September 1998

File Number

3395.6

330MHz, Low Power, Current Feedback Video Operational Amplifier

The HFA1105 is a high speed, low power current feedback amplifier built with Intersil's proprietary complementary bipolar UHF-1 process.

This amplifier features an excellent combination of low power dissipation (58mW) and high performance. The slew rate, bandwidth, and low output impedance (0.08 Ω) make this amplifier a good choice for driving Flash ADCs. Component and composite video systems also benefit from this op amp's excellent gain flatness, and good differential gain and phase specifications. The HFA1105 is ideal for interfacing to Intersil's line of video crosspoint switches (HA4201, HA4600, HA4314, HA4404, HA4344), to create high performance, low power switchers and routers.

The HFA1105 is a low power, high performance upgrade for the CLC406. For a comparable amplifier with output disable or output limiting functions, please see the data sheets for the HFA1145 and HFA1135 respectively.

For Military grade product, please refer to the HFA1145/883 data sheet.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (°C)	PACKAGE	PKG. NO.		
HFA1105IP	-40 to 85	8 Ld PDIP	E8.3		
HFA1105IB (H1105I)	-40 to 85	8 Ld SOIC	M8.15		
HFA11XXEVAL	DIP Evaluation Board for High Speed Op Amps				

Features

• Low Supply Current 5.8mA
• High Input Impedance
Wide -3dB Bandwidth
Very Fast Slew Rate
Gain Flatness (to 75MHz) 0.1dB
Differential Gain
Differential Phase 0.03 Degrees

Applications

- Flash A/D Drivers
- · Video Switching and Routing
- · Professional Video Processing

Pin Compatible Upgrade for CLC406

- · Video Digitizing Boards/Systems
- · Multimedia Systems
- · RGB Preamps
- Medical Imaging
- · Hand Held and Miniaturized RF Equipment
- Battery Powered Communications

Pinout

HFA1105 (PDIP, SOIC) TOP VIEW

Absolute Maximum Ratings

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (°C/W)
PDIP Package	130
SOIC Package	
Maximum Junction Temperature (Die)	175°C
Maximum Junction Temperature (Plastic Package)	
Maximum Storage Temperature Range65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range -40°C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 3) TEST LEVEL	TEMP. (°C)	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS	!	Į.					
Input Offset Voltage		Α	25	-	2	5	mV
		Α	Full	-	3	8	mV
Average Input Offset Voltage Drift		В	Full	-	1	10	μV/ ^o C
Input Offset Voltage	$\Delta V_{CM} = \pm 1.8V$	Α	25	47	50	-	dB
Common-Mode Rejection Ratio	$\Delta V_{CM} = \pm 1.8V$	Α	85	45	48	-	dB
	$\Delta V_{CM} = \pm 1.2V$	А	-40	45	48	-	dB
Input Offset Voltage	$\Delta V_{PS} = \pm 1.8V$	Α	25	50	54	-	dB
Power Supply Rejection Ratio	$\Delta V_{PS} = \pm 1.8V$	Α	85	47	50	-	dB
	$\Delta V_{PS} = \pm 1.2V$	Α	-40	47	50	-	dB
Non-Inverting Input Bias Current		Α	25	-	6	15	μА
		Α	Full	-	10	25	μА
Non-Inverting Input Bias Current Drift		В	Full	-	5	60	nA/ ^o C
Non-Inverting Input Bias Current	$\Delta V_{PS} = \pm 1.8V$	А	25	-	0.5	1	μΑ/V
Power Supply Sensitivity	$\Delta V_{PS} = \pm 1.8V$	Α	85	-	0.8	3	μΑ/V
	$\Delta V_{PS} = \pm 1.2V$	А	-40	-	0.8	3	μΑ/V
Non-Inverting Input Resistance	$\Delta V_{CM} = \pm 1.8 V$	А	25	0.8	1.2	-	MΩ
	$\Delta V_{CM} = \pm 1.8V$	Α	85	0.5	0.8	-	MΩ
	$\Delta V_{CM} = \pm 1.2 V$	А	-40	0.5	0.8	-	ΜΩ
Inverting Input Bias Current		А	25	-	2	7.5	μΑ
		Α	Full	-	5	15	μА
Inverting Input Bias Current Drift		В	Full	-	60	200	nA/ ^o C
Inverting Input Bias Current Common-Mode Sensitivity	$\Delta V_{CM} = \pm 1.8V$	А	25	-	3	6	μA/V
	$\Delta V_{CM} = \pm 1.8V$	А	85	-	4	8	μA/V
	$\Delta V_{CM} = \pm 1.2V$	А	-40	-	4	8	μA/V
Inverting Input Bias Current	$\Delta V_{PS} = \pm 1.8V$	А	25	-	2	5	μΑ/V
Power Supply Sensitivity	$\Delta V_{PS} = \pm 1.8 V$	А	85	-	4	8	μA/V
	$\Delta V_{PS} = \pm 1.2V$	А	-40	-	4	8	μΑ/V

$\textbf{Electrical Specifications} \ \ V_{SUPPLY} = \pm 5 \text{V}, \ A_V = +1, \ R_F = 510 \Omega, \ R_L = 100 \Omega, \ \text{Unless Otherwise Specified} \ \ \textbf{(Continued)}$

PARAMETER	TEST CONDITIONS	(NOTE 3) TEST LEVEL	TEMP.	MIN	ТҮР	MAX	UNITS
Inverting Input Resistance		С	25	-	60	-	Ω
Input Capacitance		С	25	-	1.6	-	pF
Input Voltage Common Mode Range		Α	25, 85	±1.8	±2.4	-	V
(Implied by V_{IO} CMRR, +R _{IN} , and -I _{BIAS} CMS Tests)		Α	-40	±1.2	±1.7	-	V
Input Noise Voltage Density (Note 6)	f = 100kHz	В	25	-	3.5	-	nV/√ Hz
Non-Inverting Input Noise Current Density (Note 6)	f = 100kHz	В	25	-	2.5	-	pA/√ Hz
Inverting Input Noise Current Density (Note 6)	f = 100kHz	В	25	-	20	-	pA/√Hz
TRANSFER CHARACTERISTICS		I	ı				
Open Loop Transimpedance Gain	A _V = -1	С	25	-	500	-	kΩ
AC CHARACTERISTICS $R_F = 510\Omega$, Unless Otherwis	se Specified				-	I	
-3dB Bandwidth	$A_V = +1, +R_S = 510\Omega$	В	25	-	270	-	MHz
$(V_{OUT} = 0.2V_{P-P}, Note 6)$		В	Full	-	240	-	MHz
	$A_V = -1, R_F = 425\Omega$	В	25	-	300	-	MHz
	A _V = +2	В	25	-	330	-	MHz
		В	Full	-	260	-	MHz
	$A_V = +10, R_F = 180\Omega$	В	25	-	130	-	MHz
		В	Full	-	90	-	MHz
Full Power Bandwidth	$A_V = +1, +R_S = 510\Omega$	В	25	-	135	-	MHz
$(V_{OUT} = 5V_{P-P} \text{ at } A_V = +2/-1,$	A _V = -1	В	25	-	140	-	MHz
$4V_{P-P}$ at $A_V = +1$, Note 6)	A _V = +2	В	25	-	115	-	MHz
Gain Flatness	To 25MHz	В	25	-	±0.03	-	dB
$(A_V = +2, V_{OUT} = 0.2V_{P-P}, Note 6)$		В	Full	-	±0.04	-	dB
	To 75MHz	В	25	-	±0.11	-	dB
		В	Full	-	±0.22	-	dB
Gain Flatness	To 25MHz	В	25	-	±0.03	-	dB
$(A_V = +1, +R_S = 510\Omega, V_{OUT} = 0.2V_{P-P}, Note 6)$	To 75MHz	В	25	-	±0.09	-	dB
Minimum Stable gain		Α	Full	-	1	-	V/V
OUTPUT CHARACTERISTICS $A_V = +2$, $R_F = 510\Omega$, U	Jnless Otherwise Specified	d			-	I	
Output Voltage Swing (Note 6)	$A_V = -1, R_L = 100\Omega$	Α	25	±3	±3.4	-	V
		Α	Full	±2.8	±3	-	V
Output Current (Note 6)	$A_V = -1, R_L = 50\Omega$	Α	25, 85	50	60	-	mA
		Α	-40	28	42	-	mA
Output Short Circuit Current		В	25	-	90	-	mA
Closed Loop Output Impedance (Note 6)	DC	В	25	-	0.08	-	Ω
Second Harmonic Distortion	10MHz	В	25	-	-48	-	dBc
$(V_{OUT} = 2V_{P-P}, Note 6)$	20MHz	В	25	-	-44	-	dBc
Third Harmonic Distortion	10MHz	В	25	-	-50	-	dBc
$(V_{OUT} = 2V_{P-P}, Note 6)$	20MHz	В	25	-	-45	-	dBc
Reverse Isolation (S ₁₂ , Note 6)	30MHz	В	25	-	-55	-	dB
TRANSIENT CHARACTERISTICS A _V = +2, R _F = 5109	Ω , Unless Otherwise Spec	ified	ı	-			I
Rise and Fall Times	V _{OUT} = 0.5V _{P-P}	В	25	-	1.1	-	ns
		1	1	T. Control of the Con	1	1	1

Electrical Specifications $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified (Continued)

DADAMETER	TEST CONDITIONS	(NOTE 3) TEST LEVEL	TEMP. (°C)	MINI	TYP	MAY	UNITS
PARAMETER	TEST CONDITIONS			MIN		MAX	
Overshoot (Note 4) (V _{OUT} = 0 to 0.5V, V _{IN} t _{RISE} = 1ns)	+OS	В	25	-	3	-	%
	-OS	В	25	-	5	-	%
Overshoot (Note 4)	+OS	В	25	-	3	-	%
$(V_{OUT} = 0.5V_{P-P}, V_{IN} t_{RISE} = 1ns)$	-OS	В	25	-	11	-	%
Slew Rate	+SR	В	25	-	1000	-	V/µs
$(V_{OUT} = 4V_{P-P}, A_V = +1, +R_S = 510\Omega)$		В	Full	-	975	-	V/μs
	-SR (Note 5)	В	25	-	650	-	V/µs
		В	Full	-	580	-	V/µs
Slew Rate	+SR	В	25	-	1400	-	V/μs
$(V_{OUT} = 5V_{P-P}, A_V = +2)$		В	Full	-	1200	-	V/µs
	-SR (Note 5)	В	25	-	800	-	V/µs
		В	Full	-	700	-	V/µs
Slew Rate	+SR	В	25	-	2100	-	V/µs
$(V_{OUT} = 5V_{P-P}, A_V = -1)$		В	Full	-	1900	-	V/µs
	-SR (Note 5)	В	25	-	1000	-	V/µs
		В	Full	-	900	-	V/µs
Settling Time	To 0.1%	В	25	-	15	-	ns
$(V_{OUT} = +2V \text{ to } 0V \text{ step, Note 6})$	To 0.05%	В	25	-	23	-	ns
	To 0.02%	В	25	-	30	-	ns
Overdrive Recovery Time	V _{IN} = ±2V	В	25	-	8.5	-	ns
VIDEO CHARACTERISTICS $A_V = +2$, $R_F = 510\Omega$, Un	less Otherwise Specified						
Differential Gain	$R_L = 150\Omega$	В	25	-	0.02	-	%
(f = 3.58MHz)	$R_L = 75\Omega$	В	25	-	0.03	-	%
Differential Phase	$R_L = 150\Omega$	В	25	-	0.03	-	Degrees
(f = 3.58MHz)	$R_L = 75\Omega$	В	25	-	0.05	-	Degrees
POWER SUPPLY CHARACTERISTICS		I	I	I	ı	ı	I
Power Supply Range		С	25	±4.5	-	±5.5	V
Power Supply Current (Note 6)		Α	25	-	5.8	6.1	mA
		Α	Full	_	5.9	6.3	mA

NOTES:

- 3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
- 4. Undershoot dominates for output signal swings below GND (e.g., 0.5V_{P-P}), yielding a higher overshoot limit compared to the V_{OUT} = 0 to 0.5V condition. See the "Application Information" section for details.
- 5. Slew rates are asymmetrical if the output swings below GND (e.g. a bipolar signal). Positive unipolar output signals have symmetric positive and negative slew rates comparable to the +SR specification. See the "Application Information" section, and the pulse response graphs for details.
- 6. See Typical Performance Curves for more information.

Application Information

Optimum Feedback Resistor

Although a current feedback amplifier's bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback

amplifier's unique relationship between bandwidth and $R_F.$ All current feedback amplifiers require a feedback resistor, even for unity gain applications, and $R_F,$ in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to $R_F.$ The HFA1105 design is optimized for $R_F=510\Omega$ at a gain of +2. Decreasing R_F decreases stability, resulting in excessive peaking and

overshoot (Note: Capacitive feedback will cause the same problems due to the feedback impedance decrease at higher frequencies). At higher gains, however, the amplifier is more stable so R_{F} can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended R_F values for various gains, and the expected bandwidth. For a gain of +1, a resistor (+ R_S) in series with +IN is required to reduce gain peaking and increase stability.

GAIN (A _{CL})	R _F (Ω)	BANDWIDTH (MHz)
-1	425	300
+1	510 (+R _S = 510Ω)	270
+2	510	330
+5	200	300
+10	180	130

Non-Inverting Input Source Impedance

For best operation, the DC source impedance seen by the non-inverting input should be $\geq 50\Omega$. This is especially important in inverting gain configurations where the non-inverting input would normally be connected directly to GND.

Pulse Undershoot and Asymmetrical Slew Rates

The HFA1105 utilizes a quasi-complementary output stage to achieve high output current while minimizing quiescent supply current. In this approach, a composite device replaces the traditional PNP pulldown transistor. The composite device switches modes after crossing 0V, resulting in added distortion for signals swinging below ground, and an increased undershoot on the negative portion of the output waveform (See Figures 5, 8, and 11). This undershoot isn't present for small bipolar signals, or large positive signals. Another artifact of the composite device is asymmetrical slew rates for output signals with a negative voltage component. The slew rate degrades as the output signal crosses through 0V (See Figures 5, 8, and 11), resulting in a slower overall negative slew rate. Positive only signals have symmetrical slew rates as illustrated in the large signal positive pulse response graphs (See Figures 4, 7, and 10).

PC Board Layout

The amplifier's frequency response depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value ($10\mu F$) tantalum in parallel with a small value ($0.1\mu F$) chip capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the device's input and output connections. Capacitance, parasitic or planned, connected to the output must be minimized, or isolated as discussed in the next section.

Care must also be taken to minimize the capacitance to ground at the amplifier's inverting input (-IN), as this capacitance causes gain peaking, pulse overshoot, and if large enough, instability. To reduce this capacitance, the designer should remove the ground plane under traces connected to

-IN, and keep connections to -IN as short as possible.

An example of a good high frequency layout is the Evaluation Board shown in Figure 2.

Driving Capacitive Loads

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (R_S) in series with the output prior to the capacitance.

Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the R_S and C_L combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.

 R_S and C_L form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 270MHz (for A_V = +1). By decreasing R_S as C_L increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, the bandwidth decreases as the load capacitance increases. For example, at A_V = +1, R_S = 62 Ω , C_L = 40pF, the overall bandwidth is limited to 180MHz, and bandwidth drops to 75MHz at A_V = +1, R_S = 8 Ω , C_L = 400pF.

FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

Evaluation Board

The performance of the HFA1105 may be evaluated using the HFA11XX Evaluation Board.

The layout and schematic of the board are shown in Figure 2. To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.

FIGURE 2A. TOP LAYOUT

FIGURE 2B. BOTTOM LAYOUT

FIGURE 2C. SCHEMATIC

FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT

 $\hline \textbf{Typical Performance Curves} \quad \forall_{SUPPLY} = \pm 5 \forall, \ R_F = 510 \Omega, \ T_A = 25^{0} C, \ R_L = 100 \Omega, \ Unless \ Otherwise \ Specified \ Typical Performance Curves \ \forall_{SUPPLY} = \pm 5 \forall, \ R_F = 510 \Omega, \ T_A = 25^{0} C, \ R_L = 100 \Omega, \ Unless \ Otherwise \ Specified \ Typical Performance Curves \ \forall_{SUPPLY} = \pm 5 \forall, \ R_F = 510 \Omega, \ T_A = 25^{0} C, \ R_L = 100 \Omega, \ Unless \ Otherwise \ Specified \ Typical Performance Curves \ \forall_{SUPPLY} = \pm 5 \forall, \ R_F = 510 \Omega, \ T_A = 25^{0} C, \ R_L = 100 \Omega, \ Unless \ Otherwise \ Specified \ Typical Performance Curves \ V_{SUPPLY} = \pm 5 \forall, \ R_F = 510 \Omega, \ T_A = 25^{0} C, \ R_L = 100 \Omega, \ Unless \ Otherwise \ Specified \ Typical Performance Curves \ V_{SUPPLY} = \pm 5 \forall N_F = 100 \Omega, \ V_{A} = 100 \Omega, \ V_{A}$

FIGURE 3. SMALL SIGNAL PULSE RESPONSE

FIGURE 4. LARGE SIGNAL POSITIVE PULSE RESPONSE

FIGURE 5. LARGE SIGNAL BIPOLAR PULSE RESPONSE

FIGURE 6. SMALL SIGNAL PULSE RESPONSE

FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE

FIGURE 8. LARGE SIGNAL BIPOLAR PULSE RESPONSE

$\textbf{Typical Performance Curves} \quad V_{SUPPLY} = \pm 5 \text{V}, \ R_F = 510 \Omega, \ T_A = 25 \text{°C}, \ R_L = 100 \Omega, \ Unless \ Otherwise \ Specified \ \textbf{(Continued)}$

FIGURE 9. SMALL SIGNAL PULSE RESPONSE

FIGURE 11. LARGE SIGNAL BIPOLAR PULSE RESPONSE

FIGURE 13. FREQUENCY RESPONSE

FIGURE 10. LARGE SIGNAL POSITIVE PULSE RESPONSE

FIGURE 12. FREQUENCY RESPONSE

FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES

$\textbf{Typical Performance Curves} \quad V_{SUPPLY} = \pm 5 \text{V}, \ R_F = 510 \Omega, \ T_A = 25^{\circ}\text{C}, \ R_L = 100 \Omega, \ \text{Unless Otherwise Specified} \quad \text{(Continued)}$

FIGURE 15. FULL POWER BANDWIDTH

FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS

FIGURE 17. -3dB BANDWIDTH vs TEMPERATURE

FIGURE 18. GAIN FLATNESS

FIGURE 19. REVERSE ISOLATION

FIGURE 20. OUTPUT IMPEDANCE

$\textbf{\textit{Typical Performance Curves}} \quad \forall_{SUPPLY} = \pm 5 \forall \text{V}, \ R_F = 510 \Omega, \ T_A = 25 \text{°C}, \ R_L = 100 \Omega, \ Unless \ Otherwise \ Specified \ \textbf{(Continued)}$

FIGURE 21. SETTLING RESPONSE

FIGURE 22. SECOND HARMONIC DISTORTION vs Pout

FIGURE 23. THIRD HARMONIC DISTORTION vs P_{OUT}

FIGURE 24. OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 25. INPUT NOISE CHARACTERISTICS

FIGURE 26. SUPPLY CURRENT vs SUPPLY VOLTAGE

Die Characteristics

DIE DIMENSIONS:

59 mils x 59 mils x 19 mils 1500μm x 1500μm x 483μm

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.4kÅ

Type: Metal 2: AICu(2%)

Thickness: Metal 2: 16kÅ ±0.8kÅ

PASSIVATION:

Type: Nitride

Thickness: 4kÅ ±0.5kÅ

TRANSISTOR COUNT:

75

SUBSTRATE POTENTIAL (Powered Up):

Floating

(Recommend Connection to V-)

Metallization Mask Layout

HFA1105

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com