FEATURES:

- High-speed 16-bit bus exchange for interbus communication in the following environments:
- Multi-way interleaving memory
- Multiplexed address and data buses
- Direct interface to R3051 family RISChipSet ${ }^{\text {TM }}$
- R3051 ${ }^{\text {TM }}$ family of integrated RISController ${ }^{\text {TM }}$ CPUs
- R3721 DRAM controller
- Data path for read and write operations
- Low noise 12mA TTL level outputs
- Bidirectional 3-bus architecture: X, Y, Z
- One CPU bus: X
- Two (interleaved or banked) memory buses:Y \& Z
- Each bus can be independently latched
- Byte control on all three buses
- Source terminated outputs for low noise and undershoot control
- 68-pin PLCC and 80-pin PQFP package
- High-performance CMOS technology.

DESCRIPTION:

The IDT73720/A Bus Exchanger is a high speed 16-bit bus exchange device intended for inter-bus communication in interleaved memory systems and high performance multiplexed address and data buses.

The Bus Exchanger is responsible for interfacing between the CPU A/ D bus (CPU address/data bus) and multiple memory data buses.

The 73720/A uses a three bus architecture ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), with control signals suitable for simple transfer between the CPU bus (X) and either memory bus (Y or Z). The Bus Exchanger features independent read and write latches for each memory bus, thus supporting a variety of memory strategies. All three ports support byte enable to independently enable upper and lower bytes.

FUNCTIONAL BLOCK DIAGRAM

NOTE:

1. Logic equations for bus control:
$\mathrm{OEXU}=\mathrm{T} / \bar{R}^{*} \cdot \overline{\mathrm{OEU}}^{*} ; \mathrm{OEXL}=\mathrm{T} / \bar{R}^{\star} \cdot \overline{\mathrm{OEL}}^{*} ; \mathrm{OEYU}=\mathrm{T} / \overline{\mathrm{R}} . \mathrm{PATH} . \overline{\mathrm{OEU}}^{\star}$
OEYL $=T / \overline{\mathrm{R}} . \mathrm{PATH} . \overline{\mathrm{OEL}^{*}} ; \mathrm{OEZU}=\mathrm{T} / \overline{\mathrm{R}} . \mathrm{PATH}^{*} . \overline{\mathrm{OEU}}^{*} ; \mathrm{OEZL}=\mathrm{T} / \overline{\mathrm{R}} . \mathrm{PATH}^{*} . \overline{\mathrm{OEL}}{ }^{\star}$

PIN CONFIGURATION

PLCC
TOP VIEW

PQPF
TOP VIEW

PIN DESCRIPTION

Signal	I/O	Description
$X(0: 15)$	I/O	Bidirectional Data Port X. Usually connected to the CPU's A/D (Address/Data) bus.
$Y(0: 15)$	I/O	Bidirectional Data port Y. Connected to the even path or even bank of memory.
$\mathrm{Z}(0: 15)$	I/O	Bidirectional Data portZ. Connected to the odd path or odd bank of memory.
LEXY	1	Latch Enable input for Y-Write Latch. The Y-Write Latch is open when LEXY is HIGH. Data from the X-port (CPU) is latched on the HIGH-toLOW transition of LEXY.
LEXZ	1	Latch Enable inputforZ-Write Latch. The Z-Write Latch is open when LEXZis HIGH. Datafrom the X-port(CPU) is latched on the HIGH-to-LOW transition ofLEXZ.
LEYX	I	Latch Enable input for the Y-Read Latch. The Y-Read Latch is open when LEYX is HIGH. Data from the even path Y is latched on the HIGH-toLOW transition of LEYX.
LEZX	I	Latch Enable inputfortheZ-Read Latch. TheZ-Read Latch is open whenLEZX is HIGH. Datafromthe odd pathZislatched ontheHIGH-to-LOW transition ofLEZX.
PATH	I	Even/Odd Path Selection. Whenhigh, PATH enables datatransfer betweenthe X-Portand the Y-port (even path). WhenLOW, PATH enables datatransferbetweenthe X-PortandtheZ-Port(odd path).
$T \bar{R}$	I	Transmit/Receive Data. When high, Port X is an input Port and either Port Y or Z is an output Port. When LOW, Port X is an output Port while Ports Y \& Z are input Ports.
$\overline{\text { OEU }}$	1	Output Enable for Upper byte. When LOW, the Upper byte of data is transfered to the port specified by PATH in the direction specified by $T / \overline{\mathrm{R}}$.
$\overline{\mathrm{O} E L}$	1	Output Enable for Lower byte. When LOW, the Lower byte of data is transfered to the port specified by PATH in the direction specified by T / \bar{R}.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	$-0.5 \mathrm{to}+7$	-0.5 to +7	V
TA	OperatingTemperature	$0 \mathrm{to}+70$	$-55 \mathrm{to}+125$	${ }^{\circ} \mathrm{C}$
TBIAS	Temperature Under Bias	$-55 \mathrm{to}+125$	$-65 \mathrm{to}+135$	${ }^{\circ} \mathrm{C}$
TSTG	StorageTemperature	$-55 \mathrm{to}+125$	$-65 \mathrm{to}+125$	${ }^{\circ} \mathrm{C}$
PT	PowerDissipation	1	1	W
IOUT	DCOutputCurrent	50	50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	8	pF
CoUT	Output Capacitance	VOUT $=0 \mathrm{~V}$	12	pF

NOTE:

1. This parameter is guaranteed by device characterization, but is not production tested.

TRUTH TABLE

Path	$T / \overline{\mathbf{R}}$	$\overline{\mathbf{O E U}}$	$\overline{\mathbf{O E L}}$	Functionality
L	L	L	L	$\mathrm{Z} \rightarrow \mathrm{X}\left(16\right.$-bits)-Read $Z^{(1)}$
L	H	L	L	$\mathrm{X} \rightarrow \mathrm{Z}\left(16\right.$ bits)-Write $\mathrm{Z}^{(1)}$
H	L	L	L	$\mathrm{Y} \rightarrow \mathrm{X}\left(16\right.$-bits)-Read $\mathrm{Y}^{(2)}$
H	H	L	L	$\mathrm{X} \rightarrow \mathrm{Y}\left(16\right.$ bits)-Write $\mathrm{Y}^{(2)}$
X	X	H	H	All outputbuffers are disabled
X	X	H	L	Transfer of lower 8 bits $(0: 7)$ as per PATH \& T / \bar{R}
X	X	L	H	Transfer of upper 8 bits (8:15) as per PATH \& T / \bar{R}

NOTES:

1. For $Z \rightarrow X$ and $X \rightarrow Z$ transfers, Y-port output buffers are tristated.
2. For $Y \rightarrow X$ and $X \rightarrow Y$ transfers, Z-port output buffers are tristated.

ARCHITECTURE OVERVIEW

The Bus Exchanger is used to service both read and write operations between the CPU and the dualmemory busses. It includes independent data path elements for reads from and writes to each of the memory banks (Y and Z). Data flow control is managed by a simple set of control signals, analogous to a simple transceiver. In short, the Bus Exchanger allows bidirectional communication between ports X and Y and ports X and Z as in Figure 1.

The data path elements for each port include:
Read Latch: Each of the memory ports Y and Zcontains atransparentlatch to capture the contents of the memorybus. Eachlatchfeatures anindependent latchenable.

Write Latch: Each memory port Y and Z contains an independent latch to capture data from the CPU bus during writes. Each memory port write latch features an independent latch enable, allowing write data to be directed to a specific memory port without disrupting the other memory port.

Data Flow Control Signals

T / \bar{R} (Transmit/Receive). This signal controls the direction of datatransfer. A transmit is used for CPU writes, and a receive is used for read operations.
$\overline{\mathrm{OEU}}, \overline{\mathrm{OEL}}$ are the output enable control signals to select upper or lower bytes of all three ports.

Path: The path control signal is used to select between the even memory path Y andthe oddmemory pathZduring read or write operations. Path selects the memory portto be connected to theCPUbus (X-port), and is independent ofthe latchenablesignals. Thus, itis possible totransferdatafromonememory port to the CPU bus (X) while capturing data from the other memory port.

MEMORY READ OPERATIONS

Latch Mode

In this mode the read operation consists of two stages. During the first stage, the data present at the memory port is captured by the read latch for that memory port. During a subsequent stage, data is brought from a selected memory port to the CPU A/D port X by using output enable control.

The read operation is selected by driving T/ \bar{R} LOW. The read is managed using the Path input to select the memory port (Y orZ); the LEYX/ LEZX enable the data capture into the corresponding Read Latch.

In this way, memory interleaving can be performed. While data from one bank is output onto the CPU bus, data on the other bank is captured in the other memory port. In the next cycle, the Path input is changed, enabling the next data element onto the CPU bus, while the first bank is presented with a new data element.

Transparent Mode

The Bus Exchanger may be used as a data transceiver by leaving all latches open or transparent.

Memory Write Operations

Memory write operations also consist of two distinct stages. During one stage, the write data is captured into the selected memory port write latch. During a later stage, the memory is presented on the memory port bus

The write operation is selected by driving T//̄R HIGH. Writes are thus performedusing the Path inputto select the memory port(YorZ). The LEXY/ LEXZ capture data in the corresponding Write Latch.

Note that it is possible to utilize the bus exchanger's write resources as an additional write buffer, if desired; the CPU A/D bus can be freed up once the data has been captured by the Bus Exchanger.

APPLICATIONS

Use as Part of the R3051 Family ChipSet

Figure 2 shows the use of the Bus Exchanger in a typical R3051 based system.

In write transactions, the R3051 drives data on the CPU bus. The latch enables are held open through the entire write; thus, the bus exchanger is used like a transceiver. The appropriate LEXY/LEXZ signal is derived from ALE (Logic LOW-indicating that the processor is driving data) and the low order address bit. The rising edge of $\overline{W r}$ from the CPU, ends the write operation.

During read transactions, the memory system is responsible for generating the input control signals to cause data to be captured at the memory ports. The memory controller is also responsible for acknowledging back to the CPU that the data is available, and causing the appropriate path to be selected.

The R3721 DRAM controller for the R3051 family uses the transparent latches of the read ports. The R3721 directly controls the inputs of the bus exchanger, during both reads and writes. Consult the R3721 data sheet for more information on these control signals.

Use in a general 32-bit System

Figures 3 and 4 illustrate the use of the Bus Exchanger in a 32-bit microprocessor based system. Note the reduced pin count achieved with the Bus Exchanger.

Figure 2. Bus Exchanger Used in R3051 Family System

Figure 3. CPU System with Transparent Data Path (2-way Interleaving)

Figure 4. CPU System with Latched Data Path (2-way Interleaving)

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level			2	-	-	V
VIL	InputLOW Level			-	-	0.8	V
IIH	Input HIGH Current	$\mathrm{VcC}=$ Max., $\mathrm{V} \mathrm{VH}=2.7 \mathrm{~V}$	Inputs only	-	-	5	$\mu \mathrm{A}$
			I/O pins	-	-	5	
IIL	InputLOWCurrent	$\mathrm{VcC}=$ Max., VIL $=0.5 \mathrm{~V}$	Inputs only	-	-	-5	$\mu \mathrm{A}$
			I/O pins	-	-	-5	
VIK	Clamp Diode Voltage	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
Ios ${ }^{(3)}$	ShortCircuit Current	$V c c=M a x ., \mathrm{Vo}=\mathrm{GND}$		-60	-	-200	mA
VOH	Output HIGH Voltage	VCC $=$ Min., VIN $=$ VIH or VIL, $\mathrm{IOH}=-12 \mathrm{~mA}$		2.4	3.3	-	V
VoL	OutputLOW Voltage	VCC $=$ Min., VII $=$ VIH or VIL, $\mathrm{IOL}=12 \mathrm{~mA}$		-	0.3	0.5	V
VH	Input Hysteresis All inputs	$\mathrm{Vcc}=5 \mathrm{~V}$		-	200	-	mV
ICC	Quiescent Power Supply Current	$\begin{aligned} & \text { VCC = Max. } \\ & \text { VIN = GND or VcC } \end{aligned}$		-	0.2	1.5	mA
$\Delta \mathrm{lcc}$	Quiescent Power Supply Current	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(4)} \end{aligned}$		-	0.5	2	$\begin{aligned} & \mathrm{mA} / \\ & \text { Input } \end{aligned}$
ICCD	Dynamic Power Supply Current ${ }^{(5)}$	$\begin{array}{\|l} \hline \text { Vcc = Max. } \\ \text { VIN = Vcc or GND } \\ \text { OutputsDisabled } \\ \overline{O E}=\text { Vcc } \\ \text { One Input Toggling } \\ 50 \text { \% Duty Cycle } \\ \hline \end{array}$		-	0.25	0.5	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$
IC	Total Power Supply Current ${ }^{(6)}$	$\begin{aligned} & \text { VcC = Max. } \\ & \text { VIN = Vcc or GND } \\ & \text { OutputsDisabled } \\ & 50 \text { \% Duty Cycle } \\ & \overline{O E}=\text { Vcc } \\ & \text { fi }=10 \mathrm{MHz} \\ & \text { OneBit Toggling } \end{aligned}$		-	2.7	6.5	mA

NOTES:

1. For conditions shown as max. or min., use appropriate Vcc value.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Per TTL driven input ($\mathrm{VIN}=3.4 \mathrm{~V}$); all other inputs at Vcc or GND.
5. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
6. IC = IQUIESCENT + IINPUTS + IdYNAMIC
$\mathrm{IC}=\mathrm{Icc}+\Delta \mathrm{Icc} \mathrm{DHNT}+\mathrm{IcCD}(\mathrm{fcP} / 2+\mathrm{fiNi})$
Icc = Quiescent Current
$\Delta \mathrm{IcC}=$ Power Supply Current for a TTL High Input (VIN $=3.4 \mathrm{~V}$)
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{fi}_{\mathrm{i}}=$ Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi
All currents are in milliamps and all frequencies are in megaherz.

AC TEST CONDITIONS

InputPulse Levels	GND to 3.0V
InputRise/Fall Times	5 ns
InputTimingReferenceLevels	1.5 V
OutputReferenceLevels	1.5 V
OutputLoad	See Figure5

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=0^{\circ}\right.$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions ${ }^{(1)}$	73720A		73720		Units
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.	
$\begin{aligned} & \text { tPL } \\ & \text { tPH } \end{aligned}$	X to Y \& X to Z Latches enabled	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	2	6	2	7.5	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Y to X \& Z to X Latches enabled		2	6	2	7.5	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\begin{array}{ll}\text { Latch Enable to Y \& Z Port } & \text { LEXY to Y } \\ & \text { LEXZ to }\end{array}$		2	7	2	8.5	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\begin{array}{ll}\text { Latch Enable to X } & \text { LEYX to X } \\ & \text { LEZX to }\end{array}$		2	7	2	8.5	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Pathto X Port Propagation Delay		2	7	2	8.5	ns
$\begin{aligned} & \text { thz } \\ & \text { tız } \end{aligned}$	Y \& Z Port Disable Time (T//R, PATH, $\overline{\mathrm{OEU}}, \overline{\mathrm{OEL}})^{(3)}$		2	8.5	2	9.5	ns
$\begin{aligned} & \text { tzH } \\ & \text { tzl } \\ & \hline \end{aligned}$	Y \& Z Port Enable Time (T//̄, PATH, $\overline{\text { OEU }}, \overline{\text { OEL }})^{(3)}$		2	9.5	2	10.5	ns
$\begin{array}{\|l\|l\|} \hline \text { tHZ } \\ \text { tLZ } \end{array}$	X-Port DisableTime (T//̄, $\overline{\mathrm{OEU}}, \overline{\mathrm{OEL}})^{(3)}$		2	8.5	2	9.5	ns
$\begin{aligned} & \text { tzH } \\ & \text { tzL } \end{aligned}$	X-Port Enable Time (T//R, $\overline{\mathrm{OEU}}, \overline{\mathrm{OEL}})^{(3)}$		2	9.5	2	10.5	ns
tSU	Port toLE Set-uptime		2	-	2	-	ns
H	Port to LE Hold time		1.5	-	1.5	-	ns
tw	LE Pulse Width, HIGH or LOW ${ }^{(2)}$		3	-	4	-	ns

NOTES:

1. All timings are referenced to 1.5 V .
2. Minimum Delay Times, Enable Times, Disable Times and Pulse Width are guaranteed by design, but not tested.
3. Bus turnaround times are guaranteed by design, but not tested. (T/R enable/disable times).

TEST WAVEFORMS

TEST CIRCUITS FOR ALL OUTPUTS

SET-UP, HOLD, AND RELEASE TIMES

PROPAGATION DELAY

SWITCH POSITION

Test	Switch
DisableLOW EnableLOW	Closed
AllOtherTests	Open

DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

PULSE WIDTH

ENABLE AND DISABLE TIMES

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control DisableHIGH
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{ZO} \leq 50 \Omega$; tr $\leq 2.5 \mathrm{~ns} ; \mathrm{tR}$ $\leq 2.5 \mathrm{~ns}$

ORDERING INFORMATION

CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

