Advance Information Power Switching Regulator

The MC34167, MC33167 series are high performance fixed frequency power switching regulators that contain the primary functions required for DC-to-DC converters. This series was specifically designed to be incorporated in step-down and voltage-inverting configurations with a minimum number of external components and can also be used cost effectively in step-up applications.

These devices consist of an internal temperature compensated reference, fixed frequency oscillator with on-chip timing components, latching pulse width modulator for single pulse metering, high gain error amplifier, and a high current output switch.

Protective features consist of cycle-by-cycle current limiting, undervoltage lockout, and thermal shutdown. Also included is a low power standby mode that reduces power supply current to $36 \mu \mathrm{~A}$.

- Output Switch Current in Excess of 5.0 A
- Fixed Frequency Oscillator (72 kHz) with On-Chip Timing
- Provides 5.05 V Output Without External Resistor Divider
- Precision 2.0\% Reference
- 0\% to 95\% Output Duty Cycle
- Cycle-By-Cycle Current Limiting
- Undervoltage Lockout with Hysteresis
- Internal Thermal Shutdown
- Operation from 7.5 V to 40 V
- Standby Mode Reduces Power Supply Current to $36 \mu \mathrm{~A}$
- Economical Five Lead TO-220 Package

This document contains information on a new product. Specifications and information herein are subject to change without notice.

POWER SWITCHING

REGULATOR
SILICON MONOLITHIC INTEGRATED CIRCUIT

T SUFFIX PLASTIC PACKAGE CASE 314D

PIN CONNECTIONS

Pin 1. Voltage Feedback Input
2. Switch Output
3. Ground
4. Input Voltage/VCC
5. Compensation/Standby
(Heatsink surface connected to Pin 3)

ORDERING INFORMATION

Device	Temperature Range	Package
MC34167T	0° to $+70^{\circ} \mathrm{C}$	Plastic Power
MC33167T	-40° to $+85^{\circ} \mathrm{C}$	Plastic Power

©MOTOROLA INC., 1991

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Input Voltage	V_{CC}	40	V
Switch Output Voltage Range	$\mathrm{V}_{\mathrm{O} \text { (switch) }}$	-2.0 to $+V_{\text {in }}$	V
Voltage Feedback and Compensation Input Voltage Range	$\mathrm{V}_{\mathrm{FB}}, \mathrm{V}_{\text {Comp }}$	-1.0 to +7.0	V
Power Dissipation anci Thermal Characteristics (Note 1) Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$ Thermal Resistance Junction to Case (Pin 3) Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance Junction-to-Air	PD $\theta \mathrm{JC}$ PD $\theta J A$	$\begin{gathered} 34.7 \\ 2.3 \\ 1.9 \\ 65 \end{gathered}$	$\begin{gathered} W \\ { }^{\circ} \mathrm{C} W \\ W \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Operating Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature (Note 3) MC34167 MC33167	T_{A}	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=12 \mathrm{~V}\right.$, for typical values $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, for $\mathrm{min} / \mathrm{max}$ values TA_{A} is the operating ambient temperature range that applies [Note 2,3] unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OSCILLATOR	- $\underbrace{-2}$				
$\begin{aligned} & \text { Frequency }(\mathrm{V} \mathrm{CC}=7.5 \mathrm{~V} \text { to } 40 \mathrm{~V}) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	fosc	65 62	72	$\begin{aligned} & 79 \\ & 81 \end{aligned}$	kHz

ERROR AMPLIFIER

Voltage Feedback Input Threshold $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$		$\begin{array}{r} 4.95 \\ 4.85 \\ \hline \end{array}$		$\begin{aligned} & 5.15 \\ & 5.20 \end{aligned}$	V
Line Regulation ($\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	Regline	-	0.03	0.078	\%/V
Input Bias Current ($\left.\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{FB}(\text { th })}+0.15 \mathrm{~V}\right)$	IIB	-	0.15	1.0	$\mu \mathrm{A}$
Power Supply Rejection Ratio ($\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ to 20 V)	PSRR	60	80	-	dB
Output Voltage Swing High State (${ }^{\text {Source }}=75 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{FB}}=4.7 \mathrm{~V}$) Low State (${ }^{\text {Sink }}=0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=5.5 \mathrm{~V}$)	V_{OH} V_{OL}	4.2	$\begin{aligned} & 4.9 \\ & 1.6 \end{aligned}$	$\overline{1.9}$	V

PWM COMPARATOR

Duty Cycle $\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right)$						
Maximum $\left(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\right)$						
Minimum $\left(\mathrm{V}_{\mathrm{Comp}}=1.9 \mathrm{~V}\right)$		$\mathrm{DC}_{(\max)}$	92	95	98	0

SWITCH OUTPUT

Output Voltage Source Saturation $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$, $\left.\mathrm{I}_{\text {Source }}=5.0 \mathrm{~A}\right)$	$V_{\text {sat }}$	-	$(\mathrm{VCC}-1.5)$	$\left(V_{C C}-1.8\right)$	V
Off-State Leakage (V_{CC} = $40 \mathrm{~V}_{\mathrm{f}}$ Pin $\left.2=\mathrm{Gnd}\right)$	$I_{\text {sw(off) }}$	-	0	100	$\mu \mathrm{A}$
Current Limit Threshold ($\left.\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\right)$	Ipk(switch)	5.5	6.5	7.5	A
Switching Times (VCC $=40 \mathrm{~V}, \mathrm{I}_{\mathrm{pk}}=5.0 \mathrm{~A}, \mathrm{~L}=225 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) Output Voltage Rise Time Output Voltage Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	-	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	ns
UNDERVOLTAGE LOCKOUT					
Start-Up Threshold (V_{CC} Increasing, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{V}_{\text {th(UVLO) }}$	5.5	5.9	6.3	V
Hysteresis (VCC Decreasing, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	V_{H} (UVLO)	0.6	0.9	1.2	V
TOTAL DEVICE					
```Power Supply Current ( }\mp@subsup{T}{A}{}=25\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ) Standby (VCC = 12 V, V Comp < < .15 V) Operating (VCC = 40 V, Pin 1=Gnd for maximum duty cycle)```	ICC	-	$\begin{aligned} & 36 \\ & 40 \end{aligned}$	$\begin{gathered} 100 \\ 53 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$

Notes: 1. Maximum package power dissipation limits must be observed to prevent thermal shutdown activation.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for $\mathrm{MC} 34167 \quad \mathrm{~T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC 34167
$\begin{aligned}=-40^{\circ} \mathrm{C} \text { for MC33167 } & =+85^{\circ} \mathrm{C} \text { for MC33167 }\end{aligned}$

FIGURE 1 - VOLTAGE FEEDBACK INPUT THRESHOLD versus TEMPERATURE


FIGURE 3 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY


FIGURE 5 - OSCILLATOR FREQUENCY CHANGE versus TEMPERATURE


FIGURE 2 - VOLTAGE FEEDBACK INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 4 - ERROR AMP OUTPUT SATURATION versus SINK CURRENT


FIGURE 6 - SWITCH OUTPUT DUTY CYCLE versus COMPENSATION VOLTAGE


FIGURE 7 - SWITCH OUTPUT SOURCE SATURATION versus SOURCE CURRENT


FIGURE 9 - SWITCH OUTPUT CURRENT LIMIT THRESHOLD versus TEMPERATURE


FIGURE 11 - UNDERVOLTAGE LOCKOUT THRESHOLDS versus TEMPERATURE


FIGURE 8 - NEGATIVE SWITCH OUTPUT VOLTAGE versus TEMPERATURE


FIGURE 10 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 12 - OPERATING SUPPLY CURRENT versus SUPPLY VOLTAGE


## INTRODUCTION

The MC34167, MC33167 series are monolithic power switching regulators that are optimized for DC-to-DC converter applications. These devices operate as fixed frequency, voltage mode regulators containing all the active functions required to directly implement stepdown and voltage-inverting converters with a minimum number of external components. They can also be used cost effectively in step-up converter applications. Potential markets include automotive, computer, industrial, and cost sensitive consumer products. A description of each section of the device is given below with the representative block diagram shown in Figure 13.

## Oscillator

The oscillator frequency is internally programmed to 72 kHz by capacitor $\mathrm{C}_{\mathrm{T}}$ and a trimmed current source. The charge to discharge ratio is controlled to yield a 95\% maximum duty cycle at the Switch Output. During the discharge of $\mathrm{C}_{\mathrm{T}}$, the oscillator generates an internal blanking pulse that holds the inverting input of the AND gate high, disabling the output switch transistor. The nominal oscillator peak and valley thresholds are 4.1 V and 2.3 V respectively.

## Pulse Width Modulator

The Pulse Width Modulator consists of a comparator with the oscillator ramp voltage applied to the noninverting input, while the error amplifier output is applied into the inverting input. Output switch conduction is initiated when $C_{T}$ is discharged to the oscillator valley voltage. As CT charges to a voltage that exceeds the error amplifier output, the latch resets, terminating output transistor conduction for the duration of the oscillator ramp-up period. This PWM/Latch combination prevents multiple output pulses during agiven oscillator clock cycle. Figures 6 and 14 illustrate the switch output duty cycle versus the compensation voltage.

## Current Sense

The MC34167 series utilizes cycle-by-cycle current limiting as a means of protecting the output switch transistor from overstress. Each on-cycle is treated as a separate situation. Current limiting is implemented by monitoring the output switch transistor current buildup during conduction, and upon sensing an overcurrent condition, immediately turning off the switch for the duration of the oscillator ramp-up period.

The collector current is converted to a voltage by an internal trimmed resistor and compared against a reference by the Current Sense comparator. When the current limit threshold is reached, the comparator resets the PWM latch. The current limit threshold is typically set at 6.5 A. Figure 9 illustrates switch output current limit threshold versus temperature.

## Error Amplifier and Reference

A high gain Error Amplifier is provided with access to the inverting input and output. This amplifier features a typical DC voltage gain of 80 dB , and a unity gain bandwidth of 600 kHz with 70 degrees of phase margin
(Figure 3). The noninverting input is biased to the internal 5.05 V reference and is not pinned out. The reference has an accuracy of $\pm 2.0 \%$ at room temperature. To provide 5.0 V at the load, the reference is programmed 50 mV above 5.0 V to compensate for a $1.0 \%$ voltage drop in the cable and connector from the converter out put. If the converter design requires an output voltage greater than 5.05 V , resistor $\mathrm{R}_{1}$ must be added to form a divider network at the feedback input as shown in Figures 13 and 18. The equation for determining the output voltage with the divider network is:

$$
v_{\text {out }}=5.05\left(\frac{R_{2}}{R_{1}}-1\right)
$$

External loop compensation is required for converte stability. A simple low-pass filter is formed by connecting a resistor $\left(R_{2}\right)$ from the regulated output to the inverting input, and a series resistor-capacitor ( $R_{F}, C_{F}$ ) between Pins 1 and 5 . The compensation network com ponent values shown in each of the applications circuits were selected to provide stability over the tested operating conditions. The step-down converter (Figure 18 is the easiest to compensate for stability. The step-up (Figure 20) and voltage-inverting (Figure 22) configu rations operate as continuous conduction flyback converters, and are more difficult to compensate. The sim plest way to optimize the compensation network is to observe the response of the output voltage to a step load change, while adjusting $R_{F}$ and $C_{F}$ for critica damping. The final circuit should be verified for stability under four boundary conditions. These conditions are minimum and maximum input voltages, with minimum and maximum loads.
By clamping the voltage on the error amplifier outpu (Pin 5) to less than 150 mV , the internal circuitry will be placed into a low power standby mode, reducing the power supply current to $36 \mu \mathrm{~A}$ with a 12 V supply volt age. Figure 10 illustrates the standby supply current versus supply voltage.
The Error Amplifier output has a $100 \mu \mathrm{~A}$ current source pull-up that can be used to implement soft-start Figure 17 shows the current source charging capacito CSS through a series diode. The diode disconnects CSS from the feedback loop when the 1.0 M resistor charges it above the operating range of Pin 5 .

## Switch Output

The output transistor is designed to switch a maxi mum of 40 V , with a minimum peak collector current o 5.5 A. When configured for step-down or voltage-invert ing applications, as in Figures 18 and 22, the inducto will forward bias the output rectifier when the switch turns off. Rectifiers with a high forward voltage drop o long turn-on delay time should not be used. If the emit ter is allowed to go sufficiently negative, collector cur rent will flow, causing additional device heating anc reduced conversion efficiency. Figure 8 shows that by clamping the emitter to 0.5 V , the collector current wil be in the range of $100 \mu \mathrm{~A}$ over temperature. A 1 N 582 s or equivalent Schottky barrier rectifier is recommendec to fulfill these requirements.

## Undervoltage Lockout

An Undervoltage Lockout comparator has been incorporated to guarantee that the integrated circuit is fully functional before the output stage is enabled. The internal reference voltage is monitored by the comparator which enables the output stage when $V_{C C}$ exceeds 5.9 V . To prevent erratic output switching as the threshold is crossed, 0.9 V of hysteresis is provided.

## Thermal Protection

Internal Thermal Shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at $170^{\circ} \mathrm{C}$, the latch is forced into a 'reset' state, disabling the output switch. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking. The MC34167 is con-
tained in a 5-lead TO-220 type package. The tab of the package is common with the center pin (Pin 3) and is normally connected to ground.

## DESIGN CONSIDERATIONS

Do not attempt to construct a converter on wirewrap or plug-in prototype boards. Special care should be taken to separate ground paths from signal currents and ground paths from load currents. All high current loops should be kept as short as possible using heavy copper runs to minimize ringing and radiated EMI. For best operation, a tight component layout is recommended. Capacitors $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\mathrm{O}}$, and all feedback components should be placed as close to the IC as physically possible. It is also imperative that the Schottky diode connected to the Switch Output be located as close to the IC as possible.

FIGURE 15 - LOW POWER STANDBY CIRCUIT


FIGURE 16 - OVER VOLTAGE SHUTDOWN CIRCUIT


FIGURE 17 - SOFT-START CIRCUIT


FIGURE 18 - STEP-DOWN CONVERTER

$\mathrm{L}=$ Coilcraft M1496-A or ELMACO CHK1050, 42 turns of \#16 AWG on Magnetics inc. 58350-A2 core. Heatsink $=$ AAVID Engineering Inc. 5903 B , or 5930 B .

The Step-Down Converter application is shown in Figure 18. The output switch transistor $Q_{1}$ interrupts the input voltage, generating a squarewave at the LCO filter input. The filter averages the squarewaves, producing a DC output voltage that can be set to any level between $V_{\text {in }}$ and $V_{\text {ref }}$ by controling the percent conduction time of $\mathrm{Q}_{1}$ to that of the total oscillator cycle time. If the converter design requires an output voltage greater than 5.05 V , resistor $\mathbf{R}_{1}$ must be added to form a divider network at the feedback input.

FIGURE 19 - STEP-DOWN CONVERTER PRINTED CIRCUIT BOARD AND COMPONENT LAYOUT


FIGURE 13 - MC34167 REPRESENTATIVE BLOCK DIAGRAM


FGGURE 14 - TIMING DIAGRAM


Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body; or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motoroia products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

FIGURE 20 - STEP-UP/DOWN CONVERTER

*Gate resistor $R_{G}$, zener diode $D_{3}$, and diode $D_{4}$ are required only when $V_{\text {in }}$ is greater than 20 V .

Test	Condition	Results
Line Regulation	$V_{\text {in }}=10 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{IO}=0.9 \mathrm{~A}$	$10 \mathrm{mV}= \pm 0.017 \%$
Load Regulation	$V_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A}$ to 0.9 A	$30 \mathrm{mV}= \pm 0.053 \%$
Output Ripple	$V_{\text {in }}=12 \mathrm{~V}, I_{\mathrm{O}}=0.9 \mathrm{~A}$	$140 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{O}}$
Short Circuit Current	$V_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	6.0 A
Efficiency	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, 1 \mathrm{O}=0.9 \mathrm{~A}$	$80.1 \%$
	$V_{\text {in }}=24 \mathrm{~V}, I_{\mathrm{O}}=0.9 \mathrm{~A}$	$87.8 \%$

$\mathrm{L}=$ Coilcraft M1496-A or ELMACO CHK1050, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core.
Heatsink $=$ AAVID Engineering Inc.
MC34167: 5903 B or 5930 B
MTP3055EL: 5925B
Figure 20 shows that the MC34167 can be configured as a step-up/down converter with the addition of an external power MOSFET. Energy is stored in the inductor during the on-time of transistors $\alpha_{1}$ and $\alpha_{2}$. During the off-time, the energy is transferred, with respect to ground, to the output filter capacitor and load. This circuit configuration has two significant advantages over the basic step-up converter circuit. The first advantage is that output short circuit protection is provided by the MC34167, since $\mathrm{O}_{1}$ is directly in series with $V_{\text {in }}$ and the load. Second, the output voltage can be programmed to be less than $V_{\text {in }}$. Notice that during the off-time, the inductor forward biases diodes $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$, transferring its energy with respect to ground rather than with respect to $V_{i n}$. When operating with $V_{i n}$ greater than 20 V , a gate protection network is required for the MOSFET. The network consists of components $\mathrm{R}_{\mathrm{g}}, \mathrm{D}_{3}$, and $\mathrm{D}_{4}$

FIGURE 21 - STEP-UP/DOWN CONVERTER PRINTED CIRCUIT BOARD AND COMPONENT LAYOUT


Figure 22 - VOLTAGE-INVERTING CONVERTER


L = Coilcraft M1496-A or ELMACO CHK1050, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core. Heatsink = AAVID Engineering ha, 5903B, or 5930B

Two potential problems arise when designing the standard voltage-inverting converter with the MC34167. First, the Switch Output emitter is limited to -1.5 V with respect to the ground pin and second, the Error Amplifier's noninverting input is internally committed to the reference and is not pinned out. Both of these problems are resolved by connecting the IC ground pin to the converter's negative output as shown in Figure 22. This keeps the emitter of $\mathrm{Q}_{1}$ positive with respect to the ground pin and has the effect of reversing the Error Amplifier inputs. Note that the voltage drop across $\mathrm{R}_{1}$ is equal to 5.05 V when the output is in regulation.

FIGURE 23 - VOLTAGE-INVERTING CONVERTER PRINTED CIRCUIT BOARD AND COMPONENT LAYOUT


BOTTOM VIEW


TOP VIEW

FIGURE 24 - TRIPLE OUTPUT CONVERTER


Test		Condition	Results
Line Regulation	$\begin{array}{r} 5.0 \mathrm{~V} \\ 12 \mathrm{~V} \\ -12 \mathrm{~V} \end{array}$	$V_{\text {in }}=15 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{IO}_{1}=3.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O} 2}=250 \mathrm{~mA}, \mathrm{IO}_{\mathrm{O}}=200 \mathrm{~mA}$	$\begin{aligned} & 3.0 \mathrm{mV}= \pm 0.029 \% \\ & 572 \mathrm{mV}= \pm 2.4 \% \\ & 711 \mathrm{mV}= \pm 2.9 \% \end{aligned}$
Load Regulation	$\begin{array}{r} 5.0 \mathrm{~V} \\ 12 \mathrm{~V} \\ -12 \mathrm{~V} \end{array}$	$\begin{aligned} & V_{\text {in }}=24 \mathrm{~V}, \mathrm{l}_{\mathrm{O} 1}=30 \mathrm{~mA} \text { to } 3.0 \mathrm{~A}, \mathrm{l}_{\mathrm{O} 2}=250 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{~V}_{\text {in }}=24 \mathrm{~V}, \mathrm{l}_{1}=3.0 \mathrm{~A}, \mathrm{O}_{\mathrm{O}}=100 \mathrm{~mA} \text { to } 250 \mathrm{~mA}, \mathrm{l}_{\mathrm{O} 3}=200 \mathrm{~mA} \\ & \mathrm{~V}_{\text {in }}=24 \mathrm{~V}, \mathrm{l}_{\mathrm{O} 1}=3.0 \mathrm{~A}, \mathrm{l}_{\mathrm{O} 2}=250 \mathrm{~mA}, l_{\mathrm{O} 3}=75 \mathrm{~mA} \text { to } 200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{mV}= \pm 0.009 \% \\ & 409 \mathrm{mV}= \pm 1.5 \% \\ & 528 \mathrm{mV}= \pm 2.0 \% \\ & \hline \end{aligned}$
Output Ripple	$\begin{array}{r} 5.0 \mathrm{~V} \\ 12 \mathrm{~V} \\ -12 \mathrm{~V} \end{array}$	$\mathrm{V}_{\mathrm{in}}=24 \mathrm{~V}, \mathrm{lO}_{\mathrm{I}}=3.0 \mathrm{~A}, \mathrm{l}_{\mathrm{O} 2}=250 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}$	$\begin{aligned} & 75 \mathrm{mV} V_{p-p} \\ & 20 \mathrm{mV} \\ & 20 \mathrm{mV} V_{p-p} \\ & \hline \end{aligned}$
Short Circuit Current	$\begin{array}{r} 5.0 \mathrm{~V} \\ 12 \mathrm{~V} \\ -12 \mathrm{~V} \end{array}$	$\mathrm{V}_{\mathrm{in}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	$\begin{aligned} & 6.5 \mathrm{~A} \\ & 2.7 \mathrm{~A} \\ & 2.2 \mathrm{~A} \end{aligned}$
Efficiency	TOTAL	$V_{\text {in }}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=3.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O} 2}=250 \mathrm{~mA}, \mathrm{l}_{\mathrm{O} 3}=200 \mathrm{~mA}$	84.2\%

T1 = Primary - Coilcraft M1496-A or ELMACO CHK1050, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core.
Secondary - VO2 -69 turns of \#26 AWG
$V_{\mathrm{O} 3}-104$ turns of \#28 AWG
Heatsink = AAVID Engineering Inc. 5903B, or 5930B.

Multiple auxiliary outputs can easily be derived by winding secondaries on the main output inductor to form a transformer. The secondaries must be connected so that the energy is delivered to the auxiliary outputs when the Switch Output turns off. During the off-time, the voltage across the primary winding is regulated by the feedback loop, yielding a constant Volts/Turn ratio. The number of turns for any given secondary voltage can be calculated by the following equation:

$$
\left.\# \text { TURNS }_{(\text {SEC })}=\frac{v_{O(S E C)}+v_{F(S E C)}}{\left(\frac{v_{\mathrm{O}(\text { PRI })}+v_{F(P R I)}}{\# \text { TURNS }}(\text { PRI })\right.}\right)
$$

Note that the 12 V winding is stacked on top of the 5.0 V output. This reduced the number of secondary turns and improves load regulation. For best auxiliary regulation, the auxiliary outputs should be less than $33 \%$ of the total output power.


Test	Condition	Results
Line Regulation	$V_{\text {in }}=-10 \mathrm{~V}$ to $-20 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.3 \mathrm{~A}$	$266 \mathrm{mV}= \pm 0.38 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.03 \mathrm{~A} t 00.3 \mathrm{~A}$	$7.90 \mathrm{mV}= \pm 1.1 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.3 \mathrm{~A}$	$100 \mathrm{mVp}-\mathrm{p}$
Efficiency	$\mathrm{V}_{\text {in }}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.3 \mathrm{~A}$	$78.4 \%$

$L=$ ELMACO CHK1050, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core.
Heatsink = AAVID Engineering Inc. 5903B, or 5930B

FIGURE 26 - VARIABLE MOTOR SPEED CONTROL WITH EMF FEEDBACK SENSING


FIGURE 27 - OFF-LINE PRECONVERTER


The MC34167 can be used cost effectively in off-line applications even though it is limited to a maximum input voltage of 40 V . Figure 27 shows a simple and efficient method for converting the AC line voltage down to 24 V . This preconverter has a total power rating of 125 W with a conversion efficiency of $90 \%$. Transformer $T_{1}$ provides output isolation from the $A C$ line and isolation between each of the secondaries. The circuit self-oscillates at 50 kHz and is controlled by the saturation characteristics of $T_{2}$. Multiple MC34167 post regulators can be used to provide accurate independently regulated outputs for a distributed power system.

TABLE 1 - DESIGN EQUATIONS

Calculation	Step-Down	Step-Up/Down	Voltage-Inverting
$t_{0 n}$ $t^{t}$ off Note 1, 2	$\frac{V_{\text {out }}+V_{F}}{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}$	$\frac{V_{\text {out }}+V_{F 1}+V_{F 2}}{V_{\text {in }}-V_{\text {sat } Q 1}-V_{\text {sat } Q 2}}$	$\frac{\left\|V_{\text {out }}\right\|+V_{F}}{V_{\text {in }}-V_{\text {sat }}}$
ton	$\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{\mathrm{f}_{\text {osc }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)}$	$\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{f_{\text {osc }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)}$	$\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{f_{\text {osc }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)}$
Duty Cycle Note 3	ton fosc	$\mathrm{t}_{\text {on }} \mathrm{f}_{\text {osc }}$	ton fosc
L avg	$I_{\text {out }}$	lout $\left(\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\mathrm{off}}}+1\right)$	$I_{\text {out }}\left(\frac{t_{\text {an }}+1}{t_{\text {off }}}\right)$
Ipk(switch)	$\mathrm{L}_{\mathrm{Lavg}}+\frac{\Delta \mathrm{l}_{\mathrm{L}}}{2}$	$\mathrm{L}_{\mathrm{Lavg}}+\frac{\Delta \mathrm{l}_{\mathrm{L}}}{2}$	$1 \mathrm{~L} \text { avg }+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}$
L	$\left(\frac{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}{\Delta I_{\text {L }}}\right) \mathrm{t}_{\text {on }}$	$\left(\frac{V_{\text {in }}-V_{\text {sat }} 1-V_{\text {sat } 22}}{\Delta L_{\mathrm{L}}}\right)$ ton	$\left(\frac{V_{\text {in }}-V_{\text {sat }}}{\Delta I_{L}}\right)_{\mathrm{t}_{\text {on }}}$
$V_{\text {ripple }}(\mathrm{p}-\mathrm{p})$	$\Delta \mathrm{L} . \sqrt{\left(\frac{1}{8 \mathrm{f}_{\mathrm{osc}} \mathrm{C}_{0}}\right)^{2}+(\mathrm{ESR})^{2}}$	$\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right) \sqrt{\left(\frac{1}{\mathrm{fosc}_{\text {osc }} \mathrm{C}_{\mathrm{o}}}\right)^{2}+(E S R)^{2}}{ }^{2}$	$\left(\frac{\left(t_{\text {on }}\right.}{t_{\text {off }}}+1\right) \sqrt{\left(\frac{1}{f_{\text {osc }} C_{o}}\right)^{2}+(E S R)^{2}}$
$V_{\text {out }}$	$V_{\text {ref }}\left(\frac{R_{2}}{R_{1}}+1\right)$	$\mathrm{v}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right){ }^{2}$	$V_{\text {ref }}\left(\frac{R_{2}}{R_{1}}+1\right)$

Notes: 1) $\mathrm{V}_{\text {sat }}$ - Switch Output source saturation voltage, refer to Figure 7.
2) $V_{F}$ - Output rectifier forward voltage drop. Typical value for 1 N 5825 Schottky barrfer rectifier is 0.35 V .
3) Duty cycle is calculated at the minimum operating input voltage and must not exceed the guaranteed minimum DC (max $^{(\max }$ specification of 0.92 .
The following converter characteristics must be chosen:
Vout - Desired output voltage.
Iout - Desired output current.
$\Delta^{\prime} \mathrm{L}$ - Desired peak-to-peak inductor ripple current. For maximum output current especially when the duty cycle is greater than 0.5 , it is suggested that $\Delta I_{L}$ be chosen to be less than $10 \%$ of the average inductor current $I_{L}$ avg. This will help prevent $I_{p k}($ switch $)$ from reaching the guaranteed minimum current limit threshold of 5.5 A . If the design goal is to use a minimum inductance value, let $\Delta l_{\mathrm{L}}=2$ ( L avg). This will proportionally reduce the converter's output current capability.
$V_{\text {ripple(p-p) }}$ - Desired peak-to-peak output ripple voltage. For best performance, the ripple voltage should be kept to less than $2 \%$ of $V_{\text {out }}$ Capacitor $C_{O}$ should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.

## OUTLINE DIMENSIONS



## Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MOTOROLA

