

Current Transducer LA 55-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Primary nominal r.m.s. current 50 Α I_{PN} 0 .. ± 70 Primary current, measuring range Α R_{M} $T_{\Lambda} = 70^{\circ}C$ $| T_A = 85^{\circ}C$ Measuring resistance @ @ ± 50 A _{max} with ± 12 V 100 60 Ω @ ± 70 A _{max} 10 50 60¹⁾ 60¹⁾ Ω @ ± 50 A _{max} 50 160 135 155 Ω with ± 15 V $@ \pm 70 A_{max}$ 50 90 135²⁾135²⁾ Ω Secondary nominal r.m.s. current 50 mΑ 1:1000 Conversion ratio Supply voltage (± 5 %) ± 12 .. 15 Current consumption $10(@\pm15V)+I_{s} mA$

2.5

DC .. 200

R.m.s. voltage for AC isolation test, 50 Hz, 1 mn

Accuracy - Dynamic performance data									
X	Accuracy @ I _{PN} , T _A = 25°C	@ ± 15 V (± 5 %)	± 0.65		%				
		@ ± 12 15 V (± 5 %)	± 0.90		%				
$\mathbf{e}_{\scriptscriptstyle extsf{L}}$	Linearity		< 0.15		%				
			Тур	Max					
I_{\circ}	Offset current @ $I_p = 0$, $T_{\Delta} = 25^{\circ}C$			± 0.2	m A				
I _{OM}	Residual current 3 @ $\mathbf{I}_{p} = 0$, after an overload of 3 x \mathbf{I}_{pN}			± 0.3	m A				
I _{OT}	Thermal drift of I	0°C + 70°C	± 0.1	± 0.5	m A				
0.	Ç	- 25°C + 85°C	± 0.1	± 0.6	m A				
t _{ra}	Reaction time @ 10 % of Iph	J	< 500		ns				
t,	Response time @ 90 % of I	•	< 1		μs				
di/dt	di/dt accurately followed	• • •	> 200		Aμs				

G	General data						
$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature		- 25 + 85	°C			
T _s	Ambient storage temperature		- 40 + 90	°C			
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	80	Ω			
		$T_A = 85^{\circ}C$	85	Ω			
m	Mass		18	g			
	Standards 4)		EN 50178(97.10.01)				

50 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

kV

kHz

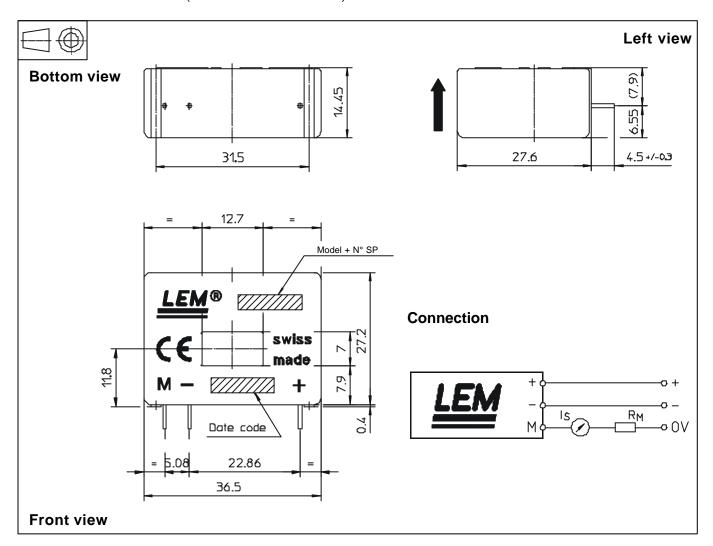
- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes : 1) Measuring range limited to ± 60 A max

Frequency bandwidth (- 1 dB)


f

- ²⁾ Measuring range limited to ± 55 A_{max}
- 3) Result of the coercive field of the magnetic circuit
- ⁴⁾ A list of corresponding tests is available

030709/9

Dimensions LA 55-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Primary through-hole
- Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins 0.63 x 0.56mm 0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.