

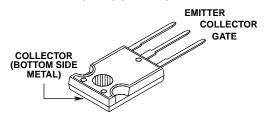
HGTG24N60D1D

April 1995

24A, 600V N-Channel IGBT with Anti-Parallel Ultrafast Diode

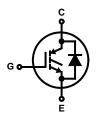
Features

- 24A, 600V
- Latch Free Operation
- Typical Fall Time <500ns
- Low Conduction Loss
- With Anti-Parallel Diode
- t_{RR} < 60ns


Description

The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C. The diode used in parallel with the IGBT is an ultrafast (t_{RR} < 60ns) with soft recovery characteristic.

The IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.


Package

JEDEC STYLE TO-247

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND			
HGTG24N60D1D	TO-247	G24N60D1D			

NOTE: When ordering, use the entire part number.

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specific

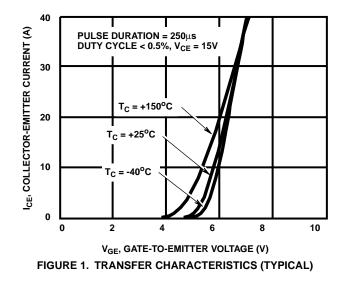
	HGTG24N60D1D	UNITS
Collector-Emitter Voltage	600	V
Collector-Gate Voltage $R_{GE} = 1M\Omega \dots BV_{CGR}$	600	V
Collector Current Continuous at $T_C = +25^{\circ}C$ I_{C25}	40	Α
at $T_C = +90^{\circ}C \dots I_{C90}$	24	Α
Collector Current Pulsed (Note 1)	96	Α
Gate-Emitter Voltage ContinuousV _{GES}	±25	V
Switching Safe Operating Area at T _J = +150°C	60A at 0.8 BV _{CES}	-
Diode Forward Current at $T_C = +25^{\circ}C$ I_{F25}	40	Α
at $T_C = +90^{\circ}C$ I_{F90}	24	Α
Power Dissipation Total at $T_C = +25^{\circ}C$	125	W
Power Dissipation Derating T _C > +25°C	1.0	W/°C
Operating and Storage Junction Temperature Range	-55 to +150	°C
Maximum Lead Temperature for Soldering	260	°C

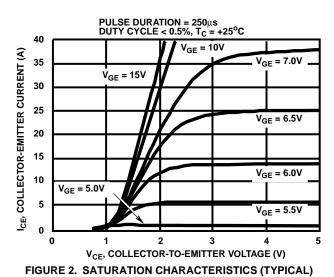
NOTE: 1. Repetitive Rating: Pulse width limited by maximum junction temperature.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4,969,027							

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright © Harris Corporation 1995


Specifications HGTG24N60D1D


Electrical Specifications $T_C = +25^{\circ}C$, Unless Otherwise Specified

		TEST CONDITIONS		LIMITS			
PARAMETERS	SYMBOL			MIN	TYP	MAX	UNITS
Collector-Emitter Breakdown Voltage	BV _{CES}	$I_C = 280\mu A, V_{GE} = 0V$		600	-	-	V
Collector-Emitter Leakage Voltage	I _{CES}	V _{CE} = BV _{CES}	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	-	280	μΑ
		$V_{CE} = 0.8 \text{ BV}_{CES}$	$T_C = +125^{\circ}C$	-	-	5.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	$I_{C} = I_{C90},$ $V_{GE} = 15V$	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	1.7	2.3	٧
			$T_C = +125^{\circ}C$	-	1.9	2.5	V
Gate-Emitter Threshold Voltage	V _{GE(TH)}	$I_C = 250\mu A,$ $V_{CE} = V_{GE}$	$T_C = +25^{\circ}C$	3.0	4.5	6.0	V
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		-	-	±500	nA
Gate-Emitter Plateau Voltage	V_{GEP}	$I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$		-	6.3	-	V
On-State Gate Charge	Q _{G(ON)}	$I_{C} = I_{C90},$ $V_{CE} = 0.5 \text{ BV}_{CES}$	V _{GE} = 15V	-	120	155	nC
			V _{GE} = 20V	-	155	200	nC
Current Turn-On Delay Time	t _{D(ON)I}	$L = 500\mu H$, $I_C = I_{C90}$, $R_G = 25\Omega$,		-	100	-	ns
Current Rise Time	t _{RI}	$V_{GE} = 15V, I_{J} = +7$ $V_{CE} = 0.8 \text{ BV}_{CES}$	$V_{GE} = 15V, T_{J} = +150^{\circ}C,$ $V_{CE} = 0.8 \text{ BV}_{CES}$		150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)I}	1			700	900	ns
Current Fall Time	t _{FI}			-	450	600	ns
Turn-Off Energy (Note 1)	W _{OFF}			-	4.3	-	mJ
Thermal Resistance (IGBT)	$R_{ heta JC}$			-	-	1.00	°C/W
Thermal Resistance Diode	$R_{ heta JC}$			-	-	1.50	°C/W
Diode Forward Voltage	V _{EC}	I _{EC} = 24A		-	-	1.50	V
Diode Reverse Recovery Time	t _{RR}	$I_{EC} = 24A$, $di/dt = 100A/\mu s$		-	-	60	ns

NOTE: 1. Turn-Off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTG24N60D1D was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves

Typical Performance Curves (Continued) 1000 $V_{CE} = 480V$, $V_{GE} = 10V$ AND 15V, V_{GE} = 15V 900 $T_J = +150^{\circ}C$, $R_G = 25\Omega$, $L = 500\mu H$ 40 800 € 700 I_{CE}, COLLECTOR CURRENT FALL TIME (ns) 30 600 500 400 20 ij, 300 10 200 100 0 +50 +75 +100 +125 +150 10 +25 40 ICE, COLLECTOR-EMITTER CURRENT (A) T_C, CASE TEMPERATURE (°C) FIGURE 3. DC COLLECTOR CURRENT vs CASE TEMPERATURE FIGURE 4. FALL TIME vs COLLECTOR-EMITTER CURRENT 6000 600 10.0 f = 1MHz COLLECTOR-EMITTER VOLTAGE (V) 5000 GATE-EMITTER VOLTAGE (V) 450 300 C_{ISS} 0.75 BV_{CES} 0.75 BV_{CES} 0.50 BV_{CES} 0.50 BV_{CES} 0.25 BV_{CES} 0.25 BV_{CES} 150 $R_L = 30\Omega$ 1000 Coss V_{GË}, I_{G(REF)} = 1.83mA V_{GE} = 10V V_{CE}, 0 15 20 10 I_{G(REF)} I_{G(REF)} 20 80 TIME (µs) V_{CE}, COLLECTOR-TO-EMITTER VOLTAGE (V) I_{G(ACT)} I_{G(ACT)} FIGURE 5. CAPACITANCE vs COLLECTOR-EMITTER VOLTAGE FIGURE 6. NORMALIZED SWITCHING WAVEFORMS AT CON-STANT GATE CURRENT (REFER TO APPLICATION NOTES AN7254 AND AN7260) 7.00 3 $T_J = +150$ °C, $R_G = 25\Omega$, Woff, TURN-OFF SWITCHING LOSS (mJ) $L = 500 \mu H$ $V_{GE} = 10V$ $T_{.1} = +150^{\circ}C$ V_{CE(ON)}, SATURATION VOLTAGE (V) $V_{CE} = 480V$, $V_{GE} = 10V$, 15V 1.00 V_{GE} = 15V $V_{CE} = 240V, V_{GE} = 10V, 15V$ 0.05 10 40 V_{CF}, COLLECTOR-EMITTER CURRENT (A) I_{CE}, COLLECTOR-EMITTER CURRENT (A) FIGURE 7. SATURATION VOLTAGE vs COLLECTOR-EMITTER FIGURE 8. TURN-OFF SWITCHING LOSS vs COLLECTOR-**CURRENT EMITTER CURRENT**

Typical Performance Curves (Continued)

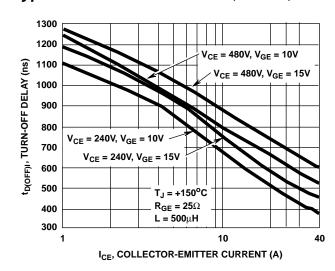


FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

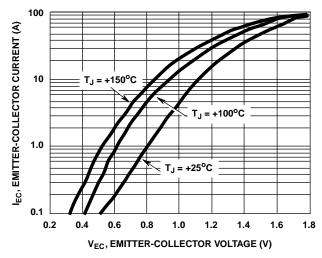
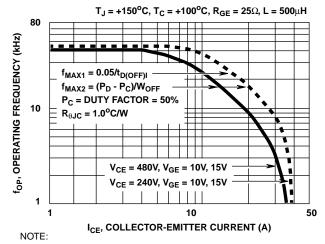



FIGURE 11. FORWARD VOLTAGE vs FORWARD CURRENT CHARACTERISTIC

P_D = ALLOWABLE DISSIPATION P_C = CONDUCTION DISSIPATION
FIGURE 10. OPERATING FREQUENCY vs COLLECTOREMITTER CURRENT AND VOLTAGE

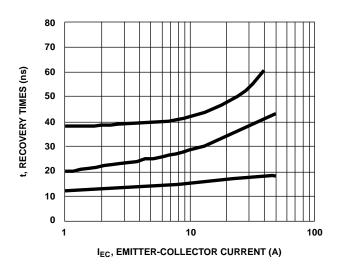


FIGURE 12. TYPICAL t_{RR}, t_A, t_B vs FORWARD CURRENT

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/t_{D(OFF)I}$. $t_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2}=(P_D-P_C)/W_{OFF}.$ The allowable dissipation (P_D) is defined by $P_D=(T_{JMAX}-T_C)/R_{\theta JC}.$ The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) and the conduction losses (P_C) are approximated by $P_C=(V_{CE} \bullet I_{CE})/2.$ W_{OFF} is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE}=0A).$

The switching power loss (Figure 10) is defined as $f_{MAX2} \bullet W_{OFF}$. Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.