Advance Information

MPC7455RXNXPNS Rev. 1.1, 1/2004

MPC7455 Part Number Specification for the XPC74x5RXnnnNx Series

Motorola Part Numbers Affected: XPC7455RX600NC XPC7455RX800NC XPC7445RX600NC XPC7445RX733NC XPC7445RX800NC

This document describes part-number-specific changes to recommended operating conditions and revised electrical specifications, as applicable, from those described in the general *MPC7455 RISC Microprocessor Hardware Specifications* (Order No. MPC7455EC). The MPC7455 is a PowerPCTM microprocessor.

Specifications provided in this document supersede those in the *MPC7455 RISC Microprocessor Hardware Specifications*, Rev. 0 or later, for the part numbers listed in Table A only. Specifications not addressed herein are unchanged. Because this document is frequently updated, refer to http://www.motorola.com/semiconductors or to your Motorola sales office for the latest version.

Note that headings and table numbers in this document are not consecutively numbered. They are intended to correspond to the heading or table affected in the general hardware specification.

Part numbers addressed in this document are listed in Table A.

Table A. Part Numbers Addressed by this Data Sheet

	Opera	ating Condition	s	
Motorola Part Number	CPU Frequency (MHz)	V _{DD}	T _j (°C)	Significant Differences from Hardware Specification
XPC7455RX600NC	600	1.3 V ± 50 mV	0 to 105	Modified core and VCO frequency,
XPC7455RX733NC	733			and power consumption specifications
XPC7455RX800NC	800			
XPC7445RX600NC	600			
XPC7445RX733NC	733			
XPC7445RX800NC	800			

Note: The X prefix in a Motorola part number designates a "Pilot Production Prototype" as defined by Motorola SOP 3-13. These are from a limited production volume of prototypes manufactured, tested, and Q.A. inspected on a qualified technology to simulate normal production. These parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur while shipping pilot production prototypes.

1.1 Features

This section summarizes changes to the features of the MPC7455 described in the MPC7455 RISC Microprocessor Hardware Specifications.

- Power management
 - 1.3-V processor core

1.3 General Parameters

• Core power supply: $1.3 \text{ V} \pm 50 \text{ mV}$ DC nominal

1.5.1 DC Electrical Characteristics

Table 4 provides the recommended operating conditions for the MPC7455 part numbers described herein.

Table 4. Recommended Operating Conditions

Characteristic	Symbol	Recommended Value	Unit
Core supply voltage	V_{DD}	1.3 V ± 50 mV	V
PLL supply voltage	AV _{DD}	1.3 V ± 50 mV	V

Note: These are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

General Parameters

Table 7 provides the power consumption for the MPC7455 part numbers described herein.

Table 7. Power Consumption for MPC7455

	Proce	Processor (CPU) Frequency					
	600 MHz	733 MHz	800 MHz	Unit	Notes		
	Full-Power	er Mode		•	•		
Typical	8.4	10.3	11.2	W	1, 3		
Maximum	11.9	14.5	15.9	W	1, 2		
	Doze I	Mode			•		
Typical	_	_	_	W	1, 2, 4		
	Nap N	lode					
Typical	1.4	1.7	1.8	W	1, 2		
	Sleep	Mode			•		
Typical	700	800	900	mW	1, 2		
	Deep Sleep Mode	(PLL Disabled)					
Typical	470	490	500	mW	1, 3		

Notes:

- 1. These values apply for all valid processor bus and L3 bus ratios. The values do not include I/O supply power (OV_{DD} and GV_{DD}) or PLL supply power (AV_{DD}). OV_{DD} and GV_{DD} power is system dependent, but is typically < 5% of V_{DD} power. Worst case power consumption for $AV_{DD} < 3$ mW.
- 2. Maximum power is measured at nominal V_{DD} while running an entirely cache-resident, contrived sequence of instructions which keep the execution units, with or without AltiVec, maximally busy.
- 3. Typical power is an average value measured at nominal V_{DD} in a system while running a typical code sequence.
- 4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As a result, power consumption for this mode is not tested.

General Parameters

Table 8 provides the clock AC timing specifications for the MPC7455 part numbers described herein.

Table 8. Clock AC Timing Specifications

At recommended operating conditions. See Table 4.

		Maximum Processor Core Frequency							
Characteristic	Symbol	600 MHz		733 MHz		800 MHz		Unit	Notes
		Min	Max	Min	Max	Min	Max		
Processor frequency	f _{core}	500	600	500	733	500	800	MHz	1
VCO frequency	f _{VCO}	1000	1200	1000	1466	1000	1600	MHz	1

Notes:

1. Caution: The SYSCLK frequency, PLL_CFG[0:4] settings must be chosen such that the resulting SYSCLK (bus) frequency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies (see Table 4 in the MPC7455 RISC Microprocessor Hardware Specifications). Refer to the PLL_CFG[0:4] signal description in Section 1.9.1, "PLL Configuration," for valid PLL_CFG[0:4] settings.

Table 12 provides the L3 bus interface AC timing specifications for MSUG2 for the MPC7455 part numbers described herein.

Table 12. L3 Bus Interface AC Timing Specifications for MSUG2

At recommended operating conditions. See Table 4.

			All Speed Grades						
Parameter	Symbol	L2CR[12] = 0 ar	nd L3CR[12] = 0 ⁸	L2CR[12] = 1 an	Unit	Notes			
		Min	Max	Min	Max				
L3_CLK rise and fall time	t _{L3CR} , t _{L3CF}	_	1.0	_	1.0	ns	1		
Setup times: Data and parity	t _{L3DVEH} , t _{L3DVEL}	-0.1	_	-0.1	_	ns	2, 3, 4		
Input hold times: Data and parity	t _{L3DXEH} , t _{L3DXEL}	t _{L3_ECHO_CLK} /4 + 0.6	_	t _{L3_ECHO_CLK} /4 +0.6		ns	2, 4		
Valid times: Data and parity	t _{L3CHDV} , t _{L3CLDV}	_	(- t _{L3_CLK} /4) + 0.4	_	(- t _{L3_CLK} /4) + 0.8	ns	5, 6, 7		
Valid times: All other outputs	t _{L3CHOV}	_	t _{L3_CLK} /4 + 1.0	_	t _{L3_CLK} /4 + 1.2	ns	5, 7		
Output hold times: Data and parity	t _{L3CHDX} ,	t _{L3_CLK} /4 - 0.4	_	t _{L3_CLK} /4 - 0.2	_	ns	5, 6, 7		
Output hold times: All other outputs	t _{L3CHOX}	t _{L3_CLK} /4 - 0.5	_	t _{L3_CLK} /4 - 0.3	_	ns	5, 7		
L3_CLK to high impedance: Data and parity	t _{L3CLDZ}	_	t _{L3_CLK} /2	_	t _{L3_CLK} /2	ns			

General Parameters

Table 12. L3 Bus Interface AC Timing Specifications for MSUG2 (continued)

At recommended operating conditions. See Table 4.

			All Speed Grades					
Parameter	Symbol	L2CR[12] = 0 ar	nd L3CR[12] = 0 ⁸	L2CR[12] = 1 an	d L3CR[12] = 1 ⁸	Unit	Notes	
		Min	Max	Min	Max			
L3_CLK to high impedance: All other outputs	t _{L3CHOZ}	_	t _{L3_CLK} /4 + 2.0	_	t _{L3_CLK} /4 + 2.0	ns		

Notes:

- Rise and fall times for the L3_CLK output are measured from 20% to 80% of GV_{DD}.
- 2. For DDR, all input specifications are measured from the midpoint of the signal in question to the midpoint voltage of the rising or falling edge of the input L3_ECHO_CLKn (see Figure 10 in the MPC7455 RISC Microprocessor Hardware Specifications). Input timings are measured at the pins.
- 3. For DDR, the input data will typically follow the edge of L3_ECHO_CLKn as shown in Figure 10 in the *MPC7455 RISC Microprocessor Hardware Specifications*. For consistency with other input setup time specifications, this will be treated as negative input setup time.
- 4. t_{L3_ECHO_CLK}/4 is one-fourth the period of L3_ECHO_CLK*n*. This parameter indicates that the MPC7455 can latch an input signal that is valid for only a short time before and a short time after the midpoint between the rising and falling (or falling and rising) edges of L3_ECHO_CLK*n* at any frequency.
- 5. All output specifications are measured from the midpoint voltage of the rising (or for DDR write data, also the falling) edge of L3_CLK to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 8 in the MPC7455 RISC Microprocessor Hardware Specifications).
- 6. For DDR, the output data will typically lead the edge of L3_CLKn as shown in Figure 10 in the MPC7455 RISC Microprocessor Hardware Specifications. For consistency with other output valid time specifications, this will be treated as negative output valid time.
- 7. t_{L3_CLK}/4 is one-fourth the period of L3_CLK*n*. This parameter indicates that the specified output signal is actually launched by an internal clock delayed in phase by 90°. Therefore, there is a frequency component to the output valid and output hold times such that the specified output signal will be valid for approximately one L3_CLK period starting three-fourths of a clock prior to the edge on which the SRAM will sample it and ending one-fourth of a clock period after the edge it will be sampled.
- 8. These configuration bits allow the AC timing of the L3 interface to be altered via software. They must be both set or both cleared; other configurations will increase t_{L3CSKW1}, which may cause unreliable L3 operation.

General Parameters

Table 13 provides the L3 bus AC timing specifications for PB2 and Late Write SRAMs for the MPC7455 part numbers described herein.

Table 13. L3 Bus Interface AC Timing Specifications for PB2 and Late Write SRAMs At recommended operating conditions. See Table 4.

			All Speed	d Grades			
Parameter	Symbol	L2CR[12]=0 an	d L3CR[12]=0 ⁶	L2CR[12]=1 an	d L3CR[12]=1 ⁶	Unit	Notes
		Min	Max	Min	Max		
L3_CLK rise and fall time	t _{L3CR} , t _{L3CF}	_	1.0	_	1.0	ns	1, 5
Setup times: Data and parity	t _{L3DVEH}	1.5	_	1.5	_	ns	2, 5
Input hold times: Data and parity	t _{L3DXEH}	_	0.5	_	0.5	ns	2, 5
Valid times: Data and parity	t _{L3CHDV}	_	t _{L3_CLK} /4 + 1.0	_	t _{L3_CLK} /4 + 1.2	ns	3, 4, 5
Valid times: All other outputs	t _{L3CHOV}	_	t _{L3_CLK} /4 + 1.0	_	t _{L3_CLK} /4 + 1.2	ns	4
Output hold times: Data and parity	t _{L3CHDX}	t _{L3_CLK} /4 - 0.4	_	t _{L3_CLK} /4 - 0.2	_	ns	3, 4, 5
Output hold times: All other outputs	t _{L3CHOX}	t _{L3_CLK} /4 - 0.4	_	t _{L3_CLK} /4 - 0.2	_	ns	4, 5
L3_CLK to high impedance: Data and parity	t _{L3CHDZ}	_	2.0	_	2.0	ns	5
L3_CLK to high impedance: All other outputs	t _{L3CHOZ}	_	2.0	_	2.0	ns	5

Notes:

- 1. Rise and fall times for the L3_CLK output are measured from 20% to 80% of GV_{DD}.
- 2. All input specifications are measured from the midpoint of the signal in question to the midpoint voltage of the rising edge of the input L3_ECHO_CLKn (see Figure 10 in the MPC7455 RISC Microprocessor Hardware Specifications). Input timings are measured at the pins.
- 3. All output specifications are measured from the midpoint voltage of the rising edge of L3_CLK*n* to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 10 in the *MPC7455 RISC Microprocessor Hardware Specifications*).
- 4. t_{L3_CLK}/4 is one-fourth the period of L3_CLKn. This parameter indicates that the specified output signal is actually launched by an internal clock delayed in phase by 90°. Therefore, there is a frequency component to the output valid and output hold times such that the specified output signal will be valid for approximately one L3_CLK period starting three-fourths of a clock prior to the edge on which the SRAM will sample it and ending one-fourth of a clock period after the edge it will be sampled.
- 5. Timing behavior and characterization are currently being evaluated.
- 6. These configuration bits allow the AC timing of the L3 interface to be altered via software. They must be both set or both cleared; other configurations will increase t_{L3CSKW1} and t_{L3CSKW2}, which may cause unreliable L3 operation.

1.9.1 PLL Configuration

The MPC7455 PLL is configured by the PLL_CFG[0:4] signals; note that PLL_CFG[4] was formerly called PLL_EXT in earlier documentation. For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency of operation. PLL_CFG[4] will normally be pulled low but can be asserted for extended modes of operation. The PLL configuration for the MPC7455 is shown in Table 17 for a set of example frequencies. In this example, shaded cells represent settings that, for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with the 1-GHz column in Table 8. Note that the settings for Rev. C devices are different than those for subsequent devices.

Table 17. MPC7455 Microprocessor PLL Configuration Example for 800-MHz Parts

		Examp	le Bus-to-Co	re Freque	ncy in MHz	(VCO Freq	uency in N	/IHz)	
PLL_CFG [0:4]	Bus-to- Core Multiplier	Core-to- VCO Multiplier	Bus 33.3 MHz	Bus 50 MHz	Bus 66.6 MHz	Bus 75 MHz	Bus 83 MHz	Bus 100 MHz	Bus 133 MHz
00000	0.5x	2x							
01000	2x	2x							
01100	2.5x	2x							
10000	3x	2x							
11100	3.5x	2x							
10100	4x	2x							533 (1066)
01110	4.5x	2x							600 (1200)
10110	5x	2x						500 (1000)	667 (1333)
10010	5.5x	2x						550 (1100)	733 (1466)
11010	6x	2x						600 (1200)	800 (1600)
01010	6.5x	2x					540 (1080)	650 (1300)	
00100	7x	2x				525 (1050)	580 (1160)	700 (1400)	
00010	7.5x	2x			500 (1000)	563 (1125)	623 (1245)	750 (1500)	
11000	8x	2x			533 (1066)	600 (1200)	664 (1328)	800 (1600)	
01111	9x	2x			600 (1200)	675 (1350)	747 (1494)		

Table 17. MPC7455 Microprocessor PLL Configuration Example for 800-MHz Parts (continued)

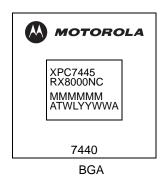
		Examp	le Bus-to-Co	re Freque	ncy in MHz	(VCO Freq	uency in N	ИHz)	
PLL_CFG [0:4]	Bus-to- Core Multiplier	Core-to- VCO Multiplier	Bus 33.3 MHz	Bus 50 MHz	Bus 66.6 MHz	Bus 75 MHz	Bus 83 MHz	Bus 100 MHz	Bus 133 MHz
10101	10x	2x		500 (1000)	667 (1333)	750 (1500)			
10011	11x	2x		550 (1100)	733 (1466)				
10111	12x	2x		600 (1200)	800 (1600)				
01011	13x	2x		650 (1300)					
11001	14x	2x		700 (1400)					
00011	15x	2x	500 (1000)	750 (1500)					
11011	16x	2x	533 (1066)	800 (1600)					
00110	PLL off	/bypass		PLL of	f, SYSCLK o	locks core	circuitry dir	rectly	
11110	PLL off		PLL off, no core clocking occurs						

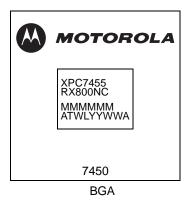
1.11 Ordering Information

1.11.1 Part Numbers Addressed by this Specification

Table 21 provides the ordering information for the MPC7455 parts described in this document.

Table 21. Part Marking Nomenclature


XPC	74 <i>x</i> 5	RX	nnn	X	X
Product Code	Part Identifier	Package	Processor Frequency ¹	Application Modifier	Revision Level
XPC ²	7455 7445	RX = CBGA	600 733 800	N: 1.3 V ± 50 mV 0 to 105°C	C: 2.1; PVR = 8001 0201


Notes:

- Processor core frequencies supported by parts addressed by this specification only. Parts addressed by other specifications may support other maximum core frequencies.
- ² The X prefix in a Motorola part number designates a "Pilot Production Prototype" as defined by Motorola SOP 3-13. These are from a limited production volume of prototypes manufactured, tested, and Q.A. inspected on a qualified technology to simulate normal production. These parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur while shipping pilot production prototypes.

1.11.3 Part Marking

Parts are marked as the example shown in Figure 29.

Notes:

MMMMMM is the 6-digit mask number.

ATWLYYWWA is the traceability code.

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

Figure 29. Motorola Part Marking for BGA Devices

Document Revision History

Table B provides a revision history for this part number specification.

Table B. Document Revision History

Rev. No.	Substantive Change(s)
0	Initial release.
0.1	Updated wording in Table A, 'Significant Differences from Hardware Specification,' column.
	Corrected part number in heading of Table 7 (changed from MPC7450 to MPC7455).
	Added Document Revision History section and Table B.
1	Updated Table 7, note 1.
	Added Tables 2, 12, 13, and 17.
1.1	Tabled 9: corrected typo in units for Sleep Mode power, changed "W" to "mW".
	Table 17: corrected PLL_CFG values; previous revisions of this specification had swapped PLL_CFG[0] with PLL_CFG[4].

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-480-768-2130 (800) 521-6274

JAPAN:

Motorola Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd. Silicon Harbour Centre, 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

(800) 521-6274

HOME PAGE:

www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2004

MPC7455RXNXPNS