PRELIMINARY INFORMATION

D escription

The IC S650-14B is a low cost, low jitter, high performance clock synthesizer customized for networking systems applications. U sing analog Phase-Locked Loop (PLL) techniques, the device accepts a 25.0 M Hz clock or fundamental mode crystal input to produce multiple output clocks of one fixed 25.0 M H z , a four (plus one) frequency selectable bank, and two frequency selectable clocks. All output clocks are frequency locked together. The ICS650R-14B outputs all have 0 ppm synthesis error.

Block D iagram

Features

- Packaged in 20 pin (150 mil) SSO P (Q SO P)
- 25.00 M Hz fundamental crystal or clock input
- O ne fixed output clock of one 25.0 M Hz
- O ne bank of four frequency selectable output clocks
- Three frequency selectable clock outputs
- Zero ppm synthesis error in all clocks
- Ideal for networking systems
- Full CM OS output swing
- Advanced, low power, sub-micron CM OS process
- 3.0 V to 5.5 V operating voltage
- Industrial temperature range available

O ptional crystal capacitors are shown and may be required for tuning of initial accuracy (determined once per board).

PRELIMINARY INFORMATION
IC S650-14B N etworking System C lock

Pin Assignment

SELB0 -1	20	\square SELC
X2 $\square 2$	19	\square SELAO
X1/ICLK ${ }^{\text {¢ }}$	18	$\square \mathrm{CLKA} 2$
VDD $\square 4$	17	\square CLKA3
SELB1 ¢ 5	16	$\square \mathrm{V}$ D
GND -6	15	\square SELA1
CLKB $\square 7$	14	$\square \mathrm{GND}$
CLKC - 8	13	$\square \mathrm{CLKA} 4$
CLKA5 - 9	12	\square CLKA1
25M $\square 10$	11	$\square 0 \mathrm{E}$

20 pin (150 mil) SSO P

Table 1

SELA1	SELA0	CLKA1:4	CLKA5
0	0	33.33	66.66
0	M	50	75
0	1	66.67	133.33
M	0	100	33.33
M	M	33.33	83.33
M	1	50	125
1	0	33.33	100
1	M	25	75
1	1	66.67	100

Table 2

SELB1	SELB0	CLKB
0	0	30
0	M	27
0	1	48
1	0	83.33
1	M	19.44
1	1	80

T able 3

SELC	CLKC
0	CLKB/4
M	62.5
1	125

$0=$ connect directly to ground 1 = connect directly to VDD M = leave unconnected (floating)

Pin D escriptions

N umber	Name	Type	D escription
1	SELB0	TI	Select pin for CLKB. See Table 2.
2	X2	X0	Crystal connection. Connect to 25 M Hz crystal or leave unconnected for a clock input.
3	X1/ICLK	XI	Crystal connection. Connect to 25 M Hz fundamental crystal or clock input.
4	VDD	P	C onnect to +3.3 V or +5 V . M ust be same as other VDDs.
5	SELB1	I(Pu)	Select pin for CLK B. Seetable 2.
6	GND	P	Connect to ground.
7	CLKB	0	Selectable clock output. See T able 2.
8	CLKC	0	Selectable clock output. See T able 3.
9	CLKA5	0	Selectable clock output. See T able 1.
10	25M	0	$25.0 \mathrm{M} \mathrm{Hz} \mathrm{clock} \mathrm{output}$.
11	OE	I(Pu)	O utput Enable. Tri-states all output clocks when low. Internal pull-up.
12	CLKA1	0	Selectable clock output. See Table 1.
13	CLKA4	0	Selectable clock output. See T able 1.
14	GND	P	Connect to ground.
15	SELA1	TI	Select pin for CLKA1:4 and CLKA5 outputs. SeeT able 1.
16	VDD	P	Connect to +3.3 V or +5.0 V . M ust be same as other VD D s.
17	CLKA3	0	Selectable clock output. See T able 1.
18	CLKA2	0	Selectable clock output. SeT Table 1.
19	SELAO	TI	Select pin for CLKA1:4 and CLKA5 outputs. SeeT able 1.
20	SELC	TI	Select pin for CLKC output. See Table 3.

Key: XI, XO = crystal connections; I = Input; I (Pu) = Input with pull up $0=0$ utput; $\mathrm{P}=$ power supply connection; $\mathrm{TI}=$ tri level input

PRELIMINARY INFORMATION

Electrical Specifications

Parameter	Conditions	M inimum	Typical	M aximum	U nits
ABSOLUTE M AXIM UM RATINGS (note 1)					
Supply voltage, VDD	Referenced to GND			7	V
Inputs and Clock O utputs	Referenced to GND	-0.5		VDD +0.5	V
Ambient O perating T emperature		0		70	${ }^{\circ} \mathrm{C}$
Ambient O perating T emperature	Industrial "I" version	-40		85	${ }^{\circ} \mathrm{C}$
Soldering Temperature	M ax of 20 seconds			260	${ }^{\circ} \mathrm{C}$
Storage temperature		-65		150	${ }^{\circ} \mathrm{C}$
DC CH ARACTERISTICS (VDD $=3.3 \mathrm{~V}$ unless noted)					
O perating V oltage, VDD		3		5.5	V
Input High Voltage, VIH, X1 pin only	Clock Input	VDD/2 +1			V
Input Low Voltage, VIL, X1 pin only	Clock Input			VDD/2-1	V
Input High Voltage, VIH, SEL pins only		VDD - 0.5			V
Input Low Voltage, VIL, SEL pins only				0.5	V
Input High Voltage, VIH, OE pin only		2.0			V
Input Low Voltage, VIL, OE pin only				0.8	V
O utput High Voltage, VOH	$1 \mathrm{OH}=12 \mathrm{~mA}$	2.4			V
O utput Low Voltage, VOL	$10 \mathrm{~L}=12 \mathrm{~mA}$			0.4	V
O utput H igh V oltage, VOH, CM OS level	$10 \mathrm{H}=8 \mathrm{~mA}$	VDD-0.4			V
0 perating Supply C urrent, IDD	No Load		TBD		mA
Short Circuit Current	Each output		± 50		mA
AC CHARACTERISTICS (VDD $=3.3 \mathrm{~V}$ unless noted)					
Input Frequency			25.000		M Hz
O utput Clock Rise Time	0.8 to 2.0 V			1.5	ns
O utput Clock Fall Time	2.0 to 0.8V			1.5	ns
O utput Clock Duty Cycle	At VDD/2	45	50	55	\%
Frequency error	All clocks			0	ppm
Absolute Jitter, short term	Variation from mean		TBD		ps

N otes: 1. Stresses beyond those listed under Absolute M aximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute M aximums may affect device reliability.
2. CM OS level input, nominal trip point is VDD/2 for 3.3 V or 5 V operation.

External C omponents

The IC S650R-14B requires a minimum number of external components for proper operation. Decoupling capacitors of 0.01μ F should be connected between each VDD and GND on Pins 4 and 6, and Pins 16 and 14, as close to the IC S650R-14B as possible. A series termination resistor of 33Ω may be used for each clock output. The 25.00 M Hz crystal must be connected as close to the chip as possible. The crystal should be a fundamental mode (do not use third overtone), parallel resonant. C rystal capacitors should be connected from pins X1 to ground and X2 to ground to optimize the initial accuracy. The value of these capacitors is given by the following equation, where C_{L} is the crystal load capacitance: Crystal caps (pF) = $\left(C_{L}-6\right) \times 2$. So for a crystal with 16 pF load capacitance, two 20 pF caps should be used.

PRELIMINARY INFORMATION
IC S650-14B
N etworking System C lock

Package Outline and Package D imensions

(For current dimensional specifications, see JEDEC Publication No. 95.)
20 pin SSO P

	Inches		M illimeters			
Symbol	M in	M ax	M in	M ax		
A	0.053	0.069	1.35	1.75		
A1	0.004	0.010	0.10	0.25		
b	0.008	0.012	0.20	0.30		
c	0.007	0.010	0.18	0.25		
D	0.337		0.344	8.55		8.75
e	.025 BSC		0.635			
BSC						
E	0.228	0.244	5.80	6.20		
E1	0.150	0.157	3.80	4.00		
L	0.016	0.050	0.40	1.27		

O rdering Information for IC S650-14B

Part/O rder N umber	M arking	Shipping packaging	Package	Temperature
ICS650R-14	ICS650R-14	tubes	20 pin SSO P	0 to $+70{ }^{\circ} \mathrm{C}$
ICS650R-14T	ICS650R-14	tape and reel	20 pin SSO P	0 to $+70{ }^{\circ} \mathrm{C}$
ICS650R-14I	ICS650R-14I	tubes	20 pin SSO P	-40 to $+85^{\circ} \mathrm{C}$
ICS650R-14I	ICS650R-14I	tape and reel	20 pin SSO P	-40 to $+85{ }^{\circ} \mathrm{C}$

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Inc (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

