

25-BIT CONFIGURABLE REGISTERED BUFFER FOR DDR2

CONFIDENTIAL

IDT74SSTUBF32866B

Description

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VDD operation.

All clock and data inputs are compatible with the JEDEC standard for SSTL 18. The control inputs are LVCMOS. All outputs are 1.8-V CMOS drivers that have been optimized to drive the DDR-II DIMM load. IDT74SSTUBF32866B operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high, and $\overline{\text{CLK}}$ going low.

The C0 input controls the pinout configuration of the 1:2 pinout from A configuration (when low) to B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high).

A - Pair Configuration (C01 = 0, C11 = 1 and C02 = 0, C12 = 1)

Parity that arrives one cycle after the data input to which it applies is checked on the PAR IN of the first register. The second register produces to PPO and QERR signals. The QERR of the first register is left floating. The valid error information is latched on the QERR output of the second register. If an error occurs QERR is latched low for two cvcles or until RESET is low.

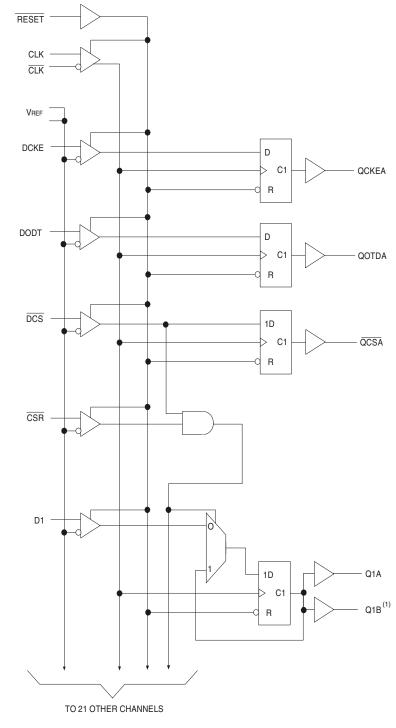
B - Single Configuration (C0 = 0, C1 = 0)

The device supports low-power standby operation. When the **RESET** input (**RESET**) is low, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when **RESET** is low all registers are reset, and all outputs are forced low. The LVCMOS RESET and Cn inputs must always be held at a valid logic high or low level. To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

In the DDR-II RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the outputs will be driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active guickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the

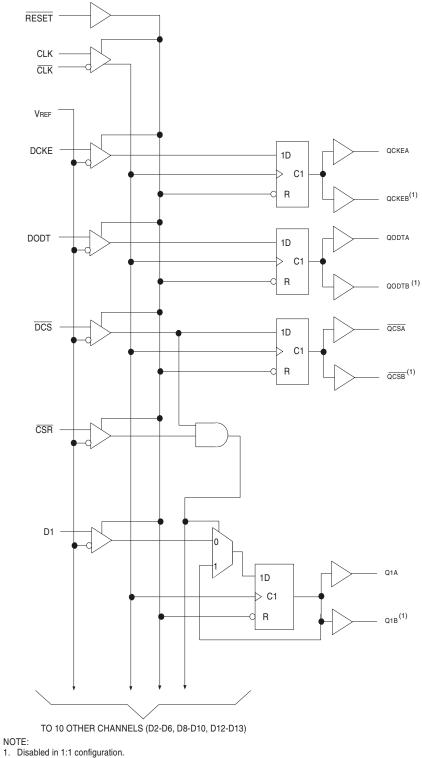
design of the IDT74SSTUBF32866B must ensure that the outputs will remain low, thus ensuring no glitches on the output.

The device monitors both $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ inputs and will gate the Qn outputs from changing states when both $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ inputs are high. If either $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ input is low, the Qn outputs will function normally. The RESET input has priority over the DCS and CSR control and will force the outputs low. If the $\overline{\text{DCS}}$ -control functionality is not desired, then the $\overline{\text{CSR}}$ input can be hardwired to ground, in which case, the setup-time requirement for \overline{DCS} would be the same as for the other D data inputs. Package options include 96-ball LFBGA (MO-205CC).


Features

- 25-bit 1:1 or 14-bit 1:2 registered buffer with parity check functionality
- Supports SSTL_18 JEDEC specification on data inputs and outputs
- Supports LVCMOS switching levels on C0, C1, and **RESET** inputs
- Low voltage operation: VDD = 1.7V to 1.9V
- Available in 96-ball LFBGA package

Applications


- DDR2 Memory Modules
- Provides complete DDR DIMM solution with ICS98ULPA877A or IDTCSPUA877A
- Ideal for DDB2 667 and 800

Functional Block Diagram for 1:1 Mode (Positive Logic)

NOTE: 1. Disabled in 1:1 configuration.

Functional Block Diagram for 1:2 Mode (Positive Logic)

Pin Configurations

14 BIT 1:2 REGISTERS

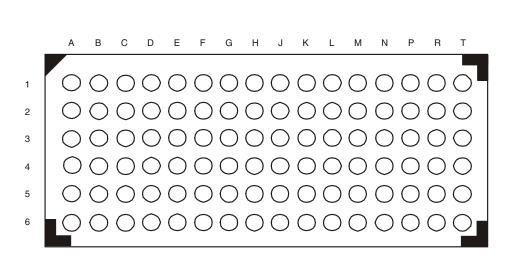
	1	2	3	4	5	6
А	DCKE	PPO	VREF	VDD	QCKEA	QCKEB
в	D2	NC	GND	GND	Q2A	Q2B
С	D3	NC	VDD	Vdd	Q3A	Q3B
D	DODT	QERR	GND	GND	QODTA	QODTB
Е	D5	NC	VDD	VDD	Q5A	Q5B
F	D6	NC	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	Vdd	Vdd	C1	C0
н	CLK	DCS	GND	GND	QCSA	QCSB
J	CLK	CSR	Vdd	Vdd	Zон	ZOL
к	D8	NC	GND	GND	Q8A	Q8B
L	D9	NC	VDD	Vdd	Q9A	Q9B
М	D10	NC	GND	GND	Q10A	Q10B
Ν	D11	NC	VDD	Vdd	Q11A	Q11B
Ρ	D12	NC	GND	GND	Q12A	Q12B
R	D13	NC	Vdd	Vdd	Q13A	Q13B
Т	D14	NC	VREF	VDD	Q14A	Q14B

		2	3	4	5	6
A	D1	PPO	VREF	VDD	Q1A	Q1B
E	D2	NC	GND	GND	Q2A	Q2B
C	D3	NC	Vdd	Vdd	Q3A	Q3B
C	D4	QERR	GND	GND	Q4A	Q4B
E	D5	NC	Vdd	Vdd	Q5A	Q5B
F	D6	NC	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	Vdd	Vdd	C1	C0
F	CLK	DCS	GND	GND	QCSA	QCSB
J	CLK	CSR	VDD	VDD	Zон	ZOL
k	D8	NC	GND	GND	Q8A	Q8B
L	D9	NC	Vdd	Vdd	Q9A	Q9B
Ν	1 D10	NC	GND	GND	Q10A	Q10B
Ν	DODT	NC	VDD	Vdd	QODTA	QODTB
F	D12	NC	GND	GND	Q12A	Q12B
F	D13	NC	Vdd	Vdd	Q13A	Q13B
т	DCKE	NC	VREF	Vdd	QCKEA	QCKEB

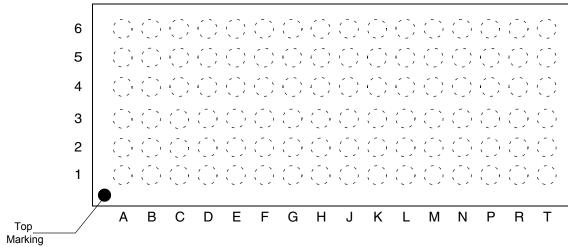
REGISTER A (C0 = 0, C1 = 1)

25 BIT 1:1 REGISTER

	1	2	3	4	5	6
А	DCKE	PPO	VREF	VDD	QCKE	NC
в	D2	D15	GND	GND	Q2	Q15
С	D3	D16	VDD	VDD	Q3	Q16
D	DODT	QERR	GND	GND	QODT	NC
Е	D5	D17	VDD	VDD	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	PAR_IN	RESET	VDD	VDD	C1	C0
н	CLK	DCS	GND	GND	QCS	NC
J	CLK	CSR	VDD	VDD	Zон	ZOL
к	D8	D19	GND	GND	Q8	Q19
L	D9	D20	VDD	VDD	Q9	Q20
М	D10	D21	GND	GND	Q10	Q21
Ν	D11	D22	VDD	VDD	Q11	Q22
Ρ	D12	D23	GND	GND	Q12	Q23
R	D13	D24	VDD	VDD	Q13	Q24
т	D14	D25	VREF	VDD	Q14	Q25


C0 = 0, C1 = 0

REGISTER B (C0 = 1, C1 = 1)


SIDE VIEW

5

BOTTOM VIEW

96 Ball LFBGA Package Attributes

Function Table

	Inputs ¹						Output	S
RESET	DCS	CSR	CLK	CLK	Dn, DODT, DCKE	Qn	QCS	QODT, QCKE
Н	L	L	\uparrow	\downarrow	L	L	L	L
Н	L	L	\uparrow	\rightarrow	Н	Н	L	Н
Н	L	L	L or H	L or H	Х	Q ₀ ²	Q ₀ ²	Q ₀ ²
Н	L	Н	\uparrow	\rightarrow	L	L	L	L
Н	L	Н	\uparrow	\rightarrow	Н	Н	L	Н
Н	L	Н	L or H	L or H	Х	Q ₀ ²	Q ₀ ²	Q ₀ ²
Н	Н	L	\uparrow	\rightarrow	L	L	Н	L
Н	Н	L	\uparrow	\rightarrow	Н	Н	Н	Н
Н	Н	L	L or H	L or H	Х	Q ₀ ²	Q ₀ ²	Q ₀ ²
Н	Н	Н	\uparrow	\rightarrow	L	Q ₀ ²	Н	L
Н	Н	Н	\uparrow	\rightarrow	Н	Q_0^2	Н	Н
н	Н	Н	L or H	L or H	Х	Q ₀ ²	Q ₀ ²	Q ₀ ²
L	X or Floating	X or Floating	X or Floating	X or Floating	X or Floating	L	L	L

1 H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

 \uparrow = LOW to HIGH

 \downarrow = HIGH to LOW

2 Output level before the indicated steady-state conditions were established.

	Inputs ¹					Out	puts	
RESET	DCS	CSR	CLK	CLK	Σ of Inputs = H (D1 - D25)	PAR_IN ²	PPO	QERR ³
Н	L	Х	\uparrow	\downarrow	Even	L	L	Н
Н	L	Х	\uparrow	\downarrow	Odd	L	Н	L
Н	L	Х	\uparrow	\downarrow	Even	Н	Н	L
Н	L	Х	\uparrow	\downarrow	Odd	Н	L	Н
Н	Х	L	\uparrow	\downarrow	Even	L	L	Н
Н	Х	L	\uparrow	\downarrow	Odd	L	Н	L
Н	Х	L	\uparrow	\downarrow	Even	Н	Н	L
Н	Х	L	\uparrow	\downarrow	Odd	Н	L	Н
Н	Н	Н	\uparrow	\downarrow	Х	Х	PPO ₀	QERR ₀
Н	Х	Х	L or H	L or H	Х	Х	PPO ₀	QERR ₀
L	X or Floating	X or Floating	X or Floating	X or Floating	X or Floating	X or Floating	L	Н

Parity and Standby Function Table

1 H = HIGH Voltage Level

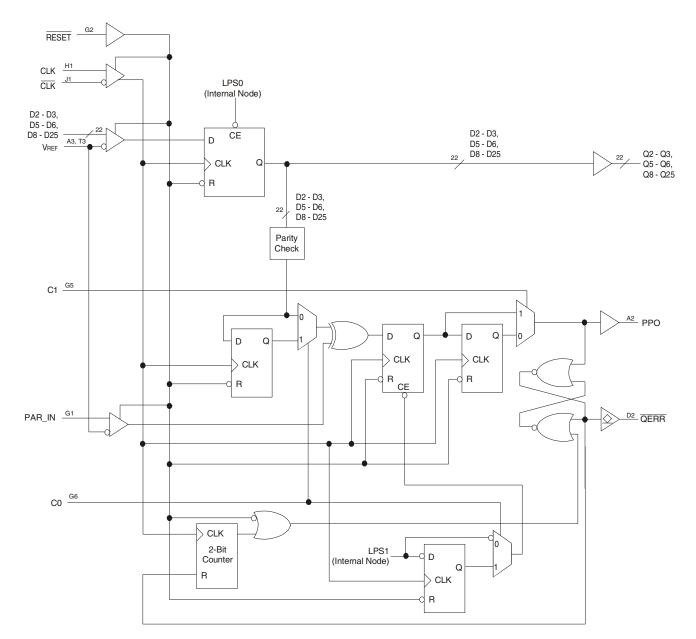
L = LOW Voltage Level

X = Don't Care

 \uparrow = LOW to HIGH

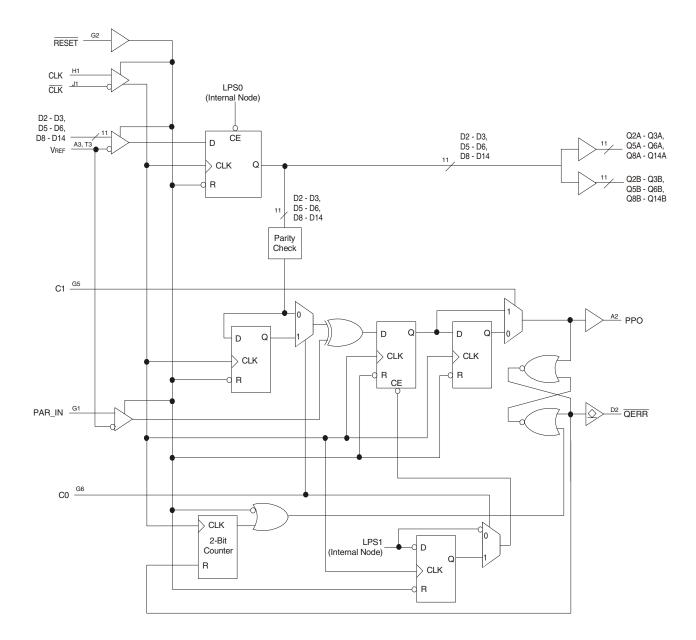
 \downarrow = HIGH to LOW

Data Inputs = D2, D3, D5, D6, D8 - D25 when C0 = 0 and C1 = 0.


Data Inputs = D2, D3, D5, D6, D8 - D14 when C0 = 0 and C1 = 1.

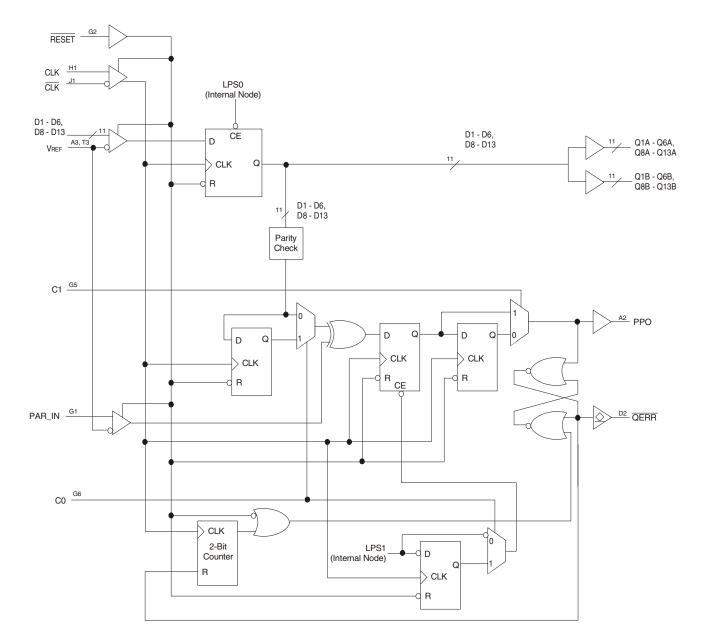
Data Inputs = D1 - D6, D8 - D10, D12, D13 when C0 = 1 and C1 = 1.

2 PAR_IN arrives one clock cycle after the data to which it applies when C0 = 0, and two clock cycles when C0 = 1.


3 This transition assumes QERR is HIGH at the crossing of CLK going HIGH and CLK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

Logic Diagram (1:1)

Parity Logic Diagram for 1:1 Register Configuration (Positive Logic); C0 = 0, C1 = 0


Logic Diagram (1:2)

Parity Logic Diagram for 1:2 Register - A Configuration (Positive Logic);

C0 = 0, C1 = 1

Logic Diagram (1:2)

Parity Logic Diagram for 1:2 Register - B Configuration (Positive Logic);

C0 = 1, C1 = 1

Absolute Maximum Ratings

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Item	Rating		
Supply Voltage, VDD		-0.5V to 2.5V	
Input Voltage Range, VI ¹		-0.5V to 2.5V	
Output Voltage Range, Vo ^{1,2}		-0.5V to VDD + 0.5V	
Input Clamp Current, IIK		±50mA	
Output Clamp Current, IOK		±50mA	
Continuous Output Clamp Current, Io		±50mA	
Continuous Current through each VDD o	or GND	±100mA	
Deckers Thermel Impedance (0ia) ³	0m/s Airflow	70.9°C/W	
Package Thermal Impedance $(\theta ja)^3$	1m/s Airflow	65°C/W	
Storage Temperature	1	-65 to +150°C	

1 The input and output negative voltage ratings may be exceeded if the ratings of the I/P and O/P clamp current are observed.

2 This current will flow only when the output is in the high state level VO > VDDQ.

3 The package thermal impedance is calculated in accordance with JESD 51.

Terminal Functions

Terminal Name	Electrical Characteristics	Description
GND	Ground Input	Ground
Vdd	1.8V nominal	Power Supply Voltage
VREF	0.9V nominal	Input Reference Clock
Zoh	Input	Reserved for future use
ZOL	Input	Reserved for future use
CLK	Differential Input	Positive Master Clock Input
CLK	Differential Input	Negative Master Clock Input
C0, C1	LVCMOS Input	Configuration Control Inputs
RESET	LVCMOS Input	Asynchronous Reset Input. Resets registers and disables VREF data and clock differential-input receivers.
CSR, DCS	SSTL_18 Input	Chip Select Inputs. Disables outputs D1 - D24 output switching when both inputs are HIGH.
D1 - D25	SSTL_18 Input	Data Input. Clocked in on the crossing of the rising edge of CLK and the falling edge of $\overline{\text{CLK}}$.
DODT	SSTL_18 Input	The outputs of this register bit will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls
DCKE	SSTL_18 Input	The outputs of this register bit will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls
Q1 - Q25	1.8V CMOS	Data Outputs that are suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls
QCS	1.8V CMOS	Data Output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls
QODT	1.8V CMOS	Data Output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls
QCKE	1.8V CMOS	Data Output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls
PPO	1.8V CMOS	Partial Parity Output. Indicates off parity of D1 - D25
PAR_IN	SSTL_18 Input	Parity Input arrives one cycle after corresponding data input
QERR	Open Drain Output	Output Error bit, generated one cycle after the corresponding data output

Operating Characteristics

The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation. The differential inputs must not be floating unless RESET is LOW.

Symbol	Parameter		Min.	Тур.	Max.	Units
Vddq	I/O Supply Voltage	I/O Supply Voltage			1.9	V
VREF	Reference Voltage		0.49 * VDD	0.5 * Vdd	0.51 * Vdd	V
Vtt	Termination Voltage		VREF - 0.04	VREF	VREF + 0.04	V
VI	Input Voltage		0		Vdd	V
VIH	AC High-Level Input Voltage	Data, CSR,	VREF + 0.25			
VIL	AC Low-Level Input Voltage	and			VREF - 0.25	V
VIH	DC High-Level Input Voltage	PAR_IN	VREF + 0.125			V
VIL	DC Low-Level Input Voltage	inputs			VREF - 0.125	
VIH	High-Level Input Voltage	RESET,	0.65 * VDDQ			V
VIL	Low-Level Input Voltage	C0, C1			0.35 * VDDQ	v
VICR	Common Mode Input Range	CLK, CLK	0.675		1.125	V
Vid	Differential Input Voltage	ULK, ULK	600			mV
ЮН	High-Level Output Current				-8	A
IOL	Low-Level Output Current				8	mA
IERROL	QERR LOW Level Output Current		25			mA
ТА	Operating Free-Air Temperatu	ure	0		+70	°C

DC Electrical Characteristics Over Operating Range

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = 0° C to $+70^{\circ}$ C, VDD = 1.7V to 1.9V.

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
Vік		lı = -18mA				-1.2	V
Vон	Output HIGH Voltage	Юн = -6mA		1.2			V
Vol	Output LOW Voltage	IOL = 6mA				0.5	V
VERROL	QERR Output LOW Voltage	IERROL = 25mA, VDD = 1.7V				0.5	V
lı∟	All Inputs	VI = VDD or GND; VDD = 1.9V		-5		+5	μA
	Static Standby	$IO = 0$, $VDD = 1.9V$, $\overline{RESET} = GN$	D			100	μA
ldd	Otatia Orașustia a	IO = 0, VDD = 1.9V, $\overline{\text{RESET}}$ = VDD VIH(AC) or VIL(AC), CLK = $\overline{\text{CLK}}$ = or VIL(AC)				10	
	Static Operating		$D = 0$, VDD = 1.9V, $\overline{\text{RESET}} = \text{VDD}$, $\overline{\text{VI}} = V$ IH(AC) or VIL(AC), $\overline{\text{CLK}} = V$ IH(AC), $\overline{\text{CLK}} =$				mA
	Dynamic Operating (clock only)	IO = 0, VDD = 1.8V, $\overline{\text{RESET}}$ = VDI VIH(AC) or VIL(AC), CLK and $\overline{\text{CLK}}$ switching 50% duty cycle			210		μA/Clock MHz
Iddd		IO = 0, VDD = 1.8V, $\overline{\text{RESET}}$ = VDD, VI = VIH(AC) or VIL(AC),	1:1 mode		65		μA/Clock
	Dynamic Operating (per each data input)				120		MHz/ Data Input
	Data Inputs	VI = VREF ± 350mV	•	2		3	
CIN	CLK and CLK	VICR = 1.25V, VIPP = 360mV		2		3	pF
	RESET	VI = VDD or GND			5		

Timing Requirements Over Recommended Operating Free-Air Temperature Range

			VDD = 1.8	8V ± 0.1V	
Symbol	Parame	ter	Min.	Max.	Units
fclock	Clock Fr	equency		410	MHz
tw	Pulse Du	ration, CLK, CLK HIGH or LOW	1		ns
tACT ¹	Different	ial Inputs Active Time		10	ns
tinact ²	Different	ial Inputs Inactive Time		15	ns
		$\overline{\text{DCS}}$ before CLK [↑] , $\overline{\text{CLK}}\downarrow$, $\overline{\text{CSR}}$ HIGH; $\overline{\text{CSR}}$ before CLK [↑] , $\overline{\text{CLK}}\downarrow$, $\overline{\text{DCS}}$ HIGH	0.6		
tsu	Setup	$\overline{\text{DCS}}$ before CLK [↑] , $\overline{\text{CLK}}\downarrow$, $\overline{\text{CSR}}$ LOW	0.5		ns
	Time	DODT, DOCKE, and data before $CLK\uparrow$, $\overline{CLK}\downarrow$	0.5		
		PAR_IN before CLK↑, CLK↓	0.5		
÷.,	Hold	$\overline{\text{DCS}}$, DODT, DCKE, and data after CLK [↑] , $\overline{\text{CLK}}\downarrow$	0.4		20
tH	Time	PAR_IN after CLK [↑] , \overline{CLK}	0.4		ns

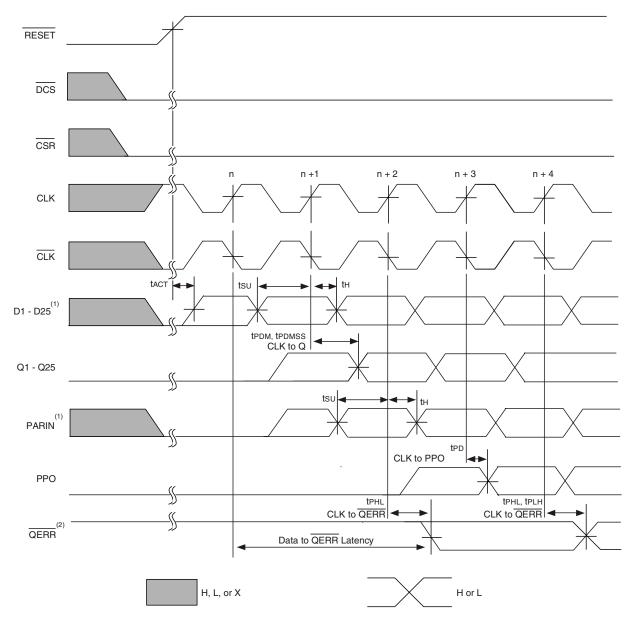
1 VREF must be held at a valid input voltage level and data inputs must be held at valid logic levels for a minimum time of tACT(max) after RESET is taken HIGH.

2 VREF, data, and clock inputs must be held at a valid input voltage levels (not floating) for a minimum time of tINACT(max) after RESET is taken LOW.

Switching Characteristics Over Recommended Free Air Operating Range (unless otherwise noted)

		VDD = 1.		
Symbol	Parameter	Min.	Max.	Units
fMAX	Max Input Clock Frequency	410		MHz
tPDM ¹	Propagation Delay, single bit switching, CLK [↑] to $\overline{\text{CLK}}\downarrow$ to Qn	1.1	1.5	ns
tpdq ²	Propagation Delay, single-bit switching, CLK \uparrow / $\overline{\text{CLK}}\downarrow$ to Qn	0.4	0.8	ns
tPDMSS ¹	Propagation Delay, simultaneous switching, CLK \uparrow to $\overline{\text{CLK}} \downarrow$ to Qn		1.6	ns
tPD	Propagation Delay, CLK and CLK to PPO	0.5	1.7	ns
tLH	LOW to HIGH Propagation Delay, CLK [↑] to $\overline{\text{CLK}}\downarrow$ to $\overline{\text{QERR}}$	1.2	3	ns
tHL	HIGH to LOW Propagation Delay, CLK \uparrow to $\overline{\text{CLK}}\downarrow$ to $\overline{\text{QERR}}$	1	2.4	ns
tPHL	HIGH to LOW Propagation Delay, $\overline{RESET}\downarrow$ to PPO to $Qn\downarrow$		3	ns
tPLH	LOW to HIGH Propagation Delay, $\overline{RESET}\downarrow$ to $\overline{QERR}\uparrow$		3	ns

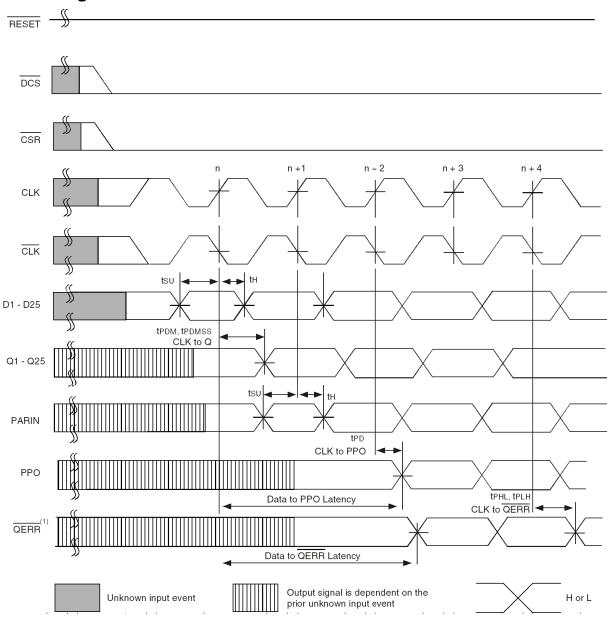
1 Design target as per JEDEC specifications.


2 Production Test. (See Production Test Circuit in TEST CIRCUIT AND WAVEFORM section.)

Output Buffer Characteristics

Output edge rates over recommended operating free-air temperature range

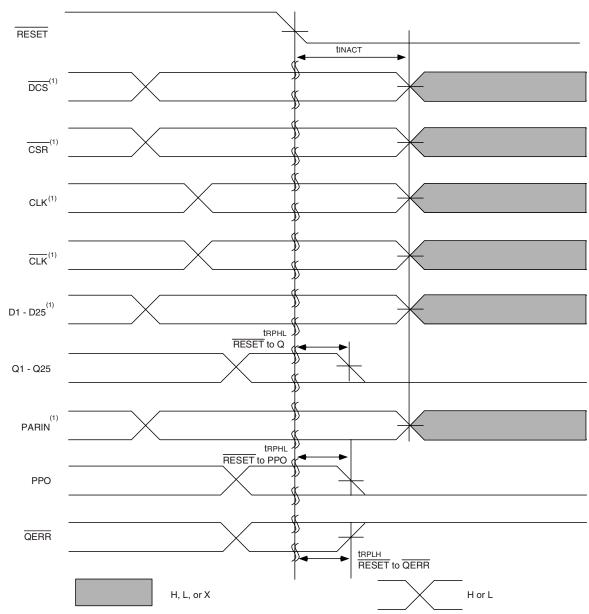
	VDD = 1.8		
Parameter	Min.	Max.	Units
dV/dt_r	1	4	V/ns
dV/dt_f	1	4	V/ns
dV/dt_{Δ}^{1}		1	V/ns


1 Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate).

Timing Diagram for SSTUBF32866B Used as a Single Device; C0 = 0, C1 = 0, RESET Switches from L to H

NOTES:

After RESET is switched from LOW to HIGH, all data and PAR_IN inputs signals must be set and held low for a minimum time of tACTMAX, to avoid false error.
If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+2 clock pulse, and it will be valid on the n+3 clock pulse.

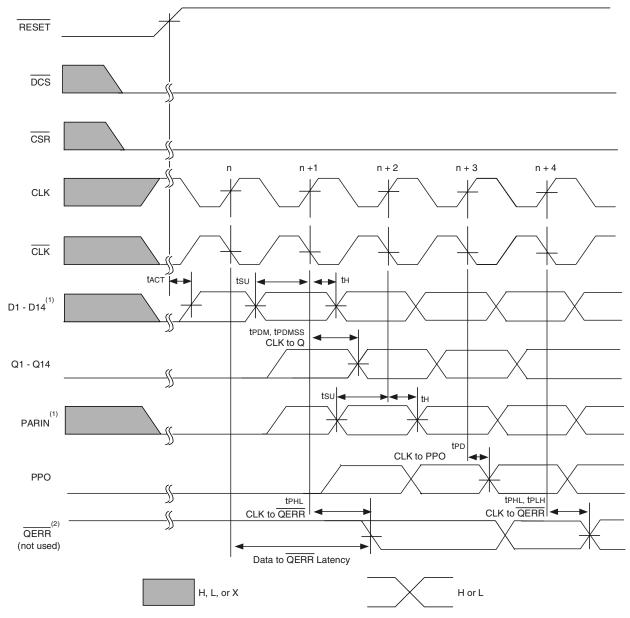

Timing Diagram for the First SSTUBF32866B Used as a Single Device; C0 = 0, C1 = 0, RESET Held HIGH

NOTE:

1. If the data is clocked in on the n clock pulse, the $\overline{\text{QERR}}$ output signal will be generated on the n+2 clock pulse, and it will be valid on the n+3 clock pulse. If an error occurs and the $\overline{\text{QERR}}$ output is driven low, it stays latched low for a minimum of two clock cycles or until $\overline{\text{RESET}}$ is driven low.

19

Register Timing

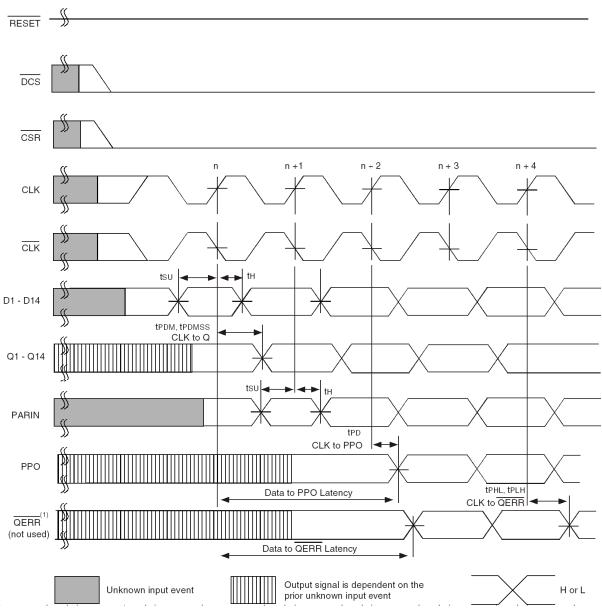

Timing Diagram for SSTUBF32866B Used as a Single Device; C0 = 0, C1 = 0, RESET Switches from H to L

NOTE:

1.After RESET is switched from HIGH to LOW, all data and clock inputs signals must be set and held at valid logic levels (not floating) for a minimum time of tINACTMAX.

IDT74SSTUBF32866B

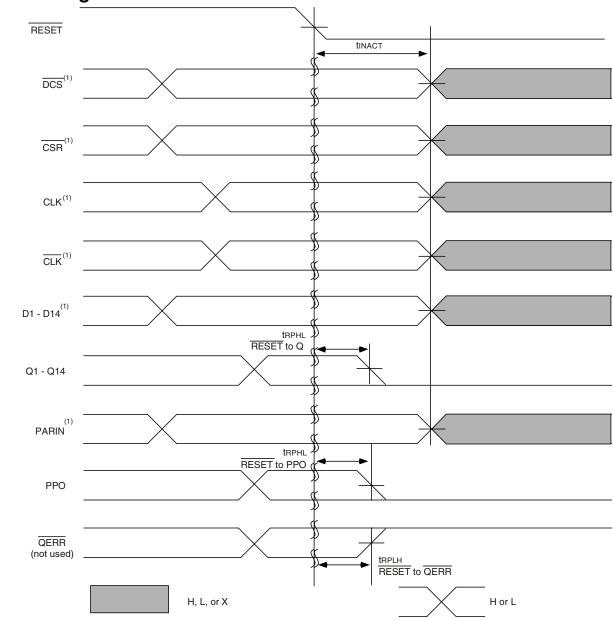
7067/9



Timing Diagram for the First SSTUBF32866B (1:2 Register-A Configuration) Device Used in a Pair; C0 = 0, C1 = 1, RESET Switches from Lto H

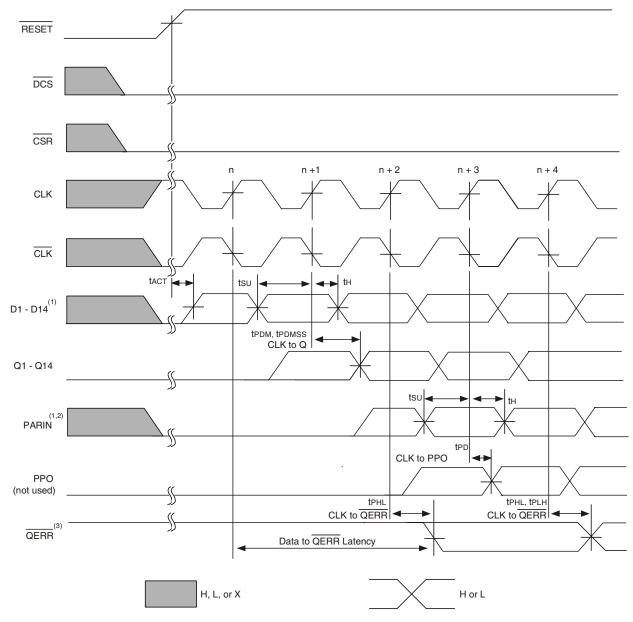
NOTES:

1.After RESET is switched from LOW to HIGH, all data and PAR_IN inputs signals must be set and held low for a minimum time of tACTMAX, to avoid false error.


2.If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+1 clock pulse, and it will be valid on the n+2 clock pulse.

Timing Diagram for the First SSTUBF32866B (1:2 Register-A Configuration) Device Used in a Pair; C0 = 0, C1 = 1, RESET Held HIGH

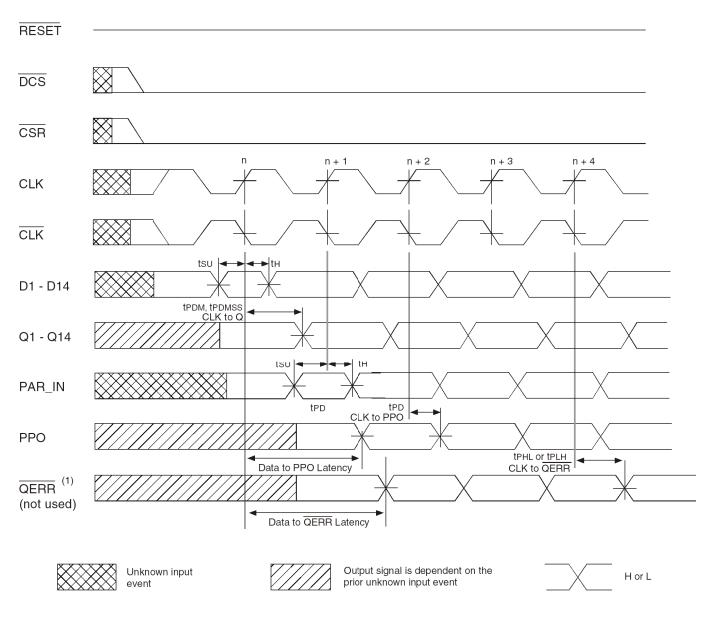
NOTE:


1.If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+1 clock pulse, and it will be valid on the n+2 clock pulse. If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low.

Timing Diagram for the First SSTUBF32866B (1:2 Register-A Configuration) Device Used in a Pair; C0 = 1, C1 = 1; RESET Switches from H to L

NOTE:

1.After RESET is switched from HIGH to LOW, all data and clock inputs signals must be set and held at valid logic levels (not floating) for a minimum time of tINACTMAX.

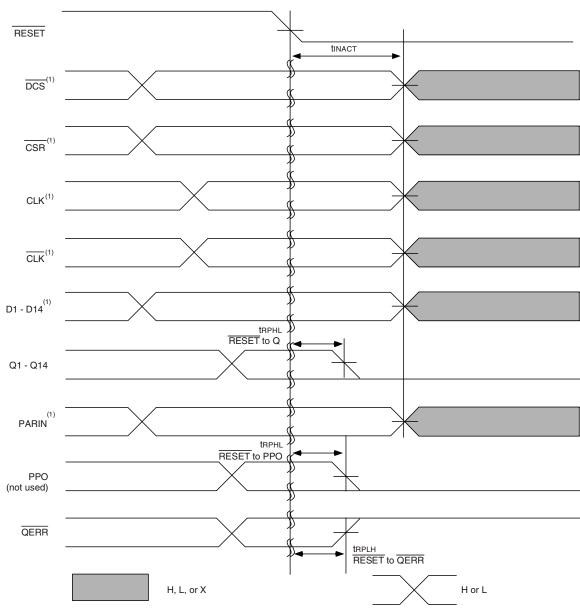

Timing Diagram for the Second SSTUBF32866B (1:2 Register-B Configuration) Device Used in a Pair; C0 = 1, C1 = 1, RESET Switches from L to H

NOTES:

1.After RESET is switched from LOW to HIGH, all data and PAR_IN inputs signals must be set and held low for a minimum time of tactmax, to avoid false error.

2.PAR_IN is driven from PPO of the first SSTUAF32866 device.

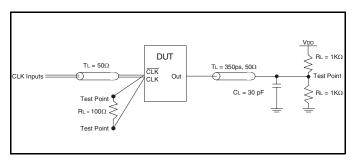
3.If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+2 clock pulse, and it will be valid on the n+3 clock pulse.



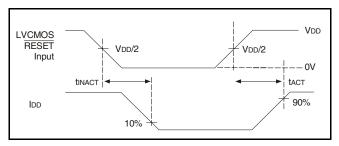
Timing Diagram for the Second SSTUBF32866B (1:2 Register-B Configuration) Device Used in a Pair; C0 = 1, C1 = 1, RESET Held HIGH

NOTES:

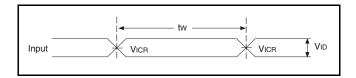
1.If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+1 clock pulse, and it will be valid on the n+2 clock pulse. If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low. 2.PAR_IN is driven from PPO of the first SSTUAF32866 device.

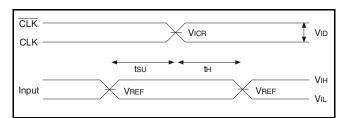

Timing Diagram for the First SSTUBF32866B (1:2 Register-A Configuration) Device Used in a Pair; C0 = 1, C1 = 1; RESET Switches from H to L

NOTE:

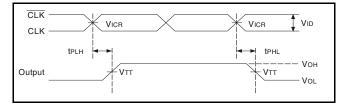

1.After RESET is switched from HIGH to LOW, all data and clock inputs signals must be set and held at valid logic levels (not floating) for a minimum time of tINACTMAX.

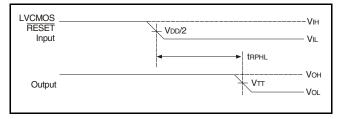
COMMERCIAL TEMPERATURE GRADE


Test Circuits and Waveforms (VDD = 1.8V ± 0.1V)


Simulation Load Circuit


Voltage and Current Waveforms Inputs Active and Inactive Times


Voltage Waveforms - Pulse Duration


Voltage Waveforms - Setup and Hold Times

Production-Test Load Circuit

Voltage Waveforms - Propagation Delay Times

Voltage Waveforms - Propagation Delay Times

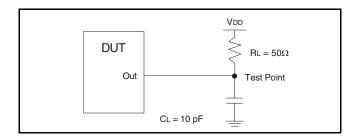
NOTES:

- 1. CL includes probe and jig capacitance.
- 2. IDD tested with clock and data inputs held at VDD or GND, and Io = 0mA $\,$

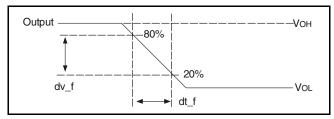
3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Zo = 50 Ω , input slew rate = 1 V/ns ±20% (unless otherwise specified).

4. The outputs are measured one at a time with one transition per measurement.

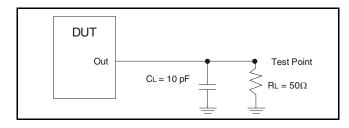
5. VTT = VREF = VDD/2


6. VIH = VREF + 250mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS input.

7. VIL = VREF - 250mV (AC voltage levels) for differential inputs.


VIL = GND for LVCMOS input.

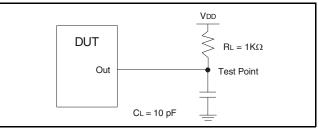
- 8. VID = 600mV.
- 9. TPLH and TPHL are the same as TPDM.


Test Circuits and Waveforms (VDD = 1.8V ± 0.1V)

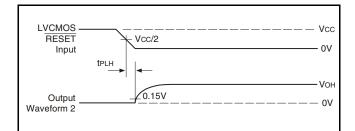

Load Circuit: High-to-Low Slew-Rate Adjustment

Voltage Waveforms: High-to-Low Slew-Rate Adjustment

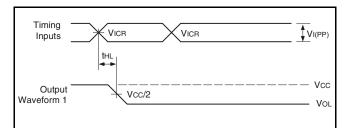
Load Circuit: Low-to-High Slew-Rate Adjustment

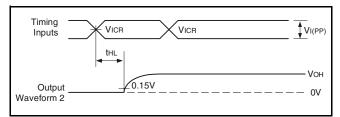


Voltage Waveforms: Low-to-High Slew-Rate Adjustment

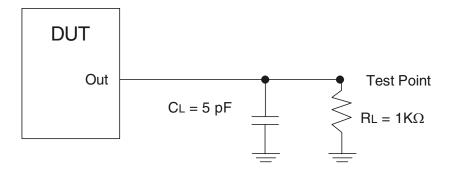

NOTES:

1. CL includes probe and jig capacitance.

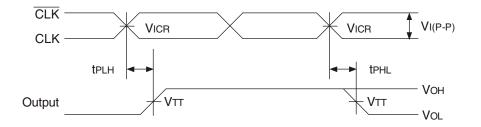

2. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Zo = 50 Ω , input slew rate = 1 V/ns ±20% (unless otherwise specified).


Load Circuit: Error Output Measurements

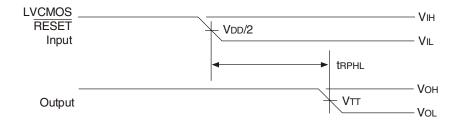
Voltage Waveforms: Open Drain Output Low-to-High Transition Time (with respect to RESET input)



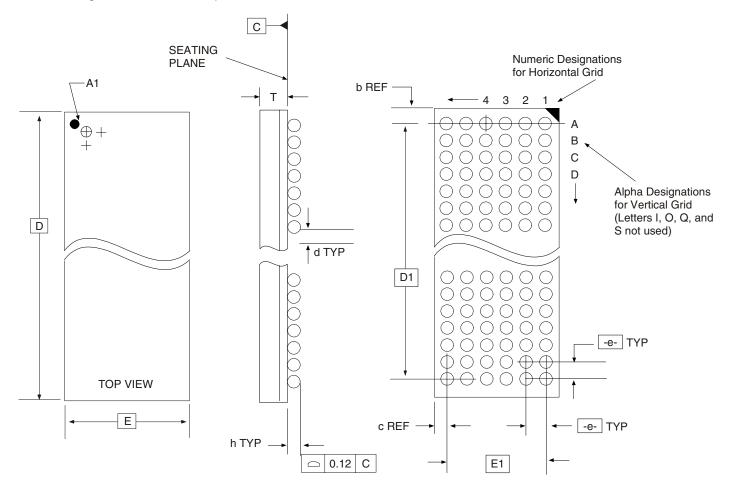
Voltage Waveforms: Open Drain Output High-to-Low Transition Time (with respect to clock inputs)



Voltage Waveforms: Open Drain Output Low-to-High Transition Time (with respect to clock inputs)


Test Circuits and Waveforms (VDD = 1.8V ± 0.1V)

Load Circuit: Partial-Parity-Out Load Circuit

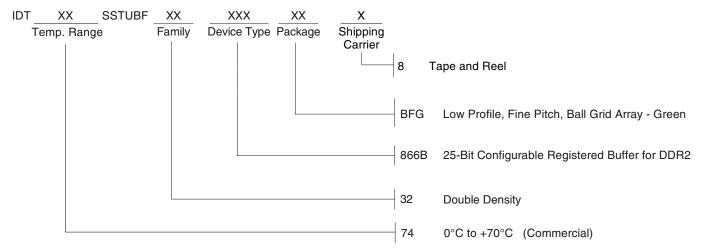

Load Circuit: Partial-Parity-Out Voltage Waveforms Propagation Delay Times (with respect to clock inputs)

Load Circuit: Partial-Parity-Out Voltage Waveforms Propagation Delay Times (with respect to RESET input)

Package Outline and Package Dimensions - BGA

Package dimensions are kept current with JEDEC Publication No. 95

ALL DIMENSIONS IN MILLIMETERS


				BALL GRID		Max.			REF. DIMENSIONS	
D	E	Т	е	HORIZ	VERT	TOTAL	d	h	b	с
		Min/Max					Min/Max	Min/Max		
13.50 Bsc	5.50 Bsc	1.20/1.40	0.80 Bsc	6	16	96	0.40/0.50	0.25/0.41	0.75	0.75

Note: Ball grid total indicates maximum ball count for package. Lesser quantity may be used.

* Source Ref.: JEDEC Publication 95, MO-205

10-0055C

Ordering Information

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA