

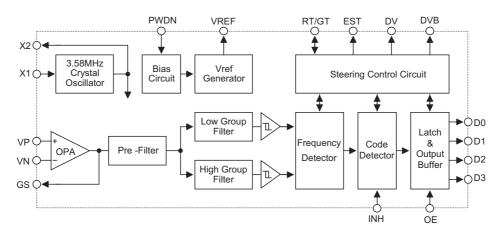
HT9172 DTMF Receiver

Technical Document

- Tools Information
- FAQs
- Application Note

Features

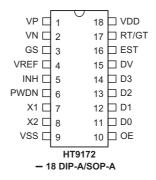
- Operating voltage: 2.5V~5.5V
- · Minimal external component requirements
- No external filter required
- Low standby current in power down mode)
- · Excellent performance


- · Tristate data output for MCU interface
- 3.58MHz crystal or ceramic resonator oscillator
- 1633Hz can be inhibited by the INH pin
- 18-pin DIP/SOP packaging

General Description

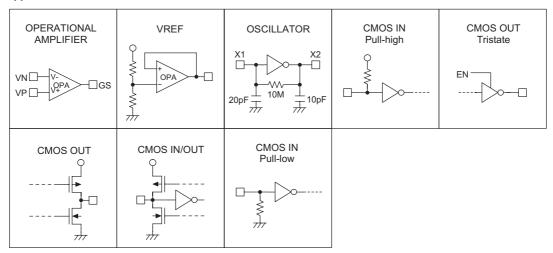
The HT9172 is a Dual Tone Multi Frequency (DTMF) receiver device which includes an integrated digital decoder and band split filter functions as well as power-down and inhibit mode operations. The device uses digital counting techniques to detect and decode the full range of 16 DTMF tone pairs into a 4-bit code

output. Highly accurate switched capacitor filters are utilised to divide the DTMF dual tone frequencies into low and high group signals. An integrated dial tone rejection circuit is provided to eliminate the need for pre-filtering.


Block Diagram

Rev. 1.00 1 March 30, 2006

Pin Assignment



Pin Description

Pin Name	I/O	Internal Connection	Description
VP	ı	Operational Amplifier	Operational amplifier non-inverting input
VN	ı		Operational amplifier inverting input
GS	0		Operational amplifier output terminal
VREEF	0	VREF	Reference voltage output, normally V _{DD} /2
X1	I		The system oscillator consists of an inverter, a bias resistor and the required
X2	0	oscillator	on-chip load capacitor. A standard 3.579545MHz crystal connected to the X1 and X2 terminals implements the oscillator function.
PWDN	I	CMOS IN Pull-low	Active high. This enables the device to go into its power down mode and inhibits the oscillator. This pin input is pulled low internally.
INH	I	CMOS IN Pull-low	Active high. This inhibits the detection of tones representing characters A, B, C and D. This pin input is pulled low internally.
VSS	_	_	Negative power supply, ground
OE	I	CMOS IN Pull-high	D0~D3 output enable, active high
D0~D3	0	CMOS OUT Tristate	Received data output terminals OE="H": Output enable OE="L": High impedance
DV	0	CMOS OUT	Data valid output. When the device has received a valid DTMF tone, this line will go high; otherwise it remains low.
EST	0	CMOS OUT	Early steering output - see Functional Description
RT/GT	I/O	CMOS IN/OUT	Tone acquisition time and release time can be set through connection with external resistor and capacitor.
VDD	_	_	Positive power supply, 2.5V~5.5V for normal operation

Approximate Internal Connection Circuits

Absolute Maximum Ratings

Supply Voltage	V_{SS} -0.3V to V_{SS} +6V	Storage Temperature	50°C to 125°C
Input Voltage	V_{SS} -0.3V to V_{DD} +0.3V	Operating Temperature	40°C to 85°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics Ta=25°C

Cumbal	Parameter		Test Conditions		Trees	Max.	Unit	
Symbol	rarameter	V_{DD}	Conditions	Min.	Тур.	IVIAX.	Oill	
V _{DD}	Operating Voltage	_	_	2.5	5	5.5	V	
I _{DD}	Operating Current	5V	_	_	3	7	mA	
I _{STB}	Standby Current	5V	V _{PWDN} =V _{DD} , (Not include PWDN pull-low current)	_	1	5	μА	
V _{IL}	Input Low Voltage	5V	_	_	_	1.0	V	
V _{IH}	Input High Voltage	5V	_	4.0	_	_	V	
I _{IL}	Input Low Current	5V	V _{VP} =V _{VN} =0V	_	_	0.1	μА	
I _{IH}	Input High Current	5V	V _{VP} =V _{VN} =5V	_	_	0.1	μА	
R _{OE}	Pull-high Resistance (OE)	5V	V _{OE} =0V	70	110	160	kΩ	
R _{PL}	Pull-low Resistance (INH, PWDN)	5V	V _{INH} =5.0V, V _{PWDN} =5.0V	150	250	375	kΩ	
R _{IN}	Input Impedance (VN, VP)	5V	_	_	10	_	$M\Omega$	
I _{OH}	Source Current (D0~D3, EST, DV)	5V	V _{OUT} =4.5V	-0.4	-0.8	_	mA	
I _{OL}	Sink Current (D0~D3, EST, DV)	5V	V _{OUT} =0.5V	1.0	2.5	_	mA	
fosc	System Frequency	5V	Crystal=3.5795MHz	3.5759	3.5795	3.5831	MHz	

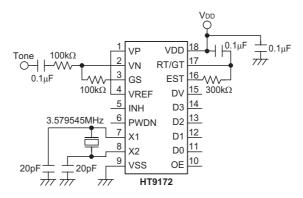
Rev. 1.00 3 March 30, 2006

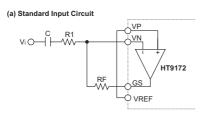
A.C. Characteristics

 f_{OSC} =3.5795MHz, Ta=25°C

Cumahal	Parameter		Test Conditions	N/!	-	Mess	l lps!4
Symbol	raianietei		Conditions	Min.	Тур.	Max.	Unit
DTMF Sig	gnal						
	Janua Cianal Laval	3V		-36	_	-6	-ID
	Input Signal Level	5V		-29	_	1	dBm
	Twist Accept Limit (Positive)	5V			10	_	dB
	Twist Accept Limit (Negative)	5V		_	10	_	dB
	Dial Tone Tolerance	5V		_	18	_	dB
	Noise Tolerance	5V		_	-12	_	dB
	Third Tone Tolerance	5V		_	-16	_	dB
	Frequency Deviation Acceptance	5V		_	_	±1.5	%
	Frequency Deviation Rejection	5V		±3.5	_	_	%
t _{PU}	Power Up Time (See Figure 4.)	5V		_	30	_	ms
Gain Sett	ting Amplifier			<u> </u>		•	
R _{IN}	Input Resistance	5V	_	_	10	_	ΜΩ
I _{IN}	Input Leakage Current	5V	V _{SS} <(V _{VP} ,V _{VN}) <v<sub>DD</v<sub>	_	0.1	_	μА
Vos	Offset Voltage	5V	_	_	±25	_	mV
P _{SRR}	Power Supply Rejection	5V		_	60	_	dB
C _{MRR}	Common Mode Rejection	5V	100 Hz _3V <v<sub>IN<3V</v<sub>		60	_	dB
A _{VO}	Open Loop Gain	5V		_	65	_	dB
f _T	Gain Band Width	5V	_	_	1.5	_	MHz
V _{OUT}	Output Voltage Swing	5V	R _L >100kΩ	_	4.5	_	V _{PP}
R _L	Load Resistance (GS)	5V	_	_	50	_	kΩ
CL	Load Capacitance (GS)	5V	_	_	100	_	pF
V _{CM}	Common Mode Range	5V	No load	_	3.0	_	V _{PP}
Steering	Control	•		'			
t _{DP}	Tone Present Detection Time	5V		5	11	14	ms
t_{DA}	Tone Absent Detection Time	5V			4	8.5	ms
t _{ACC}	Acceptable Tone Duration	5V			_	42	ms
t _{REJ}	Rejected Tone Duration	5V		20	_	_	ms
t _{IA}	Acceptable Inter-digit Pause	5V		_	_	42	ms
t _{IR}	Rejected Inter-digit Pause	5V		20	_	_	ms
t _{PDO}	Propagation Delay (RT/GT to DO)	5V		_	8	11	μS
t _{PDV}	Propagation Delay (RT/GT to DV)	5V		_	12	_	μS
t _{DOV}	Output Data Set Up (DO to DV)	5V		_	4.5	_	μS
t _{DDO}	Disable Delay (OE to DO)	5V		_	300	_	ns
t _{EDO}	Enable Delay (OE to DO)	5V		_	50	60	ns

Note: DO=D0~D3




Figure 1. Test Circuit

Functional Description

Overview

The HT9172 tone decoder consists of three band pass filters and two digital decode circuits to convert a DTMF tone into a digital code output.

The device contains an operational amplifier to adjust the input signal level as shown in Figure 2.

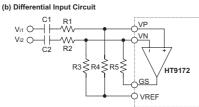


Figure 2. Amplifier Input Application Circuits

The pre-filter is a band rejection filter which will reject frequencies between 350Hz to 400Hz.

The low group filter, filters the low group frequency signal output whereas the high group filter, filters the high group frequency signal output.

Each filter output is followed by a zero-crossing detector with incorporates hysteresis. When the signal amplitude at the output exceeds a specified level, it is transferred to a full swing logic signal.

When the input signal is recognized as an effective DTMF tone, the DV line will go high, and the corresponding DTMF tone code will be generated.

Steering Control Circuit

The steering control circuit is used to measure the effective signal duration and for protecting against valid signal drop out. This is achieved using an analog delay which is implemented using an external RC time-constant, controlled by the output line EST.

The timing diagram is shown in Figure 3. The EST pin is normally low and will pull the RT/GT pin low via the external RC network. When a valid tone input is detected, the EST pin will go high, which will in turn pull the RT/GT pin high through the RC network.

When the voltage on RT/GT rises from 0 to V_{TRT} , which is 2.35V for a 5V power supply, the input signal is effective, and the corresponding code will be generated by the code detector. After D0~D3 have been latched, DV will go high. When the voltage on RT/GT falls from VDD to V_{TRT} , i.e. when there is no input tone, the DV output will go low, and D0~D3 will maintain their present data until a next valid tone input is produced.

By selecting suitable external RC values, the minimum acceptable input tone duration, t_{ACC} , and the minimum acceptable inter-tone rejection, t_{IR} , can be set. The values of the external RC components, can be chosen using the following formula. Also refer to Figure 5 for details.

 $t_{ACC} \!\!=\! t_{DP} \!\!+\! t_{GTP};$

 $t_{IR}=t_{DA}+t_{GTA};$

where t_{ACC} : Tone duration acceptable time t_{DP} : EST output delay time ("L" \rightarrow "H")

t_{GTP}: Tone present time

t_{IR}: Inter-digit pause rejection time

Timing Diagrams

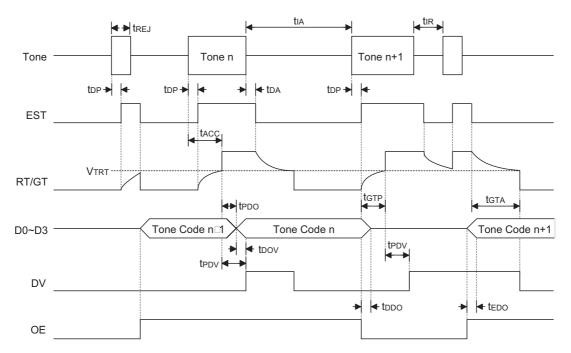


Figure 3. Steering Timing

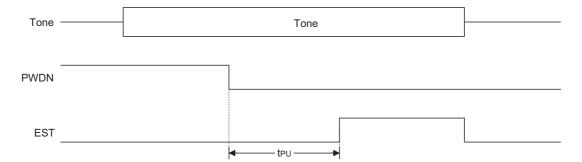
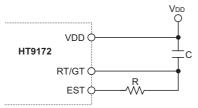
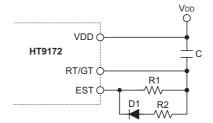



Figure 4. Power-up Timing


(a) Fundamental circuit:

$$\begin{split} t_{\text{GTP}} &= R \times C \times \text{Ln (V}_{\text{DD}} \, / \, (\text{V}_{\text{DD}} \, - \text{V}_{\text{TRT}})) \\ t_{\text{GTA}} &= R \times C \times \text{Ln (V}_{\text{DD}} \, / \, \text{V}_{\text{TRT}}) \end{split}$$

(c) $t_{GTP} > t_{GTA}$:

$$\begin{split} t_{GTP} &= R1 \times C \times Ln \; (V_{DD} \, / \; (V_{DD} - V_{TRT})) \\ t_{GTA} &= (R1 \, / \! / \; R2) \times C \times Ln \; (V_{DD} \, / \; V_{TRT}) \end{split}$$

(b) $t_{GTP} < t_{GTA}$:

$$t_{GTP}$$
 = (R1 // R2) × C × Ln ($V_{DD} - V_{TRT}$))
 t_{GTA} = R1 × C × Ln (V_{DD} / V_{TRT})

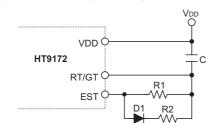
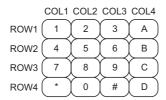



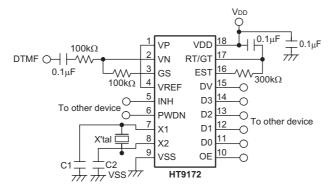
Figure 5. Steering Time Adjustment Circuits

DTMF Dialing Matrix

DTMF Data Output Table

Low Group (Hz)	High Group (Hz)	Digit	OE	D3	D2	D1	D0
697	1209	1	Н	L	L	L	Н
697	1336	2	Н	L	L	Н	L
697	1477	3	Н	L	L	Н	Н
770	1209	4	Н	L	Н	L	L
770	1336	5	Н	L	Н	L	Н
770	1477	6	Н	L	Н	Н	L
852	1209	7	Н	L	Н	Н	Н
852	1336	8	Н	Н	L	L	L
852	1477	9	Н	Н	L	L	Н
941	1336	0	Н	Н	L	Н	L
941	1209	*	Н	Н	L	Н	Н
941	1477	#	Н	Н	Н	L	L
697	1633	Α	Н	Н	Н	L	Н
770	1633	В	Н	Н	Н	Н	L
852	1633	С	Н	Н	Н	Н	Н
941	1633	D	Н	L	L	L	L
_	_	ANY	L	Z	Z	Z	Z

Note: "Z" High impedance; "ANY" Any digit

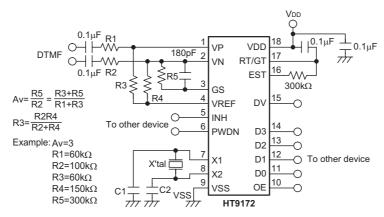


Data Output

The data outputs, D0~D3, are tristate outputs. When the OE input is low, the D0~D3 data outputs, will be in a high impedance condition.

Application Circuits

Application Circuit 1


Note: X'tal = 3.579545MHz crystal

 $C1 = C2 \cong 20pF$

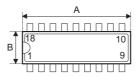
X'tal = 3.58MHz ceramic resonator

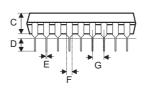
 $C1 = C2 \cong 39pF$

Application Circuit 2

Note: X'tal = 3.579545MHz crystal

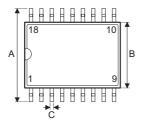
C1 = C2 ≅ 20pF

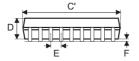

X'tal = 3.58MHz ceramic resonator


C1 = C2 ≅ 39pF

Package Information

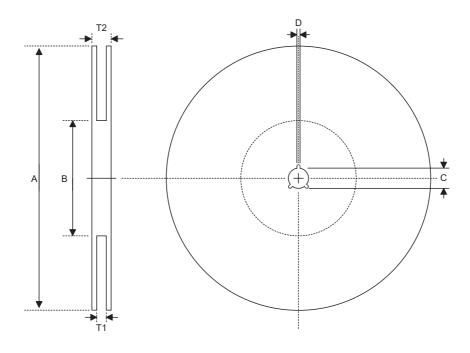
18-pin DIP (300mil) Outline Dimensions





Symbol	Dimensions in mil				
Symbol	Min.	Nom.	Max.		
A	895	_	915		
В	240	_	260		
С	125	_	135		
D	125	_	145		
E	16	_	20		
F	50	_	70		
G	_	100	_		
Н	295	_	315		
I	335	_	375		
α	0°	_	15°		

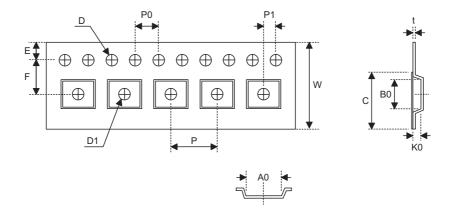
18-pin SOP (300mil) Outline Dimensions



Cumbal	Dimensions in mil				
Symbol	Min.	Nom.	Max.		
A	394	_	419		
В	290	_	300		
С	14	_	20		
C'	447	_	460		
D	92	_	104		
E	_	50	_		
F	4	_	_		
G	32	_	38		
Н	4	_	12		
α	0°	_	10°		

Product Tape and Reel Specifications

Reel Dimensions



SOP 18W

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	13.0+0.5 -0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	24.8+0.3 -0.2
T2	Reel Thickness	30.2±0.2

Carrier Tape Dimensions

SOP 18W

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	24.0+0.3 -0.1
Р	Cavity Pitch	16.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	11.5±0.1
D	Perforation Diameter	1.5±0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	10.9±0.1
В0	Cavity Width	12.0±0.1
K0	Cavity Depth	2.8±0.1
t	Carrier Tape Thickness	0.3±0.05
С	Cover Tape Width	21.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan

Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233

Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031 Tel: 0755-8346-5589

Fax: 0755-8346-5590 ISDN: 0755-8346-5591

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031

Tel: 010-6641-0030, 6641-7751, 6641-7752

Fax: 010-6641-0125

Holmate Semiconductor, Inc. (North America Sales Office)

46712 Fremont Blvd., Fremont, CA 94538

Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2006 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.00 March 30, 2006