Solenoid and Motor Driver (1/2 H Driver)

Features:

- Chip encapsulated in a 5-lead plastic TO-220-style package (VERSA-VI)
- Output short-circuit protection
- Thermal overload protection
- Solenoid inductive "kick" protection with internal-clamp diodes
- Output sink and source capacity of 600-mA minimum overtemperature
- Horizontal and vertical mounting packages available
- Separate sink circuit and source circuit, each individually controlled
- Inputs can be driven by TTL logic levels and CMOS logic levels
- Low V_{CE}(sat)

The RCA-CA3169 is a monolithic integrated circuit capable of driving lamps and other devices that can be changed between two states (on or off). Transistors, SCR's, and triacs are some of the solid-state devices that can be controlled by the CA3169. This device can also control relays, solenoids (latching or non-latching), motors (DC - forward and reverse) and DC stepping motors.

The CA3169 contains a separate source-driver circuit with internal current-limiting protection and a separate sink-driver circuit. The sink driver contains an energy-absorbing diode to protect the device against any inductive "kick" during state changes. The CA3169 is protected against overvoltage conditions on the output drivers and overtemperature conditions (thermal-shutdown protection).

The input operating levels are TTL compatible. The source and sink outputs are in their off condition (non-conducting) when their respective inputs are in a HI state, or open-circuited. The outputs are in their on state (conducting) when their respective inputs are LO. The VERSA-VI package is available with two lead configurations. The CA3169 has a vertical-mount lead form, and the CA3169M has a horizontal-mount lead form.

Applications:

- Latching solenoid driver (single and multiple)
- Non-latching solenoid driver
- Relay driver
- Lamp controller
- Lamp driver
- Motor controller (forward and reverse)
- Stepper motor controller
- On-off logic controllers (TTL logic)
- Intermediate power driver
- Triac, SCR, and transistor drivers

TERMINAL ASSIGNMENT

File Number 1277

CA3169

MAXIMUM RATINGS, Absolute-Maximum Values:

SUPPLY VOLTAGE (Pin 1 to GND)
Negative1.4 V DC
SINK CURRENT
SOURCE CURRENT
Current Limiting
INPUT VOLTAGE:
SINK INPUT (Pin 4 to GND)
SOURCE INPUT (Pin 5 to GND)
MAXIMUM FORWARD CURRENT Diode D1
MAXIMUM FORWARD CURRENT-Diode D2
POWER DISSIPATION, PD at TA=90°C
THERMAL RESISTANCE, JUNCTION TO CASE
JUNCTION TEMPERATURE
OPERATING TEMPERATURE40° to +85°C
STORAGE TEMPERATURE55° to +150° C
EAD TEMPERATURE (DURING SOLDERING):
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$
from case for 10 s max
265°C

Fig. 1 - 1/2 H driver function diagram.

TRUTH TABLE FOR SOLENOID DRIVER

TTL Logic Conditions: $~0 \leq V_L \leq 0.8, \, 1.9 \leq V_H \leq 5.5$

INPUT A SOURCE IN	INPUT B SINK IN	OUTPUT A SOURCE OUT	OUTPUT B SINK OUT		
٧٢	٧L	HIGH (ON)	LOW (ON)		
٧L	VН	HIGH (ON)	(OFF)		
٧н	VL	(OFF)	LOW (ON)		
Vн	٧H	(OFF)	(OFF)		

ELECTRICAL CHARACTERISTICS at TA=25°C, VCC=10.5 V to 18 V Unless otherwise specified

CHARACTERISTIC	TEST CONDITIONS	LIMITS			UNITS
o,,anao, emorito		Min.	Тур.	Max.	
Output Leakage Current,	Inputs Open	~110	±0.5	110	
Pin 2	V _{CC} =4 V to 18 V				
	Source and Sink				
See Fig. 6	Loads=20 Ω				μΑ
Cutaut Laskaas Current	Innuta Open	-110	±0.5	110	
Output Leakage Current, Pin 3	Inputs Open VCC=4 V to 18 V	-110	10.5	'''	1
PIN 3	Source and Sink	ļ			
See Fig. 6	Loads=20 Ω				
Thermal Resistance,	20000 20 1				
Junction to Case $ heta_{ m JC}$			3	4	°C/W
Quiescent Current,	Device "ON"				
Pin 1	Input Terminals		70	100	l
	Shorted, V _{CC} =14 V		,,,	100	l
See Fig. 5		1			mA.
Quiescent Current,	Device "OFF"] ''''`
Pin 1	Input Terminals		17	40	
	Open, V _{CC} =14 V	_	17	40	
See Fig. 4					
Thermal Shutdown	R _L =Short Circuit	128	140	162	°c
Temperature		,20	1	1.02	
Overvoltage Shutdown-Circuit					
Upper Trip Point,	R _L =20 Ω	20	25	27	
Pin 1 Voltage See Fig. 8		-	<u> </u>		V
Overvoltage Shutdown-Circuit					
Lower Trip Point,	R _L =20 Ω	18	21.4	23	
Pin 1 Voltage See Fig. 8	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Input Logic Levels; Source Input	T T T T T T T T T T T T T T T T T T T			ı	
Input Low Threshold	V _{CC} =14 V	i			1
Sink or Source VIL	See Note 1		0.4	0.8	
Input High Threshold	V _{CC} =14 V	<u> </u>			\ \
Sink or Source VIH		1.9	2.4		
	See Note 2				
Input Low Current	$V_{IN} \leq 0.4 \text{ V}$	-0.9	-0.3		mA
Sink or Source ILL	V IN = 0.4 V	0.9	0.3		
Input High Current	V _{IN} ≤ 5.5 V	-110	-23	110	μΑ
Sink or Source I _{IH}	- IIV = 0.0 4]	[Į ''Ŭ	, , , ,

NOTE 1: |SOURCE or |SINK \leq 600 mA, VOS \leq 1.5 V, VSINK \leq 0.75 V. NOTE 2: |SOURCE or |SINK \leq 100 $\mu\text{A},$ VSOURCE = GND, for VSINK 20 Ω to VCC.

CA3169

ELECTRICAL CHARACTERISTICS (Cont'd)

CHARACTERISTIC	TEST CONDITIONS		LIMITS			
		Min.	Тур.	Max.	UNITS	
Source Outputs	<u> </u>					
Output Voltage, VOS Pin 2 See Note 3 See Fig. 7	Referenced to V _{CC} with I _{SOURCE} = 600 mA		1	1.6	v	
Short-Circuit Current Limit, Pin 2 to Ground		0.65	1.11	2.6	А	
Turn-On Delay to Output-On, Pin 2	C _L =100 pF, R _L =33 Ω		0.45	5.6		
Turn-Off Delay to Output-Off Pin 2	C _L =100 pF, R _L =33 Ω	-	5	55	μs	
Sink Outputs					•	
Output Saturation Voltage V ₃ See Note 3 See Fig. 10	ISINK=600 mA, VIN ≤ 0.4 V		0.3	0.85	0.85 V	
Output Saturation Voltage V ₃ See Note 3 See Fig. 10	ISINK≈1000 mA V _{IN} ≤ 0.4 V		0.8	1.65		
Turn-On Delay to Output-On Pin 3 (TON)	C _L =100 pF, R _L =33 Ω to V _{CC}		0.45	5.6		
Turn-Off Delay to Output-Off Pin 3 (TOFF)	C _L =100 pF, R _L =33 Ω to V _{CC}		0.95	25	μS	

NOTE 3: Measured over temperature range of -40°C to 85°C.

Fig. 2 - Detailed schematic of the input circuit for CA3169.

Fig. 3 - Detailed schematic of the output circuit for CA3169.

598

TEST CIRCUITS (VCC = VIN = PIN 1 VOLTAGE)

9208-33622

Fig. 4 - Quiescent current device "OFF"

Fig. 5 - Quiescent current device "ON".

Fig. 6 - Output leakage currents.

Fig. 7 - Output source voltage (referenced to

PROCEDURE

- 1. Measure V₁₂.
- 2. Increase V_{CC} until $V_{12} \ge 2 V$.
- 3. Measure VCC; this voltage is the high trip point. Pin 2 should be off; i.e., pin 3 should
- 4. Observe and measure the voltage at pin 3.
- Decrease V_{CC} until pin 3 switches, i.e., ≤ 18 V. The supply voltage will be the low trip point voltage.

Fig. 8 - Overvoltage protection.

When VCC is turned on, I iN should be equal to or greater than 1 A. Thermal shutdown will operate properly if the input current drops below 0.5 A (0.3 A typ.) in 10 to 15 seconds. Cover the unit during this test in the event that the thermal shutdown is not operating properly.

Fig. 9 - Thermal shutdown.

Fig. 10 - Output saturation voltage.

CA3169

When input A goes low, lamp A will light. When input B goes low, lamp B will light.

Fig. 11 - Lamp driver.

Fig. 12 - Non-latching solenoid.

Relay A will close when input A goes low. Relay B will close when input B goes low. Both relays will close when both inputs go low.

Fig. 13 - Relay driver.

9209-33631

When opposing inputs go low, the motor will switch direction; if source input A and sink input B both go low, current will flow from A to B. If source input B and sink input A both go low, current will flow from B to A.

Fig. 14 - Motor driver or latching solenoid driver.