Low Noise, Low Drift Single-Supply Operational Amplifiers

FEATURES

Single- or Dual-Supply Operation
Low Noise: $4.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1 kHz
Wide Bandwidth: 3.4 MHz
Low Offset Voltage: $100 \mu \mathrm{~V}$
Very Low Drift: $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Unity Gain Stable
No Phase Reversal

APPLICATIONS
Digital Scales
Multimedia
Strain Gages

Battery Powered Instrumentation

Temperature Transducer Amplifier

GENERAL DESCRIPTION

The OP113 family dual operational amplifier features the lowest noise and drift of any single-supply amplifier. It has been designed for systems with internal calibration. Often these processor based systems are capable of calibrating corrections for offset and gain, but they cannot correct for temperature drifts and noise. Optimized for these parameters, the OP113 family can be used to take advantage of superior analog performance combined with digital correction. M any systems using internal calibration operate from unipolar supplies, usually either +5 volts or +12 volts. The OP113 family is designed to operate from single supplies from +4 volts to +36 volts, and to maintain its low noise and precision performance.
The OP113 family is unity gain stable and has a typical gain bandwidth product of 3.4 M H z . Slew rate is in excess of $1 \mathrm{~V} / \mathrm{\mu s}$. N oise density is a very low $4.7 \mathrm{nV} \sqrt{\mathrm{Hz}}$, and noise in the 0.1 Hz to 10 Hz band is $120 \mathrm{nV} \mathrm{p}-\mathrm{p}$. Input offset voltage is guaranteed and offset drift is guaranteed to be less than $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Input common-mode range includes the negative supply and to within 1 volt of the positive supply over the full supply range. Phase reversal protection is designed into the OP113 family for cases where input voltage range is exceeded. Output voltage swings also include the negative supply and go to within 1 volt of the positive rail. T he output is capable of sinking and sourcing current throughout its range and is specified with 600Ω loads.
Digital scales and other strain gage applications benefit from the very low noise and low drift of the OP113 family. Other applications include use as a buffer or amplifier for both A/D and D/A sigma-delta converters. Often these converters have high resolutions requiring the lowest noise amplifier to utilize their full potential. M any of these converters operate in either single supply or low supply voltage systems, and attaining the greater signal swing possible increases system performance.
*Protected by U.S. Patent No. 5,146,181.

REV. B

[^0]
PIN CONNECTIONS

8-Lead Epoxy DIP
(P Suffix)
8-Lead Ceramic DIP
(S Suffix)

14-Lead Epoxy DIP (P Suffix)
14-Lead Ceramic DIP (Y Suffix)

16-Lead Narrow-Body SOL (S Suffix)

The OP113 family is specified for single +5 volt and dual ± 15 volt operation over the XIND - extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) temperature range. T hey are available in plastic and ceramic 8-pin DIPs, plus SOIC-8 surface mount packages.
C ontact your local sales office for M IL-ST D-883 data sheet and availability.

Fax: 617/326-8703

OP113/OP213/OP413-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS ($V_{S}= \pm 15.0 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

NOTES
${ }^{1}$ L ong term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at $120^{\circ} \mathrm{C}$, with an LTPD of 1.3 .
${ }^{2}$ Guaranteed specifications, based on characterization data.
Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_{s}=+5.0 V_{1}, T_{A}=+25^{\circ} \mathrm{Cunless}$ otherwise noted)

NOTES

${ }^{1}$ L ong term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at $120^{\circ} \mathrm{C}$, with an LTPD of 1.3.
${ }^{2}$ Guaranteed specifications, based on characterization data.
Specifications subject to change without notice.

WAFER TEST LIMITS © $V_{s}=+5.0 V_{,}, T_{A}=+25^{\circ}$ unless otherwise noted)

Parameter	Symbol	Conditions	Limit	Units
Offset Voltage	$\mathrm{V}_{\text {OS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 150 \end{aligned}$	$\mu \mathrm{V}$ max $\mu \mathrm{V}$ max
Input Bias Current	I_{B}	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	650	$n A$ max
Input Offset Current	los	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	50	$n A \max$
Input Voltage Range ${ }^{1}$			0 to 4	\checkmark min
C ommon-M ode Rejection	CMRR	$0 \leq \mathrm{V}_{\text {CM }} \leq 4 \mathrm{~V}$	90	dB min
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	100	$\mu \mathrm{V} / \mathrm{V}$
L arge Signal Voltage G ain	$A_{\text {Vo }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	2	$\mathrm{V} / \mu \mathrm{V}$ min
Output Voltage Swing High	$\mathrm{V}_{\text {OH }}$	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	4.0	V min
Supply Current/Amplifier	$\mathrm{I}_{\text {SY }}$	$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}$	2.0	mA max/amp

NOTES
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. C onsult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.
${ }^{1}$ G uaranteed by CM R test.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$	
Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage	$\pm 18 \mathrm{~V}$
D ifferential Input Voltage	$\pm 10 \mathrm{~V}$
Output Short-Circuit Duration to G ND	Indefinite
Storage T emperature R ange	
Z, Y Package	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
P, S Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
OP113/OP213/OP413A, B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
OP113/OP213/OP413E, F	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range	
Z, Y Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
P, S Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature R ange (Soldering, 60	$+300^{\circ} \mathrm{C}$

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Units
8-Pin Cerdip (Z)	148	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin Plastic DIP (P)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SOIC (S)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Cerdip (Y)	108	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Plastic D IP (P)	83	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SOL (S)	92	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2} \theta_{\mathrm{JA}}$ is specified for the worst case conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP, and LCC packages; $\theta_{J A}$ is specified for device soldered in circuit board for SOIC package.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP113E P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP113ES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	$\mathrm{SO}-8$
OP113FP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP113FS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	$\mathrm{SO}-8$
OP213EP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP213ES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	$\mathrm{SO}-8$
OP213FP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP213FS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	$\mathrm{SO}-8$
OP413EP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin Plastic DIP	$\mathrm{N}-14$
OP413ES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Pin SOL	$\mathrm{SOL}-16$
OP413FP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 -Pin Plastic DIP	$\mathrm{N}-14$
OP413FS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Pin SOL	$\mathrm{SOL}-16$

DICE CHARACTERISTICS

OP113 Die Size 0.064×0.0627 inch, 3,968 sq. mils.
Substrate (Die Backside) Is Connected to V+.
Transistor Count, 66.

OP213 Die Size 0.062×0.097 inch, 6,014 sq. mils. Substrate (Die Backside) Is Connected to V+. Transistor Count, 132.

OP413 Die Size 0.106×0.106 inch, 10,176 sq. mils.
Substrate (Die Backside) Is Connected to V+. Transistor Count, 256.

APPLICATIONS

The OP113, OP213 and OP413 form a new family of high performance amplifiers that feature precision performance in standard dual supply configurations, and, more importantly, maintain precision performance when a single power supply is used. In addition to accurate dc specifications, it is the lowest noise single supply amplifier available with only $4.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ typical noise density.
Single supply applications have special requirements due to the generally reduced dynamic range of the output signal. Single supply applications are often operated at voltages of +5 volts or +12 volts, compared to dual supply applications with supplies of ± 12 volts or ± 15 volts. This results in reduced output swings. Where a dual supply application may often have 20 volts of signal output swing, single supply applications are limited to at most the supply range, and more commonly several volts below the supply. In order to attain the greatest swing the single supply output stage must swing closer to the supply rails than in dual supply applications.
The OP113 family has a new patented output stage that allows the output to swing closer to ground, or the negative supply, than previous bipolar output stages. Previous op amps had outputs that could swing to within about ten millivolts of the negative supply in single supply applications. H owever the OP113
family combines both a bipolar and a CM OS device in the output stage, enabling it to swing to within a few hundred microvolts of ground.
When operating with reduced supply voltages, the input range is also reduced. This reduction in signal range results in reduced signal-to-noise ratio, for any given amplifier. There are only two ways to improve this; increase the signal range or reduce the noise. The OP 113 family addresses both of these parameters. Input signal range is from the negative supply to within one volt of the positive supply over the full supply range. C ompetitive parts have input ranges that are a half a volt to five volts less than this. Noise has also been optimized in the OP113 family. At $4.7 \mathrm{nV} /$ $\sqrt{\mathrm{Hz}}$, it is less than one fourth that of competitive devices.

Phase Reversal

The OP113 family is protected against phase reversal as long as both of the inputs are within the supply ranges. H owever, if there is a possibility of either input going below the negative supply (or ground in the single supply case), then the inputs should be protected with a series resistor to limit input current to 2 mA .

OP 113 Offset Adjust

The OP113 has the facility for external offset adjustment, using the industry standard arrangement. Pins 1 and 5 are used in conjunction with a potentiometer of $10 \mathrm{k} \Omega$ total resistance, connected with the wiper to V - (or ground in single supply applications). The total adjustment range is about $\pm 2 \mathrm{mV}$ using this configuration.
Adjusting the offset to zero has minimal effect on offset drift (assuming the potentiometer has a tempco of less than $1000 \mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$). Adjustment away from zero, however, (like all bipolar amplifiers) will result in a $\mathrm{TCV}_{\text {OS }}$ of approximately $3.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for every millivolt of induced offset.
It is, therefore, not generally recommended that this trim be used to compensate for system errors originating outside of the OP113. The initial offset of the OP113 is low enough that external trimming is almost never required, but if necessary, the 2 mV trim range may be somewhat excessive. Reducing the trimming potentiometer to a $2 \mathrm{k} \Omega$ value will give a more reasonable range of $\pm 400 \mu \mathrm{~V}$.

Figure 1. Precision Load Cell Scale Amplifier

OP113/OP213/OP413

APPLICATION CIRCUITS

A High Precision Industrial Load-Cell Scale Amplifier

The OP113 family makes an excellent amplifier for conditioning a load-cell bridge. Its low noise greatly improves the signal resoIution, allowing the load cell to operate with a smaller output range, thus reducing its nonlinearity. Figure 1 shows one half of the OP113 family used to generate a very stable 10.000 V bridge excitation voltage while the second amplifier provides a differential gain. R4 should be trimmed for maximum common-mode rejection.

A Low Voltage Single Supply, Strain-Gage Amplifier

The true zero swing capability of the OP113 family allows the amplifier in Figure 2 to amplify the strain-gage bridge accurately even with no signal input while being powered by a single +5 volt supply. A stable 4.000 V bridge voltage is made possible by the rail-to-rail OP295 amplifier, whose output can swing to within a millivolt of either rail. This high voltage swing greatly increases the bridge output signal without a corresponding increase in bridge input.

Figure 2. Single Supply Strain-Gage Amplifier
A High Accuracy Linearized RTD Thermometer Amplifier Zero suppressing the bridge facilitates simple linearization of the RTD by feeding back a small amount of the output signal to the RTD (R esistor Temperature D evice). In Figure 3 the left leg of the bridge is servoed to a virtual ground voltage by amplifier A 1, while the right leg of the bridge is also servoed to zero-volt by amplifier A2. This eliminates any error resulting from common-mode voltage change in the amplifier. A three-wire RTD is used to balance the wire resistance on both legs of the bridge, thereby reducing temperature mismatch errors. The 5.000 V bridge excitation is derived from the extremely stable AD 588 reference device with $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift performance.
Linearization of the RTD is done by feeding a fraction of the output voltage back to the RTD in the form of a current. With just the right amount of positive feedback, the amplifier output will be linearly proportional to the temperature of the RTD.

Figure 3. Ultraprecision RTD Amplifier
To calibrate the circuit, first immerse the RTD in a zero-degree ice bath or substitute an exact 100Ω resistor in place of the RTD. Adjust the ZERO ADJUST potentiometer for a 0.000 V output, then set R9 LIN EARITY ADJUST potentiometer to the middle of its adjustment range. Substitute a 280.9Ω resistor (equivalent to $500^{\circ} \mathrm{C}$) in place of the RTD, and adjust the FULL-SCALE ADJUST potentiometer for a full-scale voltage of 5.000 V .
To calibrate out the nonlinearity, substitute a 194.07Ω resistor (equivalent to $250^{\circ} \mathrm{C}$) in place of the RT D, then adjust the LIN EARITY ADJU ST potentiometer for a 2.500 V output. C heck and readjust the full-scale and half-scale as needed.
Once calibrated, the amplifier outputs a $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ temperature coefficient with an accuracy better than $\pm 0.5^{\circ} \mathrm{C}$ over an RTD measurement range of $-150^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$. Indeed the amplifier can be calibrated to a higher temperature range, up to $850^{\circ} \mathrm{C}$.

A High Accuracy Thermocouple Amplifier

Figure 4 shows a popular K -type thermocouple amplifier with cold-junction compensation. Operating from a single +12 volt supply, the O P113 family's low noise allows temperature measurement to better than $0.02^{\circ} \mathrm{C}$ resolution from $0^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ range. T he cold-junction error is corrected by using an inexpensive silicon diode as a temperature measuring device. It should be placed as close to the two terminating junctions as physically possible. An aluminum block might serve well as an isothermal system.

Figure 4. Accurate K-Type Thermocouple Amplifier

OP113/OP213/OP413

R6 should be adjusted for a zero-volt output with the thermocouple measuring tip immersed in a zero-degree ice bath. W hen calibrating, be sure to adjust R6 initially to cause the output to swing in the positive direction first. T hen back off in the negative direction until the output just stops changing.

An Ultralow Noise, Single Supply Instrumentation Amplifier

 Extremely low noise instrumentation amplifiers can be built using the O P113 family. Such an amplifier that operates off a single supply is shown in Figure 5. Resistors R1-R5 should be of high precision and low drift type to maximize CM RR performance. Although the two inputs are capable of operating to zero volt, the gain of - 100 configuration will limit the amplifier input common mode to not less than 0.33 V .

Figure 5. Ultralow Noise, Single Supply Instrumentation Amplifier

Supply Splitter Circuit

The OP113 family has excellent frequency response characteristic that makes it an ideal pseudo-ground reference generator as shown in Figure 6. The OP113 family serves as a voltage follower buffer. In addition, it drives a large capacitor that serves as a charge reservoir to minimize transient load changes, as well as a low impedance output device at high frequencies. The circuit easily supplies 25 mA load current with good settling characteristics.

Figure 6. False Ground Generator

Low Noise Voltage Reference

F ew reference devices combine low noise and high output drive capabilities. Figure 7 shows the OP113 family used as a twopole active filter that band limits the noise of the 2.500 V reference. T otal noise measures $3 \mu \mathrm{~V} p-\mathrm{p}$.

Figure 7. Low Noise Voltage Reference

+5 V Only Stereo DAC for Multimedia

The OP113 family's low noise and single supply capability are ideally suited for stereo DAC audio reproduction or sound synthesis applications such as multimedia systems. Figure 8 shows an 18-bit stereo DAC output setup that is powered from a single +5 volt supply. The low noise preserves the 18-bit dynamic range of the AD 1868. For DAC s that operate on dual supplies, the OP113 family can also be powered from the same supplies.

Figure 8. +5 V Only 18-Bit Stereo DAC

Low Voltage Headphone Amplifiers

Figure 9 shows a stereo headphone output amplifier for the AD 1849 16-bit SoundPort® Stereo Codec device. The pseudoreference voltage is derived from the common-mode voltage generated internally by the AD 1849, thus providing a convenient bias for the headphone output amplifiers.

SoundPort is a registered trademark of Analog D evices, Inc.

Figure 9. Headphone Output Amplifier for Multimedia Sound Codec

Low Noise Microphone Amplifier for Multimedia

The OP113 family is ideally suited as a low noise microphone preamp for low voltage audio applications. Figure 10 shows a gain of 100 stereo preamp for the AD 1849 16-bit SoundPort Stereo Codec chip. The common-mode output buffer serves as a "phantom power" driver for the microphones.

Figure 10. Low Noise Stereo Microphone Amplifier for Multimedia Sound Codec

Precision Voltage Comparator

With its PN P inputs and zero volt common-mode capability, the OP113 family can make useful voltage comparators. There is only a slight penalty in speed in comparison to IC comparators. H owever, the significant advantage is its voltage accuracy. For example, $\mathrm{V}_{0 S}$ can be a few hundred microvolts or less, combined with CM RR and PSRR exceeding 100 dB , while operating on 5 V supply. Standard comparators like the 111/311 family operate on 5 volts, but not with common-mode at ground, nor with offset below 3 mV . Indeed no commercially available single supply comparator has a $\mathrm{V}_{0 S}$ less than $200 \mu \mathrm{~V}$.
Figure 11 shows the OP 113 family response to a 10 mV overdrive signal when operating in open loop. The top trace shows the output rising edge has a $15 \mu \mathrm{~s}$ propagation delay, while the bottom trace shows a 7μ s delay on the output falling edge. This ac response is quite acceptable in many applications.

Figure 11. Precision Comparator
The low noise and $250 \mu \mathrm{~V}$ (maximum) offset voltage enhance the overall dc accuracy of this type of comparator. N ote that zero crossing detectors and similar ground referred comparisons can be implemented even if the input swings to -0.3 volts below ground.

Figure 12a. OP113 Input Offset ($V_{\text {OS }}$) Distribution $@ \pm 15$ V

Figure 12b. OP213 Input Offset ($V_{O S}$) Distribution $@ \pm 15$ V

Figure 12c. OP413 Input Offset ($V_{O S}$) Distribution @ ± 15 V

Figure 13a. OP113 Temperature Drift ($T C V_{\text {OS }}$) Distribution @ ± 15 V

Figure 13b. OP213 Temperature Drift (TCV ${ }_{\text {os }}$) Distribution @ ± 15 V

Figure 13c. OP413 Temperature Drift (TCV ${ }_{\text {OS }}$) Distribution @ ± 15 V

OP113/OP213/OP413

Figure 14. OP113 Input Bias Current vs. Temperature

Figure 15. Output Swing vs. Temperature and $R_{L} @+5 \mathrm{~V}$

Figure 16. Channel Separation

Figure 17. OP213 Input Bias Current vs. Temperature

Figure 18. Output Swing vs. Temperature and $R_{L} @ \pm 15$ V

Figure 19. Open-Loop Gain vs. Temperature @ +5 V

Figure 20. OP413 Open-Loop Gain vs. Temperature

Figure 21. Open-Loop Gain, Phase vs. Frequency @ +5 V

Figure 22. Closed-Loop Gain vs. Frequency @ +5 V

Figure 23. OP213 Open-Loop Gain vs. Temperature

Figure 24. Open-Loop Gain Phase vs. Frequency @ ± 15 V

Figure 25. Closed-Loop Gain vs. Frequency @ ± 15 V

OP113/OP213/OP413

Figure 26. Gain Bandwidth Product and Phase Margin vs. Temperature @ +5 V

Figure 27. Voltage Noise Density vs. Frequency

Figure 28. Common-Mode Rejection vs. Frequency @ +5 V

Figure 29. Gain Bandwidth Product and Phase Margin vs. Temperature @ ± 15 V

Figure 30. Current Noise Density vs. Frequency

Figure 31. Common-Mode Rejection vs. Frequency @ ± 15 V

Figure 32. Power Supply Rejection vs. Frequency @ ± 15 V

Figure 33. Maximum Output Swing vs. Frequency @ +5 V

Figure 34. Small Signal Overshoot vs. Load Capacitance @ +5 V

Figure 35. Closed-Loop Output Impedance vs. Frequency @ +15 V

Figure 36. Maximum Output Swing vs. Frequency @ ± 15 V

Figure 37. Small Signal Overshoot vs. Load Capacitance @ ± 15 V

Figure 38. Slew Rate vs. Temperature @ +5 V ($0.5 \mathrm{~V} \leq V_{\text {OUT }} \leq+4.0 \mathrm{~V}$)

Figure 39. Input Voltage Noise @ ± 15 V (20 nV/div)

Figure 40. Noise Test Diagram

Figure 41. Slew Rate vs. Temperature @ ± 15 V $\left(-10 \mathrm{~V} \leq V_{\text {OUt }} \leq+10.0 \mathrm{~V}\right)$

Figure 42. Input Voltage Noise @ +5 V (20 nV/ div)

Figure 43. Supply Current vs. Temperature

Figure 44. OP213 Simplified Schematic
*OP113 Family SPICE M acro-M odel
9/92, Rev. A
JCN/PMI
*C opyright 1992 by Analog D evices, Inc.
${ }^{*}$ * ode Assignments
*
 * INPUT STAGE

R3	4	19	$1.5 E 3$					
R4	4	20	$1.5 E 3$					
C1	19	20	$5.31 E-12$					
I1	7	18	$106 E-6$					
IOS	2	3	$25 E-09$					
EOS	12	5	POLY(1)	51	4	$25 E-06$	1	
Q1	19	3	18	PNP1				
Q2	20	12	18	PNP1				
CIN	3	2	$3 E-12$					
D1	3	1	DY					
D2	2	1	DY					
EN	5	2	22	0	1			
GN1	0	2	25	0	$1 E-5$			
GN2	0	3	28	0	$1 E-5$			
*								
*VOLTAGE NOISE SOURCE WITH FLICKER NOISE								

$\begin{array}{llll}\text { DN1 } & 21 & 22 & \text { DEN } \\ \text { DN2 } & 22 & 23 & \text { DEN } \\ \text { VN 1 } & 21 & 0 & \text { DC } 2 \\ \text { VN2 } & 0 & 23 & \text { DC } 2\end{array}$

* CURRENT NOISE SOURCE WITH FLICKER NOISE
$\begin{array}{llll}\text { DN3 } & 24 & 25 & \text { DIN } \\ \text { DN4 } & 25 & 26 & \text { DIN } \\ \text { VN3 } & 24 & 0 & \text { DC 2 }\end{array}$
$\begin{array}{llll}\text { VN } 3 & 24 & 0 & \text { DC } 2 \\ \text { VN } 4 & 0 & 26 & \text { DC } 2\end{array}$

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic DIP (N-8)

8-Lead Narrow- Body (SO-8)

14-Lead Plastic DIP ($\mathbf{N}-14$)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

