

Features

- High reliability and rugged hermetic construction
- Couples AC and DC signals
- 1000 Vdc electrical isolation
- Matched photodiodes
- Excellent linearity and stability

Description

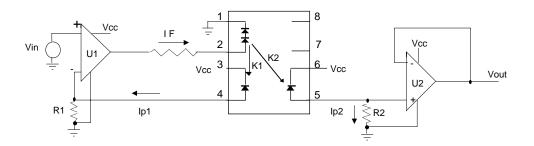
The OLH7000 linear optocoupler consists of two LED in series coupled to two PIN photodiode detectors.

The photodiode on the input side acts as a feedback device permitting an external feedback loop to ensure constant LED light output. A similar matching photodiode on the output side is used to drive an output circuit that is electrically isolated from the input. A fixed relationship is thus maintained between input and output. This technique compensates for the LED's nonlinear, time and temperature characteristics.

Each OLH7000 is mounted and coupled in a hermetic 8-pin ceramic DIP providing 1000 Vdc electrical isolation between input and output.

NOTES:

1. Measured between pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.


Absolute Maximum Ratings

Coupled	
Input to Output Isolation Voltage	± 1000Vdc -65°C to +150°C
Storage Temperature Range	
Operation Temperature Range	-55°C to +125°C
Mounting Temperature Range (3 minutes max.)	240°C
Total Power Dissipation	250mW
Input Diode	
Average Input Current	60mA
Peak Forward Current (≤ 1mS duration)	100mA
Reverse Voltage	3.0V
Power Dissipation	100mW
Output Detector	
Reverse Voltage	30V
Forward voltage	.3V
i orward voltage	.50

ELECTRICAL CHARACTERISTIC $(T_A = 25^{\circ} C)$)					
Parameter	Symbol	Min	Тур.	Max	Units	Test Conditions	Fig.	Note
LED Emitter								
Forward Voltage	VF		2.5	3.3	V	I _F = 10 mA		
ReverseVoltage	VR	5.0			V	I _R = 100μA		
Photodiode Detector								
Dark Current	ID		1	25	nA	$V_{_{R}} = 15 \text{ V}, \ I_{_{F}} = 0 \text{ mA}$		
Open Circuit Voltage	Voc		500		mV	I _F = 10 mA		
Junction Capacitance	CJ		12		pF	V _F = 0 v, f = 1Mhz		

25 °C)

ELECTRICAL CHARACTERISTIC $(T_A = 25 \degree C)$								
Parameter	Symbol	Min	Тур.	Max	Units	Test Conditions	Fig.	Note
Coupled Characteristics								
K1, Servo Current Gain (I _{P1} / I _F)	K1	.0035	.0050	.0065		$I_{_{\rm F}}$ = 10 mA, $V_{_{ m det}}$ = -15 V		
Servo Current	I _{P1}		50		μA	$I_{_{\rm F}}$ = 10 mA, $V_{_{ m det}}$ = -15 V		
K2, Forward Current Gain (I _{P2} / I _F)	K2	.0035	.0050	.0065		$I_{_{\rm F}}$ = 10 mA, $V_{_{ m det}}$ = -15 V		
Forward Current	I _{P2}		50		μA	$I_{_{\rm F}}$ = 10 mA, $V_{_{ m det}}$ = -15 V		
K3, Transfer Gain (K2 / K1)	K3	0.75	1.00	1.25		$I_{_{\rm F}}$ = 10 mA, $V_{_{ m det}}$ = -15 V		
Frequency Response (-3db)	BW		200		KHz	$I_{_F}$ = 10 mA ± 4 mA, R _L = 50 Ω		
Phase Response@200KHz			- 45		Deg.	$I_{_F}$ = 10 mA ± 4 mA, R _L = 50 Ω		
Rise Time Fall Time	tr tf		2 2		μS μS	$\begin{split} I_{_F} &= 10 \text{ mA} \pm 4 \text{ mA}, \ R_{_L} = 50 \Omega \\ I_{_F} &= 10 \text{ mA} \pm 4 \text{ mA}, \ R_{_L} = 50 \Omega \end{split}$		
Input-Output Capacitance	C _{I-O}		1.5		pF	f = 1 MHz		
Insulation Resistance	R _{I-O}		10		GΩ	V _{I-O} = 500 V _{DC}		
Withstand Test Voltage	WTV	1000			V _{DC}	$RH \leq 50\%, \ I_{_{I\!-\!O}} \leq 1 \ \mu A, \ 1 \ sec.$		

This typical application circuit uses an operrational amplifier at the input side to drive the LEDs. The output photodiode is connected to a non-inverting voltage follower amplifier. The overall transfer gain, Vo / Vin, equals (K2 • R2) / (K1 • R1). Since (K2 / K1) = K3, the circuit gain becomes K3 (R2 / R1).