
|                                                                                                            |                                                                |                                                      |                      |                                          |                                               |                                    |              |              | REVISI    | ONS                              |                 |                           |                           |                        |                    |                      |                               |            |                 |      |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------|------------------------------------------|-----------------------------------------------|------------------------------------|--------------|--------------|-----------|----------------------------------|-----------------|---------------------------|---------------------------|------------------------|--------------------|----------------------|-------------------------------|------------|-----------------|------|
| LTR                                                                                                        |                                                                |                                                      |                      |                                          |                                               | DESCF                              | RIPTIO       | N            |           |                                  |                 |                           | DA                        | ATE (YI                | R-MO-[             | DA)                  |                               | APPF       | ROVED           |      |
| А                                                                                                          | Make                                                           | Make change to VTHUV test specified under table I ro |                      |                                          |                                               |                                    |              |              |           | 00-0                             | 03-07 R. MONNIN |                           |                           |                        |                    |                      |                               |            |                 |      |
| В                                                                                                          | Add                                                            | device                                               | type 02              | 2 ro                                     |                                               |                                    |              |              |           |                                  |                 |                           |                           | 01-0                   | 7-26               |                      |                               | R. M       | NINNC           |      |
| С                                                                                                          | Make                                                           | chang                                                | es to I <sub>l</sub> | <sub>LK</sub> and                        | +I <sub>IN</sub> te:                          | sts as s                           | specifie     | ed in tab    | ole I     | ro                               |                 |                           |                           | 01-1                   | 2-14               |                      |                               | R. M       | NINNC           |      |
| D                                                                                                          |                                                                |                                                      |                      | e high s<br>d under                      |                                               |                                    | upply c      | ffset vo     | oltage li | mit for                          | device          |                           |                           | 02-0                   | )4-17              |                      |                               | R. M       | NINNC           |      |
| E                                                                                                          | Add a                                                          | a new l                                              | ogic dia             | agram f                                  | or devi                                       | ice type                           | e 02.  -     | ro           |           |                                  |                 |                           |                           | 03-0                   | )4-15              |                      |                               | R. M       | NINNC           |      |
|                                                                                                            |                                                                |                                                      |                      |                                          |                                               |                                    |              |              |           |                                  |                 |                           |                           |                        |                    |                      |                               |            |                 |      |
| REV                                                                                                        |                                                                |                                                      |                      |                                          |                                               |                                    |              |              |           |                                  |                 |                           |                           |                        |                    |                      |                               |            |                 |      |
| REV<br>SHEET                                                                                               |                                                                |                                                      |                      |                                          |                                               |                                    |              |              |           |                                  |                 |                           |                           |                        |                    |                      |                               |            |                 |      |
|                                                                                                            | E                                                              | E                                                    | E                    | E                                        | E                                             | E                                  | E            | E            | E         | E                                |                 |                           |                           |                        |                    |                      |                               |            |                 |      |
| SHEET<br>REV<br>SHEET                                                                                      | E 15                                                           | E 16                                                 | E 17                 | 18                                       | 19                                            | E 20                               | 21           | 22           | 23        | 24                               |                 |                           |                           |                        |                    |                      |                               |            |                 |      |
| SHEET REV SHEET REV STATUS                                                                                 |                                                                |                                                      |                      | 18<br>REV                                | 19                                            | 1                                  | 21<br>E      | 22<br>E      | 23<br>E   | 24<br>E                          | E               | E                         | E                         | E                      | E                  | E                    | E                             | E          | E               | E    |
| SHEET<br>REV<br>SHEET                                                                                      |                                                                |                                                      |                      | 18<br>REV<br>SHE                         | 19                                            | 20<br>D BY                         | 21           | 22           | 23        | 24                               | 5               | 6                         | E   7                     | 8                      | 9                  | 10                   | 11                            | 12         | 13              | E 14 |
| SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN                                                         | 15                                                             | 16                                                   |                      | 18 REV SHE PREI RIC                      | 19 EET PAREE K OFF                            | 20<br>BY<br>ICER                   | 21<br>E<br>1 | 22<br>E      | 23<br>E   | 24<br>E                          | 5               | 6                         | 7<br>SE SI<br>COL         | 8<br>JPPL<br>UMBI      | 9<br>Y CE<br>JS, O | 10                   | 11<br>R COL<br>43216          | 12<br>.UMB | 13              |      |
| SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A  STAN MICRO DRA  THIS DRAWIN FOR US DEPAR                    | NDAR<br>OCIRO<br>WING<br>IG IS A<br>SE BY A                    | 16  RD CUIT G VAILARALL TS                           | 17                   | 18 REV SHE PREI RIC CHERA                | 19 PAREC K OFF CKED JESH F                    | 20<br>D BY<br>ICER<br>BY<br>PITHAC | 21<br>E<br>1 | 22<br>E      | 23<br>E   | E<br>4<br>MIC<br>HIG             | DI<br>CROC      | 6<br>EFEN<br>IRCU<br>EQUI | 7<br>SE SI<br>COL<br>http | JPPL<br>UMBI<br>o://ww | 9 Y CE US, O vw.ds | NTER                 | 11<br>R COL<br>43216<br>a.mil | .UMB       | 13              | 14   |
| SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A  STAN MICRO DRA  THIS DRAWIN FOR US                          | NDAR<br>CIRC<br>WING<br>IG IS A<br>SE BY A<br>RTMEN<br>ICIES C | RD<br>CUIT<br>G<br>VAILAR<br>ALL<br>TS<br>DF THE     | 17 BLE               | 18 REV SHE PREI RIC CHE RA.              | 19 PAREE K OFF CKED JESH F                    | D BY D BY D MON                    | 21<br>E<br>1 | 22<br>E<br>2 | 23<br>E   | E<br>4<br>MIC<br>HIG             | DI<br>CROC      | 6<br>EFEN<br>IRCU<br>EQUI | SE SI COL http            | JPPL<br>UMBI<br>o://ww | 9 Y CE US, O vw.ds | NTER                 | 11<br>R COL<br>43216<br>a.mil | .UMB       | 13<br><b>US</b> | 14   |
| SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A  STAN MICRO DRA  THIS DRAWIN FOR US DEPAR AND AGEN DEPARTMEN | NDAR<br>CIRC<br>WING<br>IG IS A<br>SE BY A<br>RTMEN<br>ICIES C | RD<br>CUIT<br>G<br>VAILABALL<br>TS<br>DF THE         | 17 BLE               | 18 REV SHE PREI RIC CHEC RA. APP RAY DRA | 19  PAREE K OFF  CKED JESH F  ROVE YMONE WING | D BY D MON APPRO                   | 21 E 1       | 22<br>E<br>2 | 23<br>E   | 24<br>E<br>4<br>MIC<br>HIG<br>MO | DI<br>CROC      | 6  EFEN  IRCU EQUE THIC   | SE SI COL http            | 8  JPPL UMBI D://ww    | 9 Y CE US, O vw.ds | NTER<br>HIO<br>cc.dl | 11<br>R COL<br>43216<br>a.mil | J12        | us<br>ENED      | 14   |

#### 1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents three product assurance class levels consisting of high reliability (device classes Q and M), space application (device class V) and for appropriate satellite and similar applications (device class T). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. For device class T, the user is encouraged to review the manufacturer's Quality Management (QM) plan as part of their evaluation of these parts and their acceptability in the intended application.
  - 1.2 PIN. The PIN is as shown in the following example:



- 1.2.1 RHA designator. Device classes Q, T and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
  - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

| Device type | Generic number | Circuit function                                                                 |
|-------------|----------------|----------------------------------------------------------------------------------|
| 01          | HS-2100RH      | 120 V, radiation hardened, dielectric isolated high frequency half bridge driver |
| 02          | IS-2100ARH     | 150 V, radiation hardened, dielectric isolated high frequency half bridge driver |

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

| Device class | Device requirements documentation                                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| М            | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A |
| Q, V         | Certification and qualification to MIL-PRF-38535                                                                                                          |
| Т            | Certification and qualification to MIL-PRF-38535 with performance as specified in the device manufacturers approved quality management plan.              |

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

| Outline letter | Descriptive designator | <u>Terminals</u> | Package style |
|----------------|------------------------|------------------|---------------|
| X              | CDFP4-F16              | 16               | Flat pack     |

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q, T and V or MIL-PRF-38535, appendix A for device class M.

| STANDARD MICROCIRCUIT DRAWING                               | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 2    |

## 1.3 Absolute maximum ratings. 1/2/

|   | High side floating supply voltage (V <sub>B</sub> ):                   |                                               |
|---|------------------------------------------------------------------------|-----------------------------------------------|
|   | Device type 01                                                         |                                               |
|   | Device type 02                                                         |                                               |
|   | High side floating supply offset voltage (V <sub>S</sub> )             | $V_B - 25 V$ to $V_B + 0.3 V$                 |
|   | High side floating output voltage (V <sub>HO</sub> )                   | $V_S$ – 0.3 V to $V_B$ + 0.3 V                |
|   | Low side fixed supply voltage (V <sub>CC</sub> )                       | -0.3 V to 25 V                                |
|   | Low side output voltage (V <sub>LO</sub> )                             | COM – 0.3 V to $V_{CC}$ + 0.3 V               |
|   | Logic supply voltage (V <sub>DD</sub> )                                | V <sub>CC</sub> <u>3</u> /                    |
|   | Logic input voltage (HIN, LIN, and SD pins)                            | $V_{SS}$ – 0.3 V to $V_{DD}$ +0.3 V           |
|   | Vs slew rate (dVs / dt):                                               |                                               |
|   | Device type 01                                                         | 10 V / ns maximum                             |
|   | Device type 02                                                         | 15 V / ns maximum                             |
|   | COM (low driver return) offset to V <sub>SS</sub> :                    |                                               |
|   | Device type 01                                                         |                                               |
|   | Device type 02                                                         |                                               |
|   | Maximum power dissipation (P <sub>D</sub> ) ( $T_A \le +25^{\circ}C$ ) |                                               |
|   | Lead temperature (soldering, 10 seconds)                               |                                               |
|   | Junction temperature (T <sub>J</sub> )                                 |                                               |
|   | Storage temperature range                                              |                                               |
|   | Thermal resistance, junction-to-case ( $\theta$ JC)                    | 18°C/W                                        |
|   | Thermal resistance, junction-to-ambient ( $\theta_{JA}$ )              | 90°C/W                                        |
| 1 | Recommended operating conditions.                                      |                                               |
|   | High side floating supply absolute voltage (V <sub>B</sub> )           | V <sub>S</sub> + 12 V to V <sub>S</sub> +20 V |
|   | High side floating supply offset voltage (V <sub>S</sub> ):            |                                               |
|   | Device type 01                                                         |                                               |
|   | Device type 02                                                         | - 4 V to 130 V <u>4</u> /                     |
|   | High side floating output voltage (V <sub>HO</sub> )                   | $V_S$ to $V_B$                                |
|   | Low side fixed supply (V <sub>CC</sub> )                               | 12 V to 20 V                                  |
|   | Low side output voltage (V <sub>LO</sub> )                             | COM to V <sub>CC</sub>                        |
|   | Logic supply voltage (V <sub>DD</sub> )                                | V <sub>CC</sub> <u>3</u> /                    |
|   |                                                                        |                                               |

<sup>1/</sup> Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

- 2/ All voltage parameters are absolute voltages referenced to VSS.
- 3/ Logic is operational for V<sub>S</sub> of -4 V but V<sub>B</sub> must remain minimum 12 V above V<sub>SS</sub> (ground).
- $\underline{4}$ / This device is recommended for V<sub>DD</sub> = V<sub>CC</sub> and they should be tied together at the board level. V<sub>DD</sub> and V<sub>CC</sub> can have different values but both must remain within 12 V 20 V range. Low side undervoltage monitors V<sub>DD</sub> to V<sub>SS</sub> differential.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 3    |

1.4

1.4 Recommended operating conditions – continued.

#### 1.5 Radiation features:

Maximum total dose available (dose rate = 50 - 300 rads (Si) / s):

| Device classes M, Q, or V |                     |            |
|---------------------------|---------------------|------------|
| Device class T            | 1 x 10 <sup>5</sup> | Rads       |
| Latch up                  | None                | <u>7</u> / |
| Single event upset        | None                | <u>8</u> / |

#### 2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

#### **SPECIFICATION**

#### DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

#### **STANDARDS**

# DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

#### **HANDBOOKS**

#### DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

5/ V<sub>CC</sub> / V<sub>DD</sub> to COM must remain in 12 V to 20 V range.

- $\underline{6}$ / The input buffers are designed to accept 5 V logic level inputs while running  $V_{DD}$  in 12 V 20 V range.
- 7/ Latch up immune due to dielectric isolation technology.
- 8/ Error detection and correction for high side latch guarantees no single event latch upset.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 4    |

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

#### 3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q, T and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein.
  - 3.1.1 Microcircuit die. For the requirements for microcircuit die, see appendix A to this document.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q, T and V or MIL-PRF-38535, appendix A and herein for device class M.
  - 3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein.
  - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
  - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 2.
  - 3.2.4 Irradiation test connections. The irradiation test connections shall be as specified in figure 3.
- 3.3 <u>Electrical performance characteristics and post irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post irradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q, T and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q, T and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.
- 3.6 <u>Certificate of compliance</u>. For device classes Q, T and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q, T and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q, T and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A.
- 3.9 <u>Verification and review for device class M.</u> For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 91 (see MIL-PRF-38535, appendix A).

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 5    |

TABLE I. <u>Electrical performance characteristics</u>.

| Test                                                                        | Symbol            | Test conditions $\underline{1}/$<br>-55°C $\leq$ T <sub>A</sub> $\leq$ +125°C<br>unless otherwise specified | Group A<br>subgroup | Device<br>type | Limits |      | Unit |
|-----------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------|---------------------|----------------|--------|------|------|
|                                                                             |                   | uniess otherwise specified                                                                                  |                     |                | Min    | Max  |      |
| Logic "1" input voltage                                                     | V <sub>IH</sub>   | 2/                                                                                                          | 1,2,3               | 01,02          | 3      |      | V    |
| Logic "0" input voltage                                                     | V <sub>IL</sub>   | 2/                                                                                                          | 1,2,3               | 01,02          |        | 0.8  | V    |
| High level output voltage                                                   | V <sub>OH</sub>   | I <sub>OUT</sub> = 0 mA <u>2</u> /                                                                          | 1,2,3               | 01,02          |        | 0.1  | V    |
|                                                                             |                   | V <sub>BIAS</sub> - V <sub>OH</sub>                                                                         |                     |                |        |      |      |
| Low level output voltage                                                    | V <sub>OL</sub>   | I <sub>OUT</sub> = 0 mA <u>2</u> /                                                                          | 1,2,3               | 01,02          |        | 0.1  | V    |
| Offset supply leakage current                                               | I <sub>LK</sub>   | V <sub>B</sub> = V <sub>S</sub> = 100 V <u>2</u> /                                                          | 1,2,3               | 01             |        | 50   | μA   |
|                                                                             |                   | V <sub>B</sub> = V <sub>S</sub> = 150 V <u>2</u> /                                                          |                     | 02             |        | 500  |      |
| Quiescent V <sub>B</sub> supply current                                     | I <sub>QB</sub>   | V <sub>IN</sub> = 0 V or V <sub>DD</sub> <u>2</u> /                                                         | 1,2,3               | 01,02          |        | 500  | μA   |
| Quiescent V <sub>CC</sub> supply current                                    | IQCC              | V <sub>IN</sub> = 0 V or V <sub>DD</sub> <u>2</u> /                                                         | 1,2,3               | 01,02          |        | 50   | μA   |
| Quiescent V <sub>DD</sub> supply current (inputs low)                       | I <sub>QDD</sub>  | All inputs 0 V 2/                                                                                           | 1,2,3               | 01,02          |        | 2900 | μA   |
| Logic "1" input bias current                                                | +I <sub>IN</sub>  | V <sub>IN</sub> = V <sub>DD</sub> <u>2</u> /                                                                | 1,2,3               | 01             |        | 60   | μA   |
|                                                                             |                   | V <sub>IN</sub> = V <sub>DD</sub> <u>2</u> /                                                                |                     | 02             |        | 75   |      |
| Logic "0" input bias                                                        | -I <sub>IN</sub>  | V <sub>IN</sub> = 0 V <u>2</u> /                                                                            | 1,2,3               | 01,02          | -10    |      | μA   |
| V <sub>DD</sub> / V <sub>SS</sub> under-voltage lockout threshold           | VTHUV             | 2/                                                                                                          | 1,2,3               | 01,02          | 8      | 12.0 | V    |
| V <sub>DD</sub> / V <sub>SS</sub> under-voltage lockout threshold Hystersis | VTHUVs            | 2/                                                                                                          | 1,2,3               | 02             | 250    | 2000 | m\   |
| Output high short circuit pulsed current                                    | +l <sub>OUT</sub> | V <sub>OUT</sub> = 0 V, P <sub>W</sub> < 80 μs <u>2</u> /                                                   | 1,2,3               | 01             | 0.6    |      | A    |
|                                                                             |                   |                                                                                                             |                     | 02             | 0.9    |      |      |
|                                                                             | -lout             | V <sub>OUT</sub> = 15 V, P <sub>W</sub> < 80 μs <u>2</u> /                                                  |                     | 01             | 0.6    |      |      |
|                                                                             |                   |                                                                                                             |                     | 02             | 0.9    |      | 1    |

See footnotes at end of table.

# STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A SIZE A REVISION LEVEL E 6

TABLE I. <u>Electrical performance characteristics</u> – Continued.

| Test                                 | Symbol                          | Conditions $ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C $ unless otherwise specified | Group A subgroups | Device<br>type | Lir  | nits | Unit |
|--------------------------------------|---------------------------------|--------------------------------------------------------------------------------------|-------------------|----------------|------|------|------|
|                                      |                                 |                                                                                      |                   |                | Min  | Max  |      |
| Low side turn-off propagation delay  | TL <sub>off</sub>               | 3/                                                                                   | 9,10,11           | 01             |      | 300  | ns   |
|                                      |                                 |                                                                                      |                   | 02             |      | 360  |      |
| High side turn-off propagation delay | TH <sub>off</sub>               | 3/                                                                                   | 9,10,11           | 01             |      | 420  | ns   |
| propagation dotal                    |                                 |                                                                                      |                   | 02             |      | 360  |      |
| Low side turn-on propagation delay   | TLon                            | 3/                                                                                   | 9,10,11           | 01             |      | 280  | ns   |
| propagation dotay                    |                                 |                                                                                      |                   | 02             |      | 425  |      |
| High side turn-on propagation delay  | TH <sub>on</sub>                | <u>3</u> /                                                                           | 9,10,11           | 01             |      | 360  | ns   |
| propagation dotay                    |                                 |                                                                                      |                   | 02             |      | 425  |      |
| Low side shutdown propagation delay  | TL <sub>sd</sub>                | 3/                                                                                   | 9,10,11           | 01             |      | 270  | ns   |
|                                      |                                 |                                                                                      |                   | 02             |      | 400  |      |
| High side shutdown propagation delay | TH <sub>sd</sub>                | 3/                                                                                   | 9,10,11           | 01             |      | 380  | ns   |
|                                      |                                 |                                                                                      |                   | 02             |      | 400  |      |
| Either output rise/fall time         | T <sub>r</sub> , T <sub>f</sub> | 3/                                                                                   | 9,10,11           | 01             |      | 60   | ns   |
|                                      |                                 |                                                                                      |                   | 02             |      | 40   |      |
| Dead time LO turn-off to HO turn-on  | DHton                           | <u>3</u> / <u>4</u> /                                                                | 9,10,11           | 01             | -50  |      | ns   |
|                                      |                                 |                                                                                      |                   | 02             | -20  | 75   |      |
| Dead time HO turn-off to LO turn-on  | DLton                           | <u>3</u> / <u>4</u> /                                                                | 9,10,11           | 01             | -200 |      | ns   |
|                                      |                                 |                                                                                      |                   | 02             | 10   | 100  |      |
| Turn-on propagation delay matching   | Mton                            | <u>3/ 5/</u>                                                                         | 9,10,11           | 01             | -100 | 0    | ns   |
| asia, matering                       |                                 |                                                                                      |                   | 02             | -20  | 60   |      |

See footnotes at end of table.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                     | 5962-99536 |
|-------------------------------------------------------------|------------------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br>E | SHEET 7    |

TABLE I. <u>Electrical performance characteristics</u> – Continued.

| Test                                | Symbol            | Test conditions $\underline{1}/$<br>-55°C $\leq$ T <sub>A</sub> $\leq$ +125°C<br>unless otherwise specified | Group A<br>subgroup | Device<br>type | Limit | ts <u>2</u> / | Unit |
|-------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------|---------------------|----------------|-------|---------------|------|
|                                     |                   |                                                                                                             |                     |                | Min   | Max           |      |
| Turn-off propagation delay matching | Mt <sub>Off</sub> | 3/ 5/                                                                                                       | 9,10,11             | 01             | -150  | 0             | ns   |
|                                     |                   |                                                                                                             |                     | 02             | -20   | 60            |      |

- Devices supplied to this drawing meet all levels M, D, P, L, R, and F of irradiation (classes M, Q, and V) and levels M, D, P, L and R for class T. However, this device is only tested at the "F" level (classes M, Q, and V) and is only tested at "R" level for class T (see 1.5 herein). Pre and post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, T<sub>A</sub> = +25°C.
- $\underline{2}$ / Unless otherwise specified, V<sub>BIAS</sub> (V<sub>CC</sub>, V<sub>B</sub>, V<sub>DD</sub>) = 15 V and V<sub>SS</sub> = V<sub>S</sub> = COM = 0 V. The V<sub>IN</sub>, V<sub>TH</sub>, and I<sub>IN</sub> parameters are referenced to V<sub>SS</sub> and are applicable to all three logic inputs. The V<sub>O</sub> and I<sub>O</sub> parameters are referenced to COM for low output (LO) and V<sub>S</sub> for high output (HO).
- Unless otherwise specified, V<sub>BIAS</sub> (V<sub>CC</sub>, V<sub>B</sub>, V<sub>DD</sub>) = 15 V, V<sub>SS</sub> = V<sub>S</sub> = COM = 0 V, and C<sub>L</sub> = 1000 pF. See figure 4.
- $\underline{4}$ / For device type 01: DHt<sub>on</sub> = (TH<sub>on</sub> TL<sub>off</sub> TL<sub>f</sub>) and DLt<sub>on</sub> = (TL<sub>on</sub> TH<sub>off</sub> TH<sub>f</sub>). For device type 02: DHt<sub>on</sub> = (TH<sub>on</sub> TL<sub>off</sub>) and DLt<sub>on</sub> = (TL<sub>on</sub> TH<sub>off</sub>).
- 5/ Mt<sub>on</sub> = (TL<sub>on</sub> TH<sub>on</sub>) and Mt<sub>off</sub> = (TL<sub>off</sub> TH<sub>off</sub>).

#### 4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection.</u> For device classes Q, and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan, including screening (4.2), qualification (4.3), and conformance inspection (4.4). The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class T, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 and the device manufacturer's QM plan, including screening, qualification, and conformance inspection. The performance envelope and reliability information shall be as specified in the manufacturer's QM plan. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device class T, screening shall be in accordance with the device manufacturer's Quality Management (QM) plan, and shall be conducted on all devices prior to qualification and technology conformance inspection.

# STANDARD MICROCIRCUIT DRAWING

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS. OHIO 43216-5000

| SIZE<br><b>A</b> |                         | 5962-99536 |
|------------------|-------------------------|------------|
|                  | REVISION LEVEL <b>E</b> | SHEET 8    |

| Device types    | 01,02           |
|-----------------|-----------------|
| Case outline    | Х               |
| Terminal number | Terminal symbol |
| 1               | LO              |
| 2               | СОМ             |
| 3               | Vcc             |
| 4               | NC              |
| 5               | NC              |
| 6               | Vs              |
| 7               | V <sub>B</sub>  |
| 8               | НО              |
| 9               | NC              |
| 10              | NC              |
| 11              | V <sub>DD</sub> |
| 12              | HIN             |
| 13              | SD              |
| 14              | LIN             |
| 15              | V <sub>SS</sub> |
| 16              | NC              |

NC = No connection

FIGURE 1. Terminal connections.

| STANDARD MICROCIRCUIT DRAWING                               | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 9    |

# Device type 01

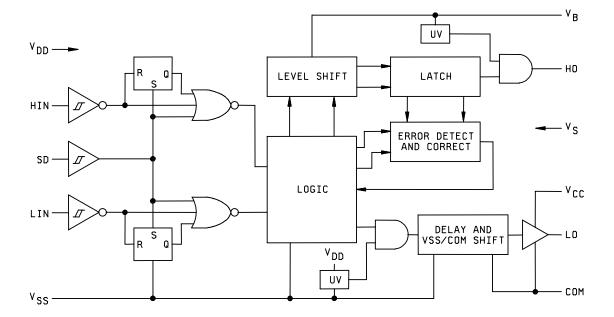



FIGURE 2. Logic diagram.

| STANDARD MICROCIRCUIT DRAWING                               | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 10   |

# Device type 02

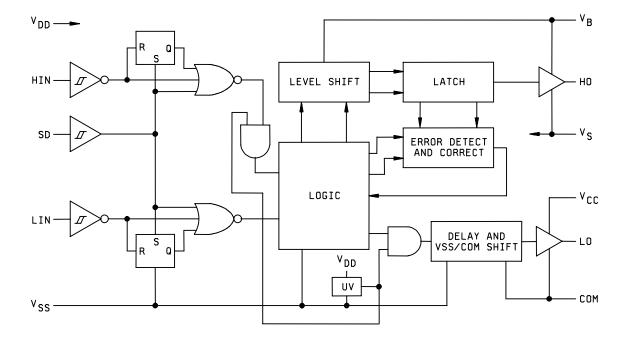



FIGURE 2. <u>Logic diagram</u> – continued.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                     | 5962-99536 |
|-------------------------------------------------------------|------------------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br>E | SHEET 11   |

Device types 01 and 02

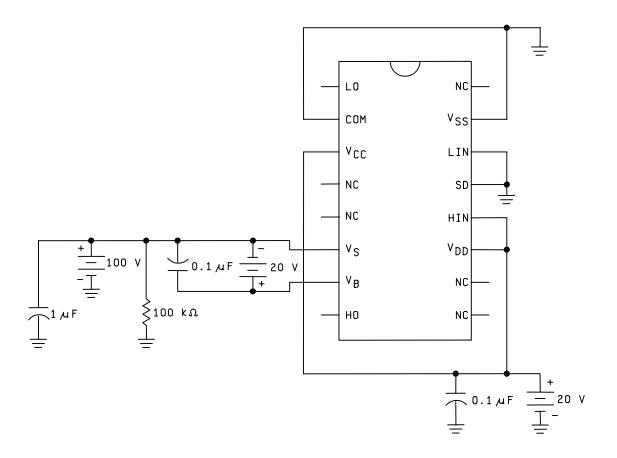



FIGURE 3. Irradiation circuit.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                         | 5962-99536 |
|-------------------------------------------------------------|------------------|-------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL <b>E</b> | SHEET 12   |

Device types 01 and 02

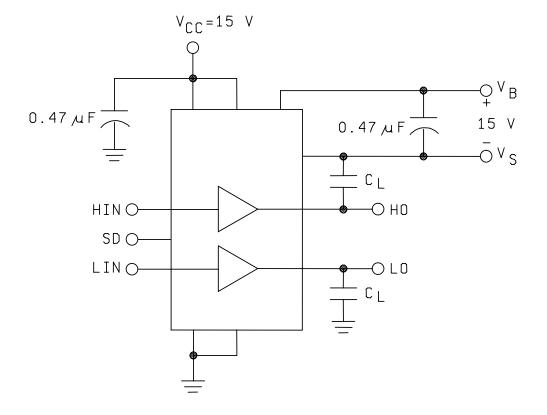



FIGURE 4. Switching time test circuit.

| STANDARD MICROCIRCUIT DRAWING                               | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 13   |

#### 4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
  - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
  - (2)  $T_A = +125^{\circ}C$ , minimum.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.

#### 4.2.2 Additional criteria for device classes Q, T and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. For device classes Q, T, and V interim and final electrical test parameters shall be as specified in table IIA herein.
- Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B or as modified in the device manufacturer's Quality Management (QM) plan.
- 4.3 <u>Qualification inspection for device classes Q, T and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Qualification inspection for device class T shall be in accordance with the device manufacturer's Quality Management (QM) plan. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535, or as specified in the QM plan, including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). Technology conformance inspection for class T shall be in accordance with the device manufacturer's Quality Management (QM) plan.

#### 4.4.1 Group A inspection.

- a. Tests shall be as specified in table IIA herein.
- b. Subgroups 4, 5, 6, 7, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.

| STANDARD             |  |  |  |
|----------------------|--|--|--|
| MICROCIRCUIT DRAWING |  |  |  |

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

| SIZE<br><b>A</b> |                            | 5962-99536 |
|------------------|----------------------------|------------|
|                  | REVISION LEVEL<br><b>E</b> | SHEET 14   |

TABLE IIA. Electrical test requirements.

| Test requirements                                 | Subgroups<br>(in accordance with<br>MIL-STD-883,<br>method 5005, table I) | Subgroups<br>(in accordance with<br>MIL-PRF-38535, table III) |                                         |                            |
|---------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|----------------------------|
|                                                   | Device<br>class M                                                         | Device<br>class Q                                             | Device<br>class V                       | Device<br>class T          |
| Interim electrical parameters (see 4.2)           | 1,9                                                                       | 1,9                                                           | 1,9                                     |                            |
| Final electrical parameters (see 4.2)             | 1,2,3,9,10,11 <u>1</u> /                                                  | 1,2,3,9, <u>1</u> /<br>10,11                                  | 1,2,3,9, <u>2</u> / <u>3</u> /<br>10,11 | As specified in<br>QM plan |
| Group A test requirements (see 4.4)               | 1,2,3,9,10,11                                                             | 1,2,3,9,10,11                                                 | 1,2,3,9,10,11                           |                            |
| Group C end-point electrical parameters (see 4.4) | 1,2,3,9,10,11                                                             | 1,2,3,9,10,11                                                 | 1,2,3,9, <u>3</u> /<br>10,11            |                            |
| Group D end-point electrical parameters (see 4.4) | 1,9                                                                       | 1,9                                                           | 1,9                                     |                            |
| Group E end-point electrical parameters (see 4.4) | 1,9                                                                       | 1,9                                                           | 1,9                                     |                            |

<sup>1/</sup> PDA applies to subgroups 1.

TABLE IIB. Burn-in and operating life test, Delta parameters (+25°C).

| Parameters 1/    | Device type 01 | Device type 02 |
|------------------|----------------|----------------|
|                  | Delta          | limits         |
| I <sub>LK</sub>  | ±5 μA          | ±150 μA        |
| I <sub>QDD</sub> | ±100 μA        | ±100 μA        |

<sup>1/</sup> These parameters shall be recorded before and after the required burn-in and life test to determine delta limits.

- 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
  - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
  - b.  $T_A = +125$ °C, minimum.
  - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                         | 5962-99536 |
|-------------------------------------------------------------|------------------|-------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL <b>E</b> | SHEET 15   |

<sup>2</sup>/ PDA applies to subgroups 1, 9, and  $\Delta$ 's.

<sup>3/</sup> Delta limits as specified in table IIB herein shall be required where specified, and the delta values shall be completed with reference to the zero hour electrical parameters (see table I).

- 4.4.2.2 Additional criteria for device classes Q, T and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
  - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes M, Q and V shall be as specified in MIL-PRF-38535 and the end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4.1 <u>Group E inspection for device class T</u>. For device class T, the RHA requirements shall be in accordance with the class T radiation requirements of MIL-PRF-38535. The end-point electrical parameters for class T devices shall be as specified in table I, Group A subgroups, or as modified in the QM plan.
- 4.4.4.2 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A, and as specified herein. For device class T, the total dose requirements shall be in accordance with the class T radiation requirements of MIL-PRF-38535 (see 1.5 herein).
- 4.4.4.2.1 <u>Accelerated aging testing</u>. Accelerated aging testing shall be performed on all devices requiring a RHA level greater than 5k rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limits at 25°C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

#### 5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q, T and V or MIL-PRF-38535, appendix A for device class M.

#### 6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.
  - 6.1.2 Substitutability. Device class Q devices will replace device class M devices.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0547.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 16   |

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and herein.

V<sub>DD</sub> Logic supply

HIN Logic input for high side gate driver output (HO), in phase

SD Logic input for shutdown

LIN Logic input for low side gate driver output (LO), in phase

VSS Logic ground

V<sub>B</sub> High side floating supplyHO High side gate drive outputV<sub>S</sub> High side floating supply return

V<sub>CC</sub> Low side supply

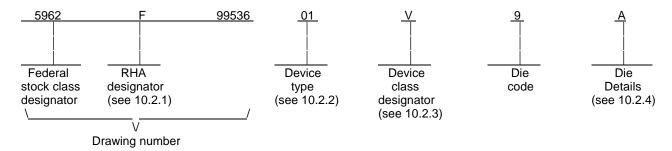
LO Low side gate drive output

COM Low side return

### 6.6 Sources of supply.

- 6.6.1 <u>Sources of supply for device classes Q, T and V</u>. Sources of supply for device classes Q, T and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.
- 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

| STANDARD             |
|----------------------|
| MICROCIRCUIT DRAWING |


DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS. OHIO 43216-5000

| SIZE<br><b>A</b> |                            | 5962-99536 |
|------------------|----------------------------|------------|
|                  | REVISION LEVEL<br><b>E</b> | SHEET 17   |

### 10. SCOPE

10.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QM plan for use in monolithic microcircuits, multi-chip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device Class V) are reflected in the Part or Identification Number (PIN). When available a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

10.2 PIN. The PIN is as shown in the following example:



10.2.1 RHA designator. Device classes Q and V RHA identified die shall meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die.

10.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

| Device type | Generic number | Circuit function                                               |
|-------------|----------------|----------------------------------------------------------------|
| 01          | HS-2100RH      | 120 V radiation hardened, DI high frequency half bridge driver |
| 02          | IS-2100ARH     | 150 V radiation hardened, DI high frequency half bridge driver |

10.2.3 Device class designator.

Device class

Device requirements documentation

Q or V

Certification and qualification to the die requirements of MIL-PRF-38535

| STANDARD             |
|----------------------|
| MICROCIRCUIT DRAWING |

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS. OHIO 43216-5000

| SIZE<br><b>A</b> |                            | 5962-99536 |
|------------------|----------------------------|------------|
|                  | REVISION LEVEL<br><b>E</b> | SHEET 18   |

10.2.4. <u>Die Details</u>. The die details designation shall be a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix.

10.2.4.1 Die physical dimensions.

| Die type | Figure number |
|----------|---------------|
| 01       | A-1           |
| 02       | A-2           |

10.2.4.2. Die bonding pad locations and electrical functions.

|               | number |
|---------------|--------|
| 01 A<br>02 A2 |        |

10.2.4.3. Interface materials.

| Die type | Figure number |
|----------|---------------|
| 01       | A-1           |
| 02       | A-2           |

10.2.4.4. Assembly related information.

| Die type | Figure number |
|----------|---------------|
| 01       | A-1           |
| 02       | A-2           |

- 10.3. Absolute maximum ratings. See paragraph 1.3 within the body of this drawing for details.
- 10.4 Recommended operating conditions. See paragraph 1.4 within the body of this drawing for details.

| STANDARD                       |  |  |
|--------------------------------|--|--|
| MICROCIRCUIT DRAWING           |  |  |
| DEFENCE CLIDDLY CENTED COLLIMD |  |  |

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

| SIZE<br><b>A</b> |                         | 5962-99536 |
|------------------|-------------------------|------------|
|                  | REVISION LEVEL <b>E</b> | SHEET 19   |

#### 20. APPLICABLE DOCUMENTS.

20.1 <u>Government specifications, standards, and handbooks</u>. Unless otherwise specified, the following specification, standard, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

#### **SPECIFICATION**

#### DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

#### **STANDARDS**

#### DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

#### **HANDBOOK**

#### DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

(Copies of the specification, standard, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity).

20.2. <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

#### 30. REQUIREMENTS

- 30.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit or function as described herein.
- 30.2 <u>Design, construction and physical dimensions</u>. The design, construction and physical dimensions shall be as specified in MIL-PRF-38535 and the manufacturer's QM plan, for device classes Q and V and herein.
  - 30.2.1 Die physical dimensions. The die physical dimensions shall be as specified in 10.2.4.1 and on figure A-1.
- 30.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in 10.2.4.2 and on figure A-1.
  - 30.2.3 Interface materials. The interface materials for the die shall be as specified in 10.2.4.3 and on figure A-1.
  - 30.2.4 Assembly related information. The assembly related information shall be as specified in 10.2.4.4 and figure A-1.
- 30.2.5 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be as defined within paragraph 3.2.4 of the body of this document.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 20   |

- 30.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table I of the body of this document.
- 30.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table I.
- 30.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in 10.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535.
- 30.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 60.4 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.
- 30.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing.

#### 40. QUALITY ASSURANCE PROVISIONS

- 40.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not effect the form, fit or function as described herein.
- 40.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum it shall consist of:
  - a) Wafer lot acceptance for Class V product using the criteria defined within MIL-STD-883 test method 5007.
  - b) 100% wafer probe (see paragraph 30.4).
  - c) 100% internal visual inspection to the applicable class Q or V criteria defined within MIL-STD-883 test method 2010 or the alternate procedures allowed within MIL-STD-883 test method 5004.

#### 40.3 Conformance inspection.

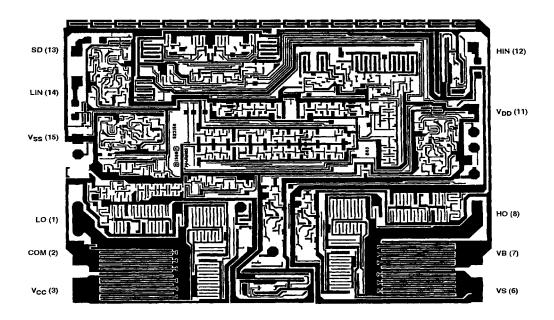
40.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see 30.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified within paragraphs 4.4.4.2 and 4.4.4.2.1.

#### 50. DIE CARRIER

50.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 21   |

60 NOTES


- 60.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications and logistics purposes.
- 60.2 <u>Comments</u>. Comments on this appendix should be directed to DSCC-VA, Columbus, Ohio, 43216-5000 or telephone (614)-692-0536.
- 60.3 <u>Abbreviations, symbols and definitions</u>. The abbreviations, symbols, and definitions used herein are defined within MIL-PRF-38535 and MIL-STD-1331.
- 60.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see 30.6 herein) to DSCC-VA and have agreed to this drawing.

| STANDARD             |  |  |
|----------------------|--|--|
| MICROCIRCUIT DRAWING |  |  |

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

| SIZE<br><b>A</b> |                            | 5962-99536      |
|------------------|----------------------------|-----------------|
|                  | REVISION LEVEL<br><b>E</b> | SHEET <b>22</b> |

Device type 01



Die bonding pad locations and electrical functions

Die physical dimensions.

Die size: 4710 microns x 3570 microns Die thickness: 19 mils  $\pm$  1 mils

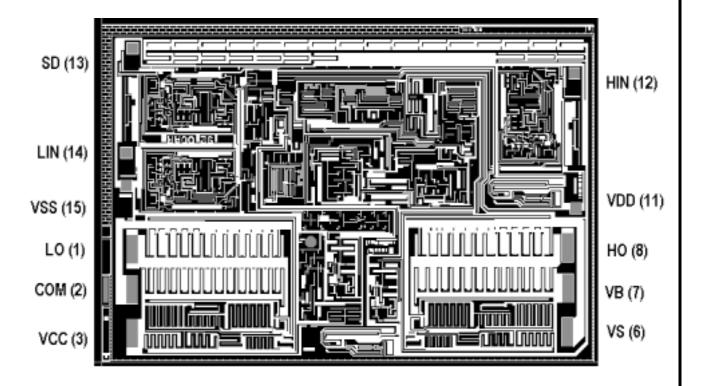
Interface materials.

Top metallization: Al Si Cu 16.0 kÅ ±2 kÅ

Backside metallization: None

Glassivation. Type: PSG

Thickness: 8.0 kÅ ±1.0 kÅ


Substrate: Dielectric Isolation (DI)

Assembly related information.
Substrate potential: Insulator
Special assembly instructions: None

FIGURE A-1. Die bonding pad locations and electrical functions.

# STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A SP62-99536 REVISION LEVEL E 23

Device type 02



Die bonding pad locations and electrical functions

Die physical dimensions.

Die size: 4820 microns x 3300 microns Die thickness: 19 mils ± 1 mils

Interface materials.

Top metallization: Al Si Cu 16.0 kÅ ±2 kÅ

Backside metallization: None

Glassivation. Type: PSG

Thickness: 8.0 kÅ ±1.0 kÅ

Substrate: Dielectric Isolation (DI)

Assembly related information.
Substrate potential: Insulator

Special assembly instructions: None

## FIGURE A-2. Die bonding pad locations and electrical functions.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                            | 5962-99536 |
|-------------------------------------------------------------|------------------|----------------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br><b>E</b> | SHEET 24   |

#### STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 03-04-15

Approved sources of supply for SMD 5962-99536 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

| Standard<br>microcircuit drawing<br>PIN <u>1</u> / | Vendor<br>CAGE<br>number | Vendor<br>similar<br>PIN <u>2</u> / |
|----------------------------------------------------|--------------------------|-------------------------------------|
| 5962F9953601QXC                                    | <u>3</u> /               | HS9-2100RH-8                        |
| 5962R9953601TXC                                    | <u>3</u> /               | HS9-2100RH-T                        |
| 5962F9953601VXC                                    | <u>3</u> /               | HS9-2100RH-Q                        |
| 5962F9953601V9A                                    | <u>3</u> /               | HS0-2100RH-Q                        |
| 5962F9953602QXC                                    | 34371                    | IS9-2100ARH-8                       |
| 5962F9953602VXC                                    | 34371                    | IS9-2100ARH-Q                       |
| 5962F9953602V9A                                    | 34371                    | IS0-2100ARH-Q                       |

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ No longer available from an approved source of supply.

Vendor CAGE<br/>numberVendor name<br/>and address

34371 Intersil Corporation P.O. Box 883

Melbourne, FL 32902-0883

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.