
								R	EVISIO	SNC										
LTR					D	ESCR	IPTIO	N					DA	ΓΕ (YF	R-MO-	DA)		APPR	OVED)
Е	61772 15KX 08YX vendo devic as a s	2 for d , and , 09Y) or simi es 09 source er 658	evices 16KX. (, 10Y) lar par and 11 of sup 396 to	08KX Remo X, 11Y In numl 1. Ado oply fo the dra	, 09K) ove ve X, 12\ ber for I vender device wing	K, 10K ndor C YX, 13 vendo or CAC ces 04 as a s	X, 11h CAGE YX, 1t or CAC GE nu JX an ource	(X, 12 numbe 5YX, a GE num mber to d 05J) of sup	r CAG KX, 13 er 617 Ind 16 mber 6 50088 C. Add oply for nges th	KX, 1472 from YX. Constitution of the feature of th	4KX, in devi hange for drawin or CAG es 15	to ng GE	92-0	4-27			M. A	. Frye		
F									parts upplier				00-0	9-27			Rayı	mond	Monnii	n
THE ORIGI CURRENT					IS DR/	4WIN0	G HAS	S BEE!	N REP	LACE	D									
CURRENT REV					IS DR/	AWING	G HAS	S BEE!	N REP	LACE	D									
CURRENT REV SHEET					IS DRA	AWING	G HAS	S BEE!	N REP	LACE	D									
CURRENT REV SHEET REV	CAGE	CODE	6726	8					N REP	LACE	D									
CURRENT	F 15	F	F 6726	F	F 19	F	F	F	N REP	LACE	D	F	F	F	F	F	F	F	F	F

SHEET 15 16 17	18 19 20	21	22												
REV STATUS	REV	F	F	F	F	F	F	F	F	F	F	F	F	F	F
OF SHEETS	SHEET	SHEET 1 2 3		3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A	James E. Jamison				DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216										
STANDARD MICROCIRCUIT DRAWING	CHECKED BY Ray Monnin							http)://ww	w.ds	cc.dla	a.mil			
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS	APPROVED BY Don Cool				MICROCIRCUITS, MEMORY, DIGITAL, CMOS, 16K (2048 X 8) BIT STATIC RAM, MONOLITHIC SILICON										
AND AGENCIES OF THE DEPARTMENT OF DEFENSE	DRAWING APPR 84 – 0			E											
AMSC N/A	REVISION LEVEL F			SI	ZE A	_	GE CC 1 493 3				840	036			
		\$			SHE	ET		1	OF	22					

- 1. SCOPE
- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number 1/	Supply voltage variation	Address access time
01		10%	200 ns (synchronous)
02		10%	90 ns
03		10%	90 ns
04		10%	150 ns
05		10%	200 ns
06		10%	70 ns
07		10%	120 ns (synchronous)
08		10%	45 ns
09		10%	45 ns
10		10%	55 ns
11		10%	55 ns
12		10%	70 ns
13		10%	70 ns
14		10%	35 ns
15		10%	120 ns
16		10%	90 ns

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
J K L X	CDIP2-T24 or GDIP1-T24 CDFP3-F24 or GDFP2-F24 CDIP4-T24 or GDIP3-T24 CQCC1-N32	24 24 24 32	dual-in-line package flat package dual-in-line package rectangular chip carrier package
Y	See Figure 1	24	rectangular chip carrier package
3	CQCC1-N32 CQCC1-N28	32 28	rectangular chip carrier package with castellated instead of chamfered corners and extended pad metallization at terminal number 1. square chip carrier package

1.2.3 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535, appendix A.

^{1/} Generic numbers are listed on the standardized military drawing source approval bulletin at the end of this Standard Microcircuit Drawing and will also be listed in MIL-HDBK-103.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 2

1.3 Absolute maximum ratings.

Supply voltage range (VCC) ------0.3 V dc to +7.0 V dc 2/

Temperature under bias-----55°C to +125°C

Storage temperature range------55°C to +150°C

Maximum power dissipation (PD)-----1.0 W

Lead temperature (soldering, 5 seconds) -----+275°C

Thermal resistance, junction-to-case (θJC): -----See MIL-STD-1835

Case Y ------ 30°C/W Junction temperature (TJ) -----+150°C <u>3</u>/

All input or output voltages with respect to ground----0.3 V dc to VCC +0.3 V dc 4/

1.4 Recommended operating conditions.

Case operating temperature range (TC) ------------------------55°C to +125°C

Input low voltage (VIL):

Input high voltage (VIH):

Device types 02 through 06, 08 through 16 ----- 2.2 V dc to VCC +0.3 V dc $\frac{2}{2}$

Supply voltage range (VCC): ------ 4.5 V dc to 5.5 V dc 2/

Minimum chip enable low time ------40 ns 5/

Minimum chip enable high time ------ 40 ns $\frac{1}{5}$

Maximum input rise time ------ 40 ns

Maximum input fall time ------40 ns

2. APPLICABLE DOCUMENTS

2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.
MIL-STD-973 - Configuration Management.
MIL-STD-1835 - Interface Standard For Microcircuit Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's).

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

- 2/ All voltages referenced to V_{SS}.
- 3/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.
- 4/ Negative undershoots to a minimum of -3.0 V are allowed with a maximum of 20 ns pulse width.
- 5/ For device types 02, 03, and 06 only.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		F	3

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or alternative approved by the Qualifying Activity.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein and figure 1.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.
 - 3.2.3 Truth table(s). The truth table(s) shall be as specified on figure 3.
 - 3.2.4 Logic diagram(s). The logic diagram(s) shall be as specified on figure 4.
- 3.2.5 <u>Die overcoat</u>. Polyimide and silicone coatings are allowable as an overcoat on the die for alpha particle protection only. Each coated microcircuit inspection lot (see inspection lot as defined in MIL-PRF-38535) shall be subjected to and pass the internal moisture content test at 5000 ppm (see method 1018 of MIL-STD-883). The frequency of the internal water vapor testing shall not be decreased unless approved by the preparing activity for class M. The TRB will ascertain the requirements as provided by MIL-PRF-38535 for classes Q and V. Samples may be pulled any time after seal.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full (case or ambient) operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103 (see 6.6 herein). For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.
- 3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, Appendix A. For Class Q product built in accordance with A.3.2.2 of MIL-PRF-38535 or other alternative approved by the Qualifying Activity, the "QD" certification mark shall be used in place of the "QML" or "Q" certification mark.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 Notification of change. Notification of change to DSCC-VA shall be required in accordance with MIL-PRF-38535, appendix A.
- 3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 4

Test	Symbol	Test conditions $\underline{1}/\underline{2}/$ VSS = 0 V, 4.5 V \leq V _{CC} \leq 5.5 V -55°C \leq T _C \leq +125°C	Group A subgroups	Device type	Lim	nits	Uni
		unless otherwise specified			Min	Max	
High-level output voltage	VOH	I _{OH} = -1 mA	1,2,3	01-07, 15,16	2.4		V
		I _{OH} = -4 mA	1,2,3	08-14			
Low-level output voltage	V _{OL}	I _{OL} = +3.2 mA	4.0.0	01,07		0.4	V
		I _{OL} = +4.0 mA	1,2,3	02,03, 06,15		0.1	·
		I _{OL} = +2.0 mA		04,05, 16			
High impodones sutput		I _{OL} = +8.0 mA		08-14			
High impedance output leakage current	l _{IOLZ}	OE = V _{IH}	1,2,3	01,02, 06,07	-1.0	1.0	μA
	liohz			04,05, 09,11, 13,14, 15,16	-10.0	10.0	
				03,08, 10,12	-5.0	5.0	
Input leakage current	IIL	V _{IN} = GND	1,2,3	01,02, 06,07	-1.0	1.0	μA
	Iн	V _{IN} = 5.5 V		04,05, 15	-2.0	2.0	
				03,08, 10,12, 16	-5.0	5.0	
				09,11, 13,14	-10.0	10.0	
Operating supply current	ICC1	V _{CC} = 5.5 V, f = fmax <u>3</u> /	1,2,3	01,07		10	m/
		CE = V _{IL} , outputs open		04,05, 13,15, 16		90	
		All other inputs at V _{IL}		2			1

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

SIZE A		84036
	REVISION LEVEL F	SHEET 5

08,10, 12

09,11

14

85

120

150

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Test conditions $\underline{1}/\underline{2}/$ VSS = 0 V, 4.5 V \leq V _{CC} \leq 5.5 V	Group A subgroups	Device type	e Limits		Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified			Min	Max	
Standby supply current	ICC2	$\overline{CE} = \overline{WE} = V_{IH}, I_O = 0$	1,2,3	02,03, 06		8	mA
				04,05	10		
				10,12, 15,16		15	
				09,11, 13,14		25	
Standby supply current	I _{CC3}	CE = V _{CC} -0.3 V, I _O = 0	1,2,3	06,07		50	
		02 = 700 0.0 1, 10 = 0		01,02	100	μΑ	
				04,05		250	_
				03,08, 10,12, 15,16	3,08, 0,12, 900		
				13		10	mA
				09,11, 14		20	
				01,02		50	
Data retention current	I _{CC4}	$\overline{\text{CE}} = V_{\text{CC}}, V_{\text{CC}} = 2.0 \text{ V}$	1,2,3	04,05		100	μΑ
				08,10, 12,15, 16	08,10, 12,15, 200	200	
				03		300	
				06,07		25	
Input capacitance 4/	Cı	V _I = V _{CC} or GND f = 1 MHz See 4.3.1c	4	All		10	pF
Output capacitance 4/	Co	V _I = V _{CC} or GND f = 1 MHz See 4.3.1c	4	All		12	pF

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

SIZE A		84036
	REVISION LEVEL F	SHEET 6

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Test conditions $\underline{1}/\underline{2}/$ VSS = 0 V, 4.5 V \leq V _{CC} \leq 5.5 V -55° C \leq T _C \leq +125 $^{\circ}$ C unless otherwise specified	Group A subgroups	Device type	Lir Min	nits Max	Unit
Read/write cycle				01	280	IVIAX	
time	4	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,16	90		ns
	t _{AVAV}		, 12, 11	04	150		1.0
				05	200		
				15	120		
				07	170		
				08,09	45		
				10,11	55		
				06,12,13	70		
				14	35		
Address access time				01		200	
	t _{AVQV}	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,16		90	ns
	IAVQV		, ,	04		150	
				05		200	
				07,15		120	
				08,09		45	
				10,11		55	
				06,12,13		70	
				14		35	
Output hold after				15,16	0		
address change 4/	tAVQX	<u>5</u> / <u>6</u> /	9, 10, 11	04,05	10		ns
	711007			02,03,06, 07,08-14	5		
Output enable to output				01,07	10		
active 4/	tolqx	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,06, 08,12,13	5		ns
				04,05,09, 11,14,15,	0		
				16			
Output enable access				01,07,15		80	
time	tolqv	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,16		65	ns
				04		60	1
				05		70	1
				08,09		25	1
				10,11		40	1
				06,12,13		50	
				14		20]

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 7

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Test conditions $\underline{1}/\underline{2}/$ VSS = 0 V, 4.5 V \leq V _{CC} \leq 5.5 V -55°C \leq T _C \leq +125°C		Limits		Unit	
		unless otherwise specified			Min	Max	
Chip enable to output active 4/				01,07	10		_
active <u>∓</u> /	tELQX	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,06, 08-14	5		ns
				04,05,15,	0		=
				16			
Chip enable access				01		200	
time	tELQV	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,16		90	ns
				04		150	
				05		200	
				07,15		120	
				08,09		45	
				10,11		55	
				06,12,13		70	
				14		35	
Chip enable to output in				01		80	
high Z <u>4</u> /	tEHQZ	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,07, 15,16		50	ns
				04,05		60	
				08,09		25	
				10,11		30	
				06,12,13		35	
				14		15	
Write recovery time	twhav	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,04, 05,06,15, 16	10		ns
				09,11,14	0		
Chip enable to end-of-				01	200		
write	tELWH	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,16	55		ns
				04	90		
				05,07	120		
				06	45		
				08,09,14	30		
				10-13	40		
				15	70		

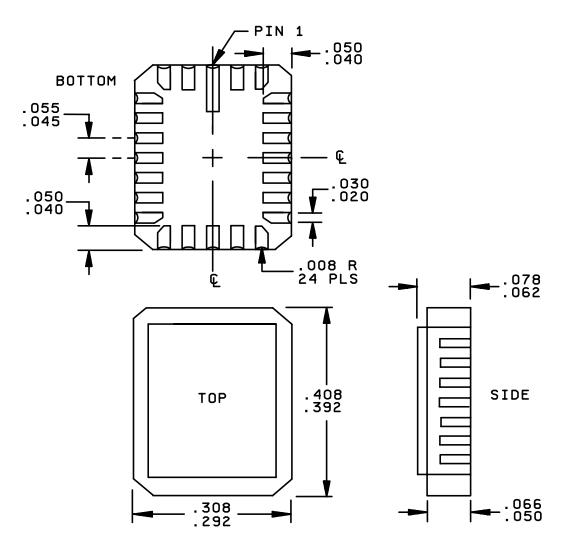
STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 8

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Test conditions $\underline{1}/\underline{2}/$ VSS = 0 V, 4.5 V \leq V _{CC} \leq 5.5 V -55° C \leq T _C \leq +125 $^{\circ}$ C unless otherwise specified	Group A subgroups	Device type			Unit
Address valid to end-of-		uniess otherwise specified		00.00	Min 65	Max	
write		<u>5</u> / <u>6</u> /	9, 10, 11	02,03, 12,13	00		
	tavwh	<u> </u>	9, 10, 11	04	100		ns
				05	130		
				15	105		
				06	50		
				08,09,14	30		
				10,11	45		-
				16	80		-
							<u> </u>
Address to WE setup		<u>5</u> / <u>6</u> /	9, 10, 11	02-06, 15,16	10		
time	tavwl	<u> </u>	9, 10, 11	07,08,09,	0		ns
				11,14	0		
				10	5		1
				12,13	15		1
-				,			
Address to $\overline{\sf CE}$ setup time	tAVEL	5/ 6/	9, 10, 11	01,07	0		ns
Output enable to output				01		80	
in high Z <u>4</u> /	tOHQZ	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,15, 16		40	ns
				04,07		50	
				05		60	
				08,09		25	
				10,11		30	
				06,12,13		35	
				14		15	
Write enable pulse				01	200		
width	twLwH	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,16	55		ns
				04	90		
				05,07	120		
				15	70		1
				08,11	25		1
				06,10,	40		1
				12,13			
				09,14	20		

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 9

TABLE I. <u>Electrical performance characteristics</u> - Continued.


Test	Symbol	Test conditions $1/2/1$ VSS = 0 V, 4.5 V \leq V _{CC} \leq 5.5 V -55°C \leq T _C \leq +125°C	Group A subgroups	Device type	Lim	nits	Unit
		unless otherwise specified			Min	Max	
Data setup to end-of- write		5/ 0/	0.40.44	01	80		
Wille	tDVWH	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,06, 12,13,16	30		ns
				04,07	50		
				05	70		
				08,09	20		
				10,11	25		
				15	35		
				14	15		
Data hold after end-of-				01,06,07	10		
write	t _{WHDX}	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,04, 05,15,16	15		ns
				08,09,11, 14	0		
				10,12,13	5		
				01	80		
Minimum chip-enable high time after write	tEHEL	<u>5</u> / <u>6</u> /	9, 10, 11	07	50		ns
A.1. 1.1.6. 6				01	50		
Address hold time after $\overline{\text{CE}}$ low	t _{ELAX}	<u>5</u> / <u>6</u> /	9, 10, 11	07	30		ns
				01	200		
Chip-enable pulse width during write	tELEH	<u>5</u> / <u>6</u> /	9, 10, 11	07	120		ns
Write enable pulse				01	200		
setup time	twleh	<u>5</u> / <u>6</u> /	9, 10, 11	02,03,16	55		ns
				04	90		
				05,07	120		
				08	30		
				06,10,	40		
				12,13			
				09,14	20		
				11	25		
				15	70		

- $\underline{1}/$ All voltages referenced to $V_{\text{SS}}.$
- 2/ Negative undershoots to a minimum of -0.3 V are allowed with a maximum of 20 ns pulse width. 3/ fmax = 1/_{tAVAV}

- 4/ Tested initially, and after any design or process change which could affect these parameters. 5/ AC measurements assume transition time ≤ 5 ns and input levels are from V_{SS} to 3.0 V. Output load is specified on figure 5. Reference timing levels are at 1.5 V.
- 6/ For timing waveforms, see figure 6.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 10

Case Y 24 PIN RECTANGULAR LEADLESS CHIP CARRIER

Notes:

- 1. Dimensions are in inches.
- 2. Metric equivalents are for general information only.

Inches	mm
.008	0.20
.020	0.50
.030	0.76
.040	1.01
.045	1.14
.050	1.27
.055	1.39
.062	1.57
.066	1.68
.078	1.98
.292	7.41
.308	7.82
.392	9.95
.408	10.36

FIGURE 1. Case outline.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 11

Device Types			All		
Case Outlines	X and Z	Y, J, K	Y, J, K, and L		3
Terminal	Terminal	Terminal	Terminal	Terminal	Terminal
Number	Symbol	Number	Symbol	Number	Symbol
1	NC	1	A7	1	A7
2 3	NC	2	A6	2	A6
	NC	3	A5	3	A5
4	A7	4	A4	4	A4
5	A6	5	A3	5	A3
6	A5	6	A2	6	A2
7	A4	7	A1	7	NC
8	A3	8	A0	8	NC
9	A2	9	DQ0, I/O0	9	A1
10	A1	10	DQ1, I/O1	10	A0
11	A0	11	DQ2, I/O2	11	DQ1, I/O1
12	NC Pool (Oo	12	VSS	12	DQ2, I/O2
13	DQ0, I/O0	13	DQ3, I/O3	13	DQ3, I/O3
14 15	DQ1, I/O1	14 15	DQ4, I/O4	14 15	VSS
_	DQ2, I/O2 VSS	16	DQ5, I/O5 DQ6, I/O6	_	DQ4, I/O4 DQ5, I/O5
16 17	NC	17	DQ6, 1/O6 DQ7, 1/O7	16 17	DQ5, 1/O5 DQ6, 1/O6
18	DQ3, I/O3	17	DQ7, 1/O7	17	DQ6, 1/O6 DQ7, 1/O7
19	DQ3, 1/O3 DQ4, 1/O4	18	CE, E	19	DQ7, 1/O7 DQ8, 1/O8
20	DQ4, 1/O4 DQ5, 1/O5	19	A10		
21	DQ5, 1/O6	20	<u> </u>	20	CE, E
22	DQ7, I/O7	20	OE , G	21	NC
23		21	WE, W	22 23	NC
23	CE, E	22	A9	23	A10
	A10	23	A8	24	OE, G
25	OE, G	24	VCC	25	WE, W
26	WE, W			26	A9
27	NC			27	A8
28	A9			28	VCC
29	A8				
30	NC				
31	NC				
32	VCC				

FIGURE 2. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 12

Device types 01 and 07

Read cycle

Time	Inputs					
reference						Function
	CE	WE	ŌĒ	Α	DQ	
-1	Н	Χ	Χ	Х	Z	Memory disabled
0	\downarrow	Н	Χ	V	Z	Cycle begins, addresses are latched
1	L	Н	L	Χ	Χ	Output enabled
2	L	Н	L	Χ	V	Output valid
3	1	Н	Χ	Χ	V	Read accomplished
4	Н	Χ	Χ	Χ	Z	Prepare for next cycle (same as -1)
5	\downarrow	Н	Χ	V	Z	Cycle ends, next cycle begins (same as 0)

Write cycle

Time			Inputs			
reference						Function
	CE	WE	ŌĒ	Α	DQ	
-1	Н	Χ	Н	Χ	Χ	Memory disabled
0	1	Χ	Н	V	Χ	Cycle begins, addresses are latched
1	L	L	Н	Х	Χ	Write period begins
2	L	1	Н	Х	V	Data is written
3	1	Н	Н	Х	Χ	Write completed
4	Н	Χ	Н	Х	Х	Prepare for next cycle (same as -1)
5	\downarrow	Х	Н	V	Х	Cycle ends, next cycle begins (same as 0)

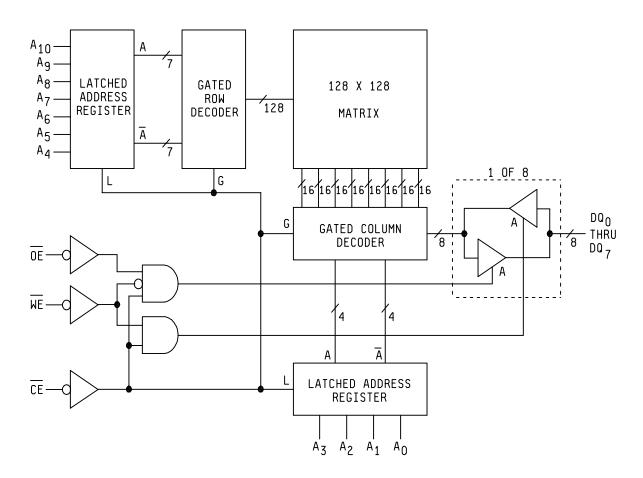
Device types 02 - 06 and 08 - 16

CE	ŌĒ	WE	Mode	DQ
V _{IH}	X	X	Deselect	High Z
V _{IL}	X	V_{IL}	Write	D _{IN}
VIL	VIL	VIH	Read	Dout
VIL	VIH	VIH	Read	High Z

X = Don't care H = HIGH

L = LOW

V = VALID


 \downarrow = TRANSITION HIGH TO LOW

↑ = TRANSITION LOW TO HIGH

FIGURE 3. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 13

Device types 01 and 07.

ALL LINES POSITIVE LOGIC – ACTIVE HIGH

THREE-STATE BUFFERS: A HIGH – OUTPUT ACTIVE

ADDRESS LATCHED AND GATED

DECODERS:

LATCH ON RISING EDGE OF L GATE ON RISING EDGE OF G

FIGURE 4. Block diagram.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A REVISION LEVEL F 14

Device types 02 - 06 and 08 - 16

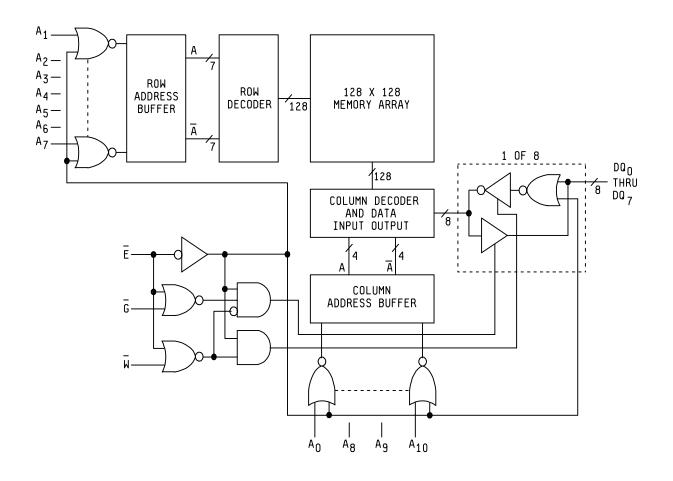
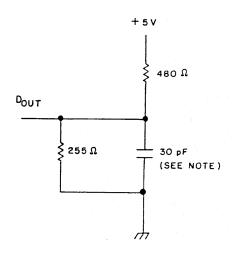



FIGURE 4. <u>Block diagram</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 15

+5V 480 Ω 5 pF (SEE NOTE)

Circuit A or equivalent circuit

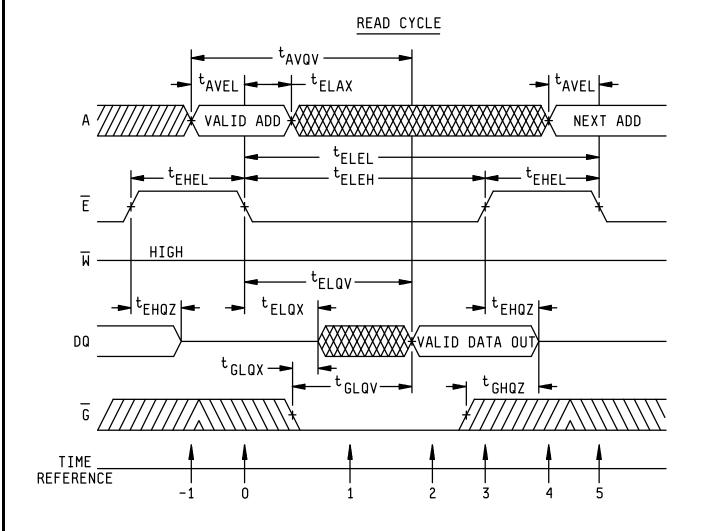
For all other switching parameters.

Circuit B or equivalent circuit

for toLQX' $^{\rm t}$ ElQX' $^{\rm t}$ EHQZ' and $^{\rm t}$ OHQZ.

NOTE:

1. Including scope and jig capacitance.


FIGURE 5. Output loading.

STANDARD MICROCIRCUIT DRAWING

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		84036
	REVISION LEVEL F	SHEET 16

Device types 01 and 07

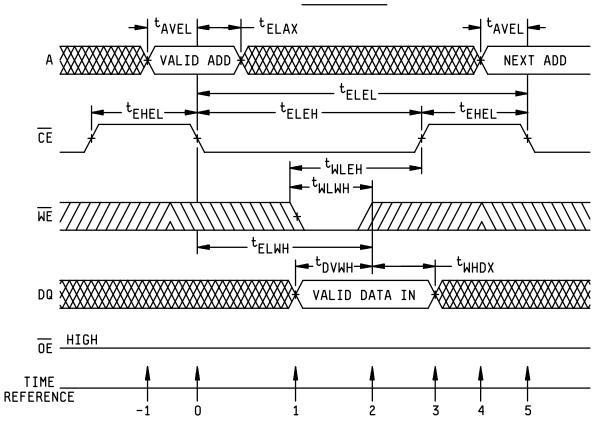
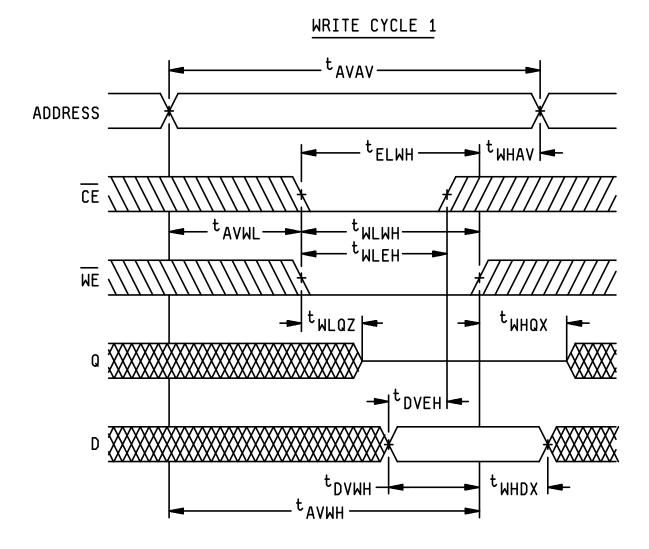

The address information is latched in the on chip registers on the falling edge of \overline{CE} (t = 0), minimum address setup and hold time requirements must be met. After the required hold time, the address may change <u>sta</u>te without affecting device operation. During time (t = 1), the outputs become en<u>abled</u> but data is not valid until time (t = 2), WE must remain high throughout the read cycle. After the <u>data</u> has been read, \overline{CE} may return high (t = 3). This will force the output buffers into a high impedance mode at time (t = 4). \overline{OE} is used to disable the output buffers when in a logical "1" state (t = -1, 0, 3, 4, 5). After (t = 4) time, the memory is ready for the next cycle.

FIGURE 6. Timing waveforms.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 17

Device types 01 and 07

WRITE CYCLE



The write cycles is initiated on the falling edge of \overline{CE} (t = 0), which latches the address information in the on chip registers. If a write cycle is to be performed where the output is not to become active, \overline{OE} can be held high (inactive). Parameter t_{DVHW} and t_{WHDX} must be met for proper device operation regardless of \overline{OE} . If \overline{CE} and \overline{OE} fall before \overline{WE} falls (read mode), a possible bus conflict may exist. If \overline{CE} rises before \overline{WE} rises, reference data setup—and hold times to the \overline{CE} rising edge. The write operation is terminated by the first rising edge of \overline{WE} (t = 2) or \overline{CE} (t = 3). After the minimum \overline{CE} high time (tehel), the next cycle may begin. If a series of consecutive write cycles are to be performed, the \overline{WE} line may be held low until all desired locations have been written. In this case, data setup and hold times must be referenced to the rising of \overline{CE} .

FIGURE 6. Timing waveforms - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 18

Device types 02 - 06 and 08 - 16

NOTE: G is low throughout write cycle.

To write, address<u>es</u> must <u>be</u> stable, $\overline{\text{CE}}$ low and $\overline{\text{WE}}$ falling low for a period no shorter than t_{WLWH} . Data is in referenced with the rising edge of WE or CE whi<u>che</u>ver occurs first (t_{DVWH} <u>and</u> t_{WHDX}). While addresses are changing, WE must be high. When WE falls low, the I/O pins are still in the <u>output</u> state for a period of t_{WLOZ} and input data <u>of</u> the opposite phase to the outputs <u>mu</u>st not be applied (bus contention). If CE transitions low

While addresses are changing, WE must be high. When WE falls low, the I/O pins are still in the <u>output</u> state for a period of twLoz and input data<u>of</u> the opposite phase to the outputs <u>mu</u>st not be applied (bus contention). If CE transitions low simultaneously with WE line transitioning low or after the WE transition, the output will remain in a high impedance state. OE is held continuously low.

FIGURE 6. Timing waveforms - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 19

Device types 02 - 06 and 08 - 16

ADDRESS TOLOW TOLOW

NOTE: W is high for a read cycle.

Addresses must remain stable for the duration of the read cycle. To read, OE and CE must be $\leq V_{IL}$ and WE $\geq V_{IH}$. The output buffers can be controlled independently by OE while CE is low. To execute consecutive read cycles, CE may be tied low continuously until all desired locations are accessed. When CE is low, addresses must be driven by stable logic levels and must not be in the high impedance stated.

FIGURE 6. Timing waveforms - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		84036
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 20

4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $TA = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8A, 8B, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 4, 7, 8A, 8B, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 7, 9

^{*} PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_I and C_O measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Sample size is five (5) devices with no failures, and all input and output terminals tested.
- d. Subgroups 7, 8A and 8B shall include verification of the truth table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		84036
		REVISION LEVEL F	SHEET 21

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $TA = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD		
MICROCIRCUIT DRAWING		

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		84036
	REVISION LEVEL F	SHEET 22

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 00-09-27

Approved sources of supply for SMD 84036 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38535.

	1	
Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
8403601JA	34371	HM1-6516/883
8403601ZA	34371	HM1-6516/883
8403602JA	34371	HM1-65162/883
8403602ZA	34371	HM1-65162/883
8403603JA	34371	HM1-65162C/883
8403603ZA	34371	HM1-65162C/883
8403604JA	<u>3</u> / <u>3</u> /	MKB6116P-82 SMJ5517-15JDM
8403604ZA	<u>3</u> /	SMJ5517-15FGM
8403605JA	<u>3</u> / <u>3</u> /	MKB6116P-83 SMJ5517-20JDM
8403605ZA	<u>3</u> /	SMJ5517-20FGM
8403606JA	34371	HM1-65162B/883
8403606ZA	<u>3</u> /	HM1-65162B/883
8403607JA	34371	HM1-6516B/883
8403607ZA	<u>3</u> /	HM1-6516B/883
8403608JA	61772	IDT6116LA45DB
8403608XA	<u>3</u> /	IDT6116LA45L32B
8403608LA	61772	IDT6116LA45TDB
8403608KA	<u>3</u> /	IDT6116LA45EB
84036083A	<u>3</u> /	IDT6116LA45L28B
8403608YA	<u>3</u> /	IDT6116LA45L24B

	1	
Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
8403609JA	61772 <u>3/</u>	IDT6116SA45DB CY6116A-45DMB
8403609XA	3/ 3/	IDT6116SA45L32B CY6117A-45LMB
8403609LA	<u>3/</u> 61772 65786 75569	SMJ68CE16S-45JDM IDT6116SA45TDB CY7C128A-45DMB P4C116-45DMB
8403609KA	<u>3/</u> <u>3/</u> 75569	IDT6116SA45EB CY7C128-45KMB P4C116-45FMB
84036093A	3 <u>/</u> 3 <u>/</u> 75569	IDT6116SA45L28B CY6116A-45LMB P4C116-45L28MB
8403609YA	3/ 3/ 75569	IDT6116SA45L24B CY7C128A-45LMB P4C116-45LMB
8403610JA	61772	IDT6116LA55DB
8403610XA	<u>3</u> / 0C7V7	IDT6116LA55L32B 6116-55/XA
8403610LA	61772	IDT6116LA55TDB
8403610KA	<u>3/</u> 0C7V7	IDT6116LA55EB 6116-55/KA
84036103A	<u>3/</u> 0C7V7	IDT6116LA55L28B 6116-55/3A
8403610YA	<u>3</u> / 0C7V7	IDT6116LA55L24B 6116-55/YA
8403611JA	61772 65786	IDT6116SA55DB CY6116A-55DMB
8403611XA	<u>3</u> / <u>3</u> /	IDT6116SA55L32B CY6117A-55LMB
8403611LA	<u>3</u> / 61772 65786 75569	SMJ68CE16S-55JDM IDT6116SA55TDB CY7C128A-55DMB P4C116-55DMB

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
8403611KA	3 <u>/</u> 3 <u>/</u> 75569	IDT6116SA55EB CY7C128-55KMB P4C116-55FMB
84036113A	3 <u>/</u> 3 <u>/</u> 75569	IDT6116SA55L28B CY6116A-55LMB P4C116-55L28MB
8403611YA	3 <u>/</u> 3 <u>/</u> 75569	IDT6116SA55L24B CY7C128A-55LMB P4C116-55LMB
8403612JA	61772	IDT6116LA70DB
8403612XA	<u>3</u> /	IDT6116LA70L32B
8403612LA	61772	IDT6116LA70TDB
8403612KA	<u>3</u> /	IDT6116LA70EB
84036123A	<u>3</u> /	IDT6116LA70L28B
8403612YA	<u>3</u> /	IDT6116LA70L24B
8403613JA	61772	IDT6116SA70DB
8403613XA	<u>3</u> /	IDT6116SA70L32B
8403613LA	61772	IDT6116SA70TDB
8403613KA	<u>3</u> /	IDT6116SA70EB
84036133A	<u>3</u> /	IDT6116SA70L28B
8403613YA	<u>3</u> /	IDT6116SA70L24B
8403614JA	65786	CY6116A-35DMB
8403614XA	<u>3</u> /	CY6117A-35LMB
8403614LA	<u>3</u> / 65786 75569	SMJ68CE16S-35JDM CY7C128A-35DMB P4C116-35DMB
8403614KA	<u>3</u> / 75569	CY7C128A-35KMB P4C116-35FMB

Vendor	Vendor
CAGE	similar
number	PIN <u>2</u> /
65786	CY6116A-35LMB
75569	P4C116-35L28MB
<u>3</u> /	CY7C128A-35LMB
75569	P4C116-35LMB
<u>3</u> /	L6116HMB120
61772	IDT6116LA120DB
3/	L6116TMB120
3/	IDT6116LA120L32B
0C7V7	6116-120/XA
<u>3</u> /	L6116CMB120
61772	IDT6116LA120TDB
3/	L6116FMB120
3/	IDT6116LA120EB
0C7V7	6116-120/KA
3/	L6116KMB120
3/	IDT6116LA120L28B
0C7V7	6116-120/3A
3/	L6116TMB
3/	IDT6116LA120L24B
0C7V7	6116-120/YA
<u>3</u> /	L6116HMB90
61772	IDT6116LA90DB
<u>3</u> /	L6116TMB90
<u>3</u> /	IDT6116LA90L32B
<u>3</u> /	L6116CMB90
61772	IDT6116LA90TDB
<u>3</u> /	L6116FMB90
<u>3</u> /	IDT6116LA90EB
<u>3</u> /	L6116KMB90
<u>3</u> /	IDT6116LA90L28B
3/ 3/	L6116TMB IDT6116LA120L24B N representing a hermetic
	CAGE number 65786 75569 3/ 75569 3/ 61772 3/ 3/ 0C7V7 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/

^{1/} The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.

^{2/ &}lt;u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

^{3/} Not available from an approved source.

Vendor CAGEnumber_	Vendor name and address
34371	Intersil Corporation 2401 Palm Bay Blvd PO Box 883 Melbourne, FL 32902-0883
61772	Integrated Device Technology 2975 Stender Way Santa Clara, CA 95054
65786	Cypress Semiconductor Corporation 3901 N. First Street San Jose, CA 95134-1599
0C7V7	QP LABS 3605 Kifer Road Santa Clara, CA 95051
75569	Performance Semiconductor Corporation 610 East Weddell Drive Sunnyvale, CA 94089

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.