies | Mo | A | Ponced
Instruction Format ao:lsnn':‘a “.’.‘3." ao‘{i-,"-‘i'oh. A;do::.
LOGIC (continued)
immediate to Register/Memory [1000000w!med 001 wm| immediate data 27+ 217 b h
Immediate to Accumulator (short form) immediate data 2 2
XOR = Exciusive Or
Register to Register E) 01100dw l mod reg r/m] 2 2
Register to Memory [0 011000w I mod reg r/m] 7 7 b h
Memory to Register [o 011001 w l mod reg r/m] 6° -3 b h
immediate to Register/Memory [1 000000 W I mod 110 r/mJ immediate data 2/7** 2/7** b h
Immediate to Accumulator (short form) immediate data 2 2
NOT =Invert Ragister/Memory I1 t11011w I mod 0 1 0 /m ! 2/6** 2/6* b h
STRING MANIPULATION

Ciock Count
CMPS = Compare Byte/Word Virtual 8086 | 100 100 b h
INS = input Byte/Word from DX Port |I 15 929+ b s h,m
LODS = Load Byte/Word to AUAX/EAX 5 5 b h
MOVE = Move Byte/Word 7 7 b h
OUTS = Output Byte/Word to DX Port E 14 828" b st h,m
SCAS =Scan Byte/Word 7 7 b h
STOS = Store Byte/Word from AUAX/EX 4 4° b h
XLAT =Translate String 5 5* h
REPEATED STRING MANIPULATION
Repeated by Count in CX or ECX
REPE CMPS = Compare String (Find non-match) [11110011 /1010011 w| 549n** | S5.9n** b h
REPNE CMPS ~Compare String (Find match) [11110010[101001 1 w| s+on** | Sson b h
REP INS = Input String [1 1110010 Io 110110 w] l e 13+6n* 7+6n%/ 6 s/t,h,m
27+6n°**

REP LODS = Load String [t1110010[1010110w] 5i6n* | 5+6n b h
REP MOVS = Move String [t11100101010010w] 74ant | 7+an° b h
REP OUTS = Output String [t1110010for10111w] [- 12450 2?55:'1- b st h,m
REPE SCAS = Scan Sting (Find non-AUAXEAX) 11110011 [1010111w] Seon | Seen b h
REPNE SCAS = Scan String (Find AUAXEAX) |1 1110010101011 1w] 5+8n° | 5+8n* b h
REP STOS = Store String ft1110010f1010101w] 545n* | 545n° b h

*HCPL<IOPL **IfCPL>IOPL ***Clock count shown applies if VO permission allows VO to the port in Virtual 8086 mode. If VO bit map
denies permission Exception 13 fault occurs; refer to clock counts for INT3 instruction.

Am386SX Microprocessor 77

This Material Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Ama386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
Resl Real
Protected Protected
Addres | vinua | Addreee) T ruat
Virtuat Address Virtual Address
Instruction Format 8086 Mode Mode 8086 Mode Mode
BIT MANIPULATION
BSF=Scan Bit Forward [oootir1ror11100 modreg um || 10430 | 10430 b h
BSR=Scan Bit Reverse [o0001111 [1 0111101] modreg r/m] 10+3n* | 10+3n* b h
BT =Test Bit
Register/Memory, Immediate [o00011 11 [10111010 |mod 100 um|m] ae 6" b h
Register/Memory, Register |O 0001111 I 10100011 l mod reg r/'m] 12t 12t b h
BTC =Test Bit and Complemant
Register/Memory, Immediate [0 0001111]1 0111010 I mod 1 11 rlm] (1) 6/8* 6/8° b h
Register/Memory, Register [000011 1310111011 modreg m | 6/13° 613 b n
BTR =Test Bit and Reset
Register/Memory, Immediate [0 0001111 l1 0111010 | mod 1 1 0 r/m I D) 6/8° 6/8° b h
Register/Memory, Register Io 0001111 I 10110011 l mod reg rim] 6/13° 6/13* b h
BTS =Test Bit and Set
Register/Memory, Immediate [oooot1t11ro111010[moda101 vm|wm| es /8 b h
Register/Memory, Register Io 0001111 I 10101011 I mod reg r/m I 6/13° 6/13* b h
CONTROL TRANSFER
CALL=Call
Direct Within Segment 1110100 0 |full displacement 7+m* 9+m* b r
Register/Memory 7+m | 9em*/ b hor
Indirect Within Segment I1 tti111d lmod 010 rm 10+m* 122 m* '
Direct Intersegment 10011010 |unsigned full offset, selector 17+m* 42+m* b ko
Protected Mode Only (Direct intersegment)
Via Call Gate to Same Privilege Level 64+m hj k1
Via Call Gate to Different Privilege Level (No Parameters) 98+m hjkr
Via Call Gate to Different Privilege Level (x Parameters) 106 +8x+m hjkr
From 80286 Task to 80286 TSS 285 hj. k1
From 80286 Task to Am386SX CPU TSS 310 bk, ¢
From 80286 Task to Virtual 8086 Task (Am386SX CPU TSS) 229 hj k. r
From Am386SX CPU Task to 80286 TSS 285 ok, r
From Am386SX CPU Task to Am386SX CPU TSS 392 Kk
From Am386SX CPU Task to Virtual 8086 Task (Am386SX CPU TSS) 309 hikr
Indirect Intersegment IEEEEERE]mod 011 um 30+m | 46+m b hoji ko
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 68+m hj k,r
Via Call Gate to Different Privilege Level (No Parameters) 102 +m hj.kr
Via Call Gate to Different Privilege Level (x Parameters) 110+ 8x+m hjkr
From 80286 Task to 80286 TSS h,j Kk, ¢
From 80286 Task to Am386SX CPU TSS b, K1
From 80286 Task to Virtual 8086 Task (Am386SX CPU TSS) hj k1
From Am386SX CPU Task to 80286 TSS hj k¢
From Am386SX CPU Task to Am386SX CPU TSS 399 h,j k,r
From Am386SX CPU Task to Virtual 8086 Task (Am386SX CPU TSS) h,j Kk, r

*fCPL<IOPL **1f CPL>IOPL (1) Immediate 8-bit data

78 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

This Materi al

AMD n

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Real
Protected Protected
Address | Vinua | Soaress | T yiual
Virtuai Address Virtual Address
Instruction Format 8086 Mode Mode | 8086 Mode Mode
CONTROL TRANSFER (continued)
JMP = Unconditional Jump
Short [1 1101011 la-bix displacememl 7+m 7+m r
Direct within Segment 1101000 1 {full displacement 7+m 7+m r
Register/Memory 9+m/ 9+m/ b h,r
Indirect Within Segment [1 AR IMd 100 rlmI 14+m 14+m
Direct Intersegment 11101010 |unsigned full offset, selector 16+m 31+m ikt
Protecied Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 53+m hikr
From 80286 Task to 80286 TSS hikr
From 80286 Task to Am386SX CPU TSS h ok, r
From 80286 Task 1o Virtual 8086 Task (Am386SX CPU TSS) hj k. r
From Am386SX CPU Task to 80286 TSS hjk,r
From Am386SX CPU Task to Am386SX CPU TSS hjkr
From Am386SX CPU Task to Virtual 8086 Task (Am386SX CPU TSS) 395 hk,r
Indirect Intersegment l1 1111111 [mod 101 r/m} 17+m 31+m b nkr
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 49+m hjk,r
From 80286 Task to 80286 TSS hj kv
From 80286 Task to Am386SX CPU TSS hjkr
From 80286 Task to Virtual 8086 Task (Am386SX CPU TSS) hj k. r
From Am386SX CPU Task to 80286 TSS hik.r
From Am386SX CPU Task to Am386SX CPU TSS 328 h.j k, ¢
From Am386SX CPU Task to Virtual 8086 Task (Am386SX CPU TSS) hj k1
RET = Return from Cail
Within Segment 11000011 12+m b g.hr
Within Segment Adding Immediate to SP [1 1000010 16bidisplacement | 12+m b g.hr
Intersegment 36+m b ghikr
Intersegment Adding Immediate to SP [1100101 OJ 16-bit displacement I 38+m b g.hjkr
Protected Mode Only (RET): to Different Privilege Level
Intersegment 72 hj kr
Intersegment Adding Immediate to SP 72 hjkr
CONDITIONAL JUMPS (Note: Times are Jump “Taken or Not Taken”)
JO = Jump on Overtiow
8-bit Displacement IO 1110000 [8-bit displacement | 7+mor3{ 7+mor3 4
Full Displacement [0 0001111] 10000000] full displacement 7+mor3{7+mor3 r
JNO = Jump on Not Overfiow
8-bit Displacement [O 1110001 I 8-bit displacement] 7+mor3{ 7+mor3 4
Full Displacement Ioooo1 111 [10000001] full displacement | 7+mor3| 7+mor3 ¢
“#CPL<IOPL ** If CPL>IOPL
Am386SX Microprocessor 79

Copyrighted By Its Respective Manufacturer

This Materi al

a AMD

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
Ad?:u Protected A;:In Protected
Mode/ Virtuat Mode/ Virtuat
Instruction Format M:’S“I‘;:ﬁ A:dor::. m:is"nlgde A;do’::s
CONDITIONAL JUMPS (continued)
JB/JNAE = Jump on Beliow/Not Above or Equal
8-bit Displacement [0 1110010 l&-bildisplacemenl I 7+mor3 7+mor3 r
Full Displacement [00001111]10000010 | tuldisplacement | 7+mors | 74mors r
JNB/JAE = Jump on Not Below/Above or Equal
8-bit Displacement [0 1110011 l 8-bit displacement] 7+mor3 7+mor3 r
Full Displacement [o 0001111] 10000011 I full displacement 7+mor3 | 7+mor3 r
JE/JZ =Jump on Equal/Zerc
8-bit Displacement Io 1110100 I 8-bit displacement | 7+mor3 | 7+mor3 4
Full Displacement [o 0001111 I 10000100 I full displacement 7+mor3 | 7+mor3 r
JNE/JNZ = Jump on Not Equal/Not Zero
8-bit Displacement [o 1110101 IS-bit displacement l 7+mor3 | 7+mor3 r
Full Displacement [o 0001111 I 10000101] full displacement 7+mor3 | 7+mor3 r
JBE/JNA =Jump on Below or Equal/Not Above
8-bit Displacement [o 11 0110 | 8-bit displacement] 7+mor3 7+mor3 r
Full Displacement [o 0001111 I1 0000110 I full displacement 7+mor3 | 7+mor3 ’
JNBE/JA =Jump on Not Below or Equal/Above
8-bit Displacement Io 1110111 Is—bitdisplacement] 7+mor3 7+mor3 r
Full Disptacement Io 0001111 l 10000111] full displacement 7+mor3 | 7+mor3 r
JS =Jump on Sign
8-bit Displacement [o 1111000 l 8-bit displacement I 7+mor3 | 7+4mor3 r
Full Displacement Io 0001111 | 10001000] full displacement 7+mor3 | 7+mor3 r
JINS = Jump on Not Sign
8-bit Displacement [0 1111001 la—bit displacement } 7+mor3 | 7+mor3 r
Full Displacement lo 0001111] 10001001 I full displacement 7+mor3 | 7+mor3 r
JP/JPE = Jump on Parity/Parity Even
8-bit Displacement Io 1111010 l 8-bit displacement] 7+mor3 7+mor3 r
Full Displacement IO 0001111 I 10001010 | full displacement 7+mor3 7+mor3 r
JNP/JPO = Jump on Not Parity/Parity Odd
8-bit Displacement lo 1111011 l 8-bit displacement] 7+mor3 7+mor3 r
Full Displacement {oooo111i]100071011 | tull displacement | 7+mor3 | 74mors r

80

Am386SX Micropbrocessor

Copyrighted By Its Respective Manufacturer

AMD n

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
M:;:n Protected A‘:’e:“ Prcttecﬁed
Mode/ Virtual Mode/ Virtuat

Instruction Format aon'"i‘.:i,e Aado'::. m‘é?ﬁ:'* A;do'::‘
CONDITIONAL JUMPS (continued)
JU/JUNGE =Jump on Less/Not Greater or Equal
8-bit Displacement [o 1111100 IB—bitdisplacemem l 7+mor3 | 7+mor3 r
Full Displacement foooor111]10001100] tundispiacement | 74mora | 74mar3 '
JNL/JGE = Jump on Net Less/Greater or Equal
8-bit Displacement IO 1111101 Ia—bitdisplacement | 7+mor3 7+mor3 4
Full Displacement [000011 14 [1 0001101 | fuldsplacement | 7+mor3 | 7+mor3 r
JLE/UNG = Jump on Less or Equal/Not Greater
8-bit Displacement [0 11111190 I&bit displacement] 7+mor3 | 7+mor3 r
Fuli Displacement [0 06001111 I 10001110 I full displacement 7+mor3 7+mor3 r
JNLE/JG = Jump on Not Less or Equal/Greater
8-bit Displacement 01111111 lB—bi!displacement] 7+mor3 | 7+mor3 r
Fufl Displacement Io 0001111] 10001111] full displacement 7+mor3 | 7+mor3 r
JCXZ=Jump on CX Zero* I1 1100011 la-bit displacement J 9+mor5S 9+morS r
JECXZ = Jump on ECX Zero [1 1100011 Is—bitdisplacement I 8+morS | S+mor5 r
LOOP =Loop CX Times [1 1100010 Is-bndisplacememJ 11+m 11+m r
LOOPZ/LOOPE = Loop with Zero/Equal [1 1100001 ls—bildisplacement] 11+m 11+m r
LOOPNZ/LOOPNE = Loop while Not Zero b 100000 Ia—bitdisplacement I 11+m 11+m r
CONDITIONAL BYTE SET (Note: Times Are Register/Memory)
SETO=Set Byte on Overflow
To Register/Memory [00001 111 I1001oooolmodooo rim] a5 a5 h
SETNO=Set Byte on Not Overfiow
To Register/Memory [00001111[10010001Imod000 rim] a5 P h
SETB/SETNAE = Set Byte on Balow/Not Above or Equal

, To Register/Memory [00001111 10010010 medo00 vm | a5 450 h
SETNB = Sot Byte on Not Below/Above or Equal
To Register/Memory [oooo1111|1001oo11]modooo rim] a5 a5 h
SETE/SETZ = Set Byte on Equal/Zero
To Register/Memory [00001111]10010100]med000 om | a5 a5 h
SETNE/SETNZ = Set Byte on Not Equal/Not Zero
To Register/Memory foooo1111]10010101 modooo rm | a5t 4r5° h
* Address Size Prefix differentiates JCXZ from JECXZ

Am386SX Microprocessor 81

This Material Copyrighted By Its Respective Manufacturer

a AMD

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Real
s | P | e | Viar
Instruction Format w:sm’.;ld. ‘fo:." eo:i: I‘:)lda A;do:e“
CONDITIONAL BYTE SET (continued)
SETBE/SETNA = Set Byte on Below or Equal/Not Above
To Register/Memory IO 0001111 I 1001011 Ol mod 0 0 O r/mj 4/5* 4/5* h
SETNBE/SETA = Set Byts on Not Below or Equal/Above
To Register/Memory [00001111I10010111Imod000r/m | a5* a5 h
SETS =Set Byte on Sign
To Register/Memory [oooo1111[10011000[md000 vm | 45 45 h
SETNS = Set Byte on Not Sign
To Register/Memory [co001111 10011001 modaoo0 im] 45 4/5° h
SETP/SETPE = Set Byte on Parlity/Parity Even
To Register’Memory [cooo1i11[10011010]medaooo rm | a5 45 h
SETNP/SETPO = Set Byte on Not Parity/Parity Odd
To Register/Memory [coo0s111[10011011][modooo rm | 45 45 h
SETL/SETNGE = Set Byte on Less/Not Greater or Equal
To Register/Memory foooo1111[10011100]modooo vm | 4/5° 45 h
SETNL/SETGE = Set Byte on Not Less/Greater or Equal
To Register/Memory [cooot111]or1111101][medooo wm | 45 45 h
SETLE/SETNG = Set Byte on Less or Equal/Not Greater
To Register/Memory [oooo1111]10011110]modoo0 vm | 45 45 n
SETNLE/SETG = Set Byte on Not Less or Equal/Greater
To Register/Memory [oooo01111 10011111 meacoo mm | 45° 45 h
ENTER = Enter Procedure {11001 00 0 | 16-bitdisplacement, 8-bit level }
L=0 10 10 b h
L=t 14 14 b h
L>1 17+8(n~1) 17+8(n~-1) b h
LEAVE = Leave Procedure 4 4 b 4]
INTERRUPT INSTRUCTIONS
INT zinterrupt:
Type Specified [11001101] ype a7 b
INTO =interrupt 4 If Overfiow Flag Set
If OF =1 35 b.e
If OF =0 3 3 b.e

“HCPL<IOPL ** If CPL>1OPL

82 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD u

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
A | okt | adites | Pioeced
Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
INTERRUPT INSTRUCTIONS (continued)
INT = Interrupt:
Type Specified
Type 3
Bound = Interrupt 5 if Detecied Value Out of Range [o 1100010 l mod reg r/m]
If Out of Range 44 b, e e,g.n,jkr
If in Range 10 10 b, e e,gh,jkr
Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate to Same Privilege Level 71 g0k r
Via Interrupt or Trap Gate to Different Privilege Level 111 gk
From 80286 Task to 80286 TSS via Task Gate 438 g kr
From 80286 Task to Am386SX CPU TSS via Task Gate 465 a.j Kk r
From 80286 Task to Virtual 8086 Mode via Task Gate 382 g Kr
From Am386SX CPU Task to 80286 TSS via Task Gate 440 gk r
From Am386SX CPU Task to Am386SX CPU TSS via Task Gate 467 g kT
From Am386SX CPU Task to Virtual 8086 Mode via Task Gate 384 g, k7
From Virtual 8086 Mode to 80286 TSS via Task Gate 445 [N
From Virtual 8086 Mode to Am386SX CPU TSS via Task Gate 472 gk
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or interrupt Gate 275 gk
INT: Type 3
Via interrupt or Trap Gate to Same Privilege Level 71 g.ikr
Via Interrupt or Trap Gate to Different Privilege Level 111 gk
From 80286 Task to 80286 TSS via Task Gate 382 g.ikr
From 80286 Task to Am386SX CPU TSS via Task Gate 409 g,k
From 80286 Task to Virtual 8086 Mode via Task Gate 326 g kr
From Am386SX CPU Task to 80286 TSS via Task Gate 384 ajkr
From Am386SX CPU Task to Am386SX CPU TSS via Task Gate 411 ajKr
From Am386SX CPU Task to Virtual 8086 Mode via Task Gate 328 gk r
From Virtual 8086 Mode to 80286 TSS via Task Gate 389 gl kr
From Virtual 8086 Mode to Am386SX CPU TSS via Task Gate 416 ag.l Kk r
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 223 g.ikr
INTO
Via Interrupt or Trap Gate to Same Privilege Level 71 gkt
Via Interrupt or Trap Gate to Different Privilege Level 111 gikr
From 80286 Task to 80286 TSS via Task Gate 384 g.ikr
From 80286 Task to Am386SX CPU TSS via Task Gate 411 g kr
From 80286 Task to Virtual 8086 Mode via Task Gate 328 gk
From Am386SX CPU Task to 80286 TSS via Task Gate Am386DX 9.0 Kk r
From Am386SX CPU Task to Am386SX CPU TSS via Task Gate 413 9.0k, r
From Am386SX CPU Task to Viriual 8086 Mode via Task Gate 329 9. k1
From Virtual 8086 Mode 0 80286 TSS via Task Gate 391 gk
From Virtual 8086 Mode to Am386SX CPU TSS via Task Gate 418 0.k r
From Virtual 8086 Mode to Privilege Leve! 0 via Trap Gate or interrupt Gate 223 g.i.kr
BOUND
Via interrupt or Trap Gate to Same Privilege Level 71 gk
Via interrupt or Trap Gate to Different Privilege Level 111 gk
From 80286 Task to 80286 TSS via Task Gate 358 a.jkr
From 80286 Task to Am386SX CPU TSS via Task Gate 388 g.j k1
Am386SX Microprocessor 83

This Material Copyrighted By Its Respective Manufacturer

n AMD

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
Adiimas | Prowewed | L Fe4 | prowced
Mode/ Virtual Mode/ Virtual
Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
INTERRUPT INSTRUCTIONS (continued)
BOUND (continued)
From 80286 Task 1o Virtual 8086 Mode via Task Gate 335 gk r
From Am386SX CPU Task to 80286 TSS via Task Gate 368 g kr
From Am386SX CPU Task to Am386SX CPU TSS via Task Gate 398 o0 kr
From Am386SX CPU Task to Virtual 8086 Mode via Task Gate 347 gk r
From Virtual 8086 Mode 10 80286 TSS via Task Gate 368 gk
From Virtual 8086 Mode to Am386SX CPU TSS via Task Gate 398 gk r
From Virtual 8086 Mode to Priviege Level 0 via Trap Gate or Interrupt Gate 223 g. ko

INTERRUPT RETURN

IRET = Interrupt Return 24 a.h,j.kr

Protected Mode Only (IRET)

Via Interrupt or Trap Gate to Same Privilege Level (within Task) 42 g.hjkr
Via Interrupt or Trap Gate to Different Privilege Level (within Task) 86 g.h.j.kr
From 80286 Task to 80286 TSS 285 h,j K, r
From 80286 Task to Am386SX CPU TSS 318 hj K r
From 80286 Task to Virtual 8086 Task 267 hf k
From 80286 Task to Virtual 8086 Mode (within Task) 113 h.jkr
From Am386SX CPU Task to Virtual 8086 TSS 324 hj Kk, r
From Am386SX CPU Task to 80286 TSS 328 hj K, r
From Am386SX CPU Task to Am386SX CPU TSS 377 hj,kr
From Am386SX CPU Task to Virtual 8086 Mode (within Task) 113 h,j kr
PROCESSOR CONTROL

MOV =Move To and From Control/Debug/Test Registers

CRO/CR2/CR3 from Register [o0001111 0010001 0[11ec0reg | 10045 | 10455 I
Register from CR3-CRO [oooo01111]o0100000]11ecereg | 5 6 |
DR3-DRO from Register [o0001111]00100011]1 1 ecereg] 22 22 {
DR7-DRé from Register [00001111[00100011]11eeereg] 16 16 |
Register from DR7-DR6 [00001111 00100001 1 1eereg | 14 14 |
Register from DR3-DRO [ooo0o01111 o0100001]1 1 cee reg | 22 22 I
TR7-TRS from Register [oooo1111]o0100110]11ec0reg | 12 12 |
Register from TR7-TR6 00001114]0010010011 1000 rog | 12 12 [

NOP = No Operation 10010000 3 3 '
WAIT = Wait until BUSY pin is negated 6 6 |

PROCESSOR EXTENSION INSTRUCTIONS
See 387SX

Processor Extension Escape [1 1011 TTT lmod LLL r/m] Datasheet

TTT and LLL bits are op-code information for coprocessor. for clock h
PREFIX BYTES counts

Address Size Prefix [} 0

84 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

AMD n

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
“n;:.. Protected A‘:’e:” Protected
Mode/ Virtual Mode/ Virtual
Virtual Address Virtual Address
Instruction Format 8086 Mode Mode 8086 Mode Mode
PREFIX BYTES (continued)
LOCK =Bus Lock Prefix 11110000 Q [} m
Operand Size Prefix 01100110 [} 0
Segment Override Prefix
cs 00101110 (4] 0
DS 00111110 o 4]
ES 00100110] 0
FS 01100100 o 0
GS 01100101 1] 0
ss 00110110 [0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From Register/Memory Io 1100011 I mod reg r/nq NA 2021 a h
LAR=Load Access Rights
From Register/Memory [oo001171 Jocoooo10 | modreg om | NA 15/16* a a.hip
LGDT = Load Global Descriptor
Table Register [30001111[ooooooo1lmodo1or/m 1 11° b,c h
LIDT = Load interrupt Descriptor
Table Register {00001111]00000001]modo11 um] 11 1 b.c N
LLDT = Load Local Descriptor
Table Regiser to Register/Memory [oooo1111]o0000000]mdoi0 wm | NA 20/24* a g.hit
LMSW = Load Machine Status Word
From Register/Memory [00001111 00000001 meat 10 im] 113 | 10m3° b.c h
LSL =Load Segment Limit
From Register/Memory |oooo1111]oooooo11[modrag r/m]
Byte-Granular Limit . .
Page-Granular Limit NA 2021 a g.hlp
NA 25/26* a g.hip
LTR=Load Task Register
From Register/Memory [ooooa111loooooooo[modoo1 om | NA 2327 a g, hit
SGDT = Store Global Descriptor
Table Register [00001111[00000001]medooo um] 9 9 b.c h
SIDT =Store Interrupt Descriptor
Table Register [eooor111]o0000001[mdoo 1 vm 9 9 b.c h
*fCPL<IOPL **If CPL>IOPL
Am386SX Microprocessor 85

This Material Copyrighted By Its Respective Manufacturer

u AMD

Am386SX Instruction Set Clock Count Summary (continued)

Clock Count Notes
Adni::;. Protected Adeer:Iu Protected
Mode/ Virtual Mode/ Virtual
Virtusl Address Virtual Address
instruction Format 8086 Mode Mode 8086 Mode Mode
PROTECTION CONTROL (continued)
SLDT = Store Local Descriptor Table Register
To Register/Memory Fooo1111[oooooooo]modooo r/m] NA 22° a h
SMSW = Store Machine Status Word [oooo1111]00000001]med100 um]| 22¢ 212+ b.c h
STR =Store Task Register
To Register/Memory ﬁ)0001111loooooooolmodoo1 r/rnl N/A 2* a h
VERR = Verify Read Access
Register/Memory l00001111]000000001m0d100 r/ml NA 10/11° a g.hjp
VERW = Verify Write Access [e0ooo01111]o0co00000]mod101 um| NA 15/16* a g.hip
*IfCPLsIOPL ** If CPL>IOPL

Instruction Notes for Instruction Set Summary

Notes a through c apply to Real Address Mode only:

a.
b.

C.

This is a Protected Mode instruction. Attempted execution in Real Mode will result in Exception 6 (invalid op-code).

Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum CS, DS, ES, FS, or GS limit (FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an
operand reference is made that partiaily or fully extends beyond the maximum SS limit.

This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode:

d.

e.
f.

g.

The Am386SX CPU uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most significant bitin the
operand (multiplier).
Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:
Actual Clock =if m < > 0, then max ([log. |m]|], 3) + b clocks;
=if m=0, then 3 + b clocks
In this formula, m is the multiplier, and
b =9 for register to register;
b =12 for memory to register;
b = 10 for register with immediate to register;
b= 11 for memory with immediate to register.
An exception may occur, depending on the value of the operand.
LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix.

[OCK is asserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode only:

h.

£ Do >3

r.
sit.

Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an
access rights violation. if a stack limit is violated, an Exception 12 occurs.

For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an Exception 13 fault. The segment's
descriptor must indicate “present” or Exception 11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not
present is detected, an Exception 12 occurs.

All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in
multiprocessor systems.

JMlP, e(.‘;ALL, INT, RET, and IRET instructions referring to another code segment will cause an Exception 13, if an applicable privilege rule is
violated.

An Exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

. An Exception 13 fault occurs if CPL is greater than IOPL.

The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the fiag register are updated only if CPL = 0.
The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.
Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero flag is cleared.

If the coprocessor's memory operand violates a segment limit or segment access rights, an Exception 13 fault will occur before the ESC
instruction is executed. An Exception 12 fault will occur if the stack limit is violated by the operand’s starting address.

The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an Exception 13 fault will occur.
The instruction will execute in s clocks if CPL < IOPL. If CPL > IOPL, the instruction wili take t clock.

86
Thi s

Am386SX Microprocessor

Mat eri al Copyrighted By Its Respective Manufacturer

This Materi al

AMD n

Instruction Encoding
Overview

All instruction encodings are subsets of the general
instruction format shown in the Am386SX Micropro-
cessor Instruction Set Clock Count Summary (pages
72-86). Instructions consist of one or two primary
op-code bytes, possibly an address specifier consisting
of the mod r/m byte and scaled index byte, a displace-
ment if required, and an immediate data field if required.

Within the primary op-code(s), smaller encoding fields
may be defined. These fields vary according to the class
of operation. The fields define such information as
direction of the operation, size of the displacements,
register encoding, or sign extension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following the
primary op-code byte(s). This byte (mod r/m) specifies
the address mode to be used. Certain encodings of the
mod r/m byte indicate a second addressing byte
(scale-index-base byte) follows the mod r/mbyte to fully
specify the addressing mode.

Addressing modes can include a displacement immedi-
ately foliowing the mod r/m byte, or scaled index byte. If
a displacement is present, the possible sizes are 8, 16,
or 32 bits.

If the instruction specifies an immediate operand, the
immediate operand follows any displacement bytes.
The immediate operand, if specified, is always the last
field of the instruction.

Figure 53 illustrates several of the fields that can appear
in aninstruction, such as the mod field and the r/m field,

but Figure 53 does not show ali fields. Several smaller
fields also appear in certain instructions, sometimes
within the op-code bytes themselves. Table 22 is a
complete list of all fields appearing inthe Instruction Set.
Further ahead, following Table 22, are detailed tables
for each field.

32-Bit Extensions of the Instruction Set

With the Am386SX CPU, the 8086/80186/80286
Instruction Set is extended in two orthogonal directions:
32-bit forms of all 16-bit instructions are added to
support the 32-bit data types; and, 32-bit addressing
modes are made available for all instructions
referencing memory. This orthogonal instruction set
extension is accomplished having a Default (D) bit in the
code segment descriptor, and by having 2 prefixes to
the instruction set.

Whether the instruction defaults to operations of 16 bits
or 32 bits depends on the setting of the D bit in the code
segment descriptor, which gives the default length
(either 32 bits or 16 bits) for both operands and effective
addresses, when executing that code segment. In the
Real Address Mode or Virtual 8086 Mode, no code
segment descriptors are used, but a D value of 0 is
assumed internally by the Am386SX CPU when
operating in those modes (for 16-bit default sizes
compatible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-code
bytes and affect only the instruction they precede. If

Table 22. Fields within Instructions

Field Name Description Number of Bits
w Specifies if data is byte or full size (full size is either 16 or 32 bits) 1

d Specifies direction of data operation 1

s Specifies if an immediate data field must be sign-extended 1

reg General Register Specifier 3

mod r/'m Address Mode Specifier (effective address can be a General Register) 2 for mod; 3 for r/m
ss Scale Factor for Scaled Index Address Mode 2

index - General Register to be used as index Register 3

base General Register to be used as Base Register 3

sreg2 Segment Register Specifier for CS, SS, DS, and ES 2

sreg3 Saegment Register Specifier for CS, SS, DS, ES, FS, and GS 3

tttn For Conditional Instructions, specifies a condition asserted or a condition negated 4

Note: Table 21 shows encoding of individual instructions.

TTTTTTTT}TTTTTTTTI"‘Od TTTr/m| ss index base]d32|16l8|nonedat332|16|8|none

7 o 7 076863 20 765320
- A I N J\ J
v v hd hd g
op-code mod r/m s-i-b address immediate
(one or two bytes) “ byte byte _, displacement data
(T represents an op-code bit) v (4, 2, 1 bytes, (4, 2, 1 bytes,
register and address or none) or none)
mode specifier
150228041
Figure 53. General Instruction Format
Am386SX Microprocessor 87

Copyrighted By Its Respective Manufacturer

a AMD

necessary, one or both of the prefixes may be placed
before the op-code bytes. The presence of the Operand
Size Prefix and the Effective Address Prefix will toggle
the operand size or the effective address size,
respectively, to the value opposite from the Default
setting. For example, if the default operand size is for
32-bit data operations, then presence of the Operand
Size Prefix toggles the instruction to 16-bit data
operation. As another example, if the default effective
address size is 16 bits, presence of the Effective
Address Size prefix toggles the instruction to use 32-bit
effective address computations.

These 32-bit extensions are available in all modes,
including the Real Address Mode and the Virtual 8086
Mode. In these modes the defauit is always 16 bits, so
prefixes are needed to specify 32-bit operands or
addresses. For instructions with more than one prefix,
the order of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit and
16-bit operands do not affect the contents of the
high-order of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immediately
ahead.

Encoding of Operand Length (w) Field

For any given instruction performing a data operation,
the instruction is executing as a 32-bit operation or a
16-bit operation. Within the constraints of the operation
size, the w field encodes the operand size as either one
byte or the full operation size, as shown in the table
below.

Operand Size

Operand Size

During 16-Bit During 32-Bit
w Field Data Operations Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

Encoding of the General Register (reg) Field

Encoding of reg Field When w Field Is
Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Function of w Field

reg {(when w = 0) (whenw=1)
000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field

reg (when w = 0) (whenw=1)
000 AL EAX
001 CL ECX
o010 DL EDX
011 BL EBX
100 AH ESP

101 CH EBP
110 DH ESI

111 BH EDI

Encoding of the Segment Register (sreg) Field

The sregfield in certain instructions is a 2-bit field, allow-
ing one of the four 80286 segment registers to be
specified. The sreg field in other instructions is a 3-bit
field, allowing the Am386SX CPU FS and GS segment
registers to be specified.

2-Bit sreg2 Field

2-Bit sreg2 Field Segment Register Selected

The general register is specified by the reg field, which
may appear in the primary op-code bytes, or as the reg
field of the mod r/m byte, or as the r/m field of the mod

r/m byte.

Encoding of reg Field When w Field is not
Present in Instruction

00 ES
01 CSs
10 SS
11 Ds

3-Bit sreg3 Field

3-Bit sreg3 Field Segment Register Selected
Register Selected | Register Selected
During 16-Bit During 32-Bit 000 ES
reg Field Data Operations Data Operations 001 cs
000 AX EAX 010 SS
001 CX ECX 011 DS
010 DX EDX 100 FS
100 SP ESP
101 BP EBP ::‘1’ :° ot use
101 s ESI 0 not use
101 DI EDI
88 Am386SX Microprocessor

This Materi al

Copyrighted By Its Respective Manufacturer

AMD u

Encoding of Address Mode

Except for special instructions, such as PUSH or POP,
where the addressing mode is predetermined, the ad-
dressing mode for the current instruction is specified by
addressing bytes following the primary op-code. The
primary addressing byte is the mod r/m byte, and a sec-
ond byte of addressing information, the s-i-b (scale-in-
dex-base) byte, can be specified.

The s-i-b byte is specified when using 32-bit addressing
mode, the mod r/m byte has r/m = 100, and mod = 00,
01, or 10. When the s-i-b byte is present, the 32-bit ad-
dressing mode is a function of the mod, ss, index, and
base fields.

The primary addressing byte, the mod r/m byte, aiso
contains three bits (shown as TTT in Figure 53) some-

times used as an extension of the primary op-code. The
three bits, however, may also be used as a register field
(reg).

When calculating an effective address, either 16-bit ad-
dressing or 32-bit addressing is used. 16-bit addressing
uses 16-bit address components to calculate the effec-
tive address, while 32-bit addressing uses 32-bit ad-
dress components to caiculate the effective address.
When 16-bit addressing is used, the mod r/m byte is in-
terpreted as a 16-bit addressing mode specifier. When
32-bit addressing is used, the mod r/m byte is inter-
preted as a 32-bit addressing mode specifier.

Tables onthe following three pages define all encodings
of all 16-bit addressing modes and 32-bit addressing
modes.

Encoding of 16-Bit Address Mode with mod r/m Byte

This Materi al

mod r/m Effective Address Register Specified by r/m
During 16-Bit Data Operations
88 gg? g:{g;: SIII] Function of w Field
00 010 SS:[BP + Si] mod r/m (when w = 0) (whenw =1)
00 oOf1 DS:[BP + DI 11 000 AL AX
00 100 DS:[S}) 11 001 CL CcX
00 101 DS:[DI] 11 010 DL DX
00 110 DS:d16 11 oM BL BX
00 111 DS:[BX] 11 100 AH SP
11 101 CH BP
01 000 DS:[BX + S+ d8] 11 110 DH SI
01 001 DS:BX + Dl + d8] 11 111 BH]}
01 010 SS:[BP + Sl + d8]
o1 on SS:[BP + DI + d8] Register Specified by r/m
01 100 DS:[SI + d8] During 32-Bit Data Operations
o1 101 DS:[DI + dg]
o1 110 SS[BP + d8] Function of w Field
o1 1M1 DS:[BX + d8) mod r/m {(when w = 0) (whenw = 1)
11 000 AL EAX
mod r/m Effective Address 11 001 CL ECX
11 010 DL EDX
10 000 DS:BX + Sl + d16] 11 o1 BL EBX
10 001 DS:BX + DI + d18) 11 100 AH ESP
10" 010 SS:[BP + Sl + d16) 11 101 CH EBP
10 o011 SS:[BP +S1+d16) 11 110 DH ESI
10 100 DS:[SI + d18) 11 111 BH EDI
10 101 DS:[DI + d16)
10 110 SS:[BP + d16]
10 111 DS:[BX + d16]
11 000 Register—See Below
11 001 Register—See Below
11 010 Register—See Below
11 oH1 Register—See Below
11 100 Register—See Below
11 101 Register—See Below
11 110 Register—See Below
11 111 Register—See Below
Am386SX Microprocessor 89

Copyrighted By Its Respective Manufacturer

u AMD

Encoding of 32-Bit Address Mode with mod r/m Byte (no s-i-b byte present)

mod r/'m Effective Address mod r/m Effective Address

00 000 DS:{EAX] 10 000 DS:{EAX + d32]

00 oot DS{ECX] 10 oot DS:ECX + d32]

00 010 DS{EDX) 10 010 DS{EDX + d32]

00 011 DS:{EBX] 10 ot DS:{EBX + d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:d32 10 101 SS:EBP + d32]

00 110 DSESI] 10 110 DSAHESI + d32]

00 111 DS:EDI] 10 111 DSHEDI + d32]

01 000 DS:[EAX + d8] 11 000 Register—See Below
01 001 DS:{ECX + d8] 11 001 Register—See Below
01 010 DS{EDX + d8] 11 010 Register—See Below
01 011 DS{EBX + d8] 11 011 Register—See Below
01 100 s-i-b is present 11 100 Register—See Below
01 101 SS:[EBP + d8] 11 101 Register—See Below
01 110 DS:{ESI + d8] 11 110 Register—See Below
01 11 DS:{EDI + d8g] 11 111 Register—See Below

Register Specified by reg or r/m
During 16-Bit Data Operations

mod r/m

Function of w Field

11 000
11 001
11 010
11 o011
11 100
11 101
11 110
11 111

(when w = 0) (whenw=1)

AL AX
CL CX
DL DX
BL BX
AH SP
CH BP
DH Si

BH DI

Register Specified by reg or r/m
During 32-Bit Data Operations

Function of w Field

mod r’'m (when w = 0) (whenw = 1)
11 000 AL EAX

11 00t CL ECX

11 010 DL EDX

11 011 BL EBX

11 100 AH ESP

11 101 CH EBP

11 110 DH ESI

11 111 BH EDI

90
This Materi al

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD a

Encoding of 32-Bit Address Mode (mod r/m byte and s-i-b byte present):

Note: Mod field in mod r/m byte; ss, index, and base fields in s-i-b byte.

mod base Effectlve Address ss Scale Factor

00 000 DS:[EAX + (scaled index)] oo x1

00 001 DS:[ECX + (scaled index)] o1 x2

00 010 DS:[EDX + (scaled index)] 10 x4

00 o1 DS:[EBX + (scaled index)] " x8

00 100 SS:[ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:[ESI + (scaled index)]

00 111 DS:{[EDI + (scaled index)] Index Index Register
000 EAX

01 000 DS:[EAX + (scaled index) + d8] o001 ECX

01 001 DS:[ECX + (scaled index) + d8] 010 EDX

0t 010 DS:[EDX + (scaled index) + d8] 011 EBX

01 011 DS:[EBX + (scaled index) + d8] 100 no index reg (see note)

01 100 SS:[ESP + (scaled index) + d8] 101 EBP

01 101 SS:[EBP + (scaled index) + d8] 110 ESI

01 110 DS:{ESI + (scaled index) + d8] 111 EDI

01 111 DS:[EDI + (scaled index) + d8] Note: When index field is 100, indicating no index register, then ss

L, 0w oot

10 000 DS:[EAX + (scaled index) + d32]

10 001 DS:[ECX + (scaled index) + d32]

10 010 DS:[EDX + (scaled index) + d32]

10 011 DS:[EBX + (scaled index) + d32]

10 100 SS:[ESP + (scaled index) + d32]

10 101 SS:[EBP + (scaled index) + d32]

10 110 DS:[ESI + (scaled index) + d32]

10 111 DS:[EDI + (scaled index) + d32]

This Materi al

Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

91

This Materi al

a AMD

Encoding of Operation Direction (d) Field

In many two-operand instructions, the d field is present
to indicate which operand is considered the source and
which is the destination.

d Direction of Operation

Register/Memory < Register

0 | reg Field indicates Source Operand;

mod r/m or mod ss index base indicates Destination
Operand.

Register «= Register/Memory

1 | reg Field indicates Destination Operand;

mod I/m or mod ss index base indicates Source
Operand.

Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with immedi-
ate data fields. The sfield has an effect only if the size of
the immediate data is 8 bits and is being placed in a
16-bit or 32-bit destination.

Mnemonic Condition tttn
(o] Overfiow 0000
NO No Overflow 0001
BNAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BENA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO No Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LENG Less Than or Equal/Not Greater Than | 1110
NLE/G Not Less Than or Equal/Greater Than | 1111

Encoding of Control or Debug or Test Register (eee)
Field

For the loading and storing of the Control, Debug, and
Test registers.

Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and
set on condition), titn is encoded with n indicating to
use the condition (n = 0), or its negation (n = 1), and
ttt giving the condition to test.

Effect on Effect on
[Immediate Datas Immediate Data 16|32 When Interpreted as Control Register Field
0 | None None eee Code Reg Name
000 CRO
1 | Sign-Extended Data8 to Fill | none 010 CR2
16-Bit or 32-Bit Destination ot CR3
Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRoO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
110 TRé
111 TR7

Do not use any other encoding

92 Am386SX Microprocessor

Copyrighted By Its Respective Manufacturer

AMD n

PHYSICAL DIMENSIONS

Forreference only. Allmeasurements are ininches, except for Outer Ring which is measured in millimeters. BSC is an

ANSI standard for Basic Space Centering.

45.7 |37.87 | 32.2 | .744
BSC |3g.13 [BSC | 752

5l

U
ey
a2

-

PQB 100
45.87
46.13 45.7 ~
| 41.37 BSC L
M 41.63 37.87 -
. 5.2 38.13 .
BSC 32.2
< } ,
.900 BSC
NOM 744
752
Y I/—\‘lll Lol ea ol ennanrnetpeepproeeetpproerrtpitgartnriliiiuiny J
3 y
=
[3 = o
Y = N4 O
= ©- S 0]
“5 50 > 26

3 0.25
= NOM
45.87 |41.37] 36.2 | .900 | S
46.13 |41.63| BSC [NOM{ o
E iy
3 0.010
3 NOM
v
v =
4 =
A 4 =
v 3
! (
| S—
TOP VIEW
/l—ﬂ i
’ / v 4
! 7 2.00 480
180 2\ 7 V_t |
T 7/ /
SIDE VIEW
_E]_lﬂﬂ: 65 TYP
65 1BSL530A
Pitch—s| |21 [*—45TYP 3°4/%1 D
Am386SX Microprocessor 93

This Material Copyrighted By Its Respective Manufacturer

u AMD

PHYSICAL DIMENSIONS (continued)

PQ 100

e 0.807
{.: 0.877 _ 0903

0.747 __ 0883
0.753

AAAAAAASAAASAAASAASSAASAS /T T
°1 75 [=
'y 4
=
-_l
=
=
=
= 0.747
= 0755
=
=
= 0.877
= | oess
=
=
== 0.897
—— 0503
=
=
=
—
-]
-_]
[=
-_

Top View

—-| le— 0.025 REF

0.160
l L0.1 80
0.60

REF o 0.020
0.040
Side View
15679A
BL 41
1119/91 CD
94 Am386SX Microprocessor

This Material Copyrighted By Its Respective Manufacturer

