FEATURES

+3 V, +5 V or ± 5 V Power Supplies
Ultralow Power Dissipation ($<0.5 \mu \mathrm{~W}$)
Low Leakage (<100 pA)
Low On Resistance ($<50 \Omega$)
Fast Switching Times
Low Charge Injection
Latch-Up Proof
TTL/CMOS Compatible
16-Pin DIP or SOIC Package
APPLICATIONS
Battery Powered Instruments
Single Supply Systems
Remote Powered Equipment
+5 V Supply Systems
Computer Peripherals such as Disk Drives
Precision Instrumentation
Audio and Video Switching
Automatic Test Equipment
Precision Data Acquisition
Sample Hold Systems
Communication Systems
Compatible with ± 5 V Supply DACs and ADCs such as
AD7840/8, AD7870/1/2/4/5/6/8

GENERAL DESCRIPTION

The ADG511, ADG512 and ADG513 are monolithic CMOS ICs containing four independently selectable analog switches. These switches feature low, well-controlled on resistance and wide analog signal range, making them ideal for precision analog signal switching.
These switch arrays are fabricated using Analog Devices' advanced linear compatible CMOS ($\mathrm{LC}^{2} \mathrm{MOS}$) process which offers the additional benefits of low leakage currents, ultralow power dissipation and low capacitance for fast switching speeds with minimum charge injection. These features make the ADG511, ADG512 and ADG513 the optimum choice for a wide variety of signal switching tasks in precision analog signal processing and data acquisition systems.

The ability to operate from single $+3 \mathrm{~V},+5 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ bipolar supplies make the ADG511, ADG512 and ADG513 perfect for use in battery-operated instruments, $4-20 \mathrm{~mA}$ loop systems and with the new generation of DACs and ADCs from Analog Devices. The use of 5 V supplies and reduced operating currents give much lower power dissipation than devices operating from $\pm 15 \mathrm{~V}$ supplies.

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAM

The ADG511, ADG512 and ADG513 contain four independent SPST switches. The ADG511 and ADG512 differ only in that the digital control logic is inverted. The ADG511 switch is turned on with a logic low on the appropriate control input, while a logic high is required for the ADG512. The ADG513 contains two switches whose digital control logic is similar to that of the ADG511 while the logic is inverted in the remaining two switches.

PRODUCT HIGHLIGHTS

1. +5 Volt Single Supply Operation

The ADG511/ADG512/ADG513 offers high performance, including low on resistance and wide signal range, fully specified and guaranteed with $+3 \mathrm{~V}, \pm 5 \mathrm{~V}$ as well as +5 V supply rails.
2. Ultralow Power Dissipation CMOS construction ensures ultralow power dissipation.
3. Low R_{ON}
4. Trench Isolation Guards Against Latch-up A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
5. Break Before Make Switching Switches are guaranteed to have break-before-make operation. This allows multiple outputs to be tied together for multiplexer applications without the possibility of momentary shorting between channels.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

ADG511/ADG512/ADG513-SPECIFICATIONS ${ }^{1}$

Dual Supply ($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{5 S}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	B Version		T Version		Units	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range R_{ON}	30	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \text { to } \mathrm{V}_{\mathrm{SS}} \\ & 50 \end{aligned}$	30	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \text { to } \mathrm{V}_{\mathrm{SS}} \\ & 50 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} ; \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; } \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; } \\ & \text { Test Circuit } 3 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \end{aligned}$ ± 0.1	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG513 Only) Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	200 120 100 11 68 85 9 9 35	375 150	200 120 100 11 68 85 9 9 35	375 150	$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { pC typ } \\ & \text { dB typ } \\ & \text { dB typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \text { pF typ } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=300 \Omega . \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega . \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=+3 \mathrm{~V}$; Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$; Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ Test Circuit 8 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS $V_{D D}$ $\mathrm{V}_{\text {ss }}$ I_{DD} I_{sS}	$\begin{aligned} & 0.0001 \\ & 0.0001 \end{aligned}$	$\begin{aligned} & +4.5 / 5.5 \\ & -4.5 /-5.5 \end{aligned}$ 1 1	$\begin{aligned} & 0.0001 \\ & 0.0001 \end{aligned}$	$\begin{aligned} & +4.5 / 5.5 \\ & -4.5 /-5.5 \\ & 1 \\ & 1 \end{aligned}$	V min/max V min/max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^1]Single Supply $\left(\mathrm{V}_{00}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}, \mathrm{GND}=0 \mathrm{~V}\right.$, uness otherwise noted $)$

Parameter	B Version		T Version		Units	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range R_{ON}	45	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 75 \end{aligned}$	45	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 75 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=4.5 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 4.5 \mathrm{~V} ; \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{D}}=4.5 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 4.5 \mathrm{~V} ; \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=+4.5 \mathrm{~V} /+1 \mathrm{~V} ; \\ & \text { Test Circuit } 3 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.1 \end{gathered}$	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\text {OFF }}$ Break-Before-Make Time Delay, t_{D} (ADG513 Only) Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	250 50 200 16 68 85 9 9 35	500 100	250 50 200 16 68 85 9 9 35	500 100	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=+2 \mathrm{~V}$; Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$; Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 8 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS $\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$	0.0001	$+4.5 / 5.5$ 1	0.0001	$+4.5 / 5.5$ 1	$\mathrm{V} \min /$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^2]
ADG511/ADG512/ADG513-SPECIFICATIONS ${ }^{\text { }}$

Parameter	B Version		Units	Test Conditions/Comments
		$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range R_{ON}	200	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 500 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=+1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.025 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=2.6 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 2.6 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=2.6 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 2.6 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=+2.6 \mathrm{~V} /+1 \mathrm{~V} ;$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG513 Only) Charge Injection OFF Isolation Channel-to-Channel Crosstalk $\mathrm{C}_{\mathrm{S}}(\mathrm{OFF})$ C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 600 \\ & 100 \\ & 500 \\ & 11 \\ & 68 \\ & 85 \\ & 9 \\ & 9 \\ & 95 \\ & \hline \end{aligned}$	1200 160	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=+1 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=+1 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=+1 \mathrm{~V}$; Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$; Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 8 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
```POWER REQUIREMENTS \(V_{D D}\) \(\mathrm{I}_{\mathrm{DD}}\)```	0.0001	3/3.6   1	$\mathrm{V} \min / \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.6 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$

## NOTES

${ }^{1}$ Temperature ranges are as follows: B Versions $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS*   ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)	
$\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\text {SS }}$	
$\mathrm{V}_{\mathrm{DD}}$ to GND . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to + 25 V	
$\mathrm{V}_{\text {SS }}$ to GND . . . . . . . . . . . . . . . . . . . . . . . . +0.3 l V to -25 V	
Analog, Digital Inputs ${ }^{1} \ldots \ldots . \ldots \mathrm{V}_{\text {SS }}-2 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}+2 \mathrm{~V}$ or30 mA , Whichever Occurs First	
Continuous Current, S or D	30 mA
Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)	
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	.$+150^{\circ} \mathrm{C}$
Cerdip Package, Power Dissipation	900 mW
$\theta_{\mathrm{JA}}$ Thermal Impedance	$.76^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	.$+300^{\circ} \mathrm{C}$

Plastic Package, Power Dissipation . . . . . . . . . . . . . . 470 mW
$\theta_{\mathrm{IA}}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . . $117^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering ( 10 sec ) . . . . . . . . . . . $+260^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation . . . . . . . . . . . . . . . . 600 mW
$\theta_{\mathrm{IA}}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . $77^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase ( 60 sec ) . . . . . . . . . . . . . . . . . . . . . . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . $+220^{\circ} \mathrm{C}$
NOTES
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{1}$ Overvoltages at $\mathrm{IN}, \mathrm{S}$ or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG511/ADG512/ADG513 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges.

ORDERING GUIDE

Model 1	Temperature Range ${ }^{2}$	Package Option
ADG511BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG511BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG511TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG512BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG512BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG512TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG513BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG513BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$

## NOTES

${ }^{1}$ To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers.
${ }^{2} 3.3 \mathrm{~V}$ specifications apply over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
${ }^{3} \mathrm{~N}=$ Plastic DIP; $\mathrm{R}=0.15^{\prime \prime}$ Small Outline IC (SOIC); $\mathrm{Q}=$ Cerdip.

PIN CONFIGURATION
(DIP/SOIC)


Truth Table (ADG511/ADG512)

ADG511   In	ADG512   In	Switch   Condition
0	1	ON
1	0	OFF

Truth Table (ADG513)

Logic	Switch   $\mathbf{1 , 4}$	Switch   $\mathbf{2 , 3}$
0	OFF	ON
1	ON	OFF

## TERMINOLOGY

$\mathrm{V}_{\mathrm{DD}}$	Most positive power supply potential.
$\mathrm{V}_{\text {SS }}$	Most negative power supply potential in dual supplies. In single supply applications, it may be connected to GND.
GND	Ground ( 0 V ) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S.
$\mathrm{I}_{\text {S }}(\mathrm{OFF})$	Source leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$	Drain leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch "ON."
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.
$\mathrm{C}_{\mathrm{S}}$ (OFF)	"OFF" switch source capacitance.
$\mathrm{C}_{\mathrm{D}}$ (OFF)	"OFF" switch drain capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"ON" switch capacitance.
$\mathrm{t}_{\mathrm{ON}}$	Delay between applying the digital control input and the output switching on.
$\mathrm{t}_{\text {OFF }}$	Delay between applying the digital control input and the output switching off.
$t_{\text {D }}$	"OFF" or "ON" time measured between the $90 \%$ points of both switches when switching from one address state to another.
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Typical Performance Graphs-ADG511/ADG512/ADG513



Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Dual Supplies


Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures


Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supply


Figure 4. Supply Current vs. Input Switching Frequency


Figure 5. Leakage Currents as a Function of Temperature


Figure 6. Off Isolation vs. Frequency


Figure 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$


Figure 8. Crosstalk vs. Frequency

## TRENCH ISOLATION

In the ADG511/ADG512/ADG513, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in Junction Isolated switches, are eliminated. The result is a completely latch-up proof switch.
In Junction Isolation, the N and P wells of the PMOS and NMOS transistors form a diode which is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward biased. A Silicon-Controlled Rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch-up. With Trench Isolation, this diode is removed, the result being a latch-up proof switch.

Trench Isolation also leads to lower leakage currents. The ADG511/ADG512/ADG513 has a leakage current of 0.1 nA as compared with a leakage current of several nanoamps in nonTrench Isolated switches. Leakage current is an important parameter in sample-and-hold circuits, this current being responsible for the discharge of the holding capacitor with time causing droop. The ADG511/ADG512/ADG513's low leakage current, along with its fast switching speeds, make it suitable for fast and accurate sample-and-hold circuits.


Figure 9. Trench Isolation

## APPLICATION

Figure 10 illustrates a precise sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an OP07. During the track mode, SW1 is closed and the output $\mathrm{V}_{\text {OUT }}$ follows the input signal $\mathrm{V}_{\mathrm{IN}}$. In the hold mode, SW1 is opened and the signal is held by the hold capacitor $\mathrm{C}_{\mathrm{H}}$.
Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG511/ADG512/ADG513 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically $15 \mu \mathrm{~V} / \mu \mathrm{s}$.
A second switch SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp OP07 which will minimize charge injection effects. Pedestal error is also reduced by the compensation network $\mathrm{R}_{\mathrm{C}}$ and $\mathrm{C}_{\mathrm{C}}$. This compensation network also reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the $\pm 3 \mathrm{~V}$ input range. The acquisition time is $2.5 \mu \mathrm{~s}$ while the settling time is $1.85 \mu \mathrm{~s}$.


Figure 10. Accurate Sample-and-Hold

## Test Circuits



Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching Times


Test Circuit 5. Break-Before-Make Time Delay


Test Circuit 6. Charge Injection


Test Circuit 7. Off Isolation


Test Circuit 8. Channel-to-Channel Crosstalk

## MECHANICAL INFORMATION

Dimensions are shown in inches and (mm).



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]:    NOTES
    ${ }^{1}$ Temperature ranges are as follows: B Versions $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

[^2]:    NOTES
    ${ }^{1}$ Temperature ranges are as follows: B Versions $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

