DSP56309

Advance Information 24-BIT GENERAL PURPOSE DIGITAL SIGNAL PROCESSOR

The DSP56309 is a member of the DSP56300 core family of programmable CMOS digital signal processors (DSPs). This family uses a high performance, single-clock-cycle-per-instruction engine providing a two-fold performance increase over Motorola's popular DSP56000 core, while retaining code compatibility. Significant architectural enhancements in the DSP56300 family include a barrel shifter, 24-bit addressing, an instruction cache, and direct memory access (DMA). The DSP56309 offers 100 MIPS at 3.0–3.6 V using an internal 100 MHz clock. The large on-chip memory is ideal for wireless infrastructure and wireless local-loop applications. The DSP56300 core family offers a new level of performance in speed and power provided by its rich instruction set and low-power dissipation, thus enabling a new generation of wireless, multimedia, and telecommunications products.

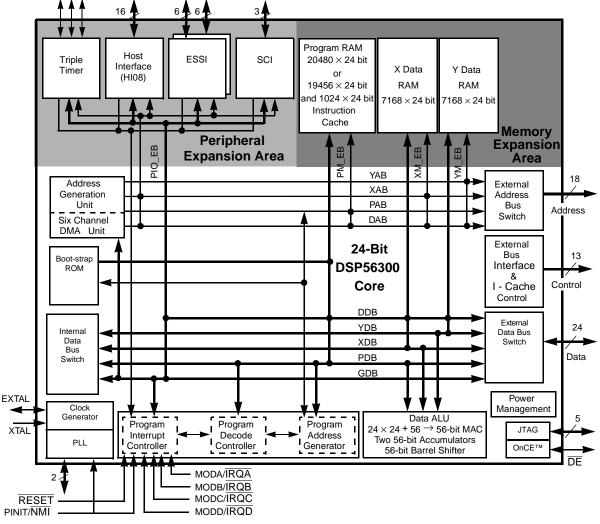


Figure 1 DSP56309 Block Diagram

CONTENTS

SECTION 1	SIGNAL/CONNECTION DESCRIPTIONS	1-1
SECTION 2	SPECIFICATIONS	2-1
SECTION 3	PACKAGING	3-1
SECTION 4	DESIGN CONSIDERATIONS	4- 1
APPENDIX A	POWER CONSUMPTION BENCHMARK	4-1
	INDEXInde	x-1

Data Sheet Conventions

This data sheet uses the following conventions:

OVERBAR	Used to indicate a signal that is active when pulled low (For example, the $\overline{\text{RESET}}$ pin is active when low.)			
"asserted"	Means that a high true (a	ctive high) signal is high	or that a low true (active lo	w) signal is low
"deasserted"	Means that a high true (a	ctive high) signal is low o	or that a low true (active low	v) signal is high
Examples:	Signal/Symbol	Logic State	Signal State	Voltage ¹
	PIN	True	Asserted	V_{IL}/V_{OL}
	PIN	False	Deasserted	V_{IH}/V_{OH}
	PIN	True	Asserted	V_{IH}/V_{OH}
	PIN	False	Deasserted	V_{IL}/V_{OL}

Values for $V_{\text{IL}},\,V_{\text{OL}},\,V_{\text{IH}},$ and V_{OH} are defined by individual product specifications.

FEATURES

High Performance DSP56309 Core

- 100-million instructions per second (MIPS) with a 100 MHz clock at 3.0–3.6 V
- Object-code compatible with the DSP56000 core
- · Highly parallel instruction set
- Data arithmetic logic unit (ALU)
 - Fully pipelined 24 × 24-bit parallel multiplier-accumulator (MAC)
 - 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing)
 - Conditional ALU instructions
 - 24-bit or 16-bit arithmetic support under software control
- Program control unit (PCU)
 - Position independent code (PIC) support
 - Addressing modes optimized for DSP applications (including immediate offsets)
 - On-chip instruction cache controller
 - On-chip memory-expandable hardware stack
 - Nested hardware DO loops
 - Fast auto-return interrupts
- Direct memory access (DMA)
 - Six DMA channels supporting internal and external accesses
 - One-, two-, and three-dimensional transfers (including circular buffering)
 - End-of-block-transfer interrupts
 - Triggering from interrupt lines, all peripherals, and DMA channels
- Phase-locked loop (PLL)
 - Allows change of low-power divide factor (DF) without loss of lock
 - Output clock with skew elimination
- · Hardware debugging support
 - On-Chip Emulation (OnCETM) module
 - Joint Test Action Group (JTAG) test access port (TAP)
 - Address trace mode reflects internal program RAM accesses at the external port

On-Chip Memory

• Program RAM, Instruction Cache, X data RAM, and Y data RAM size are programmable.

Instruction Cache	Switch Mode	Program RAM Size	Instruction Cache Size	X Data RAM Size	Y Data RAM Size
disabled	disabled	20480×24 bits	0	7168×24 bits	7168×24 bits
enabled	disabled	19456×24 bits	1024×24 bits	7168×24 bits	7168×24 bits
disabled	enabled	24576×24 bits	0	5120×24 bits	5120×24 bits
enabled	enabled	23552×24 bits	1024×24 bits	5120×24 bits	5120×24 bits

• 192 x 24-bit bootstrap ROM

Off-Chip Memory Expansion

- External memory expansion port
- Data memory expansion to two 256 K \times 24-bit word memory spaces (or up to two 4 M \times 24-bit word memory spaces by using the address attribute AA0–AA3 signals)
- Program memory expansion to one 256 K \times 24-bit words memory space (or up to one 4 M \times 24-bit word memory space by using the address attribute AA0–AA3 signals)
- Simultaneous glueless interface to four blocks of either SRAM or DRAM through chip select logic
- Supports interleaved, non-interfering access to both types of memory without losing in-page DRAM access, including DMA-driven access

On-Chip Peripherals

- Enhanced DSP56000-like 8-bit parallel host interface (HI08) supports a variety of buses (e.g., industry standard architecture) and provides glueless connection to a number of industry standard microcomputers, microprocessors, and DSPs
- Two enhanced synchronous serial interfaces (ESSI0 and ESSI1), each with one receiver and three transmitters (allows six-channel home theater)
- Serial communications interface (SCI) with baud rate generator
- Triple timer module
- Up to 34 programmable general purpose input/output (GPIO) pins, depending on which peripherals are enabled

Reduced Power Dissipation

- Very low-power CMOS design
- Fully-static logic, operation frequency down to 0 Hz (dc)
- Wait and stop low-power standby modes
- Optimized, cycle-by-cycle power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent)

TARGET APPLICATIONS

The DSP56309 is intended for applications benefiting from a large amount of on-chip memory, such as wireless infrastructure applications.

PRODUCT DOCUMENTATION

The three documents listed in the following table are required for a complete description of the DSP56309 and are necessary to design properly with the part. Chip errata—if any exist—are available at the Motorola website. Documentation is available from the following locations:

- A local Motorola distributor
- · A Motorola semiconductor sales office
- A Motorola Literature Distribution Center
- The World Wide Web (WWW)

See the back cover for specific addresses and phone numbers.

See your Motorola distributor for detailed information about the multiple support options available to you.

Table 2. DSP56309 Documentation

Name	Description	Order Number
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM/AD
DSP56309 User's Manual	Detailed functional description of the DSP56309 memory configuration, operation, and register programming	DSP56309UM/D
DSP56309 Technical Data	DSP56309 features list and physical, electrical, timing, and package specifications	DSP56309/D

SECTION 1

Signal/Connection Descriptions

SIGNAL GROUPINGS

The DSP56309 input and output signals are organized into functional groups, as shown in **Table 1-1** and illustrated in **Figure 1-1**.


The DSP56309 operates from a 3 V supply; however, some of the inputs can tolerate 5 V. A special notice for this feature is added to the signal descriptions of those inputs.

Table 1-1. DSP56309 Functional Signal Groupings

Functional Group	Number of Signals	Detailed Description	
Power (V _{CC})		18	Table 1-3
Ground (GND)		19 in TQFP 66 in MAP-BGA	Table 1-4
Clock		2	Table 1-5
PLL		3	Table 1-6
Address Bus			
Data Bus Port A ¹		24	Table 1-8
Bus Control	13	Table 1-9	
Interrupt and Mode Control	5	Table 1-10	
Host Interface (HI08) Port B ²		16	Table 1-12
Enhanced Synchronous Serial Interface (ESSI)	12	Table 1-13 and Table 1-14	
Serial Communication Interface (SCI)	3	Table 1-15	
Timer	3	Table 1-16	
JTAG/OnCE Port	6	Table 1-17	

Note: 1. Port A signals define the external memory interface port, including the external address bus, data bus, and control signals.

- 2. Port B signals are the HI08 port signals multiplexed with the GPIO signals.
- 3. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals.
- 4. Port E signals are the SCI port signals multiplexed with the GPIO signals.

- The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or double Host Request (HR) configurations. Since each of these modes is configured independently, any combination of these modes is possible. These HI08 signals can also be configured as GPIO signals (PB[0–15]). Signals with dual designations (for example, HAS/HAS) have configurable polarity.
- 2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0–5]), Port D GPIO signals (PD[0–5]), and Port E GPIO signals (PE[0–2]), respectively.
- 3. TIO[0-2] can be configured as GPIO signals.

Figure 1-1. Signals Identified by Functional Group

In the DSP56309, certain pins have weak keeper circuits. For these pins, a tri-stated signal is not disconnected electrically during reset; rather, an output is driven by the weak keeper. Consequently, the value of pull-up or pull-down resistors on such pins should be taken into account for those signals. Refer to **Electrical Design Considerations** on page 4-2 for recommended resistor values. **Table 1-2** lists the pins that have weak keeper circuits.

Table 1-2. Pins with Weak Keeper Circuits

Block	Pins
Port A Data Bus	D[0-23]
Host Interface (HI08)	PB[0-15]
Enhanced Synchronous Serial Interface (ESSI)	PC[0-5] and PD[0-5]
Synchronous Communication Interface (SCI)	PE[0-2]
Timers	TIO[0-2]

Note: The keeper circuits remain connected even if the pins are configured for peripheral signals instead of GPIO signals.

POWER

Table 1-3. Power Inputs

Name	Description
V _{CCP}	PLL Power V _{CC} dedicated for use with Phase Lock Loop (PLL). The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V _{CC} power rail.
V _{CCQ}	Quiet Power An isolated power for the internal processing logic. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.
V _{CCA}	Address Bus Power An isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.
V _{CCD}	Data Bus Power An isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.
V _{CCC}	Bus Control Power An isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.
V _{CCH}	Host Power An isolated power for the HI08 I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.
V _{CCS}	ESSI, SCI, and Timer Power An isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.
Note:	These designations are package-dependent. Some packages connect all V_{CC} inputs except V_{CCP} to each other internally. On those packages, all power input except V_{CCP} are labeled V_{CC} . The total number of V_{CC} connections is package-dependent.

GROUND

Table 1-4. Grounds

Ground Name	Description
GND _P	PLL Ground Ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. V_{CCP} should be bypassed to GND _P by a 0.47 μ F capacitor located as close as possible to the chip package.
GND _{P1}	PLL Ground 1 Ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground.
GNDQ	Quiet Ground An isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.
GND _A	Address Bus Ground An isolated ground for sections of the address bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.
GND _D	Data Bus Ground An isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.
GND _C	Bus Control Ground An isolated ground for the bus control I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.
GND _H	Host Ground An isolated ground for the HI08 I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.
GND _S	ESSI, SCI, and Timer Ground An isolated ground for the ESSI, SCI, and timer I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors.
and GND _{P1}	gnations are package-dependent. The MAP-BGA package connects all GND inputs except GND _P to each other internally. On the MAP-BGA package, all ground connections except GND _P and labeled GND. The total number of GND connections is package-dependent.

CLOCK

Table 1-5. Clock Signals

Signal Name	Туре	State During Reset	Signal Description
EXTAL	Input	Input	External Clock/Crystal Input Interfaces the internal crystal oscillator input to an external crystal or an external clock.
XTAL	Output	Chip-driven	Crystal Output Connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected.

PHASE LOCK LOOP (PLL)

Table 1-6. Phase Lock Loop Signals

Signal Name	Туре	State During Reset	Signal Description
CLKOUT	Output	Chip-driven	Clock Output Provides an output clock synchronized to the internal core clock phase.
			If the PLL is enabled and both the multiplication and division factors equal one, then CLKOUT is also synchronized to EXTAL.
			If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL.
PCAP	Input	Input	PLL Capacitor Connects an off-chip capacitor to the PLL filter. Connect one capacitor terminal to PCAP and the other terminal to V _{CCP}
			If the PLL is not used, PCAP can be tied to V_{CC} , GND, or left floating.
PINIT/NMI	Input	Input	PLL Initial/Non-Maskable Interrupt During assertion of RESET, the value of PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register, determining whether the PLL is enabled or disabled. After RESET deassertion and during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a negative-edge-triggered Non-Maskable Interrupt (NMI) request internally synchronized to CLKOUT.
			PINIT/NMI can tolerate 5 V.

EXTERNAL MEMORY EXPANSION PORT (PORT A)

Note:

When the DSP56309 enters a low-power standby mode (Stop or Wait), it releases bus mastership and tri-states the relevant Port A signals: A[0–17], D[0–23], AA[0–3]/ $\overline{RAS[0-3]}$, \overline{RD} , \overline{WR} , \overline{BB} , \overline{CAS} , BCLK, \overline{BCLK} .

EXTERNAL ADDRESS BUS

Table 1-7. External Address Bus Signals

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
A[0-17]	Output	Tri-stated	Address Bus When the DSP is the bus master, A[0–17] specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A[0–17] do not change state when external memory spaces are not being accessed.

EXTERNAL DATA BUS

Table 1-8. External Data Bus Signals

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
D[0-23]	Input/Output	Driven by keeper circuit	Data Bus When the DSP is the bus master, D[0–23] provide the bidirectional data bus for external program and data memory accesses. When used as outputs, these signals have a weak keeper circuit that maintains the last state externally even if all drivers are tri-stated.

EXTERNAL BUS CONTROL

Table 1-9. External Bus Control Signals

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
AA[0-3]/ RAS[0-3]	Output	Tri-stated	Address Attribute or Row Address Strobe As AA, these signals function as chip selects or additional address lines. Unlike address lines, however, the AA lines do not hold their state after a read or write operation. As RAS, these signals can be used for Dynamic Random Access Memory (DRAM) interface. These signals have programmable polarity.

Table 1-9. External Bus Control Signals (Continued)

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
RD	Output	Tri-stated	Read Enable When the DSP is the bus master, RD is asserted to read external memory on the data bus (D[0–23]). Otherwise, RD is tri-stated.
WR	Output	Tri-stated	Write Enable When the DSP is the bus master, WR is asserted to write external memory on the data bus (D[0–23]). Otherwise, WR is tri-stated.
TA	Input	Ignored Input	Transfer Acknowledge If the DSP56309 is the bus master and there is no external bus activity, or the DSP56309 is not the bus master, the TA input is ignored. The TA input is a Data Transfer Acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2,, infinity) can be added to the wait states inserted by the BCR by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, asserted to enable completion of the bus cycle, and deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the Bus Control Register (BCR), whichever is longer. The BCR can set the minimum number of wait states in external bus cycles. To use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access cannot be extended by TA deassertion; otherwise improper operation may result. TA can operate synchronously or asynchronously, depending on the setting of the TAS bit in the Operating Mode Register (OMR). TA functionality cannot be used during DRAM-type accesses; otherwise improper operation may result.
BR	Output	Output (deasserted)	Bus Request Asserted when the DSP requests bus mastership and deasserted when the DSP no longer needs the bus. BR can be asserted or deasserted independently of whether the DSP56309 is a bus master or a bus slave. Bus "parking" allows BR to be deasserted even though the DSP56309 is the bus master (see the description of bus "parking" in the BB signal description). The Bus Request Hole (BRH) bit in the BCR allows BR to be asserted under software control, even though the DSP does not need the bus. BR is typically sent to an external bus arbitrator that controls the priority, parking and tenure of each master on the same external bus. BR is affected only by DSP requests for the external bus, never for the internal bus. During hardware reset, BR is deasserted and the arbitration is reset to the bus slave state.

Table 1-9. External Bus Control Signals (Continued)

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
BG	Input	Ignored Input	Bus Grant Must be asserted/deasserted synchronous to CLKOUT for proper operation. An external bus arbitration circuit asserts BG when the DSP56309 becomes the next bus master. When BG is asserted, the DSP56309 must wait until BB is deasserted before taking bus mastership. When BG is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution.
BB	Input/ Output	Input	Bus Busy Indicates that the bus is active and must be asserted and deasserted synchronous to CLKOUT. Only after \$\overline{BB}\$ is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master can keep \$\overline{BB}\$ asserted after ceasing bus activity, regardless of whether \$\overline{BR}\$ is asserted or deasserted. This is called "bus parking" and allows the current bus master to reuse the bus without re-arbitration until another device requires the bus. \$\overline{BB}\$ is deasserted by an "active pull-up" method (that is, \$\overline{BB}\$ is driven high and then released and held high by an external pull-up resistor). \$\overline{BB}\$ requires an external pull-up resistor.
CAS	Output	Tri-stated	Column Address Strobe When the DSP is the bus master, DRAM uses CAS to strobe the column address. Otherwise, if the Bus Mastership Enable (BME) bit in the DRAM Control Register is cleared, the signal is tri-stated.
BCLK	Output	Tri-stated	Bus Clock When the DSP is the bus master, BCLK is active when the OMR[ATE] is set. When BCLK is active and synchronized to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth of a clock cycle.
BCLK	Output	Tri-stated	Bus Clock Not When the DSP is the bus master, BCLK is the inverse of the BCLK signal. Otherwise, the signal is tri-stated.

INTERRUPT AND MODE CONTROL

The interrupt and mode control signals select the chip's operating mode as it comes out of hardware reset. After \overline{RESET} is deasserted, these inputs are hardware interrupt request lines.

 Table 1-10.
 Interrupt and Mode Control

Signal Name	Туре	State During Reset	Signal Description
MODA/IRQA	Input	Input	Mode Select A/External Interrupt Request A Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA/IRQA MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted. Internally synchronized to CLKOUT. If IRQA is asserted
			synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQA to exit the Wait state. If the processor is in the Stop standby state and IRQA is asserted, the processor will exit the Stop state.
			MODA/IRQA can tolerate 5 V.
MODB/IRQB	Input	Input	Mode Select B/External Interrupt Request B Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into OMR when the RESET signal is deasserted.
			Internally synchronized to CLKOUT. If $\overline{\text{IRQB}}$ is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting $\overline{\text{IRQB}}$ to exit the Wait state.
			MODB/IRQB can tolerate 5 V.
MODC/IRQC	Input	Input	Mode Select C/External Interrupt Request C Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into OMR when the RESET signal is deasserted.
			Internally synchronized to CLKOUT. If IRQC is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQC to exit the Wait state.
			MODC/IRQC can tolerate 5 V.

Table 1-10. Interrupt and Mode Control (Continued)

Signal Name	Туре	State During Reset	Signal Description
MODD/ĪRQD	Input	Input	Mode Select D/External Interrupt Request D Selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into OMR when the RESET signal is deasserted. Internally synchronized to CLKOUT. If IRQD is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQD to exit the Wait state.
			MODD/IRQD can tolerate 5 V.
RESET	Input	Input	Reset Deassertion of RESET is internally synchronized to the clock out (CLKOUT). When asserted, the chip is placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. If RESET is deasserted synchronous to CLKOUT, exact start-up timing is guaranteed, allowing multiple processors to start and operate synchronously. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after power-up.
			RESET can tolerate 5 V.

HOST INTERFACE (HI08)

The HI08 provides a fast, parallel data-to-8-bit port that can directly connect to the host bus. The HI08 supports a variety of standard buses and can directly connect to a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

Host Port Usage Considerations

Careful synchronization is required when the system reads multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in **Table 1-11**.

Table 1-11. Host Port Usage Considerations

Action	Description
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag that indicates data is available. This assures that the data in the receive byte registers is valid.
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers transfer valid data to the Host Receive (HRX) register.
Asynchronous write to host vector	The host interface programmer must change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This practice guarantees that the DSP interrupt control logic receives a stable vector.

Host Port Configuration

HI08 signal functions vary according to the programmed configuration of the interface as determined by the 16 bits in the HI08 Port Control Register (HPCR). Refer to the DSP56309 *User's Manual* for detailed descriptions of HI08 configuration registers.

Table 1-12. Host Interface

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
H[0-7]	Input/Output ²	Disconnected internally	Host Data When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the Data bus.
HAD[0-7]	Input/Output ²		Host Address When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the Address/Data bus.
PB[0-7]	Input or Output ²		Port B 0–7 When the HI08 is configured as GPIO through the HPCR, these signals are individually programmed through the HI08 Data Direction Register (HDDR). This input is 5 V tolerant.

Table 1-12. Host Interface (Continued)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
HA0	Input	Disconnected internally	Host Address Input 0 When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, this signal is line 0 of the Host Address bus.
HAS/HAS	Input		Host Address Strobe When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is the Host Address Strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable, but is configured active-low (HAS) following reset.
PB8	Input or Output ²		Port B 8 When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.
HA1	Input	Disconnected internally	Host Address Input 1 When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, this signal is line 1 of the Host Address bus.
HA8	Input		Host Address 8 When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 8 of the Host Address bus.
PB9	Input or Output ²		Port B 9 When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.
HA2	Input	Disconnected internally	Host Address Input 2 When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, this signal is line 2 of the Host Address bus.
НА9	Input		Host Address 9 When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 9 of the Host Address bus.
PB10	Input or Output ²		Port B 10 When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.

Table 1-12. Host Interface (Continued)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
HCS/HCS	Input	Disconnected internally	Host Chip Select When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, this signal is the Host Chip Select (HCS) input. The polarity of the chip select is programmable, but is configured active-low (HCS) after reset.
HA10	Input		Host Address 10 When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 10 of the Host Address bus.
PB13	Input or Output ²		Port B 13 When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.
HRW	Input	Disconnected internally	Host Read/Write When the HI08 is programmed to interface with a single-data-strobe host bus and the HI function is selected, this signal is the Host Read/Write input.
HRD/HRD	Input		Host Read Data When the HI08 is programmed to interface with a double-data-strobe host bus and the HI function is selected, this signal is the Host Read Data strobe (HRD) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HRD) after reset.
PB11	Input or Output ²		Port B 11 When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.

Table 1-12. Host Interface (Continued)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
HDS/HDS	Input	Disconnected internally	Host Data Strobe When the HI08 is programmed to interface with a single-data-strobe host bus and the HI function is selected, this signal is the Host Data Strobe (HDS) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HDS) following reset.
HWR/HWR	Input		Host Write Data When the HI08 is programmed to interface with a double-data-strobe host bus and the HI function is selected, this signal is the Host Write Data Strobe (HWR) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HWR) following reset.
PB12	Input or Output ²		Port B 12 When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.
HREQ/HREQ	Output ²	Disconnected internally	Host Request When the HI08 is programmed to interface with a single host request host bus and the HI function is selected, this signal is the Host Request (HREQ) output. The polarity of the host request is programmable, but is configured as active-low (HREQ) following reset. The host request can be programmed as a driven or open-drain output.
HTRQ/HTRQ	Output ²		Transmit Host Request When the HI08 is programmed to interface with a double host request host bus and the HI function is selected, this signal is the Transmit Host Request (HTRQ) output. The polarity of the host request is programmable, but is configured as active-low (HTRQ) following reset. The host request may be programmed as a driven or open-drain output.
PB14	Input or Output ²		Port B 14 When the HI08 is programmed to interface with a multiplexed host bus and the signal is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.

Table 1-12. Host Interface (Continued)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
HACK/HACK	Input	Disconnected internally	Host Acknowledge When the HI08 is programmed to interface with a single host request host bus and the HI function is selected, this signal is the Host Acknowledge (HACK) Schmitt-trigger input. The polarity of the host acknowledge is programmable, but is configured as active-low (HACK) after reset.
HRRQ/HRRQ	Output ²		Receive Host Request When the HI08 is programmed to interface with a double host request host bus and the HI function is selected, this signal is the Receive Host Request (HRRQ) output. The polarity of the host request is programmable, but is configured as active-low (HRRQ) after reset. The host request may be programmed as a driven or open-drain output.
PB15	Input or Output ²		Port B 15 When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed through the HDDR.
			This input is 5 V tolerant.

- **1.** The Wait processing state does not affect the signal state.
- **2.** When configured as an output, these signals have a weak keeper circuit that maintains the last state externally even if all drivers are tri-stated.

ENHANCED SYNCHRONOUS SERIAL INTERFACE 0 (ESSI0)

Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard CODECs, other DSPs, microprocessors, and peripherals that implement the Motorola Serial Peripheral Interface (SPI).

Table 1-13. Enhanced Synchronous Serial Interface 0 (ESSI0)

Signal	Туре	State During ¹		Signal Description
Name		Reset	Stop	Signal Description
SC00	Input or Output ²	Input	Disconnected internally	Serial Control 0 Functions in either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receive clock I/O (Schmitt-trigger input). For Synchronous mode, this signal is either for Transmitter 1 output or Serial I/O Flag 0.
PC0				Port C 0 The default configuration following reset is GPIO. For PC0, signal direction is controlled through the Port Directions Register (PRR0). The signal can be configured as ESSI signal SC00 through the Port Control Register (PCR0). This input is 5 V tolerant.
SC01	Input/Output ²	Input	Disconnected internally	Serial Control 1 Functions in either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is either Transmitter 2 output or Serial I/O Flag 1.
PC1	Input or Output ²			Port C 1 The default configuration following reset is GPIO. For PC1, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC01 through PCR0.
				This input is 5 V tolerant.
SC02	Input/Output ²	Input	Disconnected internally	Serial Control Signal 2 The frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output ²			Port C 2 The default configuration following reset is GPIO. For PC2, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC02 through PCR0.
				This input is 5 V tolerant.

Table 1-13. Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)

Signal	Tune	Sta	te During ¹	Signal Description
Name	Туре	Reset	Stop	Signal Description
SCK0	Input/Output ²	Input	Disconnected internally	Serial Clock Provides the serial bit rate clock for the ESSI interface for both the transmitter and receiver in Synchronous modes, or the transmitter only in Asynchronous modes.
				Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6 T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output ²			Port C 3 The default configuration following reset is GPIO. For PC3, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SCK0 through PCR0.
				This input is 5 V tolerant.
SRD0	Input/Output ²	Input	Disconnected internally	Serial Receive Data Receives serial data and transfers the data to the ESSI receive shift register. SRD0 is an input when data is being received.
PC4	Input or Output ²			Port C 4 The default configuration following reset is GPIO. For PC4, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SRD0 through PCR0.
				This input is 5 V tolerant.
STD0	Input/Output ²	Input	Disconnected internally	Serial Transmit Data Transmits data from the serial transmit shift register. STD0 is an output when data is being transmitted.
PC5	Input or Output ²			Port C 5 The default configuration following reset is GPIO. For PC5, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal STD0 through PCR0.
				This input is 5 V tolerant.

- **1.** The Wait processing state does not affect the signal state.
- **2.** When configured as an output, these signals have a weak keeper circuit that maintains the last state externally even if all drivers are tri-stated.

ENHANCED SYNCHRONOUS SERIAL INTERFACE 1 (ESSI1)

Table 1-14. Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal	Type	Sta	te During ¹	Signal Description
Name	Туре	Reset	Stop	Signal Description
SC10	Input or Output ²	Input	Disconnected internally	Serial Control 0 Selection of Synchronous or Asynchronous mode determines function. For Asynchronous mode, this signal is the receive clock I/O (Schmitt-trigger input). For Synchronous mode, this signal is either Transmitter 1 output or Serial I/O Flag 0.
PD0				Port D 0 The default configuration following reset is GPIO. For PDO, signal direction is controlled through the Port Directions Register (PRR1). The signal can be configured as an ESSI signal SC10 through the Port Control Register (PCR1).
				This input is 5 V tolerant.
SC11	Input/Output ²	Input	Disconnected internally	Serial Control 1 Selection of Synchronous or Asynchronous mode determines function. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is either Transmitter 2 output or Serial I/O Flag 1.
PD1	Input or Output ²			Port D 1 The default configuration following reset is GPIO. For PD1, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC11 through PCR1.
				This input is 5 V tolerant.
SC12	Input/Output ²	Input	Disconnected internally	Serial Control Signal 2 Frame sync for both the transmitter and receiver in Synchronous mode, for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in Synchronous operation).
PD2	Input or Output ²			Port D 2 The default configuration following reset is GPIO. For PD2, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC12 through PCR1.
				This input is 5 V tolerant.

Table 1-14. Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)

Signal	Type	Sta	te During ¹	Signal Description
Name	Type	Reset	Stop	Signal Description
SCK1	Input/Output ²	Input	Disconnected internally	Serial Clock Provides the serial bit rate clock for the ESSI interface. Clock input or output can be used by the transmitter and receiver in Synchronous modes, by the transmitter only in Asynchronous modes.
				Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output ²			Port D 3 The default configuration following reset is GPIO. For PD3, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SCK1 through PCR1.
				This input is 5 V tolerant.
SRD1	Input/Output ²	Input	Disconnected internally	Serial Receive Data Receives serial data and transfers it to the ESSI receive shift register. SRD1 is an input when data is being received.
PD4	Input or Output ²			Port D 4 The default configuration following reset is GPIO. For PD4, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SRD1 through PCR1.
				This input is 5 V tolerant.
STD1	Input/Output ²	Input	Disconnected internally	Serial Transmit Data Transmits data from the serial transmit shift register. STD1 is an output when data is being transmitted.
PD5	Input or Output ²			Port D 5 The default configuration following reset is GPIO. For PD5, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal STD1 through PCR1.
				This input is 5 V tolerant.

- **1.** The Wait processing state does not affect the signal state.
- **2.** When configured as an output, these signals have a weak keeper circuit that maintains the last state externally even if all drivers are tri-stated.

SERIAL COMMUNICATION INTERFACE (SCI)

The Serial Communication interface (SCI) provides a full duplex port for serial communication with other DSPs, microprocessors, or peripherals such as modems.

Table 1-15. Serial Communication Interface (SCI)

Signal	Type	Sta	te During ¹	Signal Description
Name	1900	Reset	Stop	Olgilai 2000/ipiloii
RXD	Input	Input	Disconnected internally	Serial Receive Data Receives byte-oriented serial data and transfers it to the SCI receive shift register.
PE0	Input or Output ²			Port E 0 The default configuration following reset is GPIO. When configured as PEO, signal direction is controlled through the SCI Port Directions Register (PRR). The signal can be configured as an SCI signal RXD through the SCI Port Control Register (PCR). This input is 5 V tolerant.
TXD	Output ²	Input	Disconnected internally	Serial Transmit Data Transmits data from SCI transmit data register.
PE1	Input or Output ²			Port E 1 The default configuration following reset is GPIO. When configured as PE1, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal TXD through the SCI PCR.
				This input is 5 V tolerant.
SCLK	Input/Output ²	Input	Disconnected internally	Serial Clock Provides the input or output clock used by the transmitter and/or the receiver.
PE2	Input or Output ²			Port E 2 The default configuration following reset is GPIO. For PE2, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal SCLK through the SCI PCR. This input is 5 V tolerant.

- 1. The Wait processing state does not affect the signal state.
- **2.** When configured as an output, these signals have a weak keeper circuit that maintains the last state externally even if all drivers are tri-stated.

TIMERS

The DSP56309 has three identical and independent timers. Each can use internal or external clocking, interrupt the DSP56309 after a specified number of events (clocks), or signal an external device after counting a specific number of internal events.

Table 1-16. Triple Timer Signals

Signal	Туре	Sta	te During ¹	Signal Description			
Name	Туре	Reset	Stop				
TIO0	Input or Output ²	Input	Disconnected internally	Timer 0 Schmitt-Trigger Input/Output As an external event counter or in Measurement mode, TIO0 is input. In Watchdog, Timer, or Pulse Modulation mode, TIO0 is output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 0 Control/Status Register (TCSR0). This input is 5 V tolerant.			
TIO1	Input or Output ²	Input	Disconnected internally	Timer 1 Schmitt-Trigger Input/Output As an external event counter or in Measurement mode, TIO1 is input. In Watchdog, Timer, or Pulse Modulation mode, TIO1 is output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 1 Control/Status Register (TCSR1). This input is 5 V tolerant.			
TIO2	Input or Output ²	Input	Disconnected internally	Timer 2 Schmitt-Trigger Input/Output As an external event counter or in Measurement mode, TIO2 is input. In Watchdog, Timer, or Pulse Modulation mode, TIO2 is output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 2 Control/Status Register (TCSR2). This input is 5 V tolerant.			

^{1.} The Wait processing state does not affect the signal state.

^{2.} When configured as an output, these signals have a weak keeper circuit that maintains the last state externally even if all drivers are tri-stated.

JTAG/ONCE INTERFACE

Table 1-17. JTAG/OnCE Interface

Signal Name	Туре	State During Reset	Signal Description
ТСК	Input	Input	Test Clock A test clock signal for synchronizing JTAG test logic. This input is 5 V tolerant.
TDI	Input	Input	Test Data Input A test data serial signal for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor. This input is 5 V tolerant.
TDO	Output	Tri-stated	Test Data Output A test data serial signal for test instructions and data. TDO can be tri-stated. The signal is actively driven in the shift-IR and shift-DR controller states and changes on the falling edge of TCK. This input is 5 V tolerant.
TMS	Input	Input	Test Mode Select Sequences the test controller's state machine, is sampled on the rising edge of TCK, and has an internal pull-up resistor. This input is 5 V tolerant.
TRST	Input	Input	Test Reset Asynchronously initializes the test controller, has an internal pull-up resistor, and must be asserted after power up. This input is 5 V tolerant.

Table 1-17. JTAG/OnCE Interface (Continued)

Signal Name	Туре	State During Reset	Signal Description
DE	Input/Output	Input	Debug Event Provides a way to enter Debug mode from an external command controller (as input) or to acknowledge that the chip has entered Debug mode (as output). When asserted as an input, DE causes the DSP56300 core to finish the current instruction, save the instruction pipeline information, enter Debug mode, and wait for commands from the debug serial input line. When a debug request or a breakpoint condition cause the chip to enter Debug mode DE is asserted as an output for three clock cycles. DE has an internal pull-up resistor. DE is not a standard part of the JTAG Test Access Port (TAP) Controller. It connects to the OnCE module to initiate Debug mode directly or to provide a direct external indication that the chip has entered the Debug mode. All other interface with the OnCE module must occur through the JTAG port. This input is 5 V tolerant.

SECTION 2

Specifications

INTRODUCTION

The DSP56309 is fabricated in high density CMOS with transistor-transistor logic (TTL) compatible inputs and outputs. The DSP56309 specifications are preliminary, based on design simulations, and may not be fully tested or guaranteed at this early stage of the product life cycle. In particular, certain speeds may not yet be available at certain power ranges. Finalized specifications will be published after full characterization and device qualifications are complete.

MAXIMUM RATINGS

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CCx}).

Note:

In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2-1. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 to +4.0	V
All input voltages excluding "5 V tolerant" inputs	V _{IN}	GND - 0.3 to V _{CC} + 0.3	V
All "5 V tolerant" input voltages ²	V _{IN5}	GND - 0.3 to 5.5	V
Current drain per pin excluding V _{CC} and GND	I	10	mA
Operating temperature range	TJ	-40 to +100	°C
Storage temperature	T _{STG}	-55 to +150	°C

Notes: 1. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device

2. At power up, ensure that the voltage difference between the 5 V tolerant pins and the chip V_{CC} never exceeds 3.5 V.

THERMAL CHARACTERISTICS

Table 2-2. Thermal Characteristics

Characteristic	Symbol	TQFP Value	PBGA ³ Value	PBGA ⁴ Value	Unit
Junction-to-ambient thermal resistance ¹	$R_{\theta JA}$ or θ_{JA}	49.3	49.4	28.5	°C/W
Junction-to-case thermal resistance ²	$R_{\theta JC}$ or θ_{JC}	8.2	12.0	_	°C/W
Thermal characterization parameter	Ψ_{JT}	5.5	2.0	_	°C/W

Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per JEDEC Specification JESD51-3.

- 2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.
- 3. These are simulated values. See note 1 for test board conditions.
- **4.** These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid ground planes internal to the test board.

DC ELECTRICAL CHARACTERISTICS

Table 2-3. DC Operating Electrical Characteristics⁶

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6	V
Input high voltage ■ D(0–23), BG, TA ■ BB ■ MOD¹/IRQ¹, RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins ■ EXTAL ⁸	V _{IH} V _{IH} V _{IHP}	2.0 2.3 2.0 0.8 × V _{CC}	_ _ _ _	V _{CC} V _{CC} 5.25 V _{CC}	V V V
Input low voltage ■ D(0–23), BG, BB, TA, MOD¹/ĪRQ¹, RESET, PINIT ■ AII JTAG/ESSI/SCI/Timer/HI08 pins ■ EXTAL ⁸	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3	_ _ _	0.8 0.8 0.2 × V _{CC}	V V V
Input leakage current	I _{IN}	-10	_	10	μΑ
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10	_	10	μΑ
Output high voltage ■ TTL (I _{OH} = -0.4 mA) ^{5,7} ■ CMOS (I _{OH} = -10 μA) ⁵	V _{OH}	2.4 V _{CC} – 0.01	_	_	V
Output low voltage TTL (I_{OL} = 1.6 mA, open-drain pins I_{OL} = 6.7 mA) ^{5,7} CMOS (I_{OL} = 10 μ A) ⁵	V _{OL}			0.4 0.01	V V
Internal supply current ² : ■ In Normal mode ■ In Wait mode ³ ■ In Stop mode ⁴	I _{CCI} I _{CCW} I _{CCS}	_ _ _	160 7.5 100	_ _ _	mA mA μA
PLL supply current		_	1	2.5	mA
Input capacitance ⁵	C _{IN}	_	_	10	pF

Notes: 1. Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.

- 2. Power Consumption Considerations on page 4-3 provides a formula to compute the estimated current requirements in Normal mode. In order to obtain these results, all inputs must be terminated (that is, not allowed to float). Measurements are based on synthetic intensive DSP benchmarks (see Appendix A). The power consumption numbers in this specification are 90 percent of the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current is measured with V_{CC} = 3.3 V at T_J = 100°C.
- 3. In order to obtain these results, all inputs must be terminated (that is, not allowed to float).
- 4. In order to obtain these results, all inputs that are not disconnected at Stop mode must be terminated (that is, not allowed to float). PLL and XTAL signals are disabled during Stop state.
- 5. Periodically sampled and not 100 percent tested.
- **6.** $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_{J} = -40 ^{\circ}\text{C}$ to +100 $^{\circ}\text{C}$, $C_{L} = 50 \text{ pF}$
- 7. This characteristic does not apply to XTAL and PCAP.
- 8. Driving EXTAL to the low V_{IHX} or the high V_{ILX} value may cause additional power consumption (DC current). To minimize power consumption, the minimum V_{IHX} should be no lower than $0.9 \times V_{CC}$ and the maximum V_{ILX} should be no higher than $0.1 \times V_{CC}$.

AC ELECTRICAL CHARACTERISTICS

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of **Table 2-3**. AC timing specifications, which are referenced to device input and output signals, are measured in production with respect to the 50 percent point of the respective signal transition.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.

All specifications for the high impedance state are guaranteed by design.

INTERNAL CLOCKS

Table 2-4. Internal Clocks, CLKOUT

Characteristics	Symbol	Expression ^{1, 2}			
Characteristics	Syllibol	Min	Тур	Max	
Internal operation frequency and CLKOUT with PLL enabled	f	_	$(Ef \times MF)/$ $(PDF \times DF)$	_	
Internal operation frequency and CLKOUT with PLL disabled	f	_	Ef/2	_	
Internal clock and CLKOUT high period ■ With PLL disabled ■ With PLL enabled and MF ≤ 4	T _H	$\begin{array}{c} -\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C	$\begin{array}{c} -\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	
■ With PLL enabled and MF > 4		$0.47 \times ET_C \times PDF \times DF/MF$	_	$0.53 \times \text{ET}_{\text{C}} \times \text{PDF} \times \text{DF/MF}$	
Internal clock and CLKOUT low period With PLL disabled With PLL enabled and MF ≤ 4	TL	0.49 × ET _C × PDF × DF/MF	ET _C	0.51 × ET _C × PDF × DF/MF	
With PLL enabled and MF > 4		$0.47 \times ET_C \times PDF \times DF/MF$	_	$0.53 \times \text{ET}_{\text{C}} \times \text{PDF} \times \text{DF/MF}$	
Internal clock and CLKOUT cycle time with PLL enabled	T _C	_	$\begin{array}{c} ET_C \! \times \! PDF \times \\ DF \! / \! MF \end{array}$	_	
Internal clock and CLKOUT cycle time with PLL disabled	T _C	_	2 × ET _C	_	
Instruction cycle time	I _{CYC}	_	T _C	_	

Notes: 1. DF = Division Factor; Ef = External frequency; ET_C = External clock cycle = 1/Ef; MF = Multiplication Factor; PDF = Predivision Factor; T_C = Internal clock cycle

2. See the PLL and Clock Generator section in the *DSP56300 Family Manual* for a detailed discussion of the PLL.

EXTERNAL CLOCK OPERATION

The DSP56309 system clock can be derived from the on–chip oscillator or it can be externally supplied. To use the on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; examples are shown in **Figure 2-1**.

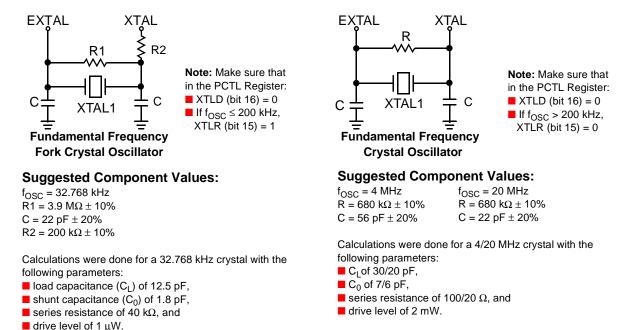


Figure 2-1. Crystal Oscillator Circuits

If an externally supplied square wave voltage source is used, disable the internal oscillator circuit during bootup by setting XTLD (PCTL Register bit 16 = 1—see **Section 4.7** in the *DSP56309 User's Manual*). The external square wave source connects to EXTAL; XTAL is not physically connected to the board or socket. **Figure 2-2** shows the relationship between the EXTAL input and the internal clock and CLKOUT.

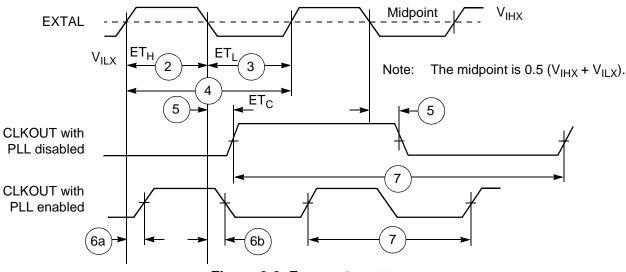


Figure 2-2. External Clock Timing

Table 2-5. Clock Operation

Na	Oh avaataviation	Comple ed	100 MHz	
No.	Characteristics	Symbol	Min	Max
1	Frequency of EXTAL (EXTAL Pin Frequency) The rise and fall time of this external clock should be 3 ns maximum.	Ef	0	100.0 MHz
2	EXTAL input high ^{1, 2} With PLL disabled (46.7%–53.3% duty cycle ⁶) With PLL enabled (42.5%–57.5% duty cycle ⁶)	ETH	4.67 ns 4.25 ns	∞ 157.0 μs
3	EXTAL input low ^{1, 2} With PLL disabled (46.7%–53.3% duty cycle ⁶) With PLL enabled (42.5%–57.5% duty cycle ⁶)	ETL	4.67 ns 4.25 ns	∞ 157.0 μs
4	EXTAL cycle time ² With PLL disabled With PLL enabled	ET _C	10.00 ns 10.00 ns	∞ 273.1 μs
5	CLKOUT change from EXTAL fall with PLL disabled		4.3 ns	11.0 ns
6	a. CLKOUT rising edge from EXTAL rising edge with PLL enabled (MF = 1, 2, or 4; PDF = 1; Ef > 15 MHz) 3,5		0.0 ns	1.8 ns
	b. CLKOUT falling edge from EXTAL falling edge with PLL enabled (MF \leq 4, PDF \neq 1, Ef / PDF $>$ 15 MHz) 3,5		0.0 ns	1.8 ns
7	Instruction cycle time = I _{CYC} = T _C ⁴ (see Table 2-5) (46.7%–53.3% duty cycle) ■ With PLL disabled ■ With PLL enabled	I _{CYC}	20.0 ns 10.00 ns	∞ 8.53 μs

- **Notes: 1.** Measured at 50 percent of the input transition
 - 2. The maximum value for PLL enabled is given for minimum V_{CO} and maximum MF.
 - 3. Periodically sampled and not 100 percent tested
 - 4. The maximum value for PLL enabled is given for minimum V_{CO} and maximum DF.
 - **5.** The skew is not guaranteed for any other MF value.
 - 6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

PHASE LOCK LOOP (PLL) CHARACTERISTICS

Table 2-6. PLL Characteristics

Characteristics	100	100 MHz			
Characteristics	Min	Max	Unit		
V_{CO} frequency when PLL enabled (MF \times E _f \times 2/PDF)	30	200	MHz		
PLL external capacitor (PCAP pin to V_{CCP}) (C_{PCAP}) @ MF \leq 4 @ MF > 4	(MF × 580) – 100 MF × 830	(MF × 780) – 140 MF × 1470	pF pF		

Note: C_{PCAP} is the value of the PLL capacitor (connected between the PCAP pin and V_{CCP}). The recommended value in pF for C_{PCAP} can be computed from one of the following equations:

 $(680 \times MF) - 120$, for MF ≤ 4 , or $1100 \times MF$, for MF > 4.

RESET, STOP, MODE SELECT, AND INTERRUPT TIMING

Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing⁶

Na	Characteristics	Funnasian	100	MHz	l l mit
No.	Characteristics	Expression	Min	Max	Unit
8	Delay from RESET assertion to all pins at reset value ³	_	_	26.0	ns
9	Required RESET duration ⁴ Power on, external clock generator, PLL disabled Power on, external clock generator, PLL enabled Power on, internal oscillator During STOP, XTAL disabled (PCTL Bit 16 = 0) During STOP, XTAL enabled (PCTL Bit 16 = 1) During normal operation	$\begin{array}{l} \text{Minimum:} \\ 50 \times \text{ET}_{\text{C}} \\ 1000 \times \text{ET}_{\text{C}} \\ 75000 \times \text{ET}_{\text{C}} \\ 75000 \times \text{ET}_{\text{C}} \\ 2.5 \times \text{T}_{\text{C}} \\ 2.5 \times \text{T}_{\text{C}} \end{array}$	500.0 10.0 0.75 0.75 25.0 25.0		ns µs ms ms ns ns
10	Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion) ⁵ Minimum Maximum	$3.25 \times T_{C} + 2.0$ $20.25 \times T_{C} + 10.0$	34.5	 212.5	ns ns
11	Synchronous reset setup time from RESET deassertion to CLKOUT Transition 1 Minimum Maximum	Т _С	5.9 —	— 10.0	ns ns
12	Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output Minimum Maximum	$3.25 \times T_C + 1.0$ $20.25 \times T_C + 1.0$	33.5	 207.5	ns ns
13	Mode select setup time		30.0		ns
14	Mode select hold time		0.0	_	ns

 Table 2-7.
 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

NI-	Oh avantaviatian	F	100	MHz	11
No.	Characteristics	Expression	Min	Max	Unit
15	Minimum edge-triggered interrupt request assertion width		6.6		ns
16	Minimum edge-triggered interrupt request deassertion width		6.6	_	ns
17	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid Caused by first interrupt instruction fetch Caused by first interrupt instruction execution	Minimum: $4.25 \times T_{C} + 2.0$ $7.25 \times T_{C} + 2.0$	44.5 74.5	_ _	ns ns
18	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution	Minimum: 10 × T _C + 5.0	105.0	_	ns
19	Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts ¹	Maximum: $3.75 \times T_C + WS \times T_C - 10.94^8$	_	Note 8	ns
20	Delay from $\overline{\text{RD}}$ assertion to interrupt request deassertion for level sensitive fast interrupts 1		_	Note 8	ns
21	Delay from WR assertion to interrupt request deassertion for level sensitive fast interrupts ¹ ■ DRAM for all WS ⁷ ■ SRAM WS = 1 ■ SRAM WS = 2, 3 ■ SRAM WS ≥ 4	$\begin{array}{c} \text{Maximum:} \\ \text{(WS + 3.5)} \times \text{T}_{\text{C}} - 10.94^{\text{8}} \\ \text{(WS + 3.5)} \times \text{T}_{\text{C}} - 10.94^{\text{8}} \\ \text{(WS + 3)} \times \text{T}_{\text{C}} - 10.94^{\text{8}} \\ \text{(WS + 2.5)} \times \text{T}_{\text{C}} - 10.94^{\text{8}} \end{array}$	_ _ _ _	Note 8 Note 8 Note 8	ns ns ns ns
22	Synchronous interrupt setup time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2		5.9	T _C	ns
23	Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state Minimum Maximum	8.25 × T _C + 1.0 24.75 × T _C + 5.0	83.5	— 252.5	ns ns
24	Duration for IRQA assertion to recover from Stop state	Ŭ.	5.9	_	ns
25	Delay from IRQA assertion to fetch of first instruction (when exiting Stop) ^{2, 3} PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0)	$PLC \times ET_C \times PDF + (128 \text{ K} - PLC/2) \times T_C$	1.3	13.6	ms
	■ PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1)	$\begin{array}{c} PLC \times ET_{C} \times PDF + (23.75 \pm \\ 0.5) \times T_{C} \end{array}$	232.5 ns	12.3 ms	
	PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay)	(9.25 ± 0.5) × TC	87.5	97.5	ns

Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

Na	Characteristics	Everencian	100 MHz		11!4
No.	Characteristics	Expression	Min	Max	Unit
26	Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop) ^{2, 3} ■ PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0)	Minimum: $PLC \times ET_C \times PDF +$ $(128K - PLC/2) \times T_C$	13.6	_	ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1) PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay) 	PLC × ET _C × PDF + $(20.5 \pm 0.5) \times T_{C}$ $5.5 \times T_{C}$	12.3 55.0	_	ms ns
27	Interrupt Requests Rate ■ HI08, ESSI, SCI, Timer ■ DMA ■ IRQ, NMI (edge trigger) ■ IRQ, NMI (level trigger)	Maximum: 12T _C 8T _C 8T _C 12T _C	_ _ _ _	120.0 80.0 80.0 120.0	ns ns ns
28	DMA Requests Rate Data read from HI08, ESSI, SCI Data write to HI08, ESSI, SCI Timer IRQ, NMI (edge trigger)	Maximum: 6T _C 7T _C 2T _C 3T _C	_ _ _	60.0 70.0 20.0 30.0	ns ns ns ns
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	Minimum: $4.25 \times T_C + 2.0$	44.5	_	ns

Notes: 1. When fast interrupts are used and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when Level-sensitive mode is used.

Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

No.	Characteristics	Evavooien	100	100 MHz	
NO.	Characteristics	Expression	Min	Max	Unit

2. This timing depends on several settings:

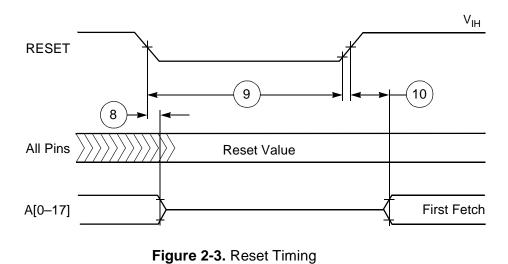
For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled during Stop (PCTL Bit 17 = 0), a stabilization delay is required to assure the oscillator is stable before executing programs. In that case, resetting the Stop delay (OMR Bit 6 = 0) provides the proper delay. While it is possible to set OMR Bit 6 = 1, it is not recommended and these specifications do not guarantee timings for that case.

For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization delay is required and recovery time is minimal (OMR Bit 6 setting is ignored).

For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time is defined by the PCTL Bit 17 and OMR Bit 6 settings.

For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to lock. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery ends when the last of these two events occurs. The stop delay counter completes count or PLL lock procedure.

PLC value for PLL disable is 0.

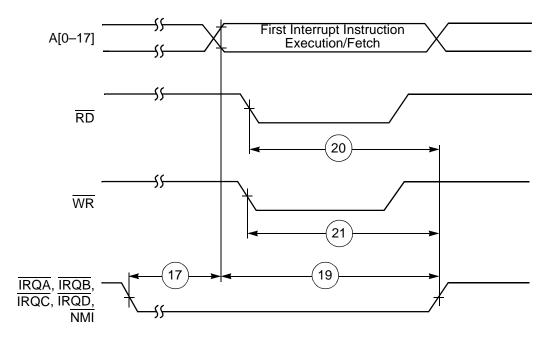

The maximum value for ET_C is 4096 (maximum MF) divided by the desired internal frequency (that is, for 66 MHz it is 4096/66 MHz = 62 μ s). During the stabilization period, T_C, T_H, and T_L are not constant, and their width may vary, so timing may vary as well.

- 3. Periodically sampled and not 100 percent tested
- 4. For an external clock generator, RESET duration is measured during the time in which RESET is asserted, V_{CC} is valid, and the EXTAL input is active and valid.

For internal oscillator, \overline{RESET} duration is measured during the time in which \overline{RESET} is asserted and V_{CC} is valid. The specified timing reflects the crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal and other components connected to the oscillator and reflects worst case conditions.

When the V_{CC} is valid, but the other "required \overline{RESET} duration" conditions (as specified above) are not yet met, the device circuitry is in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration.

- 5. If PLL does not lose lock
- **6.** $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_{J} = -40 ^{\circ}\text{C}$ to $+100 ^{\circ}\text{C}$, $C_{L} = 50 \text{ pF}$
- 7. WS = number of wait states (measured in clock cycles, number of T_C)
- 8. Use expression to compute maximum value.


CLKOUT

RESET

11

A[0-17]

Figure 2-4. Synchronous Reset Timing

a) First Interrupt Instruction Execution

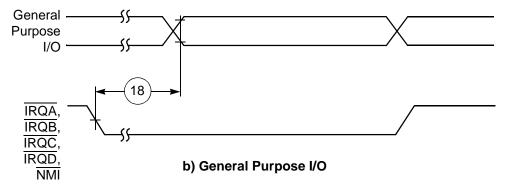


Figure 2-5. External Fast Interrupt Timing

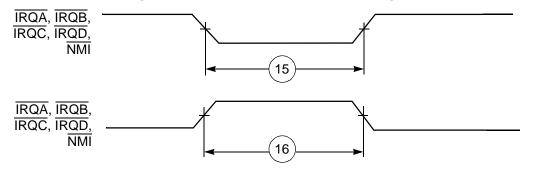


Figure 2-6. External Interrupt Timing (Negative Edge-Triggered)

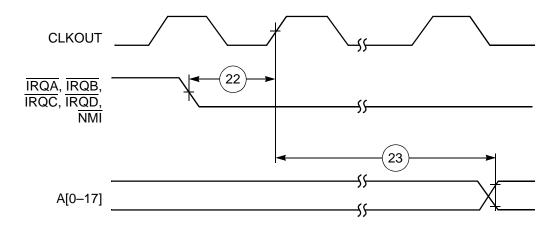


Figure 2-7. Synchronous Interrupt from Wait State Timing

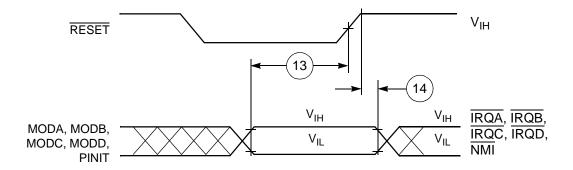


Figure 2-8. Operating Mode Select Timing

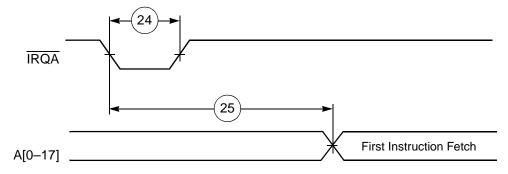


Figure 2-9. Recovery from Stop State Using IRQA

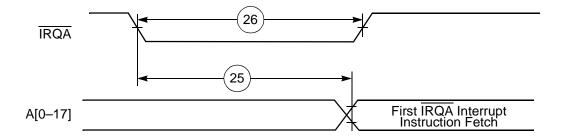


Figure 2-10. Recovery from Stop State Using IRQA Interrupt Service

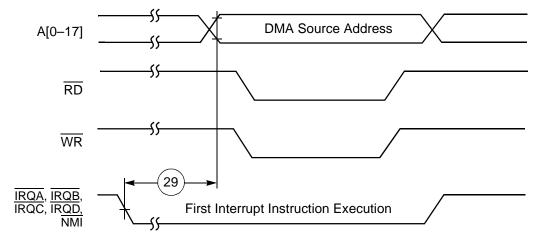


Figure 2-11. External Memory Access (DMA Source) Timing

EXTERNAL MEMORY EXPANSION PORT (PORT A)

SRAM Timing

Table 2-8. SRAM Read and Write Accesses^{3,5}

No.	Characteristics	Symbol	Expression ¹	100	MHz	Unit
NO.	Characteristics	Symbol	Expression	Min	Max	Unit
100	Address valid and AA assertion pulse width ²	t _{RC} , t _{WC}	$(WS + 1) \times T_C - 4.0$ [1 \le WS \le 3]	16.0	_	ns
			$(WS + 2) \times T_C - 4.0$ $[4 \le WS \le 7]$	56.0	_	ns
			$(WS + 3) \times T_C - 4.0$ $[WS \ge 8]$	106.0	_	ns
101	Address and AA valid to WR assertion	t _{AS}	$0.25 \times T_{C} - 2.0$ [WS = 1]	0.5	_	ns
			$0.75 \times T_C - 2.0$ [2 \le WS \le 3]	5.5	_	ns
			$1.25 \times T_{C} - 2.0$ [WS ≥ 4]	10.5	_	ns
102	WR assertion pulse width	t _{WP}	$1.5 \times T_{C} - 4.0$ [WS = 1]	11.0	_	ns
			$WS \times T_C - 4.0$ $[2 \le WS \le 3]$	16.0	_	ns
			$[VS - 0.5] \times T_C - 4.0$ $[VS \ge 4]$	31.0	_	ns
103	WR deassertion to address not valid	t _{WR}	$0.25 \times T_{C} - 2.0$ [1 \le WS \le 3]	0.5	_	ns
			$1.25 \times T_{C} - 4.0$ [4 \le WS \le 7]	8.5	_	ns
			$2.25 \times T_C - 4.0$ [WS ≥ 8]	18.5	_	ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	(WS + 0.75) × T _C − 5.0 [WS ≥ 1]	_	12.5	ns
105	RD assertion to input data valid	t _{OE}	(WS + 0.25) × T _C − 5.0 [WS ≥ 1]	_	7.5	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	_	ns
107	Address valid to WR deassertion ²	t _{AW}	$(WS + 0.75) \times T_C - 4.0$ $[WS \ge 1]$	13.5	_	ns
108	Data valid to WR deassertion (data setup time)	t _{DS} (t _{DW})	$(WS - 0.25) \times T_C - 3.0$ [WS \ge 1]	4.5	_	ns

Table 2-8. SRAM Read and Write Accesses^{3,5} (Continued)

Na	Characteristics	Comphal	Expression ¹	100	MHz	Unit
No.	Characteristics	Symbol	Expression	Min	Max	Unit
109	Data hold time from WR deassertion	t _{DH}	$\begin{array}{c} 0.25 \times T_{C} - 2.0 \\ [1 \leq WS \leq 3] \\ 1.25 \times T_{C} - 2.0 \\ [4 \leq WS \leq 7] \\ 2.25 \times T_{C} - 2.0 \\ [WS \geq 8] \end{array}$	0.5 10.5 20.5	1 1 1	ns ns ns
110	WR assertion to data active		$\begin{array}{c} 0.75 \times T_{C} - 3.7 \\ [WS = 1] \\ 0.25 \times T_{C} - 3.7 \\ [2 \leq WS \leq 3] \\ -0.25 \times T_{C} - 3.7 \\ [WS \geq 4] \end{array}$	3.8 -1.2 -6.2	_ _ _	ns ns ns
111	WR deassertion to data high impedance		$\begin{array}{c} 0.25 \times T_{C} + 0.2 \\ [1 \leq WS \leq 3] \\ 1.25 \times TC + 0.2 \\ [4 \leq WS \leq 7] \\ 2.25 \times T_{C} + 0.2 \\ [WS > 8] \end{array}$	_ _ _	2.7 12.7 22.7	ns ns ns
112	Previous RD deassertion to data active (write)		$\begin{array}{c} 1.25 \times T_{C} - 4.0 \\ [1 \leq WS \leq 3] \\ 2.25 \times T_{C} - 4.0 \\ [4 \leq WS \leq 7] \\ 3.25 \times T_{C} - 4.0 \\ [WS > 8] \end{array}$	8.5 18.5 28.5	_ _ _	ns ns ns
113	RD deassertion time		$\begin{array}{c} 0.75 \times T_{C} - 4.0 \\ [1 \leq WS \leq 3] \\ 1.75 \times T_{C} - 4.0 \\ [4 \leq WS \leq 7] \\ 2.75 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	3.5 13.5 23.5		ns ns ns
114	WR deassertion time		$\begin{array}{c} 0.5 \times T_{C} - 4.0 \\ [WS = 1] \\ T_{C} - 4.0 \\ [2 \leq WS \leq 3] \\ 2.5 \times T_{C} - 4.0 \\ [4 \leq WS \leq 7] \\ 3.5 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	1.0 6.0 21.0 31.0	- - -	ns ns ns
115	Address valid to RD assertion		$0.5 \times T_C - 4.0$	1.0		ns
116	RD assertion pulse width		(WS + 0.25) × T _C -4.0	8.5		ns
117	RD deassertion to address not valid		$\begin{array}{c} 0.25 \times T_{C} - 2.0 \\ [1 \leq WS \leq 3] \\ 1.25 \times T_{C} - 2.0 \\ [4 \leq WS \leq 7] \\ 2.25 \times T_{C} - 2.0 \\ [WS \geq 8] \end{array}$	0.5 10.5 20.5	_ _ _	ns ns ns

Table 2-8. SRAM Read and Write Accesses^{3,5} (Continued)

No	Charactaristics	Cumbal	Everagion1	100	MHz	l lmit
No.	Characteristics	Symbol	Expression ¹	Min	Max	Unit
118	TA setup before RD or WR deassertion ⁴		$0.25 \times T_{C} + 2.0$	4.5	_	ns
119	TA hold after RD or WR deassertion			0	_	ns

Notes: 1. WS is the number of wait states specified in the BCR.

- 2. Timings 100, 107 are guaranteed by design, not tested.
- 3. All timings for 100 MHz are measured from 0.5 · Vcc to 0.5 · Vcc
- 4. In the case of TA deassertion, timing 118 is relative to the deassertion edge of RD or WR if TA were to remain active
- **5.** $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_{J} = -40 ^{\circ}\text{C}$ to $+100 ^{\circ}\text{C}$, $C_{L} = 50 \text{ pF}$

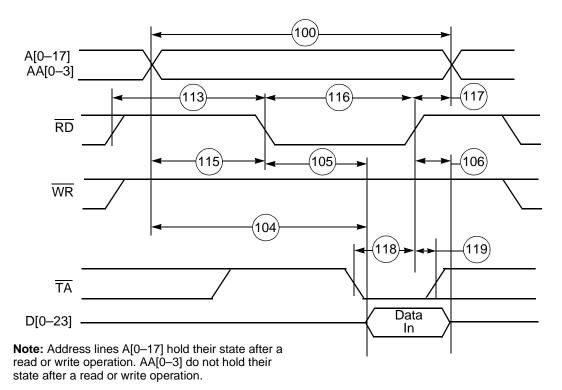


Figure 2-12. SRAM Read Access

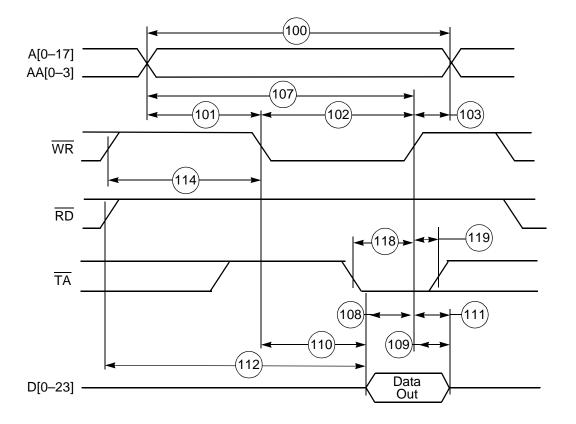


Figure 2-13. SRAM Write Access

DRAM Timing

The selection guides in **Figure 2-14** and **Figure 2-17** are for primary selection only. Final selection should be based on the timing values in the following timing tables. For example, the selection guide suggests that four wait states be used for 100 MHz operation with Page Mode DRAM. However, a designer can use the information in the appropriate table to determine the conditions under which fewer wait states can be used. The designer can identify specific timings that prevent operation at 100 MHz and then use one of the following methods to adjust the operation:

- Run the chip at a slightly lower frequency (for example, 95 MHz).
- Use faster DRAMs.
- Manipulate control factors such as capacitive and resistive load to improve overall system performance.

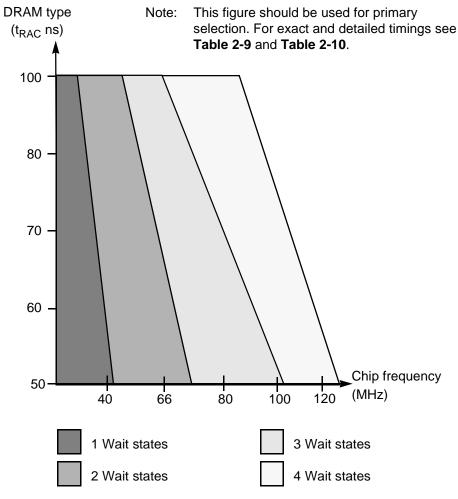


Figure 2-14. DRAM Page Mode Wait States Selection Guide

Table 2-9. DRAM Page Mode Timings, Three Wait States $^{1, 2, 3}$

No.	Characteristics	Symbol	Expression	100	MHz	Unit
NO.	Cital acteristics	Symbol	Expression	Min	Max	Onit
131	Page mode cycle time for two consecutive accesses of the same direction		4×T _C	40.0	_	ns
	Page mode cycle time for mixed (read and write) accesses ⁴	t _{PC}	$3.5 \times T_C$	35.0	_	ns
132	CAS assertion to data valid (read)	t _{CAC}	$2 \times T_C - 5.7$	_	14.3	ns
133	Column address valid to data valid (read)	t _{AA}	$3 \times T_C - 5.7$	_	24.3	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	_	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$2.5\times T_{C}-4.0$	21.0	_	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$4.5\times T_{C}-4.0$	41.0	_	ns
137	CAS assertion pulse width	t _{CAS}	$2 \times T_C - 4.0$	16.0	_	ns
138	Last CAS deassertion to RAS assertion ⁵ ■ BRW[1–0] = 00, 01—not applicable ■ BRW[1–0] = 10 ■ BRW[1–0] = 11	t _{CRP}	$\begin{array}{c}\\ 4.75 \times T_{C} - 6.0\\ 6.75 \times T_{C} - 6.0 \end{array}$	— 41.5 61.5		ns ns
139	CAS deassertion pulse width	t _{CP}	$1.5\times T_{\text{C}}-4.0$	11.0	_	ns
140	Column address valid to CAS assertion	t _{ASC}	T _C – 4.0	6.0	_	ns
141	CAS assertion to column address not valid	t _{CAH}	$2.5\times T_{C}-4.0$	21.0	_	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	36.0	_	ns
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 \times T_{C} - 4.0$	8.5	_	ns
144	CAS deassertion to WR assertion	t _{RCH}	0.75 × TC – 4.0	3.5	_	ns
145	CAS assertion to WR deassertion	t _{WCH}	$2.25\times T_C-4.2$	18.3	_	ns
146	WR assertion pulse width	t _{WP}	$3.5 \times T_C - 4.5$	30.5	_	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$3.75 \times T_C - 4.3$	33.2	_	ns
148	WR assertion to CAS deassertion	t _{CWL}	$3.25 \times T_C - 4.3$	28.2	_	ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 \times T_C - 4.5$	0.5	_	ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5\times T_{C}-4.0$	21.0	_	ns
151	WR assertion to CAS assertion	t _{WCS}	$1.25 \times T_{C} - 4.3$	8.2	_	ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$3.5 \times T_C - 4.0$	31.0	_	ns
153	RD assertion to data valid	t _{GA}	$2.5\times T_{C}-5.7$		19.3	ns

Table 2-9. DRAM Page Mode Timings, Three Wait States^{1, 2, 3} (Continued)

No.	Characteristics	Symbol Expression	100	MHz	Unit	
	Onaracteristics	Oymboi	Expression	Min	Max	Oilit
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	ns
155	WR assertion to data active		$0.75 \times T_{C} - 1.5$	6.0	_	ns
156	WR deassertion to data high impedance		$0.25 \times T_C$	_	2.5	ns

Notes: 1.

- 1. The number of wait states for Page mode access is specified in the DCR.
- **2.** The refresh period is specified in the DCR.
- 3. The asynchronous delays specified in the expressions are valid for DSP56309.
- **4.** All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals $4 \times T_{C}$ for read-after-read or write-after-write sequences).
- **5.** BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of page-access.
- **6.** \overline{RD} deassertion always occurs after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} .

Table 2-10. DRAM Page Mode Timings, Four Wait States^{1, 2, 3}

No.	Characteristics	Symbol	Expression ⁴	100	MHz	Unit
140.	Characteristics	Symbol	Lxpression	Min	Max	Oliit
131	Page mode cycle time for two consecutive accesses of the same direction		5×T _C	50.0	_	ns
	Page mode cycle time for mixed (read and write) accesses ⁴	t _{PC}	4.5 × T _C	45.0	_	ns
132	CAS assertion to data valid (read)	t _{CAC}	$2.75 \times T_{C} - 5.7$	_	21.8	ns
133	Column address valid to data valid (read)	t _{AA}	$3.75\times T_C - 5.7$	_	31.8	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	_	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$3.5 \times T_C - 4.0$	31.0	_	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	6 × T _C – 4.0	56.0	_	ns
137	CAS assertion pulse width	t _{CAS}	$2.5 \times T_{C} - 4.0$	21.0	_	ns
138	Last CAS deassertion to RAS assertion ⁵ BRW[1-0] = 00, 01—Not applicable BRW[1-0] = 10 BRW[1-0] = 11	t _{CRP}		— 46.5 66.5	_ _ _	ns ns
139	CAS deassertion pulse width	t _{CP}	$2 \times T_C - 4.0$	16.0		ns
140	Column address valid to CAS assertion	t _{ASC}	T _C – 4.0	6.0		ns
141	CAS assertion to column address not valid	t _{CAH}	$3.5 \times T_C - 4.0$	31.0	_	ns

Table 2-10. DRAM Page Mode Timings, Four Wait States^{1, 2, 3} (Continued)

No.	Characteristics	Symbol	Expression ⁴	100	MHz	Unit
NO.	Cital acteristics	Symbol	Expression	Min	Max	Offic
142	Last column address valid to RAS deassertion	t _{RAL}	5 × T _C – 4.0	46.0	_	ns
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 \times T_{C} - 4.0$	8.5	_	ns
144	CAS deassertion to WR assertion	t _{RCH}	$1.25 \times T_{C} - 3.7$	8.8	_	ns
145	CAS assertion to WR deassertion	t _{WCH}	$3.25 \times T_{C} - 4.2$	28.3	_	ns
146	WR assertion pulse width	t _{WP}	$4.5\times T_{C}-4.5$	40.5	_	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$4.75 \times T_{C} - 4.3$	43.2	_	ns
148	WR assertion to CAS deassertion	t _{CWL}	$3.75 \times T_C - 4.3$	33.2	_	ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 \times T_C - 4.5$	0.5	_	ns
150	CAS assertion to data not valid (write)	t _{DH}	$3.5 \times T_C - 4.0$	31.0	_	ns
151	WR assertion to CAS assertion	t _{WCS}	$1.25 \times T_{C} - 4.3$	8.2	_	ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$4.5 \times T_C - 4.0$	41.0	_	ns
153	RD assertion to data valid	t _{GA}	$3.25 \times T_C - 5.7$	_	26.8	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	ns
155	WR assertion to data active		$0.75 \times T_{C} - 1.5$	6.0	_	ns
156	WR deassertion to data high impedance		$0.25 \times T_C$	_	2.5	ns

- **Notes:** 1. The number of wait states for Page mode access is specified in the DCR.
 - 2. The refresh period is specified in the DCR.
 - 3. The asynchronous delays specified in the expressions are valid for DSP56309.
 - 4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals $3 \times T_{C}$ for read-after-read or write-after-write sequences).
 - 5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.
 - $\overline{\text{RD}}$ deassertion always occurs after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} .

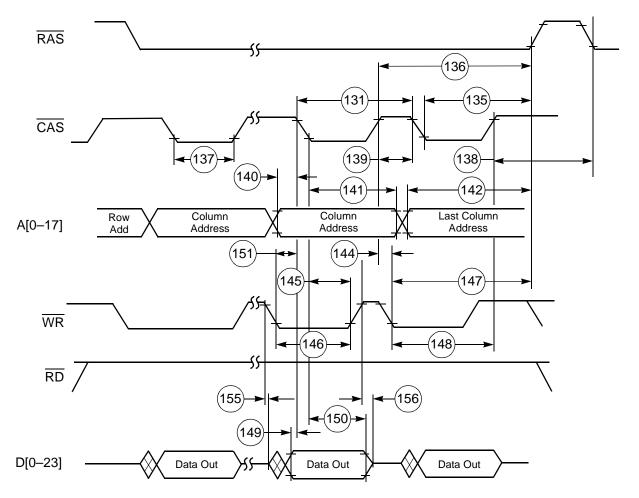


Figure 2-15. DRAM Page Mode Write Accesses

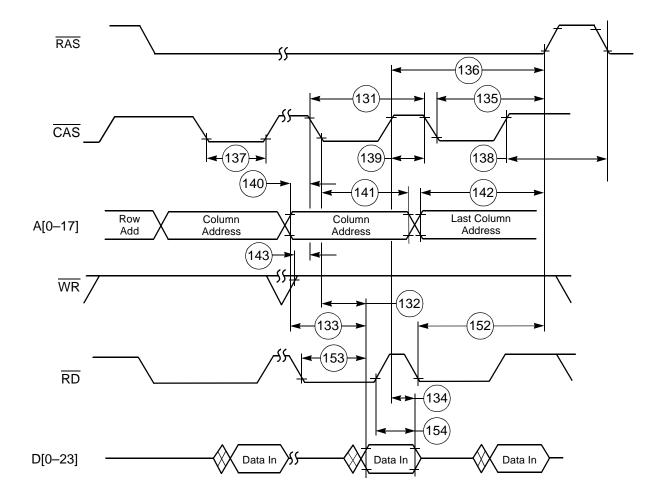
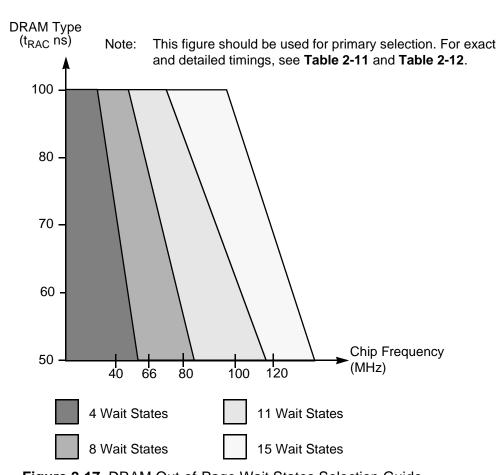



Figure 2-16. DRAM Page Mode Read Accesses

Figure 2-17. DRAM Out-of-Page Wait States Selection Guide **Table 2-11.** DRAM Out-of-Page and Refresh Timings, Eleven Wait States^{1, 2}

No. Characteristics	Characteristics	Symbol	ymbol Expression	100	Unit	
	Ondractoristics	Cymbol	Expression	Min	Max	
157	Random read or write cycle time	t _{RC}	12 × T _C	120.0	_	ns
158	RAS assertion to data valid (read)	t _{RAC}	$6.25\times T_C-7.0$	_	55.5	ns
159	CAS assertion to data valid (read)	t _{CAC}	$3.75\times T_C-7.0$	_	30.5	ns
160	Column address valid to data valid (read)	t _{AA}	$4.5\times T_C-7.0$	_	38.0	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		ns
162	RAS deassertion to RAS assertion	t _{RP}	$4.25\times T_C-4.0$	38.5		ns
163	RAS assertion pulse width	t _{RAS}	$7.75 \times T_C - 4.0$	73.5		ns
164	CAS assertion to RAS deassertion	t _{RSH}	$5.25 \times T_C - 4.0$	48.5	_	ns
165	RAS assertion to CAS deassertion	t _{CSH}	$6.25 \times T_{C} - 4.0$	58.5	_	ns

Table 2-11. DRAM Out-of-Page and Refresh Timings, Eleven Wait States^{1, 2} (Continued)

No.	Characteristics	Symbol	Expression	100 MHz		Unit
NO.	Gilaracteristics	ZAPICOSIGNI	Expression	Min	Max	Oilit
166	CAS assertion pulse width	t _{CAS}	$3.75 \times T_C - 4.0$	33.5	_	ns
167	RAS assertion to CAS assertion	t _{RCD}	$2.5 \times T_{\text{C}} \pm 4.0$	21.0	29.0	ns
168	RAS assertion to column address valid	t _{RAD}	$1.75 \times T_{\text{C}} \pm 4.0$	13.5	21.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$5.75 \times T_{C} - 4.0$	53.5		ns
170	CAS deassertion pulse width	t _{CP}	$4.25 \times T_{C} - 6.0$	36.5	_	ns
171	Row address valid to RAS assertion	t _{ASR}	$4.25\times T_{C}-4.0$	38.5	_	ns
172	RAS assertion to row address not valid	t _{RAH}	$1.75 \times T_{C} - 4.0$	13.5	_	ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	3.5	_	ns
174	CAS assertion to column address not valid	t _{CAH}	$5.25\times T_{C}-4.0$	48.5	_	ns
175	RAS assertion to column address not valid	t _{AR}	$7.75 \times T_{C} - 4.0$	73.5		ns
176	Column address valid to RAS deassertion	t _{RAL}	$6 \times T_C - 4.0$	56.0	_	ns
177	WR deassertion to CAS assertion	t _{RCS}	$3.0 \times T_C - 4.0$	26.0	_	ns
178	CAS deassertion to WR ³ assertion	t _{RCH}	$1.75 \times T_{C} - 3.7$	13.8	_	ns
179	RAS deassertion to WR ³ assertion	t _{RRH}	$0.25\times T_{C}-2.0$	0.5	_	ns
180	CAS assertion to WR deassertion	t _{WCH}	$5 \times T_C - 4.2$	45.8	_	ns
181	RAS assertion to WR deassertion	t _{WCR}	$7.5 \times T_{C} - 4.2$	70.8	_	ns
182	WR assertion pulse width	t _{WP}	$11.5 \times T_{C} - 4.5$	110.5	_	ns
183	WR assertion to RAS deassertion	t _{RWL}	11.75 × T _C – 4.3	113.2	_	ns
184	WR assertion to CAS deassertion	t _{CWL}	10.25 × T _C – 4.3	98.2	_	ns
185	Data valid to CAS assertion (write)	t _{DS}	$5.75 \times T_{C} - 4.0$	53.5	_	ns
186	CAS assertion to data not valid (write)	t _{DH}	$5.25 \times T_{C} - 4.0$	48.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$7.75\times T_{C}-4.0$	73.5	_	ns
188	WR assertion to CAS assertion	t _{WCS}	$6.5 \times T_C - 4.3$	60.7	_	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5\times T_{C}-4.0$	11.0	_	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$2.75\times T_{C}-4.0$	23.5	_	ns
191	RD assertion to RAS deassertion	t _{ROH}	$11.5 \times T_{C} - 4.0$	111.0	_	ns

Table 2-11. DRAM Out-of-Page and Refresh Timings, Eleven Wait States^{1, 2} (Continued)

No.	Characteristics	Symbol	Expression	100 MHz		Unit
				Min	Max	
192	RD assertion to data valid	t _{GA}	$10\times T_{C}-7.0$	_	93.0	ns
193	RD deassertion to data not valid ⁴	t _{GZ}		0.0	_	ns
194	WR assertion to data active		$0.75 \times T_{C} - 1.5$	6.0	_	ns
195	WR deassertion to data high impedance		$0.25 \times T_C$	_	2.5	ns

- **Notes: 1.** The number of wait states for out-of-page access is specified in the DCR.
 - 2. The refresh period is specified in the DCR.
 - Either t_{RCH} or t_{RRH} must be satisfied for read cycles.
 - 4. RD deassertion always occurs after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} .

Table 2-12. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States 1, 2

No.	Characteristics	Symbol	F	100 MHz		Unit
NO.		Symbol	Expression	Min	Max	Ollit
157	Random read or write cycle time	t _{RC}	16 × T _C	160.0	_	ns
158	RAS assertion to data valid (read)	t _{RAC}	$8.25 \times T_{C} - 5.7$	_	76.8	ns
159	CAS assertion to data valid (read)	t _{CAC}	$4.75 \times T_{C} - 5.7$	_	41.8	ns
160	Column address valid to data valid (read)	t _{AA}	$5.5 \times T_C - 5.7$	_	49.3	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}	0.0	0.0	_	ns
162	RAS deassertion to RAS assertion	t _{RP}	$6.25 \times T_{C} - 4.0$	58.5	_	ns
163	RAS assertion pulse width	t _{RAS}	$9.75 \times T_{C} - 4.0$	93.5	_	ns
164	CAS assertion to RAS deassertion	t _{RSH}	$6.25 \times T_{C} - 4.0$	58.5	_	ns
165	RAS assertion to CAS deassertion	t _{CSH}	$8.25 \times T_{C} - 4.0$	78.5	_	ns
166	CAS assertion pulse width	t _{CAS}	$4.75\times T_{C}-4.0$	43.5	_	ns
167	RAS assertion to CAS assertion	t _{RCD}	$3.5 \times T_C \pm 2$	33.0	37.0	ns
168	RAS assertion to column address valid	t _{RAD}	$2.75 \times T_C \pm 2$	25.5	29.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$7.75 \times T_{C} - 4.0$	73.5	_	ns
170	CAS deassertion pulse width	t _{CP}	$6.25 \times T_{C} - 6.0$	56.5	_	ns
171	Row address valid to RAS assertion	t _{ASR}	$6.25 \times T_{C} - 4.0$	58.5	_	ns
172	RAS assertion to row address not valid	t _{RAH}	$2.75 \times T_{C} - 4.0$	23.5	_	ns

Table 2-12. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States^{1, 2} (Continued)

No	Characteristics	Symbol	Funnasian	100 MHz		Unit
No.	Characteristics	Symbol	Expression	Min	Max	Unit
173	Column address valid to CAS assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	3.5	_	ns
174	CAS assertion to column address not valid	t _{CAH}	$6.25 \times T_{C} - 4.0$	58.5	_	ns
175	RAS assertion to column address not valid	t _{AR}	$9.75 \times T_{C} - 4.0$	93.5	_	ns
176	Column address valid to RAS deassertion	t _{RAL}	$7 \times T_C - 4.0$	66.0	_	ns
177	WR deassertion to CAS assertion	t _{RCS}	$5 \times T_C - 3.8$	46.2	_	ns
178	CAS deassertion to WR ³ assertion	t _{RCH}	$1.75 \times T_{C} - 3.7$	13.8	_	ns
179	RAS deassertion to WR ³ assertion	t _{RRH}	$0.25 \times T_C - 2.0$	0.5	_	ns
180	CAS assertion to WR deassertion	t _{WCH}	$6 \times T_C - 4.2$	55.8	_	ns
181	RAS assertion to WR deassertion	t _{WCR}	$9.5 \times T_C - 4.2$	90.8	_	ns
182	WR assertion pulse width	t _{WP}	15.5 × T _C – 4.5	150.5	_	ns
183	WR assertion to RAS deassertion	t _{RWL}	$15.75 \times T_{C} - 4.3$	153.2	_	ns
184	WR assertion to CAS deassertion	t _{CWL}	$14.25 \times T_{C} - 4.3$	138.2	_	ns
185	Data valid to CAS assertion (write)	t _{DS}	$8.75 \times T_{C} - 4.0$	83.5	_	ns
186	CAS assertion to data not valid (write)	t _{DH}	$6.25 \times T_{C} - 4.0$	58.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$9.75\times T_{C}-4.0$	93.5	_	ns
188	WR assertion to CAS assertion	t _{WCS}	$9.5\times T_{C}-4.3$	90.7	_	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5\times T_{C}-4.0$	11.0	_	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$4.75\times T_{C}-4.0$	43.5	_	ns
191	RD assertion to RAS deassertion	t _{ROH}	$15.5\times T_C-4.0$	151.0	_	ns
192	RD assertion to data valid	t _{GA}	$14\times T_{C}-5.7$	_	134.3	ns
193	RD deassertion to data not valid ⁴	t _{GZ}		0.0	_	ns
194	WR assertion to data active		$0.75 \times T_{C} - 1.5$	6.0	_	ns
195	WR deassertion to data high impedance		$0.25 \times T_C$	_	2.5	ns

Notes: 1. The number of wait states for out-of-page access is specified in the DCR.

^{2.} The refresh period is specified in the DCR.

Either t_{RCH} or t_{RRH} must be satisfied for read cycles.
 RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

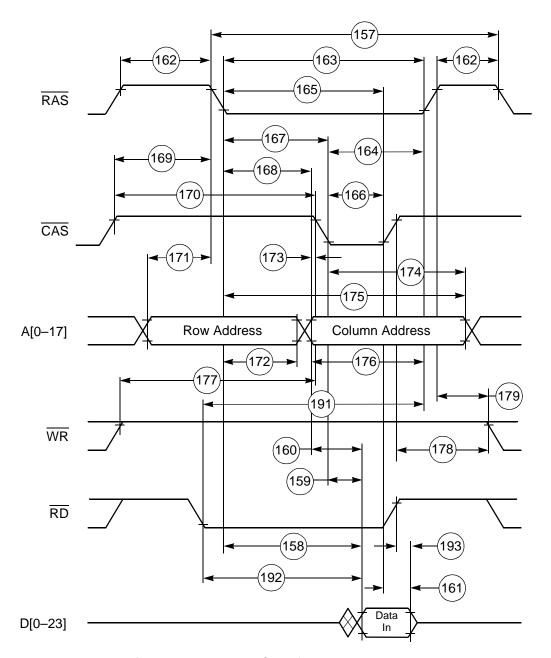


Figure 2-18. DRAM Out-of-Page Read Access

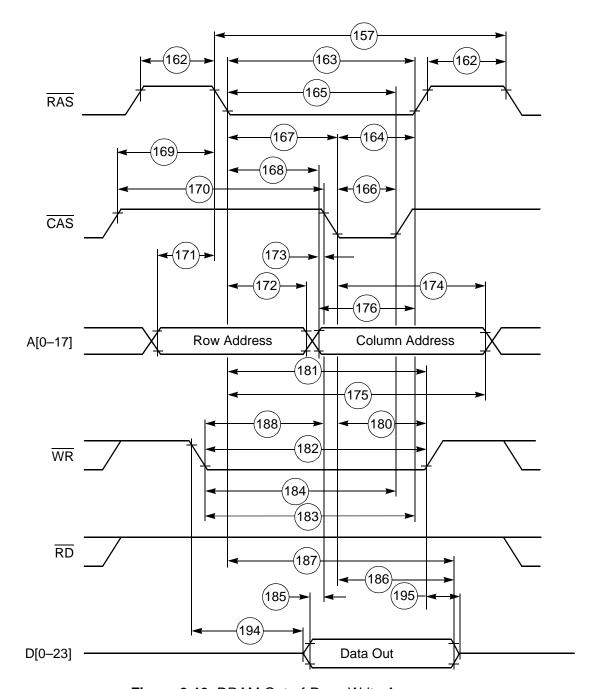


Figure 2-19. DRAM Out-of-Page Write Access

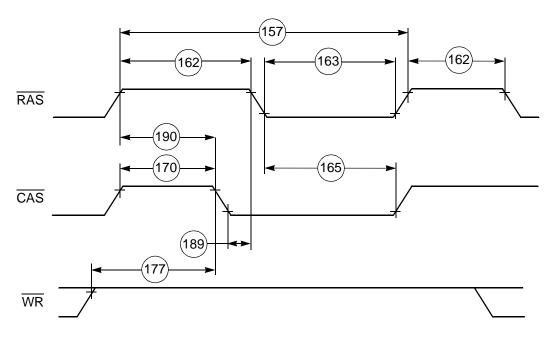


Figure 2-20. DRAM Refresh Access

Synchronous Timings

Table 2-13. External Bus Synchronous Timings³

Na	Characteristics	Expression ^{1,2}	100	Unit	
No.		Expression	Min	Max	Unit
198	CLKOUT high to address, and AA valid ⁴	$0.25 \times T_{C} + 4.0$	_	6.5	ns
199	CLKOUT high to address, and AA invalid ⁴	0.25 × T _C	2.5	_	ns
200	TA valid to CLKOUT high (setup time)		4.0	_	ns
201	CLKOUT high to TA invalid (hold time)		0.0	_	ns
202	CLKOUT high to data out active	0.25 × T _C	2.5	_	ns
203	CLKOUT high to data out valid	$0.25 \times T_{C} + 4.0$	_	6.5	ns
204	CLKOUT high to data out invalid	0.25 × T _C	2.5	_	ns
205	CLKOUT high to data out high impedance	0.25 × T _C	_	2.5	ns
206	Data in valid to CLKOUT high (setup)		4.0	_	ns
207	CLKOUT high to data in invalid (hold)		0.0	_	ns
208	CLKOUT high to RD assertion	$0.75 \times T_{C} + 2.5$	6.7	10.0	ns
209	CLKOUT high to RD deassertion		0.0	4.0	ns
210	CLKOUT high to WR assertion ²	$0.5 \times T_{C} + 4.3$ [WS = 1 or WS ≥ 4]	5.0	9.3	ns
		[2 ≤ WS ≤ 3]	0.0	4.3	ns
211	CLKOUT high to WR deassertion		0.0	3.8	ns

- Notes: 1. WS is the number of wait states specified in the BCR.
 - 2. If WS > 1, $\overline{\text{WR}}$ assertion refers to the next rising edge of CLKOUT.
 - 3. External bus synchronous timings should be used only for reference to the clock and not for relative
 - 4. T198 and T199 are valid for Address Trace mode if the ATE bit in the OMR is set. Use the status of BR (See T212) to determine whether the access referenced by A[0-17] is internal or external, when this mode
 - 5. Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible.

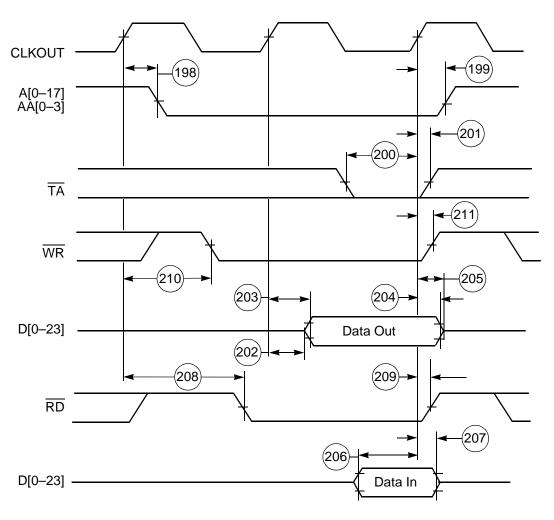


Figure 2-21. Synchronous Bus Timings 1 WS (BCR Controlled)

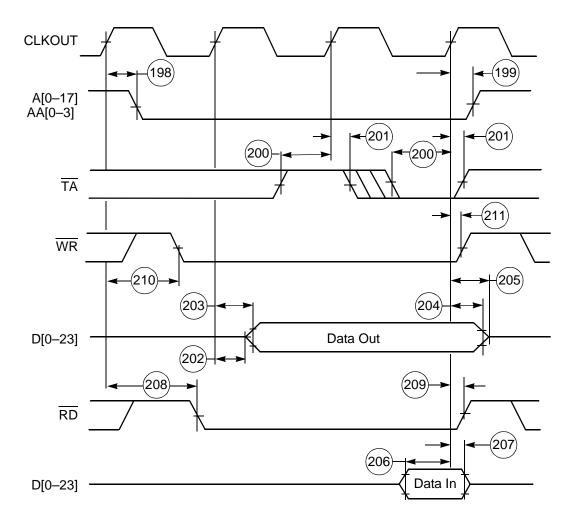


Figure 2-22. Synchronous Bus Timings 2 WS (TA Controlled)

Arbitration Timings

Table 2-14. Arbitration Bus Timings

No	Characteristics	Farmanadan	100 MHz		I Imit
No.		Expression	Min	Max	Unit
212	CLKOUT high to BR assertion/deassertion ¹		0.0	4.0	ns
213	BG asserted/deasserted to CLKOUT high (setup)		4.0	_	ns
214	CLKOUT high to BG deasserted/asserted (hold)		0.0	_	ns
215	BB deassertion to CLKOUT high (input setup)		4.0	_	ns
216	CLKOUT high to BB assertion (input hold)		0.0	_	ns
217	CLKOUT high to BB assertion (output)		0.0	4.0	ns
218	CLKOUT high to BB deassertion (output)		0.0	4.0	ns
219	BB high to BB high impedance (output)		_	4.5	ns
220	CLKOUT high to address and controls active	0.25 × T _C	2.5	_	ns
221	CLKOUT high to address and controls high impedance	0.75 × T _C	_	7.5	ns
222	CLKOUT high to AA active	0.25 × T _C	2.5		ns
223	CLKOUT high to AA deassertion	$0.25 \times T_{C} + 4.0$	2.0	6.5	ns
224	CLKOUT high to AA high impedance	0.75 × T _C	_	7.5	ns

Notes: 1. T212 is valid for Address Trace mode when the ATE bit in the OMR is set. \overline{BR} is deasserted for internal accesses and asserted for external accesses.

2. Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible.

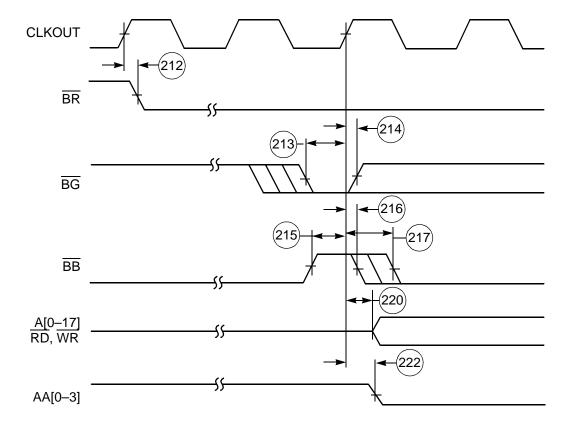


Figure 2-23. Bus Acquisition Timings

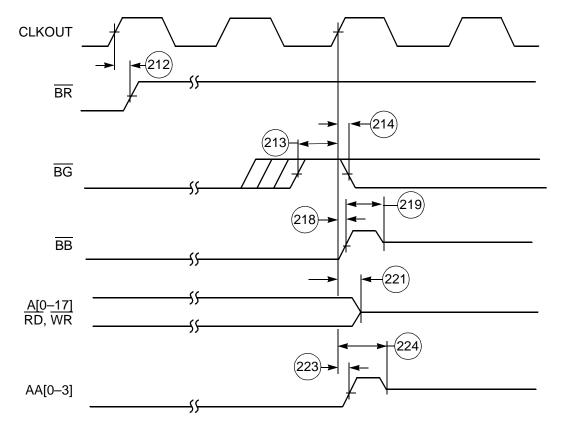


Figure 2-24. Bus Release Timings Case 1 (BRT Bit in OMR Cleared)

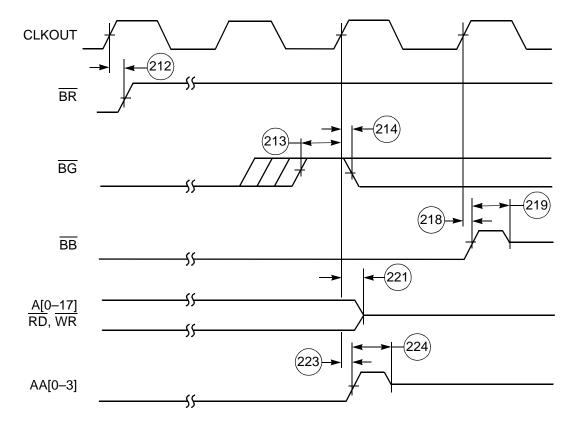


Figure 2-25. Bus Release Timings Case 2 (BRT Bit in OMR Set)

Table 2-15. Asynchronous Bus Arbitration Timing^{1,3}

No.	Characteristics	Expression	100 MHz ²		Unit
		Expression	Min	Max	Oille
250	BB assertion window from BG input deassertion ⁴	2.5 x Tc + 5		30	ns
251	Delay from BB assertion to BG assertion ⁴	2 x Tc + 5	25	_	ns

Notes: 1. Bit 13 in the OMR register must be set to enter Asynchronous Arbitration mode.

- 2. Asynchronous Arbitration mode is recommended for operation at 100 MHz.
- 3. If Asynchronous Arbitration mode is active, none of the timings in Table 2-14 is required.
- **4.** In order to guarantee timings 250, and 251, BG inputs must be asserted to different DSP56300 devices on the same bus in the non-overlap manner shown in **Figure 2-26**.

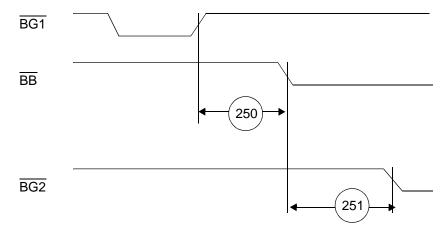


Figure 2-26. Asynchronous Bus Arbitration Timing

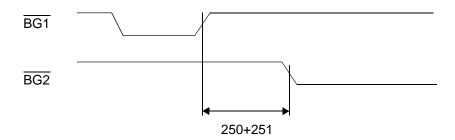


Figure 2-27. Asynchronous Bus Arbitration Timing

The asynchronous bus arbitration is enabled by internal \overline{BB} inputs and synchronization circuits on \overline{BG} . These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a result of this delay, a DSP56300 part can assume mastership and assert \overline{BB} , for some time after \overline{BG} is deasserted. Timing 250 defines when \overline{BB} can be asserted.

Once \overline{BB} is asserted, there is a synchronization delay from \overline{BB} assertion to the time this assertion is exposed to other DSP56300 components which are potential masters on the same bus. If \overline{BG} input is asserted before that time, a situation of \overline{BG} asserted, and \overline{BB} deasserted, can cause another DSP56300 component to assume mastership at the same time. Therefore, a non-overlap period between one \overline{BG} input active to another \overline{BG} input active is required. Timing 251 ensures that such a situation is avoided.

HOST INTERFACE TIMING

Table 2-16. Host Interface Timing^{1, 2}

	Characterist-10		100 MHz		l lmit
No.	Characteristic ¹⁰	Expression	Min	Max	Unit
317	Read data strobe assertion width ⁵ HACK assertion width	T _C + 9.0	19.9	_	ns
318	Read data strobe deassertion width ⁵ HACK deassertion width		9.9	_	ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	2.5 × T _C + 6.6	31.6	_	ns
320	Write data strobe assertion width ⁶		14.5	_	ns
321	Write data strobe deassertion width ⁸ HACK write deassertion width ■ after HCTR, HCVR and "Last Data Register" writes	2.5×T _C +6.6	31.6	_	ns
	■ after TXH:TXM writes (with HLEND=0) ⁸ after TXL:TXM writes (with HLEND=1) ⁸		16.5	_	ns
322	HAS assertion width		9.9	_	ns
323	HAS deassertion to data strobe assertion ⁴		0.0	_	ns
324	Host data input setup time before write data strobe deassertion ⁶		9.9	—	ns
325	Host data input hold time after write data strobe deassertion ⁶		3.3	_	ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		3.3	_	ns
327	Read data strobe assertion to output data valid ⁵ HACK assertion to output data valid		_	23.5	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance		_	9.9	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		3.1	_	ns
330	HCS assertion to read data strobe deassertion ⁵	T _C + 9.9	19.9		ns
331	HCS assertion to write data strobe deassertion ⁶		9.9	_	ns
332	HCS assertion to output data valid		_	16.5	ns
333	HCS hold time after data strobe deassertion ⁴		0.0	_	ns
334	Address (HAD[7–0]) setup time before HAS deassertion (HMUX=1)		4.7		ns
335	Address (HAD[7–0]) hold time after HAS deassertion (HMUX=1)		3.3		ns
336	HA[10–8] (HMUX=1), A[2–0] (HMUX=0), HR/W setup time before data strobe assertion ⁴ ■ Read		0		nc
	■ Read ■ Write		0 4.7		ns ns
337	HA[10-8] (HMUX=1), A[2-0] (HMUX=0), HR/W hold time after data strobe deassertion ⁴		3.3	_	ns

Table 2-16. Host Interface Timing^{1, 2} (Continued)

No.	Characteristic ¹⁰	F	100 MHz		Unit
NO.	Characteristic	Expression	Min	Max	Unit
338	Delay from read data strobe deassertion to host request assertion for "Last Data Register" read ^{5, 7, 8}	1.5 × T _C + 10	25.0	_	ns
339	Delay from write data strobe deassertion to host request assertion for "Last Data Register" write ^{6, 7, 8}	2.0 × T _C + 13	33.0		ns
340	Delay from data strobe assertion to host request deassertion for "Last Data Register" read or write (HROD=0) ^{4, 7, 8}		_	20.2	ns
341	Delay from data strobe assertion to host request deassertion for "Last Data Register" read or write (HROD=1, open drain host request) ^{4, 7, 8, 9}		_	300.0	ns

Notes: 1.

- 1. See Host Port Usage Considerations on page 1-10.
- 2. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.
- 3. This timing is applicable only if two consecutive reads from one of these registers are executed.
- **4.** The data strobe is Host Read (HRD) or Host Write (HWR) in the Dual Data Strobe mode and Host Data Strobe (HDS) in the Single Data Strobe mode.
- 5. The read data strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.
- 6. The write data strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.
- 7. The host request is HREQ in the Single Host Request mode and HRRQ and HTRQ in the Double Host Request mode.
- 8. The "Last Data Register" is the register at address \$7, which is the last location to be read or written in data transfers. This is RXL/TXL in the Little Endian mode (HLEND = 1), or RXH/TXH in the Big Endian mode (HLEND = 0).
- 9. In this calculation, the host request signal is pulled up by a 4.7 k Ω resistor in the Open-drain mode.
- **10.** $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to +100 °C, $C_L = 50 \text{ pF}$
- 11. This timing is applicable only if a read from the "Last Data Register" is followed by a read from the RXL, RXM, or RXH registers without first polling RXDF or HREQ bits, or waiting for the assertion of the HREQ signal.

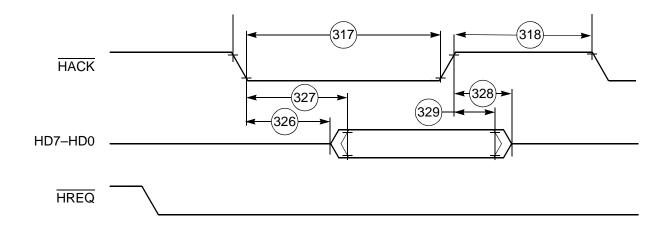


Figure 2-28. Host Interrupt Vector Register (IVR) Read Timing Diagram

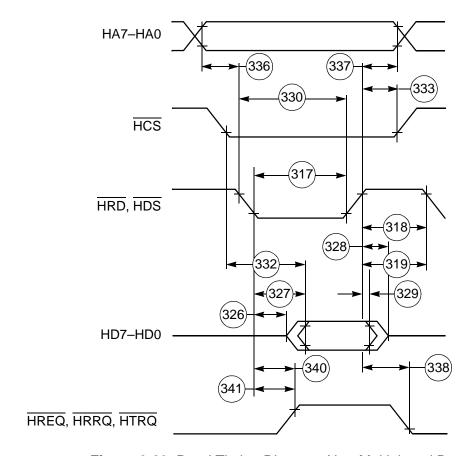


Figure 2-29. Read Timing Diagram, Non-Multiplexed Bus

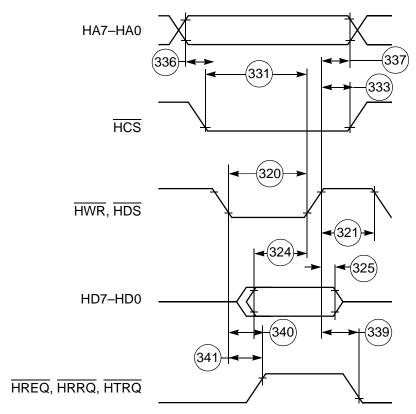


Figure 2-30. Write Timing Diagram, Non-Multiplexed Bus

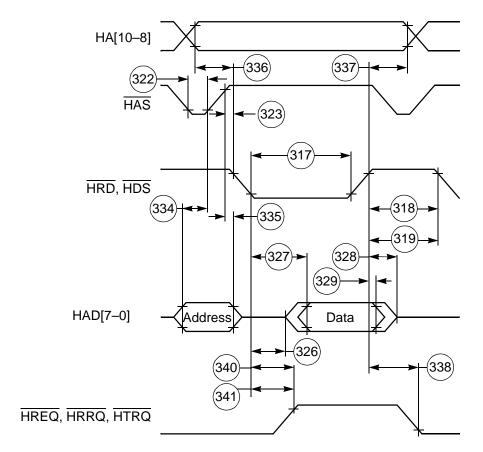


Figure 2-31. Read Timing Diagram, Multiplexed Bus

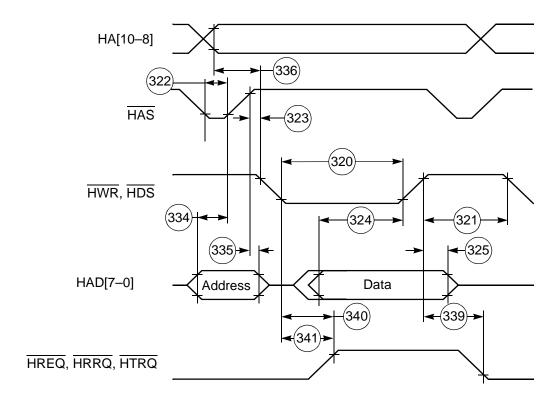
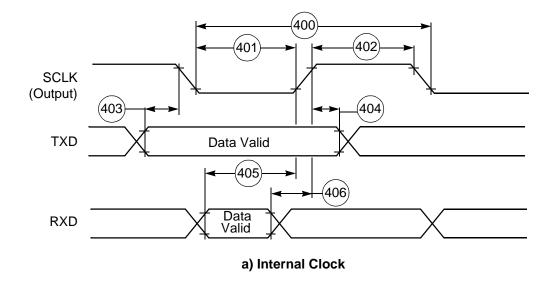


Figure 2-32. Write Timing Diagram, Multiplexed Bus

SCI TIMING


Table 2-17. SCI Timing

N-	Characteristics ¹	Comple of	Fyggesien	100	MHz	Unit
No.	Characteristics	Symbol	Expression	Min	Max	Unit
400	Synchronous clock cycle	t _{SCC} ²	8×T _C	80.0	_	ns
401	Clock low period		t _{SCC} /2 - 10.0	30.0	_	ns
402	Clock high period		t _{SCC} /2 - 10.0	30.0	_	ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 17.0$	8.0	_	ns
404	Output data hold after clock rising edge (internal clock)		$t_{SCC}/4 - 0.5 \times T_{C}$	15.0	_	ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_C + 25.0$	50.0	_	ns
406	Input data not valid before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_C - 5.5$		19.5	ns
407	Clock falling edge to output data valid (external clock)				32.0	ns
408	Output data hold after clock rising edge (external clock)		T _C + 8.0	18.0	_	ns
409	Input data setup time before clock rising edge (external clock)			0.0	_	ns
410	Input data hold time after clock rising edge (external clock)			9.0	_	ns
411	Asynchronous clock cycle	t _{ACC} 3	64 × T _C	640.0	_	ns
412	Clock low period		t _{ACC} /2 – 10.0	310.0	_	ns
413	Clock high period		t _{ACC} /2 – 10.0	310.0	_	ns
414	Output data setup to clock rising edge (internal clock)		t _{ACC} /2 - 30.0	290.0	_	ns
415	Output data hold after clock rising edge (internal clock)		t _{ACC} /2 - 30.0	290.0	_	ns

Notes: 1. V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100 °C, C_L = 50 pF

2. t_{SCC} = synchronous clock cycle time (For internal clock, t_{SCC} is determined by the SCI clock control register and T_C.)

^{3.} t_{ACC} = asynchronous clock cycle time; value given for 1X Clock mode (For internal clock, t_{ACC} is determined by the SCI clock control register and $T_{C.}$)

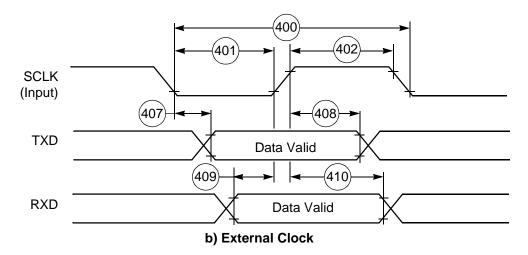


Figure 2-33. SCI Synchronous Mode Timing

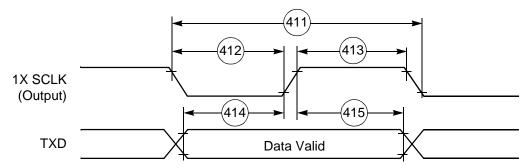


Figure 2-34. SCI Asynchronous Mode Timing

ESSIO/ESSI1 TIMING

Table 2-18. ESSI Timings

NI -	Characteristics 4.5.7	Coursts at	France !	100	MHz	Cond-	112
No.	Characteristics ^{4, 5, 7}	Symbol	Expression	Min	Max	ition ⁶	Unit
430	Clock cycle ¹	t _{SSICC}	$3 \times T_{C}$ $4 \times T_{C}$	30.0 40.0	_	x ck i ck	ns
431	Clock high period For internal clock For external clock		2×T _C - 10.0 1.5×T _C	10.0 15.0	_		ns ns
432	Clock low period ■ For internal clock ■ For external clock		$2 \times T_{\text{C}} - 10.0$ $1.5 \times T_{\text{C}}$	10.0 15.0			ns ns
433	RXC rising edge to FSR out (bl) high			_	37.0 22.0	x ck i ck a	ns
434	RXC rising edge to FSR out (bl) low			_ _	37.0 22.0	x ck i ck a	ns
435	RXC rising edge to FSR out (wr) high ²			_	39.0 37.0	x ck i ck a	ns
436	RXC rising edge to FSR out (wr) low ²			_	39.0 37.0	x ck i ck a	ns
437	RXC rising edge to FSR out (wl) high			_	36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (wl) low			_	37.0 22.0	x ck i ck a	ns
439	Data in setup time before RXC (SCK in Synchronous mode) falling edge			10.0 19.0	_	x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0	_	x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²			1.0 23.0	_	x ck i ck a	ns
442	FSR input (wl) high before RXC falling edge			3.5 23.0	_	x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0	_	x ck i ck a	ns
444	Flags input setup before RXC falling edge			5.5 19.0	_	x ck i ck s	ns
445	Flags input hold time after RXC falling edge			6.0 0.0	_	x ck i ck s	ns
446	TXC rising edge to FST out (bl) high				29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bl) low			_ _	31.0 17.0	x ck i ck	ns

Table 2-18. ESSI Timings (Continued)

NI-	Characteristics ^{4, 5, 7}	0	F	100	MHz	Cond-	11
No.	Cnaracteristics (1997)	Symbol	Expression	Min	Max	ition ⁶	Unit
448	TXC rising edge to FST out (wr) high ²			_	31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (wr) low ²			_	33.0 19.0	x ck i ck	ns
450	TXC rising edge to FST out (wl) high			_	30.0 16.0	x ck i ck	ns
451	TXC rising edge to FST out (wl) low			_ _	31.0 17.0	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance			_	31.0 17.0	x ck i ck	ns
453	TXC rising edge to Transmitter #0 drive enable assertion			_	34.0 20.0	x ck i ck	ns
454	TXC rising edge to data out valid			_	20.0 ⁸ 10.0	x ck i ck	ns
455	TXC rising edge to data out high impedance ³			_	31.0 16.0	x ck i ck	ns
456	TXC rising edge to Transmitter #0 drive enable deassertion ³			_	34.0 20.0	x ck i ck	ns
457	FST input (bl, wr) setup time before TXC falling edge ²			2.0 21.0	_	x ck i ck	ns
458	FST input (wl) to data out enable from high impedance			_	27.0	_	ns
459	FST input (wl) to Transmitter #0 drive enable assertion			_	31.0	_	ns
460	FST input (wl) setup time before TXC falling edge			2.5 21.0	_	x ck i ck	ns
461	FST input hold time after TXC falling edge			4.0 0.0	_ _	x ck i ck	ns
462	Flag output valid after TXC rising edge			_	32.0 18.0	x ck i ck	ns

Table 2-18. ESSI Timings (Continued)

No.	Characteristics ^{4, 5, 7}	Symbol	Expression	100	MHz	Cond-	Unit
NO.	Characteristics 7-7	Syllibol	Expression	Min	Max	ition ⁶	Onit

Notes: 1. For the internal clock, the external clock cycle is defined by I_{CYC} and the ESSI control register.

- 2. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but spreads from one serial clock before first bit clock (same as Bit Length Frame Sync signal), until the one before last bit clock of the first word in frame.
- 3. Periodically sampled and not 100 percent tested
- **4.** $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40 ^{\circ}\text{C}$ to +100 $^{\circ}\text{C}$, $C_L = 50 \text{ pF}$ **5.** TXC (SCK Pin) = Transmit Clock

RXC (SC0 or SCK Pin) = Receive Clock

FST (SC2 Pin) = Transmit Frame Sync

FSR (SC1 or SC2 Pin) Receive Frame Sync

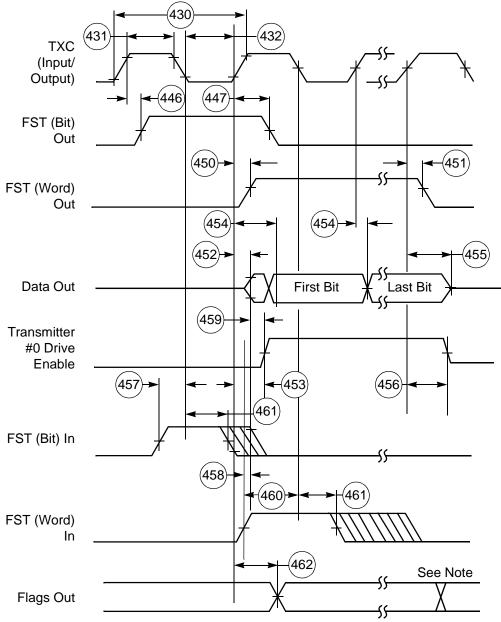
6. i ck = Internal Clock

x ck = External Clock

i ck a = Internal Clock, Asynchronous Mode

(Asynchronous implies that TXC and RXC are two different clocks)

i ck s = Internal Clock, Synchronous Mode


(Synchronous implies that TXC and RXC are the same clock)

7. bl = bit length

wl = word length

wr = word length relative

8. If the DSP core writes to the transmit register during the last cycle before causing an underrun error, the delay is 20 ns + $(0.5 \times T_C)$.

Note: In Network mode, output flag transitions can occur at the start of each time slot within the frame. In Normal mode, the output flag state is asserted for the entire frame period.

Figure 2-35. ESSI Transmitter Timing

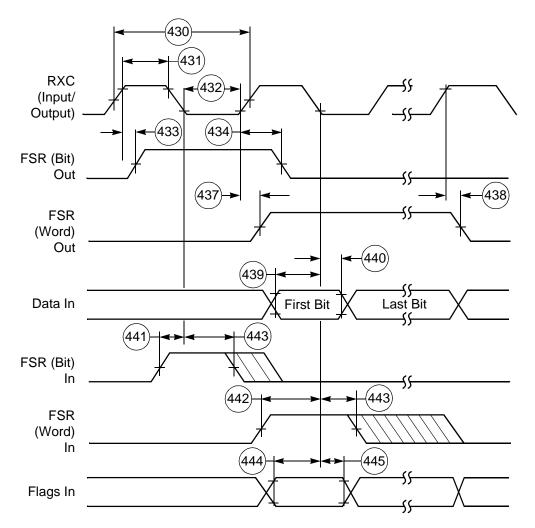


Figure 2-36. ESSI Receiver Timing

TIMER TIMING

Table 2-19. Timer Timing

Na	Characteristics	Funnasian	100	MHz	Unit
No.	Characteristics	Expression	Min	Max	Unit
480	TIO Low	2×T _C +2.0	22.0	1	ns
481	TIO High	$2 \times T_C + 2.0$	22.0	1	ns
482	Timer setup time from TIO (Input) assertion to CLKOUT rising edge		9.0	10.0	ns
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	10.25 × T _C + 1.0	103.5		ns
484	CLKOUT rising edge to TIO (Output) assertion Minimum Maximum	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5 —	 24.8	ns ns
485	CLKOUT rising edge to TIO (Output) deassertion Minimum Maximum	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5 —	 24.8	ns ns
Note	: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to +100 °C, $C_L = 50 \text{ pF}$				

TIO (480) - (481) -

Figure 2-37. TIO Timer Event Input Restrictions

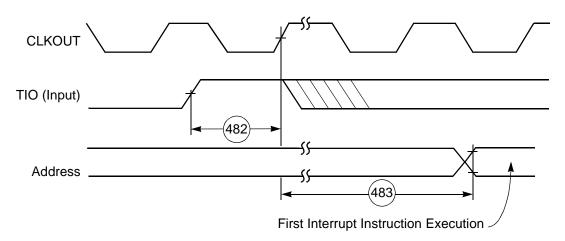


Figure 2-38. Timer Interrupt Generation

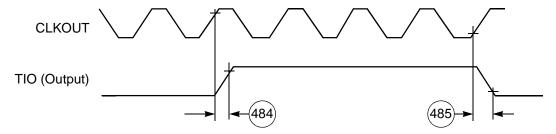
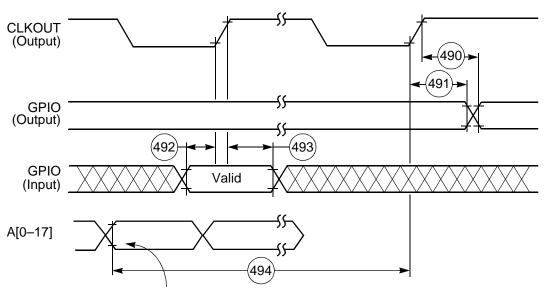



Figure 2-39. External Pulse Generation

GPIO TIMING

Table 2-20. GPIO Timing

No.	Observatoristics	Farmer	100	l lmi4	
	Characteristics	Expression	Min	Max	Unit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		_	8.5	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		0.0	_	ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		8.5	_	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	_	ns
494	Fetch to CLKOUT edge before GPIO change	6.75 × T _C	67.5	_	ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_J = -40^{\circ}\text{C to } +100 \text{ °C}, C_L = 50 \text{ pF}$				

Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO and R0 contains the address of GPIO data register.

Figure 2-40. GPIO Timing

JTAG TIMING

Table 2-21. JTAG Timing

No.	Characteristics ^{1,2}	All freq	uencies	Unit
NO.	Characteristics	Min	Max	Omt
500	TCK frequency of operation (1/($T_C \times 3$); maximum 22 MHz)	0.0	22.0	MHz
501	TCK cycle time in Crystal mode	45.0	_	ns
502	TCK clock pulse width measured at 1.5 V	20.0	_	ns
503	TCK rise and fall times	0.0	3.0	ns
504	Boundary scan input data setup time	5.0	_	ns
505	Boundary scan input data hold time	24.0	_	ns
506	TCK low to output data valid	0.0	40.0	ns
507	TCK low to output high impedance	0.0	40.0	ns
508	TMS, TDI data setup time	5.0	_	ns
509	TMS, TDI data hold time	25.0	_	ns
510	TCK low to TDO data valid	0.0	44.0	ns
511	TCK low to TDO high impedance	0.0	44.0	ns
512	TRST assert time	100.0	_	ns
513	TRST setup time to TCK low	40.0	_	ns

Notes: 1. V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100 °C, C_L = 50 pF
 2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.

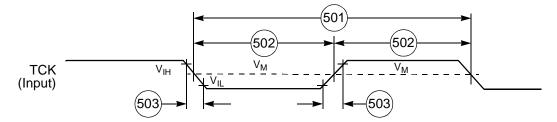


Figure 2-41. Test Clock Input Timing Diagram

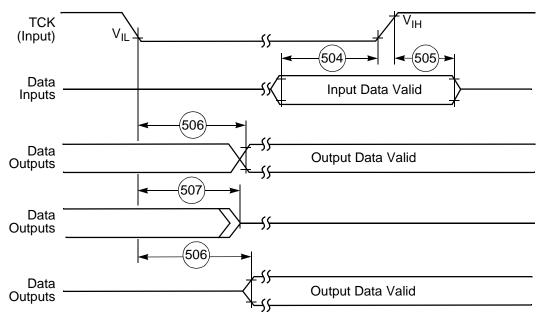


Figure 2-42. Boundary Scan (JTAG) Timing Diagram

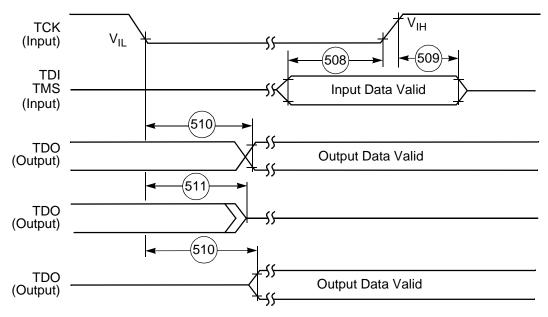


Figure 2-43. Test Access Port Timing Diagram

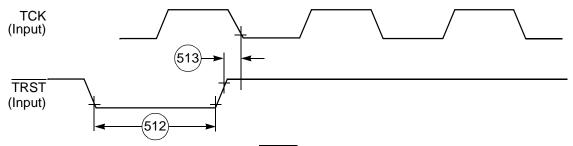


Figure 2-44. TRST Timing Diagram

OnCE MODULE TIMING

Table 2-22. OnCE Module Timing

No.	Characteristics	Expression	100	Unit	
110.	Onaracionstics	Ελβιοσσίστι	Min Max		Onic
500	TCK frequency of operation	1/(T _C × 3), max 22.0 MHz	0.0	22.0	MHz
514	DE assertion time in order to enter Debug mode	$1.5 \times T_{C} + 10.0$	25.0	_	ns
515	Response time when DSP56309 is executing NOP instructions from internal memory	5.5 × T _C + 30.0	_	85.0	ns
516	Debug acknowledge assertion time	$3 \times T_C - 5.0$	25.0	_	ns
Note:	V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100 °C, C_L = 50 pF				

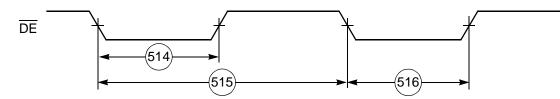


Figure 2-45. OnCE—Debug Request

SECTION 3

Packaging

PIN-OUT AND PACKAGE INFORMATION

This section provides information about the available packages for this product, including diagrams of the package pinouts and tables describing how the signals described in DSP56309 User's Manual, Section 2, Signal/Connection Descriptions are allocated for each package.

The DSP56309 is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Molded Array Process-Ball Grid Array (MAP-BGA)

TQFP Package Description

Top and bottom views of the TQFP package are shown in **Figure 3-1.** and **Figure 3-2.** with their pin-outs.

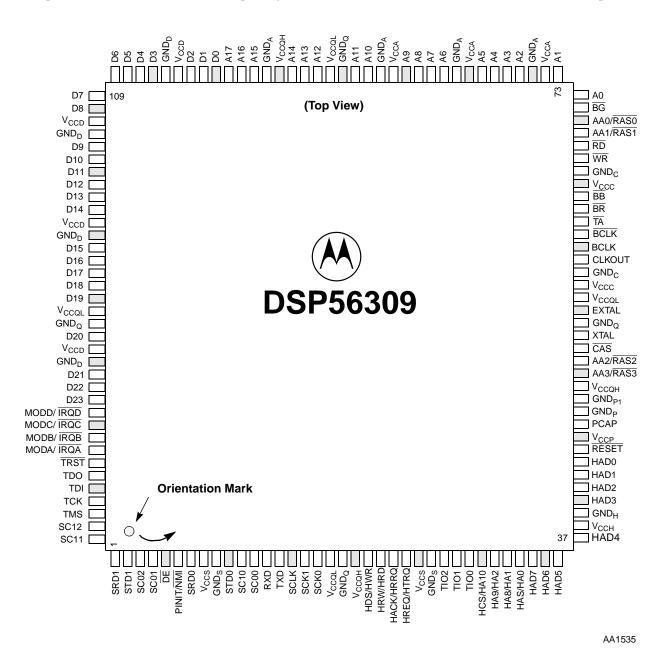


Figure 3-1. DSP56309 Thin Quad Flat Pack (TQFP), Top View

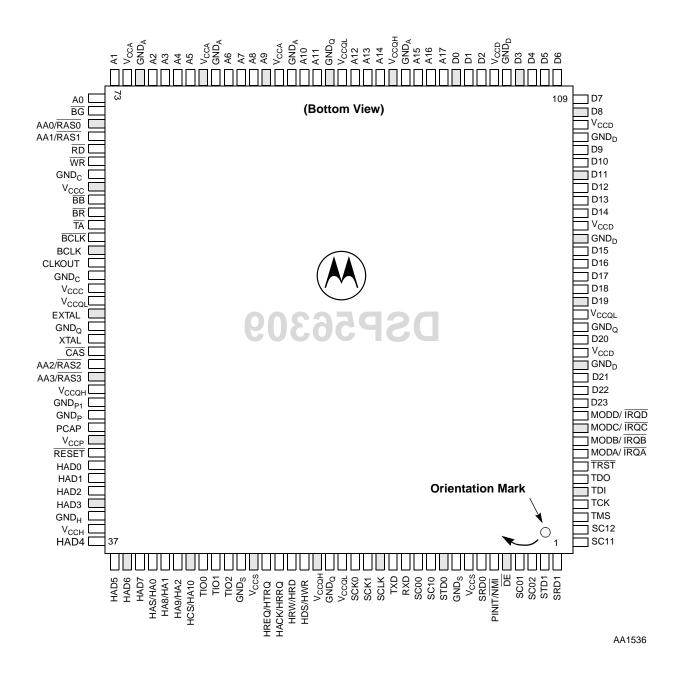


Figure 3-2. DSP56309 Thin Quad Flat Pack (TQFP), Bottom View

DSP56309 TQFP Signal Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	SRD1 or PD4	26	GND _S	51	AA2/RAS2
2	STD1 or PD5	27	TIO2	52	CAS
3	SC02 or PC2	28	TIO1	53	XTAL
4	SC01 or PC1	29	TIO0	54	GND _Q
5	DE	30	HCS/HCS, HA10, or PB13	55	EXTAL
6	PINIT/NMI	31	HA2, HA9, or PB10	56	V _{CCQL}
7	SRD0 or PC4	32	HA1, HA8, or PB9	57	V _{CCC}
8	V _{CCS}	33	HA0, HAS/HAS, or PB8	58	GND _C
9	GND _S	34	H7, HAD7, or PB7	59	CLKOUT
10	STD0 or PC5	35	H6, HAD6, or PB6	60	BCLK
11	SC10 or PD0	36	H5, HAD5, or PB5	61	BCLK
12	SC00 or PC0	37	H4, HAD4, or PB4	62	TA
13	RXD or PE0	38	V _{CCH}	63	BR
14	TXD or PE1	39	GND _H	64	BB
15	SCLK or PE2	40	H3, HAD3, or PB3	65	V _{CCC}
16	SCK1 or PD3	41	H2, HAD2, or PB2	66	GND _C
17	SCK0 or PC3	42	H1, HAD1, or PB1	67	WR
18	V _{CCQL}	43	H0, HAD0, or PB0	68	RD
19	GND _Q	44	RESET	69	AA1/RAS1
20	V _{CCQH}	45	V _{CCP}	70	AA0/RAS0
21	HDS/HDS, HWR/HWR, or PB12	46	PCAP	71	BG
22	HRW, HRD/HRD, or PB11	47	GND _P	72	A0
23	HACK/HACK, HRRQ/HRRQ, or PB15	48	GND _{P1}	73	A1
24	HREQ/HREQ, HTRQ/HTRQ, or PB14	49	V _{ССОН}	74	Vcca
25	V _{CCS}	50	AA3/RAS3	75	GND _A

DSP56309 TQFP Signal Identification by Pin Number (Continued)

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
76	A2	99	A17	122	D16
77	A3	100	D0	123	D17
78	A4	101	D1	124	D18
79	A5	102	D2	125	D19
80	V _{CCA}	103	V _{CCD}	126	V _{CCQL}
81	GND _A	104	GND _D	127	GND_Q
82	A6	105	D3	128	D20
83	A7	106	D4	129	V _{CCD}
84	A8	107	D5	130	GND _D
85	A9	108	D6	131	D21
86	V _{CCA}	109	D7	132	D22
87	GND _A	110	D8	133	D23
88	A10	111	V _{CCD}	134	MODD/IRQD
89	A11	112	GND _D	135	MODC/IRQC
90	GND_Q	113	D9	136	MODB/IRQB
91	V _{CCQL}	114	D10	137	MODA/IRQA
92	A12	115	D11	138	TRST
93	A13	116	D12	139	TDO
94	A14	117	D13	140	TDI
95	V _{CCQH}	118	D14	141	TCK
96	GND _A	119	V _{CCD}	142	TMS
97	A15	120	GND _D	143	SC12 or PD2
98	A16	121	D15	144	SC11 or PD1

Note: Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some pins have two or more configurable functions; names assigned to these pins indicate the function for a specific configuration. For example, pin 34 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin.

DSP56309 TQFP Signal Identification by Name

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	72	BG	71	D7	109
A1	73	BR	63	D8	110
A10	88	CAS	52	D9	113
A11	89	CLKOUT	59	DE	5
A12	92	D0	100	EXTAL	55
A13	93	D1	101	GND _A	75
A14	94	D10	114	GND _A	81
A15	97	D11	115	GND _A	87
A16	98	D12	116	GND _A	96
A17	99	D13	117	GND_C	58
A2	76	D14	118	GND_C	66
А3	77	D15	121	GND _D	104
A4	78	D16	122	GND _D	112
A5	79	D17	123	GND _D	120
A6	82	D18	124	GND _D	130
A7	83	D19	125	GND _H	39
A8	84	D2	102	GND _P	47
A9	85	D20	128	GND _{P1}	48
AA0	70	D21	131	GND_Q	19
AA1	69	D22	132	GND_Q	54
AA2	51	D23	133	GND_Q	90
AA3	50	D3	105	GND_Q	127
BB	64	D4	106	GND _S	9
BCLK	60	D5	107	GND _S	26
BCLK	61	D6	108	H0	43

DSP56309 TQFP Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
H1	42	HRD/HRD	22	PB4	37
H2	41	HREQ/HREQ	24	PB5	36
H3	40	HRRQ/HRRQ	23	PB6	35
H4	37	HRW	22	PB7	34
H5	36	HTRQ/HTRQ	24	PB8	33
H6	35	HWR/HWR	21	PB9	32
H7	34	ĪRQĀ	137	PC0	12
HA0	33	ĪRQB	136	PC1	4
HA1	32	ĪRQC	135	PC2	3
HA10	30	ĪRQD	134	PC3	17
HA2	31	MODA	137	PC4	7
HA8	32	MODB	136	PC5	10
HA9	31	MODC	135	PCAP	46
HACK/HACK	23	MODD	134	PD0	11
HAD0	43	NMI	6	PD1	144
HAD1	42	PB0	43	PD2	143
HAD2	41	PB1	42	PD3	16
HAD3	40	PB10	31	PD4	1
HAD4	37	PB11	22	PD5	2
HAD5	36	PB12	21	PE0	13
HAD6	35	PB13	30	PE1	14
HAD7	34	PB14	24	PE2	15
HAS	33	PB15	23	PINIT	6
HCS/HCS	30	PB2	41	RAS0	70
HDS/HDS	21	PB3	40	RAS1	69

DSP56309 TQFP Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
RAS2	51	STD1	2	V _{CCD}	111
RAS3	50	TA	62	V _{CCD}	119
RD	68	TCK	141	V _{CCD}	129
RESET	44	TDI	140	V _{CCH}	38
RXD	13	TDO	139	V _{CCP}	45
SC00	12	TIO0	29	V _{CCQH}	20
SC01	4	TIO1	28	V _{CCQH}	49
SC02	3	TIO2	27	V _{CCQH}	95
SC10	11	TMS	142	V _{CCQL}	18
SC11	144	TRST	138	V _{CCQL}	56
SC12	143	TXD	14	V _{CCQL}	91
SCK0	17	V _{CCA}	74	V _{CCQL}	126
SCK1	16	V _{CCA}	80	V _{CCS}	8
SCLK	15	V _{CCA}	86	V _{CCS}	25
SRD0	7	V _{CCC}	57	WR	67
SRD1	1	V _{CCC}	65	XTAL	53
STD0	10	V _{CCD}	103		

TQFP Package Mechanical Drawing

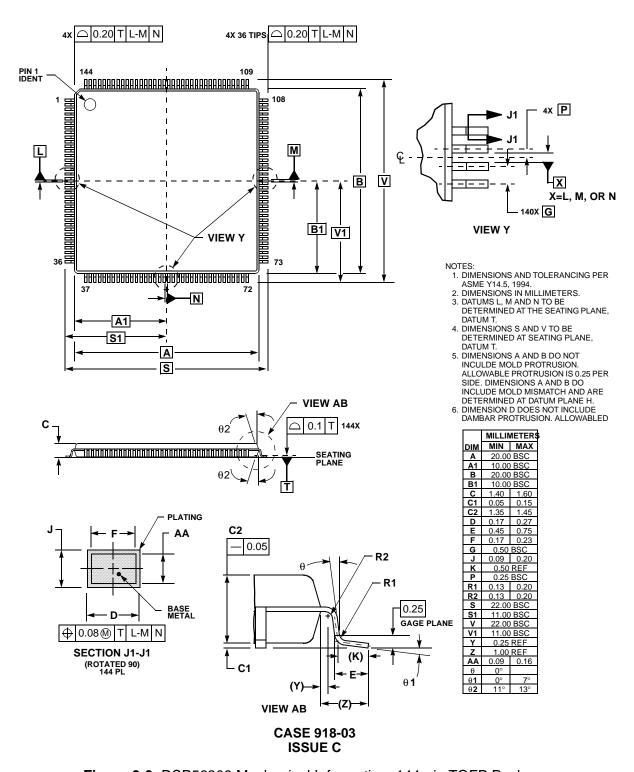


Figure 3-3. DSP56309 Mechanical Information, 144-pin TQFP Package

MAP-BGA Package Description

Top and bottom views of the MAP-BGA package are shown in **Figure 3-4.** and **Figure 3-5.** with their pin-outs.

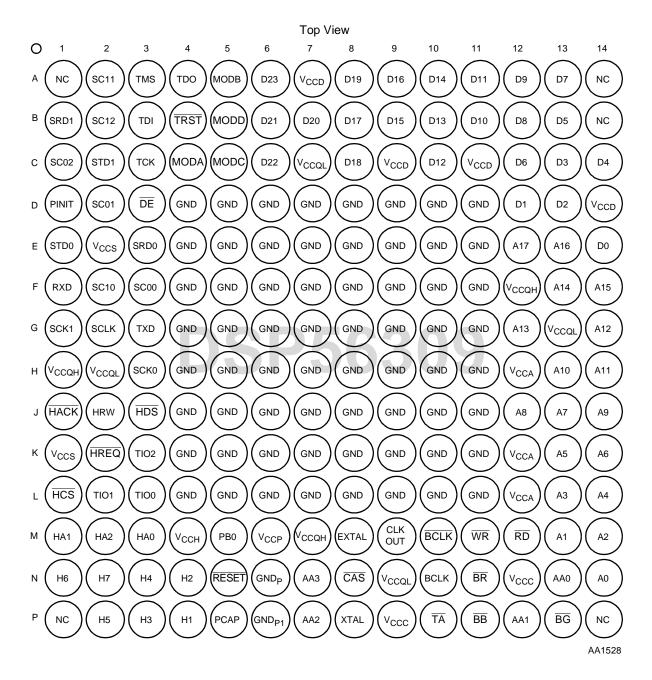


Figure 3-4. DSP56309 Molded Array Process-Ball Grid Array (MAP-BGA), Top View

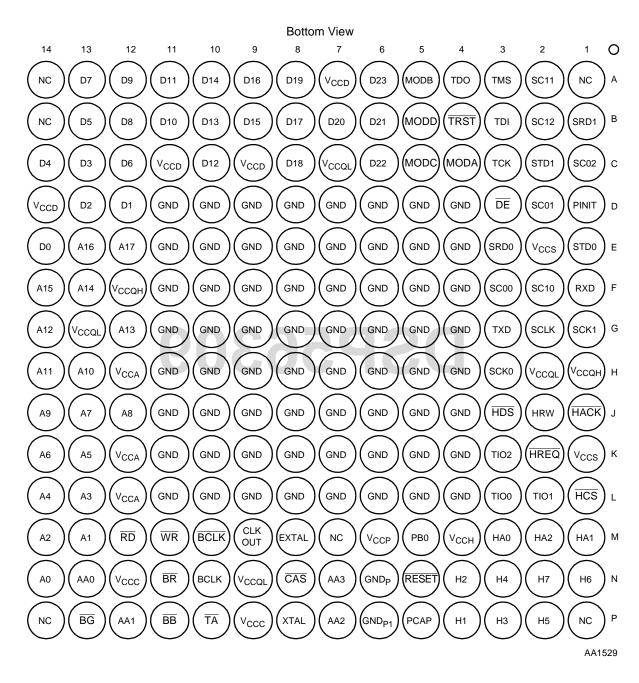


Figure 3-5. DSP56309 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

DSP56309 MAP-BGA Signal Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A1	Not Connected (NC), reserved	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
А3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	СЗ	TCK	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{ccs}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
В3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
В9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
F6	GND	НЗ	SCK0 or PC3	J14	A9
F7	GND	H4	GND	K1	V _{CCS}
F8	GND	H5	GND	K2	HREQ/HREQ, HTRQ/HTRQ, or PB14
F9	GND	H6	GND	КЗ	TIO2
F10	GND	H7	GND	K4	GND
F11	GND	Н8	GND	K5	GND
F12	V _{CCQH}	Н9	GND	K6	GND
F13	A14	H10	GND	K7	GND
F14	A15	H11	GND	K8	GND
G1	SCK1 or PD3	H12	V _{CCA}	K9	GND
G2	SCLK or PE2	H13	A10	K10	GND
G3	TXD or PE1	H14	A11	K11	GND
G4	GND	J1	HACK/HACK, HRRQ/HRRQ, or PB15	K12	VCCA
G5	GND	J2	HRW, HRD/HRD, or PB11	K13	A5
G6	GND	J3	HDS/HDS, HWR/HWR, or PB12	K14	A6
G7	GND	J4	GND	L1	HCS/HCS, HA10, or PB13
G8	GND	J5	GND	L2	TIO1
G9	GND	J6	GND	L3	TIO0
G10	GND	J7	GND	L4	GND
G11	GND	J8	GND	L5	GND
G12	A13	J9	GND	L6	GND
G13	V _{CCQL}	J10	GND	L7	GND
G14	A12	J11	GND	L8	GND
H1	V _{CCQH}	J12	A8	L9	GND
H2	V _{CCQL}	J13	A7	L10	GND

DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
L11	GND	M13	A1	P1	NC
L12	V _{CCA}	M14	A2	P2	H5, HAD5, or PB5
L13	A3	N1	H6, HAD6, or PB6	P3	H3, HAD3, or PB3
L14	A4	N2	H7, HAD7, or PB7	P4	H1, HAD1, or PB1
M1	HA1, HA8, or PB9	N3	H4, HAD4, or PB4	P5	PCAP
M2	HA2, HA9, or PB10	N4	H2, HAD2, or PB2	P6	GND _{P1}
M3	HA0, HAS/HAS, or PB8	N5	RESET	P7	AA2/RAS2
M4	V _{CCH}	N6	GND _P	P8	XTAL
M5	H0, HAD0, or PB0	N7	AA3/RAS3	P9	V _{CCC}
M6	V _{CCP}	N8	CAS	P10	TA
M7	V _{CCQH}	N9	V _{CCQL}	P11	BB
M8	EXTAL	N10	BCLK	P12	AA1/RAS1
M9	CLKOUT	N11	BR	P13	BG
M10	BCLK	N12	V _{CCC}	P14	NC
M11	WR	N13	AA0/RAS0		
M12	RD	N14	A0		

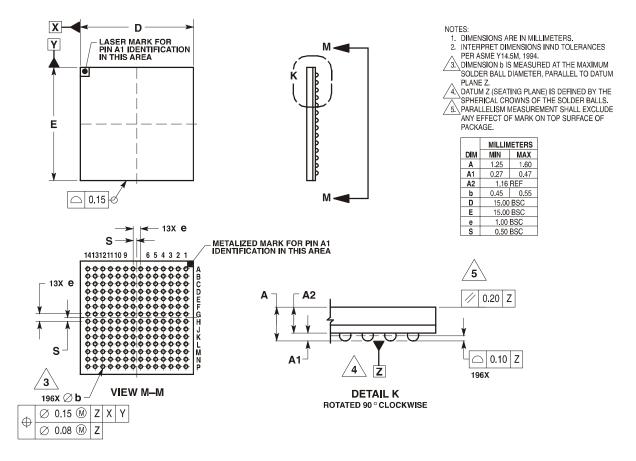
Note: Signal names are based on configured functionality. Most connections supply <u>a single</u> signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND_P and GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

DSP56309 MAP-BGA Signal Identification by Name

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	N14	BG	P13	D7	A13
A1	M13	BR	N11	D8	B12
A10	H13	CAS	N8	D9	A12
A11	H14	CLKOUT	M9	DE	D3
A12	G14	D0	E14	EXTAL	M8
A13	G12	D1	D12	GND	D4
A14	F13	D10	B11	GND	D5
A15	F14	D11	A11	GND	D6
A16	E13	D12	C10	GND	D7
A17	E12	D13	B10	GND	D8
A2	M14	D14	A10	GND	D9
A3	L13	D15	В9	GND	D10
A4	L14	D16	A9	GND	D11
A5	K13	D17	B8	GND	E4
A6	K14	D18	C8	GND	E5
A7	J13	D19	A8	GND	E6
A8	J12	D2	D13	GND	E7
A9	J14	D20	В7	GND	E8
AA0	N13	D21	В6	GND	E9
AA1	P12	D22	C6	GND	E10
AA2	P7	D23	A6	GND	E11
AA3	N7	D3	C13	GND	F4
BB	P11	D4	C14	GND	F5
BCLK	M10	D5	B13	GND	F6
BCLK	N10	D6	C12	GND	F7

DSP56309 MAP-BGA Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
GND	F8	GND	J9	H4	N3
GND	F9	GND	J10	H5	P2
GND	F10	GND	J11	H6	N1
GND	F11	GND	K4	H7	N2
GND	G4	GND	K5	HA0	МЗ
GND	G5	GND	K6	HA1	M1
GND	G6	GND	K7	HA10	L1
GND	G7	GND	K8	HA2	M2
GND	G8	GND	K9	HA8	M1
GND	G9	GND	K10	HA9	M2
GND	G10	GND	K11	HACK/HACK	J1
GND	G11	GND	L4	HAD0	M5
GND	H4	GND	L5	HAD1	P4
GND	H5	GND	L6	HAD2	N4
GND	H6	GND	L7	HAD3	P3
GND	H7	GND	L8	HAD4	N3
GND	Н8	GND	L9	HAD5	P2
GND	H9	GND	L10	HAD6	N1
GND	H10	GND	L11	HAD7	N2
GND	H11	GND _P	N6	HAS/HAS	МЗ
GND	J4	GND _{P1}	P6	HCS/HCS	L1
GND	J5	H0	M5	HDS/HDS	J3
GND	J6	H1	P4	HRD/HRD	J2
GND	J7	H2	N4	HREQ/HREQ	K2
GND	J8	НЗ	Р3	HRRQ/HRRQ	J1


DSP56309 MAP-BGA Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
HRW	J2	PB2	N4	RAS0	N13
HTRQ/HTRQ	K2	PB3	P3	RAS1	P12
HWR/HWR	J3	PB4	N3	RAS2	P7
ĪRQĀ	C4	PB5	P2	RAS3	N7
ĪRQB	A5	PB6	N1	RD	M12
ĪRQC	C5	PB7	N2	RESET	N5
ĪRQD	B5	PB8	МЗ	RXD	F1
MODA	C4	PB9	M1	SC00	F3
MODB	A5	PC0	F3	SC01	D2
MODC	C5	PC1	D2	SC02	C1
MODD	B5	PC2	C1	SC10	F2
NC	A1	PC3	НЗ	SC11	A2
NC	A14	PC4	E3	SC12	B2
NC	B14	PC5	E1	SCK0	НЗ
NC	P1	PCAP	P5	SCK1	G1
NC	P14	PD0	F2	SCLK	G2
NMI	D1	PD1	A2	SRD0	E3
PB0	M5	PD2	B2	SRD1	B1
PB1	P4	PD3	G1	STD0	E1
PB10	M2	PD4	B1	STD1	C2
PB11	J2	PD5	C2	TA	P10
PB12	J3	PE0	F1	TCK	C3
PB13	L1	PE1	G3	TDI	В3
PB14	K2	PE2	G2	TDO	A4
PB15	J1	PINIT	D1	TIO0	L3

DSP56309 MAP-BGA Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
TIO1	L2	V _{CCC}	P9	V _{CCQH}	M7
TIO2	К3	V _{CCD}	A7	V _{CCQL}	C7
TMS	A3	V _{CCD}	C9	V _{CCQL}	G13
TRST	B4	V _{CCD}	C11	V _{CCQL}	H2
TXD	G3	V _{CCD}	D14	V _{CCQL}	N9
V _{CCA}	H12	V _{CCH}	M4	V _{CCS}	E2
V _{CCA}	K12	V _{CCP}	M6	V _{CCS}	K1
V _{CCA}	L12	V _{CCQH}	F12	WR	M11
V _{CCC}	N12	V _{CCQH}	H1	XTAL	P8

MAP-BGA Package Mechanical Drawing

CASE 1128C-01 ISSUE O

DATE 07/28/98

Figure 3-6. DSP56309 Mechanical Information, 196-pin MAP-BGA Package

SECTION 4

Design Considerations

THERMAL DESIGN CONSIDERATIONS

An estimation of the chip junction temperature, T_J, in °C can be obtained from this equation:

Equation 1:
$$T_J = T_A + (P_D \times R_{\theta JA})$$

Where:

 T_{Δ} = ambient temperature $^{\circ}$ C

 R_{AIA} = package junction-to-ambient thermal resistance °C/W

P_D = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

Equation 2:
$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Where:

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance °C/W $R_{\theta JC}$ = package junction-to-case thermal resistance °C/W $R_{\theta CA}$ = package case-to-ambient thermal resistance °C/W

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB), or otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimations obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages:

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case.
- If the temperature of the package case (T_T) is determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation $(T_I T_T)/P_D$.

As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, thermal characterization parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

ELECTRICAL DESIGN CONSIDERATIONS

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

Use the following list of recommendations to assure correct DSP operation:

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP and from the board ground to each GND pin.
- Use at least six 0.01–0.1 μF bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.

- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 in per capacitor lead.
- Use at least a four-layer PCB with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.
- Consider all device loads and parasitic capacitance due to PCB traces when calculating
 capacitance. This is especially critical in systems with higher capacitive loads that could create
 higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (that is, not allowed to float) using CMOS levels, except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- Take special care to minimize noise levels on V_{CCP}, GND_P, and GND_{P1} pins.
- The following pins must be asserted after power-up: RESET and TRST.
- If multiple DSP56309 devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.
- RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied before deassertion of RESET.
- The Port A data bus (D[0–23]), HI08, ESSI0, ESSI1, SCI, and timers all use internal keepers to maintain the last output value even when the internal signal is tri-stated. Typically, no pull-up or pull-down resistors should be used with these signal lines. However, if the DSP is connected to a device that requires pull-up resistors (such as an MPC8260), the recommended resistor value is 10 K Ω or less. If more than one DSP must be connected in parallel to the other device, the pull-up resistor value requirement changes as follows:

```
- 2 DSPs = 5 K\Omega or less
```

— 3 DSPs = 3 K Ω or less

— 4 DSPs = 2 K Ω or less

— 5 DSPs = 1.5 KΩ or less

— 6 DSPs = 1 K Ω or less

POWER CONSUMPTION CONSIDERATIONS

Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by this equation:

Equation 3: $I = C \times V \times f$

Where:

C = node/pin capacitance

V = voltage swing

f = frequency of node/pin toggle

For a port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is given by this equation:

Equation 4:
$$I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^6 = 5.48 \text{ mA}$$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on best-case operation conditions, which is not necessarily a real application case. The typical internal current (I_{CCI} typ) value reflects the average switching of the internal buses on typical operating conditions.

For applications that require very low current consumption, do the following:

- Set the EBD bit when not accessing external memory.
- Minimize external memory accesses, and use internal memory accesses.
- Minimize the number of pins that are switching.
- Minimize the capacitive load on the pins.
- Connect the unused inputs to pull-up or pull-down resistors.
- Disable unused peripherals.
- Disable unused pin activity (for example, CLKOUT and XTAL).

One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (that is, to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in Appendix A of the DSP56309 User's Manual. Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value:

Equation 5:
$$I/MIPS = I/MHz = (I_{tvpF2} - I_{tvpF1})/(F2 - F1)$$

where:

 I_{typF2} = current at F2 I_{typF1} = current at F1

F2 = high frequency (any specified operating frequency)

F1 = low frequency (any specified operating frequency less than F2)

Note:

F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

PLL PERFORMANCE ISSUES

The following explanations should be considered as general observations on expected PLL behavior. There is no testing that verifies these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature, and voltage ranges. As defined in **Figure 2-2** on page 2-7, for input frequencies greater than 15 MHz and the MF \leq 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

Phase Jitter Performance

The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF \leq 4, this jitter is less than \pm 0.6 ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than \pm 2 ns.

Frequency Jitter Performance

The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5% and approximately 2%. For large MF (MF > 500), the frequency jitter is 2–3%.

Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed jitter can be 2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed values.

APPENDIX A

Power Consumption Benchmark

The following benchmark program permits evaluation of DSP power usage in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
; ***********************************
; * CHECKS
                Typical Power Consumption
200,55,0,0,0
        page
        nolist
T VEC
                        $000000
                                        ; Interrupt vectors for program debug only
                equ
                                        ; MAIN (external) program starting address
; INTERNAL program memory starting address
START
                        $8000
                equ
INT_PROG
                        $100
                equ
INT_XDAT
INT_YDAT
                        $0
                                        ; INTERNAL X-data memory starting address
                equ
                                        ; INTERNAL Y-data memory starting address
                equ
                        $0
        INCLUDE "ioequ.asm"
        INCLUDE "intequ.asm"
        list
                P:START
        movep #$0123FF,x:M_BCR
                                         ; BCR: Area 3 : 1 \text{ w.s.}(SRAM)
                                               Area 2 : 0 w.s (SSRAM)
                                               Default: 1 w.s (SRAM)
        movep
                #$0d0000,x:M_PCTL
                                        ; XTAL disable
                                         ; PLL enable
                                         ; CLKOUT disable
 Load the program
                #INT PROG,r0
        move
        move
                #PROG_START,r1
                #(PROG_END-PROG_START),PLOAD_LOOP
        do
                p:(r1)+,x0
x0,p:(r0)+
        move
        move
        nop
PLOAD_LOOP
; Load the X-data
                #INT_XDAT,r0
        move
                #XDAT_START,r1
        move
        do
                #(XDAT_END-XDAT_START),XLOAD_LOOP
        move
                p:(r1)^{-},x0
        move
                x0,x:(r0)+
XLOAD_LOOP
  Load the Y-data
        move
                #INT_YDAT,r0
        move
                #YDAT_START, r1
        do
                #(YDAT_END-YDAT_START),YLOAD_LOOP
        move
                p:(r1)+,x0
        move
                x0,y:(r0)+
YLOAD_LOOP
                INT_PROG
        jmp
PROG_START
                #$0,r0
        move
        move
                #$0,r4
                #$3f,m0
        move
                #$3f,m4
        move
;
        clr
        clr
                h
                #$0,x0
        move
                #$0,x1
        move
        move
                #$0,y0
        move
                #$0,y1
        bset
                #4,omr
                                ; ebd
sbr
        dor
                #60,_end
                x0,y0,a x:(r0)+,x1
        mac
                                        y:(r4)+,y1
        mac
                x1,y1,a x:(r0)+,x0
                                        y:(r4)+,y0
```

```
add
                  a,b
         mac
                  x0,y0,a x:(r0)+,x1
         mac
                  x1,y1,a
                                             y:(r4)+,y0
                  b1,x:$ff
         move
_end
                  sbr
         bra
         nop
         nop
         nop
         nop
PROG_END
         nop
         nop
XDAT_START
                  x:0
         org
                  $262EB9
         dc
         dc
                  $86F2FE
         dc
                  $E56A5F
         dc
                  $616CAC
         dc
                  $8FFD75
         dc
                  $9210A
         dc
                  $A06D7B
         dc
                  $CEA798
         dc
                  $8DFBF1
         dc
                  $A063D6
         dc
                  $6C6657
         dc
                  $C2A544
         dc
                  $A3662D
         dc
                  $A4E762
         dc
                  $84F0F3
         dc
                  $E6F1B0
         dc
                  $B3829
         dc
                  $8BF7AE
                  $63A94F
         dc
         dc
                  $EF78DC
         dc
                  $242DE5
         dc
dc
                  $A3E0BA
                  $EBAB6B
                  $8726C8
         dc
         dc
                  $CA361
                  $2F6E86
$A57347
$4BE774
         dc
         dc
         dc
         dc
                  $8F349D
         dc
                  $A1ED12
         dc
                  $4BFCE3
         dc
                  $EA26E0
         dc
                  $CD7D99
         dc
                  $4BA85E
         dc
                  $27A43F
         dc
                  $A8B10C
         dc
                  $D3A55
         dc
                  $25EC6A
         dc
                  $2A255B
         dc
                  $A5F1F8
         dc
                  $2426D1
         dc
                  $AE6536
         dc
                  $CBBC37
         dc
                  $6235A4
         dc
                  $37F0D
         dc
                  $63BEC2
         dc
                  $A5E4D3
                  $8CE810
         dc
         dc
                  $3FF09
         dc
                  $60E50E
         dc
                  $CFFB2F
                  $40753C
         dc
dc
                  $8262C5
         dc
                  $CA641A
         dc
                  $EB3B4B
                  $2DA928
         dc
         dc
                  $AB6641
         dc
                  $28A7E6
         dc
                  $4E2127
         dc
                  $482FD4
         dc
                  $7257D
```

```
dc
                 $E53C72
        dc
                 $1A8C3
        dc
                 $E27540
XDAT_END
YDAT_START
                 y:0
$5B6DA
        org
        dc
                 $C3F70B
        dc
                 $6A39E8
        dc
                 $81E801
        dc
        dc
                 $C666A6
        dc
                 $46F8E7
        dc
                 $AAEC94
        dc
                 $24233D
        dc
                 $802732
                 $2E3C83
        dс
        dc
                 $A43E00
        dc
                 $C2B639
        dc
                 $85A47E
        dc
                 $ABFDDF
        dс
                 $F3A2C
                 $2D7CF5
        dc
        dc
                 $E16A8A
        dc
                 $ECB8FB
        dc
                 $4BED18
        dc
                 $43F371
        dc
                 $83A556
        dc
                 $E1E9D7
        dc
                 $ACA2C4
        dc
                 $8135AD
        dc
                 $2CE0E2
        dc
                 $8F2C73
        dc
                 $432730
        dc
                 $A87FA9
        dc
                 $4A292E
        dc
                 $A63CCF
        dc
                 $6BA65C
        dc
                 $E06D65
        dc
                 $1AA3A
                 $А1В6ЕВ
        dc
        dc
                 $48AC48
        dc
                 $EF7AE1
        dc
                 $6E3006
        dc
                 $62F6C7
        dс
                 $6064F4
                 $87E41D
        dс
        dc
                 $CB2692
        dc
                 $2C3863
                 $C6BC60
        dc
        dc
                 $43A519
        dс
                 $6139DE
        dc
                 $ADF7BF
        dc
                 $4B3E8C
        dc
                 $6079D5
        dc
                 $E0F5EA
        dc
                 $8230DB
        dc
                 $A3B778
        dc
                 $2BFE51
        dc
                 $E0A6B6
        dc
                 $68FFB7
        dc
                 $28F324
        dc
                 $8F2E8D
        dc
                 $667842
        dc
                 $83E053
        dc
                 $A1FD90
        dc
                 $6B2689
        dc
                 $85B68E
                 $622EAF
$6162BC
        dc
        da
        dс
                 $E4A245
YDAT_END
      EQUATES for DSP56309 I/O registers and ports
      Last update: June 11 1995
```

```
132,55,0,0,0
        page
        opt
               mex
ioegu ident 1.0
        EOUATES for I/O Port Programming
        Register Addresses
M_HDR EQU $FFFFC9; Host port GPIO data Register
M_HDDR EQU $FFFFC8; Host port GPIO direction Register
M_PCRC EQU $FFFFBF; Port C Control Register
M_PRRC EQU $FFFFBE
                           ; Port C Direction Register
                          ; Port C Direction Register; Port C GPIO Data Register
M_PDRC EQU $FFFFBD
M_PCRD EQU $FFFFAF
                           ; Port D Control register
                           ; Port D Direction Data Register
M_PRRD EQU $FFFFAE
M_PDRD EQU $FFFFAD
                           ; Port D GPIO Data Register
M_PCRE EQU $FFFF9F
                           ; Port E Control register
                          ; Port E Direction Register
; Port E Data Register
M_PRRE EQU $FFFF9E
M_PDRE EQU $FFFF9D
M_OGDB EQU $FFFFC
                           ; OnCE GDB Register
;-----
        EQUATES for Host Interface
;------
       Register Addresses
M_HCR EQU $FFFFC2
                       ; Host Control Register
HCR bits definition
                ; Host Receive interrupts Enable
; Host Transmit Interrupt Enable
; Host Command Interrupt Enable
M_HRIE EQU $0
M_HTIE EQU $1
M_HCIE EQU $2
                          ; Host Flag 2
M_HF2 EQU $3
M_HF3 EQU $4
                           ; Host Flag 3
       HSR bits definition
M_HRDF EQU $0
M_HTDE EQU $1
                          ; Host Receive Data Full
                            ; Host Receive Data Emptiy
M_HCP EQU $2
                          ; Host Command Pending
M_HF0 EQU $3
                          ; Host Flag 0
M_HF1 EQU $4
                           ; Host Flag 1
       HPCR bits definition
                           ; Host Port GPIO Enable
M_HGEN EQU $0
M_HA8EN EQU $1
M_HA9EN EQU $2
                            ; Host Address 8 Enable
                             ; Host Address 9 Enable
                          ; Host Chip Select Enable
; Host Request Enable
M HCSEN EOU $3
M_HREN EQU $4
M_HAEN EQU $5
                     ; Host Acknowledge Enable
                       ; Host Enable
M_HEN EQU $6
                        ; Host Enable
; Host Request Open Drain mode
; Host Data Strobe Polarity
; Host Address Strobe Polarity
; Host Multiplexed bus select
; Host Double/Single Strobe select
; Host Chip Select Polarity
M_HOD EQU $8
M_HDSP EQU $9
M_HASP EQU $A
M_HMUX EQU $B
M_HD_HS EQU $C
M_HCSP EQU $D
M_HRP EQU $E
M_HAP EQU $F
                         ; Host Request PolarityPolarity
                          ; Host Acknowledge Polarity
```

```
EQUATES for Serial Communications Interface (SCI)
         Register Addresses
                          ; SCI Transmit Data Register (high)
; SCI Transmit Data Register (middle)
; SCI Transmit Data Register (low)
; SCI Receive Data Register (high)
; SCI Receive Data Register (middle)
; SCI Receive Data Register (low)
M_STXH EQU $FFFF97
M_STXM EQU $FFFF96
M_STXL EQU $FFFF95
M_SRXH EQU $FFFF9A
M_SRXM EQU $FFFF99
M SRXL EOU $FFFF98
M_STXA EQU $FFFF94
                               ; SCI Transmit Address Register
                               ; SCI Control Register
M_SCR EQU $FFFF9C
                                ; SCI Status Register
M_SSR EQU $FFFF93
M_SCCR EQU $FFFF9B
                                 ; SCI Clock Control Register
          SCI Control Register Bit Flags
M_WDS EQU $7
                                ; Word Select Mask (WDS0-WDS3)
M_WDS0 EQU 0
                                ; Word Select 0
M_WDS1 EQU 1
                                 ; Word Select 1
M_WDS2 EQU 2
                            ; Word Select 2
M_SSFTD EQU 3
                           ; SCI Shift Direction
                             ; Send Break
M_SBK EQU 4
M_WAKE EQU 5
                                 ; Wakeup Mode Select
M_RWU EQU 6
                              ; Receiver Wakeup Enable
                               ; Wired-OR Mode Select
; SCI Receiver Enable
M_WOMS EQU 7
M_SCRE EQU 8
M_SCTE EQU 9
                                ; SCI Transmitter Enable
                               ; Idle Line Interrupt Enable
; SCI Receive Interrupt Enable
; SCI Transmit Interrupt Enable
M ILIE EOU 10
M_SCRIE EQU 11
M_SCTIE EQU 12
                               ; Timer Interrupt Enable
; Timer Interrupt Rate
M_TMIE EQU 13
M_TIR EQU 14
                                 ; SCI Clock Polarity
; SCI Error Interrupt Enable (REIE)
M_SCKP EQU 15
M REIE EOU 16
         SCI Status Register Bit Flags
M_TRNE EQU 0
                                 ; Transmitter Empty
M_TDRE EQU 1
                                 ; Transmit Data Register Empty
M_RDRF EQU 2
                                 ; Receive Data Register Full
M_IDLE EQU 3
                                 ; Idle Line Flag
M_OR EQU 4
                              ; Overrun Error Flag
M_PE EQU 5
                               ; Parity Error
M_FE EQU 6
                               ; Framing Error Flag
M_R8 EQU 7
                               ; Received Bit 8 (R8) Address
        SCI Clock Control Registe
M_CD EQU $FFF
                              ; Clock Divider Mask (CD0-CD11)
M_COD EQU 12
                              ; Clock Out Divider
M_SCP EQU 13
                               ; Clock Prescaler
M_RCM EQU 14
                               ; Receive Clock Mode Source Bit
M_TCM EQU 15
                               ; Transmit Clock Source Bit
         EQUATES for Synchronous Serial Interface (SSI)
         Register Addresses Of SSIO
M_TX00 EQU $FFFFBC ; SSIO Transmit Data Register 0
M_TX01 EQU $FFFFBB ; SSIO Transmit Data Register 1
                               ; SSIO Transmit Data Register 2 ; SSIO Time Slot Register
M_TX02 EQU $FFFFBA
M_TSR0 EQU $FFFFB9
                              ; SSIO Receive Data Register
M_RX0 EQU $FFFFB8
M_SSISR0 EQU $FFFFB7
                             ; SSIO Status Register ; SSIO Control Register B
M_CRB0 EQU $FFFFB6
M_CRA0 EQU $FFFFB5
                                ; SSIO Control Register A
M_TSMA0 EQU $FFFFB4
M_TSMB0 EQU $FFFFB3
                                ; SSIO Transmit Slot Mask Register A
; SSIO Transmit Slot Mask Register B
```

```
; SSIO Receive Slot Mask Register A
; SSIO Receive Slot Mask Register B
M_RSMA0 EQU $FFFFB2
M_RSMB0 EQU $FFFFB1
         Register Addresses Of SSI1
M_TX10 EQU $FFFFAC
M_TX11 EQU $FFFFAB
                        ; SSI1 Transmit Data Register 0
; SSI1 Transmit Data Register 1
M_TX12 EQU $FFFFAA
M_TSR1 EQU $FFFFA9
                             ; SSI1 Transmit Data Register 2
; SSI1 Time Slot Register
                            ; SSI1 Receive Data Register
M_RX1 EQU $FFFFA8
M_SSISR1 EQU $FFFFA7
                                 ; SSI1 Status Register
                              ; SSI1 Status Register B ; SSI1 Control Register A
M_CRB1 EQU $FFFFA6
M_CRA1 EQU $FFFFA5
M_TSMA1 EQU $FFFFA4
M_TSMB1 EQU $FFFFA3
                              ; SSI1 Transmit Slot Mask Register A
; SSI1 Transmit Slot Mask Register B
M_RSMA1 EQU $FFFFA2
M_RSMB1 EQU $FFFFA1
                               ; SSI1 Receive Slot Mask Register A
; SSI1 Receive Slot Mask Register B
         SSI Control Register A Bit Flags
M_PM EQU $FF
                            ; Prescale Modulus Select Mask (PMO-PM7)
M_PSR EQU 11
                              ; Prescaler Range
M_DC EQU $1F000
                             ; Frame Rate Divider Control Mask (DC0-DC7)
M_ALC EQU 18
                          ; Alignment Control (ALC)
M_WL EQU $380000
                             ; Word Length Control Mask (WL0-WL7)
M_SSC1 EQU 22
                          ; Select SC1 as TR #0 drive enable (SSC1)
       SSI Control Register B Bit Flags
M_OF EQU $3
                            ; Serial Output Flag Mask
M_OF0 EQU 0
                              ; Serial Output Flag 0
                             ; Serial Output Flag 1
M_OF1 EQU 1
M_SCD EQU $1C
                              ; Serial Control Direction Mask
M SCDO EOU 2
                          ; Serial Control O Direction
M_SCD1 EQU 3
                           ; Serial Control 1 Direction
; Serial Control 2 Direction
M SCD2 EOU 4
                              ; Clock Source Direction
; Shift Direction
M SCKD EOU 5
M_SHFD EQU 6
M_FSL EQU $180
                            ; Frame Sync Length Mask (FSL0-FSL1)
M_FSL0 EQU 7
M_FSL1 EQU 8
                           ; Frame Sync Length 0
; Frame Sync Length 1
; Frame Sync Relative Timing
M_FSR EQU 9
                            ; Frame Sync Polarity ; Clock Polarity
M_FSP EQU 10
M_CKP EQU 11
M SYN EOU 12
                             ; Sync/Async Control
M_MOD EQU 13
                              ; SSI Mode Select
M_SSTE EQU $1C000
M_SSTE2 EQU 14
                           ; SSI Transmit enable Mask
                            ; SSI Transmit #2 Enable
; SSI Transmit #1 Enable
M_SSTE1 EQU 15
M_SSTE0 EQU 16
                              ; SSI Transmit #0 Enable
M_SSRE EQU 17
                            ; SSI Receive Enable
M_SSTIE EQU 18
                              ; SSI Transmit Interrupt Enable
                              ; SSI Receive Interrupt Enable
M_SSRIE EQU 19
M_STLIE EQU 20
                                ; SSI Transmit Last Slot Interrupt Enable
M_SRLIE EQU 21
                               ; SSI Receive Last Slot Interrupt Enable
M_STEIE EQU 22
                                 ; SSI Transmit Error Interrupt Enable
M_SREIE EQU 23
                        ; SI Receive Error Interrupt Enable
       SSI Status Register Bit Flags
M_IF EQU $3
                             ; Serial Input Flag Mask
                             ; Serial Input Flag 0
; Serial Input Flag 1
M_IF0 EQU 0
M_IF1 EQU 1
M TFS EOU 2
                              ; Transmit Frame Sync Flag
M_RFS EQU 3
                              ; Receive Frame Sync Flag
M TUE EOU 4
                              ; Transmitter Underrun Error FLag
M ROE EOU 5
                              ; Receiver Overrun Error Flag
                              ; Transmit Data Register Empty
M TDE EOU 6
M RDF EOU 7
                              ; Receive Data Register Full
         SSI Transmit Slot Mask Register A
M SSTSA EOU SFFFF
                                ; SSI Transmit Slot Bits Mask A (TS0-TS15)
       SSI Transmit Slot Mask Register B
M SSTSB EOU $FFFF
                              ; SSI Transmit Slot Bits Mask B (TS16-TS31)
       SSI Receive Slot Mask Register A
```

```
M_SSRSA EQU $FFFF
                                    ; SSI Receive Slot Bits Mask A (RS0-RS15)
          SSI Receive Slot Mask Register B
M_SSRSB EQU $FFFF
                                    ; SSI Receive Slot Bits Mask B (RS16-RS31)
          EQUATES for Exception Processing
          Register Addresses
                                 ; Interrupt Priority Register Core
; Interrupt Priority Register Peripheral
M_IPRC EQU $FFFFFF
M_IPRP EQU $FFFFFE
          Interrupt Priority Register Core (IPRC)
M_IAL EQU $7
                                  ; IRQA Mode Mask
M_IALO EQU O
                                  ; IRQA Mode Interrupt Priority Level (low)
M_IAL1 EQU 1
                                   ; IRQA Mode Interrupt Priority Level (high)
                                   ; IRQA Mode Trigger Mode
M_IAL2 EQU 2
M_IBL EQU $38
                                  ; IRQB Mode Mask
                                ; IRQB Mode Interrupt Priority Level (low)
; IRQB Mode Interrupt Priority Level (high)
M_IBLO EQU 3
M_IBL1 EQU 4
                                   ; IRQB Mode Trigger Mode
M_IBL2 EQU 5
M_ICL EQU $1C0
                                 ; IRQC Mode Mask
                                ; IRQC Mode Interrupt Priority Level (low)
; IRQC Mode Interrupt Priority Level (high)
; IRQC Mode Trigger Mode
M_ICLO EQU 6
M_ICL1 EQU 7
M_ICL2 EQU 8
                              ; IRQD Mode Mask
; IRQD Mode Interrupt Priority Level (low)
; IRQD Mode Interrupt Priority Level (high)
M_IDL EQU $E00
M_IDL0 EQU 9
M_IDL1 EQU 10
M IDL2 EOU 11
                                  ; IRQD Mode Trigger Mode
                              ; DMAO Interrupt priority Level Mask
; DMAO Interrupt Priority Level (low)
: DMAO Interrupt Priority Level (high
M_DOL EQU $3000
M_DOLO EQU 12
                                   ; DMA0 Interrupt Priority Level (high)
M_D0L1 EQU 13
M_D1L EQU $C000
                                ; DMA1 Interrupt Priority Level Mask
                                 ; DMA1 Interrupt Priority Level (low) ; DMA1 Interrupt Priority Level (high)
M_D1L0 EQU 14
M_D1L1 EQU 15
M_D2L EQU $30000
                                ; DMA2 Interrupt priority Level Mask
                                 ; DMA2 Interrupt Priority Level (low) ; DMA2 Interrupt Priority Level (high)
M_D2L0 EQU 16
M_D2L1 EQU 17
M_D3L EQU $C0000
                                ; DMA3 Interrupt Priority Level Mask
                                 ; DMA3 Interrupt Priority Level (low)
; DMA3 Interrupt Priority Level (high)
M_D3L0 EQU 18
M_D3L1 EQU 19
M_D4L EQU $300000
                                ; DMA4 Interrupt priority Level Mask
M_D4L0 EQU 20
                                  ; DMA4 Interrupt Priority Level (low)
M_D4L1 EQU 21
                                   ; DMA4 Interrupt Priority Level (high)
M_D5L EQU $C00000
                                  ; DMA5 Interrupt priority Level Mask
M_D5L0 EQU 22
                                   ; DMA5 Interrupt Priority Level (low)
M_D5L1 EQU 23
                                    ; DMA5 Interrupt Priority Level (high)
          Interrupt Priority Register Peripheral (IPRP)
M_HPL EQU $3
                                  ; Host Interrupt Priority Level Mask
                                   ; Host Interrupt Priority Level (low)
; Host Interrupt Priority Level (high)
M HPLO EOU 0
M_HPL1 EQU 1
                                ; SSIO Interrupt Priority Level Mask
; SSIO Interrupt Priority Level (low)
; SSIO Interrupt Priority Level (high)
M SOL EOU SC
M_SOLO EQU 2
M_SOL1 EQU 3
M S1L EOU $30
                                ; SSI1 Interrupt Priority Level Mask
                                 ; SSI1 Interrupt Priority Level (low) ; SSI1 Interrupt Priority Level (high)
M_S1L0 EQU 4
M_S1L1 EQU 5
                              ; SCI Interrupt Priority Level Mask
; SCI Interrupt Priority Level (low)
; SCI Interrupt Priority Level (high
; TIMER Interrupt Priority Level Mask
; TIMER Interrupt Priority Level (low)
M_SCL EQU $C0
M_SCL0 EQU 6
M_SCL1 EQU 7
                                                                               (hiah)
M_T0L EQU $300
                                 ; TIMER Interrupt Priority Level (low) ; TIMER Interrupt Priority Level (high)
M_TOLO EQU 8
M_T0L1 EQU 9
```

```
EQUATES for TIMER
         Register Addresses Of TIMERO
M_TCSR0 EQU $FFFF8F ; Timer 0 Control/Status Register M_TLR0 EQU $FFFF8E ; TIMER0 Load Reg ; TIMER0 Compare Register
                                ; TIMERO Compare Register
                           ; TIMERO Count Register
M_TCR0 EQU $FFFF8C
         Register Addresses Of TIMER1
M_TCSR1 EQU $FFFF8B
                         ; TIMER1 Control/Status Register
M_TLR1 EQU $FFFF8A ; TIMER1 Load Reg
M_TCPR1 EQU $FFFF89 ; TIMER1 Com
                                ; TIMER1 Compare Register
                         ; TIMER1 Count Register
M_TCR1 EQU $FFFF88
         Register Addresses Of TIMER2
                          ; TIMER2 Control/Status Register
M_TCSR2 EQU $FFFF87
M_TLR2 EQU $FFFF86
                                    ; TIMER2 Load Reg
M_TCPR2 EQU $FFFF85 ; TIMER2 Compare Register
                          ; TIMER2 Count Register
M_TCR2 EQU $FFFF84
M_TPLR EQU
                                    ; TIMER Prescaler Load Register
              $FFFF83
M_TPCR EQU $FFFF82
                                    ; TIMER Prescalar Count Register
   Timer Control/Status Register Bit Flags
M_TE EQU 0
                 ; Timer Enable
                ; Timer Overflow Interrupt Enable
; Timer Compare Interrupt Enable
; Timer Control Mask (TC0-TC3)
M TOIE EOU 1
M_TCIE EQU 2
M_TC EQU $F0
                 ; Inverter Bit
M_INV EQU 8
M_TRM EQU 9
                 ; Timer Restart Mode
M_DIR EQU 11
                 ; Direction Bit
                 ; Data Input
M_DI EQU 12
M_DO EQU 13
                 ; Data Output
M_PCE EQU 15
M_TOF EQU 20
                ; Prescaled Clock Enable
                 ; Timer Overflow Flag
; Timer Compare Flag
M_TCF EQU 21
         Timer Prescaler Register Bit Flags
M_PS EQU $600000 ; Prescaler Source Mask M_PS0 EQU 21 M_PS1 EQU 22
        Timer Control Bits
M_TC0 EQU 4 ; Timer Control 0
               ; Timer Control 1
; Timer Control 2
; Timer Control 3
M_TC1 EQU 5
M_TC2 EQU 6
M_TC3 EQU 7
         EQUATES for Direct Memory Access (DMA)
         Register Addresses Of DMA
M_DSTR EQU FFFFFF4 ; DMA Status Register M_DOR0 EQU $FFFFFF3 ; DMA Offset Register 0
M_DOR1 EQU $FFFFF2 ; DMA Offset Register 1
M_DOR2 EQU $FFFFF1 ; DMA Offset Register 2
M_DOR3 EQU $FFFFF0 ; DMA Offset Register 3
        Register Addresses Of DMA0
M_DSR0 EQU $FFFFEF ; DMA0 Source Address Register
\texttt{M\_DDR0} EQU $FFFFEE ; DMA0 Destination Address Register \texttt{M\_DC00} EQU $FFFFED ; DMA0 Counter
```

```
M_DCR0 EQU $FFFFEC ; DMA0 Control Register
          Register Addresses Of DMA1
M DSR1 EOU $FFFFEB ; DMA1 Source Address Register
M_DDR1 EQU $FFFFEA ; DMA1 Destination Address Register
M_DCO1 EQU $FFFFE9 ; DMA1 Counter
M DCR1 EOU $FFFFE8 ; DMA1 Control Register
          Register Addresses Of DMA2
M_DSR2 EQU $FFFFE7 ; DMA2 Source Address Register
M_DDR2 EQU $FFFFE6 ; DMA2 Destination Address Register M_DC02 EQU $FFFFE5 ; DMA2 Counter
M_DCR2 EQU $FFFFE4 ; DMA2 Control Register
          Register Addresses Of DMA4
M_DSR3 EQU $FFFFE3 ; DMA3 Source Address Register
M_DDR3 EQU $FFFFE2 ; DMA3 Destination Address Register
M_DCO3 EQU $FFFFE1 ; DMA3 Counter
M_DCR3 EQU $FFFFE0 ; DMA3 Control Register
          Register Addresses Of DMA4
M_DSR4 EQU $FFFFDF ; DMA4 Source Address Register
M_DDR4 EQU $FFFFDE ; DMA4 Destination Address Register
M_DCO4 EQU $FFFFDD ; DMA4 Counter
M_DCR4 EQU $FFFFDC ; DMA4 Control Register
          Register Addresses Of DMA5
M_DSR5 EQU $FFFFDB ; DMA5 Source Address Register
M DDR5 EQU $FFFFDA ; DMA5 Destination Address Register
M DCO5 EOU $FFFFD9 ; DMA5 Counter
M_DCR5 EQU $FFFFD8 ; DMA5 Control Register
         DMA Control Register
M_DSS EQU $3
                  ; DMA Source Space Mask (DSS0-Dss1)
                  ; DMA Source Memory space 0; DMA Source Memory space 1
M_DSS0 EQU 0
M_DSS1 EQU 1
                  ; DMA Destination Space Mask (DDS-DDS1)
M DDS EOU $C
M_DDS0 EQU 2
                  ; DMA Destination Memory Space 0
M_DDS1 EQU 3
                   ; DMA Destination Memory Space 1
M_DAM EQU $3f0 ; DMA Address Mode Mask (DAM5-DAM0)
M_DAM0 EQU 4 ; DMA Address Mode 0
M_DAM1 EQU 5 ; DMA Address Mode 1
M_DAM2 EQU 6 ; DMA Address Mode 2
M_DAM3 EQU 7 ; DMA Address Mode 3
M_DAM4 EQU 8 ; DMA Address Mode 4
M_DAM5 EQU 9 ; DMA Address Mode 5
M_D3D EQU 10 ; DMA Three Dimensional Mode
M_DRS EQU $F800; DMA Request Source Mask (DRS0-DRS4)
M_DCON EQU 16 ; DMA Continuous Mode
M_DPR EQU $60000; DMA Channel Priority
M_DPR0 EQU 17 ; DMA Channel Priority Level (low)
M_DPR1 EQU 18 ; DMA Channel Priority Level (high)
M_DTM EQU $380000; DMA Transfer Mode Mask (DTM2-DTM0)
M_DTM0 EQU 19 ; DMA Transfer Mode 0
M_DTM1 EQU 20 ; DMA Transfer Mode 1
M_DTM2 EQU 21 ; DMA Transfer Mode 2
M_DIE EQU 22 ; DMA Interrupt Enable bit
M DE EOU 23
                  ; DMA Channel Enable bit
          DMA Status Register
M_DTD EQU $3F ; Channel Transfer Done Status MASK (DTD0-DTD5)
M_DTD0 EQU 0
                  ; DMA Channel Transfer Done Status 0
                 ; DMA Channel Transfer Done Status 1; DMA Channel Transfer Done Status 1; DMA Channel Transfer Done Status 3; DMA Channel Transfer Done Status 4
M_DTD1 EQU 1
M DTD2 EOU 2
M_DTD3 EQU 3
M DTD4 EOU 4
M_DTD5 EQU 5 ; DMA Channel Transfer Done Status 5
M_DTD5 EQU 5 ; DMA Channel Transfer Done Status 5
M_DACT EQU 8 ; DMA Active State
M_DCH EQU $E00; DMA Active Channel Mask (DCH0-DCH2)
M_DCH0 EQU 9 ; DMA Active Channel 0
```

```
\mbox{M\_DCH1} EQU \, 10 ; DMA Active Channel 1 \mbox{M\_DCH2} EQU \, 11 ; DMA Active Channel 2
          EOUATES for Phase Locked Loop (PLL)
          Register Addresses Of PLL
M_PCTL EQU $FFFFFD
                                     ; PLL Control Register
           PLL Control Register
M_MF EQU $FFF : Multiplication Factor Bits Mask (MF0-MF11)
M_DF EQU $7000 ; Division Factor Bits Mask (DF0-DF2)
M_XTLR EQU 15 ; XTAL Range select bit M_XTLD EQU 16 ; XTAL Disable Bit
M_PSTP EQU 17 ; STOP Processing State Bit
M_PEN EQU 18 ; PLL Enable Bit
M_PCOD EQU 19 ; PLL Clock Output Disable Bit
M_PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)
          EQUATES for BIU
          Register Addresses Of BIU
M_BCR EQU $FFFFFB; Bus Control Register
M_DCR EQU $FFFFFA; DRAM Control Register
M_AAR0 EQU $FFFFF9; Address Attribute Register 0
M_AAR1 EQU $FFFFF8; Address Attribute Register 1
M_AAR2 EQU $FFFFF7; Address Attribute Register 2
M_AAR3 EQU $FFFFF6; Address Attribute Register 3
M_IDR EQU $FFFFF5; ID Register
          Bus Control Register
M_BA0W EQU $1F ; Area 0 Wait Control Mask (BA0W0-BA0W4)
M_BA1W EQU $3E0; Area 1 Wait Control Mask (BA1W0-BA14)
M_BA2W EQU $1C00; Area 2 Wait Control Mask (BA2W0-BA2W2)
M_BA3W EQU $E000; Area 3 Wait Control Mask (BA3W0-BA3W3)
M_BDFW EQU $1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4)
M_BBS EQU 21 ; Bus State
M_BLH EQU 22 ; Bus Lock Hold
                  ; Bus Request Hold
M_BRH EQU 23
          DRAM Control Register
                  ; In Page Wait States Bits Mask (BCW0-BCW1)
; Out Of Page Wait States Bits Mask (BRW0-BRW1)
M_BCW EQU $3
M_BRW EQU $C
M_BPS EQU $300 ; DRAM Page Size Bits Mask (BPS0-BPS1)
M_BPLE EQU 11 ; Page Logic Enable
M_BME EQU 12 ; Mastership Enable
M_BRE EQU 13 ; Refresh Enable
M_BSTR EQU 14 ; Software Triggered Refresh
M_BRF EQU $7F8000; Refresh Rate Bits Mask (BRF0-BRF7)
M_BRP EQU 23 ; Refresh prescaler
          Address Attribute Registers
M_BAT EQU $3
                   ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1)
M_BAAP EQU 2
M_BPEN EQU 3
                   ; Address Attribute Pin Polarity
; Program Space Enable
                   ; X Data Space Enable
; Y Data Space Enable
M_BXEN EQU 4
M_BYEN EQU 5
M_BAM EQU 6
                    ; Address Muxing
M_BPAC EQU 7
                    ; Packing Enable
M_BNC EQU $F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3)
M_BAC EQU $FFF000; Address to Compare Bits Mask (BAC0-BAC11)
```



```
control and status bits in SR
M CP EQU $c00000; mask for CORE-DMA priority bits in SR
M_CA EQU 0
               ; Carry
M_V EQU 1
M_Z EQU 2
                ; Overflow
                ; Zero
M_N EQU 3
M_U EQU 4
                ; Negative
                ; Unnormalized
M_E EQU 5
                ; Extension
M_L EQU 6
                ; Limit
M_S EQU 7
                ; Scaling Bit
M_I0 EQU 8
                ; Interupt Mask Bit 0
M_I1 EQU 9
               ; Interupt Mask Bit 1
M_S0 EQU 10
               ; Scaling Mode Bit 0
               ; Scaling Mode Bit 1
M_S1 EQU 11
M_SC EQU 13
                ; Sixteen_Bit Compatibility
                ; Double Precision Multiply
M_DM EQU 14
M_LF EQU 15
                ; DO-Loop Flag
M_FV EQU 16
                ; DO-Forever Flag
M_SA EQU 17
                ; Sixteen-Bit Arithmetic
M_CE EQU 19
                ; Instruction Cache Enable
M_SM EQU 20
                ; Arithmetic Saturation
M_RM EQU 21
                ; Rounding Mode
M_CP0 EQU 22
                ; bit 0 of priority bits in SR
M_CP1 EQU 23
                ; bit 1 of priority bits in SR
        control and status bits in OMR
M_CDP EQU $300 ; mask for CORE-DMA priority bits in OMR
M_MA
       equ0
               ; Operating Mode A
M_MB
                ; Operating Mode B
       equ1
M MC
       equ2
               ; Operating Mode C
               ; Operating Mode D
; External Bus Disable bit in OMR
M_MD
        equ3
M EBD EOU 4
M_SD EQU 6
M_MS EQU 7
               ; Stop Delay
               ; Memory Switch bit in OMR; bit 0 of priority bits in OMR; bit 1 of priority bits in OMR
M_CDP0 EQU 8
M_CDP1 EQU 9
        EQU 10 ; Burst Enable
M_BEN
{	t M\_{TAS}} {	t EQU} 11 ; {	t TA} Synchronize Select
M_BRT EQU 12
               ; Bus Release Timing
M_ATE EQU 15
                ; Address Tracing Enable bit in OMR.
M_XYS EQU 16
                ; Stack Extension space select bit in OMR.
M_EUN EQU 17
                ; Extensed stack UNderflow flag in OMR.
M_EOV EQU 18
                ; Extended stack OVerflow flag in OMR.
M_WRP EQU 19
                ; Extended WRaP flag in OMR.
M_SEN EQU 20
                ; Stack Extension Enable bit in OMR.
```

```
EQUATES for DSP56309 interrupts
   Last update: June 11 1995
******************
        132,55,0,0,0
    page
    opt
         mex
intequ ident 1,0
    if
        @DEF(I_VEC)
    ; leave user definition as is.
    else
I_VEC EQU $0
    endif
; Non-Maskable interrupts
```

```
I_RESET EQU I_VEC+$00 ; Hardware RESET
I_STACK EQU I_VEC+$02 ; Stack Error
I_ILL EQU I_VEC+$04 ; Illegal Instruction
I_DBG EQU I_VEC+$06 ; Debug
I_TRAP EQU I_VEC+$08 ; Trap
                     ; Debug Request
                   ; Non Maskable Interrupt
I_NMI EQU I_VEC+$0A
; Interrupt Request Pins
I_IRQA EQU I_VEC+$10 ; IRQA
I_IRQB EQU I_VEC+$12
                    ; IRQB
; IRQC
I_IRQC EQU I_VEC+$14
I_IRQD EQU I_VEC+$16  ; IRQD
; DMA Interrupts
I_DMA0 EQU I_VEC+$18  ; DMA Channel 0
I_DMA1 EQU I_VEC+$1A
                     ; DMA Channel 1
I_DMA2 EQU I_VEC+$1C
                     ; DMA Channel 2
I_DMA3 EQU I_VEC+$1E
                     ; DMA Channel 3
I_DMA4 EQU I_VEC+$20
                     ; DMA Channel
I_DMA5 EQU I_VEC+$22
                     ; DMA Channel 5
;-----
; Timer Interrupts
I_TIMOC EQU I_VEC+$24 ; TIMER 0 compare
I_TIMOOF EQU I_VEC+$26; TIMER 0 overflow
I_TIM1C EQU I_VEC+$28 ; TIMER 1 compare
I_TIM1OF EQU I_VEC+$2A; TIMER 1 overflow
I_TIM2C EQU I_VEC+$2C ; TIMER 2 compare I_TIM2OF EQU I_VEC+$2E ; TIMER 2 overflow
; ESSI Interrupts
I_SIORD EQU I_VEC+$30 ; ESSIO Receive Data
I_SIORDE EQU I_VEC+$32 ; ESSIO Receive Data w/ exception Status
I_SIORLS EQU I_VEC+$34; ESSIO Receive last slot
I_SIOTD EQU I_VEC+$36 ; ESSIO Transmit data
I_SIOTDE EQU I_VEC+$38; ESSIO Transmit Data w/ exception Status
I_SIOTLS EQU I_VEC+$3A; ESSIO Transmit last slot
I_SI1RD EQU I_VEC+$40 ; ESSI1 Receive Data
I_SI1RDE EQU I_VEC+$42; ESSI1 Receive Data w/ exception Status
I_SI1RLS EQU I_VEC+$44 ; ESSI1 Receive last slot I_SI1TD EQU I_VEC+$46 ; ESSI1 Transmit data
I_SI1TD EQU I_VEC+$46
I_SI1TDE EQU I_VEC+$48; ESSI1 Transmit Data w/ exception Status
I_SI1TLS EQU I_VEC+$4A; ESSI1 Transmit last slot
:-----
; SCI Interrupts
; HOST Interrupts
I_HC EQU I_VEC+$64
                     ; Default Host Command
; INTERRUPT ENDING ADDRESS
I_INTEND EQU I_VEC+$FF ; last address of interrupt vector space
```


Index

Numerics	Direct Memory Access (DMA) iii documentation list v			
5 V tolerance 1-1	Double Data Strobe 1-2 DRAM			
Α	out of page			
•	read access 2-29			
ac electrical characteristics 2-4	wait states selection guide 2-25			
address bus 1-1	write access 2-30			
Address Trace mode iii, 2-32, 2-35	out of page and refresh timings			
applications v	11 wait states 2-25			
arbitration bus timings 2-35	15 wait states 2-27			
Arithmetic Logic Unit (ALU) iii	Page mode			
_	read accesses 2-24			
В	wait states selection guide 2-19			
	write accesses 2-23			
benchmark test algorithm A-1	Page mode timings			
bootstrap ROM iv	3 wait states 2-20			
Boundary Scan (JTAG Port) timing diagram 2-56	4 wait states 2-21			
bus	refresh access 2-31			
address 1-2	DRAM controller iv			
data 1-2	DSP56300			
external address 1-6	core features iii			
external data 1-6	Family Manual v			
multiplexed 1-2	DSP56309			
non-multiplexed 1-2	block diagram i			
bus acquisition timings 2-36	description i			
bus control 1-1	features iii			
bus release timings 2-37, 2-38	specifications 2-1			
C	Technical Data v			
•	User's Manual v			
clock 1-1, 1-5	F			
external 2-4	E			
operation 2-6	1 1 1			
clocks	electrical design considerations 4-2, 4-3			
internal 2-4	Enhanced Synchronous Serial Interface (ESSI) 1-1, 1-2,			
crystal oscillator circuits 2-5	1-16, 1-17, 1-18, 1-19			
_	receiver timing 2-52			
D	timings 2-48			
	transmitter timing 2-51			
Data Arithmetic Logic Unit (Data ALU) iii	Enhanced Synchronous Serial Interfaces (ESSI) iv			
data bus 1-1	external address bus 1-6			
data memory expansion iv	external bus control 1-6, 1-7, 1-8			
Data Strobe (DS) 1-2	external bus synchronous timings (SRAM access) 2-32			
dc electrical characteristics 2-3	external clock operation 2-4			
Debug support iii	external data bus 1-6			
description, general i	external interrupt timing (negative edge-triggered) 2-12			
design considerations	external level-sensitive fast interrupt timing 2-12			
electrical 4-2, 4-3	external memory access (DMA Source) timing 2-14			
PLL 4-6	External Memory Expansion Port 1-6, 2-15			
power consumption 4-3				
thermal 4-1				

Index

F	keeper circuits 1-3, 1-6, 1-15, 1-17, 1-19, 1-20, 1-21, 4-3 keeper, weak 1-3
functional groups 1-2 functional signal groups 1-1	M
general description i General-Purpose Input/Output (GPIO) iv, 1-2, 1-21 Timers 1-2 General-Purpose Input/Output (GPIO) timing 2-54 ground 1-1, 1-4 PLL 1-4 H Host Interface (HI08) iv, 1-1, 1-2, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15 Host Interface (HI08) timing 2-40 host port	MAP-BGA 3-1 ball grid drawing (bottom) 3-11 ball grid drawing (top) 3-10 ball list by name 3-15 ball list by number 3-12 mechanical drawing 3-19 maximum ratings 2-1, 2-2 memory expansion port iv mode control 1-9 Mode select timing 2-7 multiplexed bus 1-2 multiplexed bus timings read 2-44 write 2-45
configuration 1-11 usage considerations 1-10 Host Request Double 1-2 Single 1-2 Host Request (HR) 1-2	N non-multiplexed bus 1-2 non-multiplexed bus timings read 2-42 write 2-43
I	0
information sources v instruction cache iii internal clocks 2-4 interrupt and mode control 1-1, 1-9 interrupt control 1-9 interrupt timing 2-7 external level-sensitive fast 2-12 external negative edge-triggered 2-12 synchronous from Wait state 2-13	off-chip memory iv OnCE module timing 2-57 OnCE module 1-22 Debug request 2-57 on-chip DRAM controller iv On-Chip Emulation (OnCE) module iii on-chip memory iii operating mode select timing 2-13 ordering information Back Cover
JTAG iii, 1-22 JTAG Port reset timing diagram 2-57 timing 2-55, 2-56 JTAG/OnCE port 1-1, 1-2 K keeper circuit design considerations 4-3	package 144-pin TQFP 3-1 196-pin MAP-BGA 3-1 MAP-BGA description 3-10, 3-11, 3-12, 3-15, 3-19 TQFP description 3-2, 3-3, 3-4, 3-6, 3-9 Phase-Lock Loop (PLL) iii, 1-1, 2-7 Characteristics 2-7 design considerations 4-6 performance issues 4-6 Phase-Lock Loop (PLL) design considerations 4-6

PLL 1-5	T
Port A 1-1, 1-6	
Port B 1-1, 1-2, 1-12, 1-13, 1-14, 1-15	target applications v
Port C 1-1, 1-2, 1-16, 1-17	Test Access Port (TAP) iii
Port D 1-1, 1-2, 1-18, 1-19	timing diagram 2-56
Port E 1-1, 1-20	Test Clock (TCLK) input timing diagram 2-55
Power 1-3	thermal characteristics 2-2
power 1-1	thermal design considerations 4-1
power consumption benchmark test A-1	Timer
power consumption design considerations 4-3	event input restrictions 2-53
power management v	interrupt generation 2-53
Program Control Unit (PCU) iii	timing 2-53
program memory expansion iv	Timers 1-1, 1-2, 1-21
program RAM iv	timing
R	interrupt 2-7
**	mode select 2-7
recovery from Stop state using TRQA 2-13, 2-14	Reset 2-7
RESET 1-10	Stop 2-7 TQFP 3-1
Reset timing 2-7, 2-11	
synchronous 2-11	mechanical drawing 3-9 pin list by name 3-6
ROM, bootstrap iv	pin list by number 3-4
•	pin-out drawing (bottom) 3-3
S	pin-out drawing (toottom) 3-3
Serial Communication Interface (SCI) 1-1, 1-2, 1-20	14/
Asynchronous mode timing 2-47	W
Synchronous mode timing 2-47	W 1
timing 2-46	Wait mode v
Serial Communications Interface (SCI) iv	weak keeper 1-3
signal groupings 1-1	World Wide Web v
signals 1-1	X
functional grouping 1-2	A
Single Data Strobe 1-2	X data RAM iv
SRAM	
read access 2-17	Υ
read and write accesses 2-15	
support iv	Y data RAM iv
write access 2-18	
Stop mode v	
Stop state	
recovery from 2-13, 2-14	
Stop timing 2-7	
supply voltage 2-2	
Switch mode iv	
synchronous bus timings	
SRAM	
2 wait states 2-34	
SRAM 1 wait state (BCR controlled) 2-33	
synchronous interrupt from Wait state timing 2-13	
synchronous Reset timing 2-11	

ORDERING INFORMATION

Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and to place an order.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Order Number
DSP56309	3.3 V	Thin Quad Flat Pack (TQFP)	144	100	DSP56309PV100
		Molded Array Process-Ball Grid Array (MAP-BGA)	196	100	DSP56309VF100

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and \widehat{M} are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. OnCE, DigitalDNA, and the DigitalDNA LOGO are trademarks owned by Motorola, Inc. All other products or service names are the property of their respective owners.

© Motorola, Inc. 2001

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

