

Data Sheet April 16, 2007 FN6407.1

Low Jitter Clock Generators for Set-Top Box

The ISL14010 series of devices are general purpose integrated Clock Synthesizers and Generators suited for consumer applications such as Set-top Box, and various other consumer applications.

The selectable reference input accepts 30MHz signal either from crystal or an external source. It is specified to operate with a nominal 3.3V supply and is offered in 16 Ld QFN package.

Contact Factory for other output frequency options.

Ordering Information

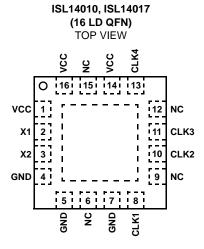
PART NUMBER	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG.#
ISL14010IRZ*	10IZ	-40 to +85	16 LD QFN	L16.3x3
ISL14017IRZ*	17IZ	-40 to +85	16 LD QFN	L16.3x3

^{*}Add "-T" suffix for tape and reel.

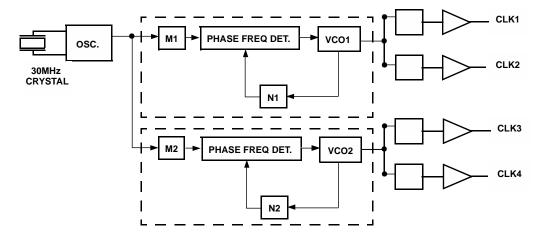
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Selection Table

PART OPTIONS	INPUT FREQUENCY	NUMBER OF OUTPUTS	OUTPUT FREQUENCY	PACKAGE
ISL14010	30MHz	4 LVTTL	25, 30, 48, 54	16 LD QFN
ISL14017	30MHz	4 LVTTL	25, 30, 40, 50	16 LD QFN


Features

- LVTTL Outputs
- · Selectable Crystal or Ref. Clock for Inputs
- Period Jitter ~50ps RMS
- · Single Supply; 3.3V nominal
- Extended Temperature Range: -40°C to +85°C
- · Available in small foot print package
 - 16 Ld QFN 3mmx3mm
- · Pb-Free plus anneal available (RoHS Compliant)


Applications

· Set-Top Boxes

Pinout

Functional Block Diagram

Pin Description

16 LD QFN	SYMBOLS	PIN DESCRIPTION
1,14,16	VCC	Supply Voltage
2	X1	The X1 pin is the terminal 1 of an external 30MHz crystal. This pin is grounded for external CK input.
3	X2	The X2 pin is the terminal 2 of external 30MHz crystal, or external clock input.
4, 5, 7	GND	Ground
8	CLK1	CLK1 Output: 25MHz
10	CLK2	CLK2 Output: 30MHz
11	CLK3	CLK3 Output: 48MHz (40MHz for ISL14017)
13	CLK4	CLK4 Output: 54MHz (50MHz for ISL14017)
6, 9, 12, 15	NC	No Connect

ISL14010, ISL14017

Absolute Maximum Ratings

Machine Model.....>500V

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
16 Ld QFN Package	58	11
Storage Temperature		°C to +150°C
Pb-free reflow profile		ee link below
http://www.intersil.com/pbfree/Pb-Freef	Reflow.asp	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE

 θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.

DC Electrical Specifications

 V_{CC} = 3.3V ±10%, T_A = -40°C to +85°C, Typical values are at T_A = +25°C and V_{CC} = 3.3V, Unless otherwise noted

Chicago dilicimos notos						
SYMBOL	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V _{CC}	Supply Voltage	3.0	3.3	3.6	V
Supply Current	lcc	Supply Current C _L = 5pF on all outputs		11	15	mA
CLOCK INPUT X2 (X1 GROUNI	DED) FOR EXTERN	NAL CLOCK MODE			•	
Input High Level	V _{IH}		1.5		2.4	V
Input Level Low	V _{IL}				0.5	V
Input Current	IIL, IIH	V _{X2} to Ground		0.5		mA
CLOCK OUTPUTS (CLK)	1					ļ.
Output High Level	V _{OH}	I _{OH} = -100μA	V _{CC} - 0.2			V
		I _{OH} = -4mA	2.4			V
		I _{OH} = -6mA	2.1			V
Output Low Level	V _{OL}	I _{OL} = 100μA			0.2	V
		I _{OL} = 4mA			0.4	V
		I _{OL} = 6mA			0.75	V
Output Short Circuit Current	IOSC	CLK = V _{CC} or Gnd	6	13	30	mA
		1				

AC Electrical Specifications $C_L = 5pF$ on all outputs

SYMBOL	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Crystal Frequency	f _{IN}			30		MHz
CLOCK OUTPUTS						
Rise Time	t _R	20% to 80% V _{CC}		1.8		ns
Fall Time	t _F	80% to 20% V _{CC}		1.8		ns
Duty Cycle			40		60	%
Period Jitter	J _P	RMS		50		ps
Power Up Time	t _{PO}	V _{CC} >2.7V		2		ms

FN6407.1 April 16, 2007

Typical Performance Curves (Period Jitter)

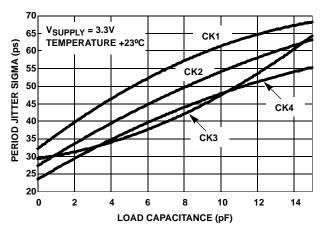
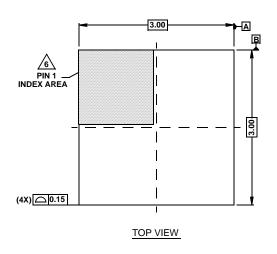
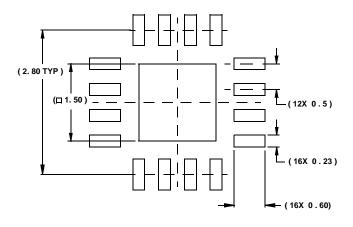


FIGURE 1. STANDARD DEVIATION vs LOAD CAPACITANCE

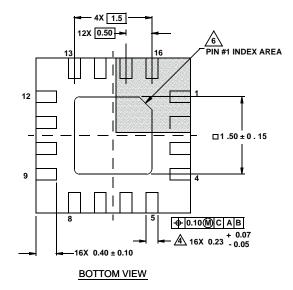
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

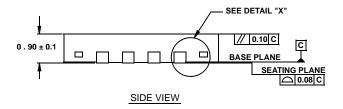

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

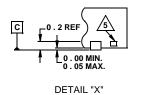

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

L16.3x3


16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
Rev 2, 4/07





TYPICAL RECOMMENDED LAND PATTERN

5

NOTES:

- Dimensions are in millimeters.
 Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
- 3. Unless otherwise specified, tolerance : Decimal ± 0.05
- 4. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 5. Tiebar shown (if present) is a non-functional feature.
- The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 indentifier may be either a mold or mark feature.

FN6407.1 April 16, 2007